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Dynamics of the maximum marginal likelihood hyperparameter estimation in image restoration:
Gradient descent versus expectation and maximization algorithm
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Dynamical properties of image restoration and hyperparameter estimation are investigated by means of
statistical mechanics. We introduce an exactly solvable model for image restoration and derive differential
equations with respect to macroscopic quantities. From these equations, we evaluate relaxation processes of the
system to the equilibrium state. Our statistical mechanical approach also enables us to investigate the hyper-
parameter estimation by means of maximization of the marginal likelihood by using gradient descent and the
expectation and maximization algorithm from the dynamical point of view.
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[. INTRODUCTION formance of the MML estimation due to difficulties in simu-
lating the thermodynamically equilibrium state within reli-
As a typical massive system, image restoration based oable precision. Therefore, we need some analytical and
the Markov random fiel{MRF) model has been investigated rigorous studies on the hyperparameter estimation. Obvi-
by the statistical mechanical technique of disordered spimusly, the learning process of the hyperparameter estimation
systems[1-4]. Among these results, statistical mechanicaland the stochastic process of the MCMC methodyasam-
analysis succeeded in evaluating the measure of success fos. From the viewpoint of statistical mechanics of spin sys-
image restoration and made the hyperparameter dependertegns, the process of the hyperparameter estimation is re-
clear[2—4]. However, all of that research was restricted togarded as a dynamics of the spin system in which coupling
studies of static properties of image restoration. In the coneonstant and field strength are time-dependent variables.
text of the Bayesian statistical approach, we usually use th&€hen, the time dependence of these variables is determined
Markov chain Monte CarldMCMC) method to obtain a by the algorithm we choose to maximize the marginal like-
maximum a posteriorfiMAP) estimate by simulated anneal- lihood. As far as we know, no studies have ever tried to
ing [5], or to calculate expectations over posterior distribu-investigate those dynamical properties analytically. In this
tion for maximum posterior margindMPM) estimation[6]. paper, we investigate dynamical properties of image restora-
In the recent study by Nishimori and Womg], they intro-  tion including hyperparameter estimation by using the statis-
duced an infinite range mean-field version of the MRF modetical mechanical technique.
and calculated the overlap between the original image and This paper is organized as follows. In Sec. Il, according to
restored one analytically. However, they did not investigateNishimori and Wong[2], we explain statistical mechanical
the dynamical process of image restoration, that is to say, thiermulation of image restoration in the context of the MPM
process of the MCMC method by Glauber dynamics to ob-estimation. In Sec. lll we derive differential equations with
tain the MPM estimate. Although it is worthwhile to inves- respect to macroscopic observables of the infinite range
tigate such dynamical processes in image restoration, relanean-field MRF model from the microscopic Master equa-
tively little progress has been made in the theoretication. By solving these differential equations, we discuss the
understanding of them. Recently, Inoue and Carl{itin-  relaxation process of image restoration. In Sec. IV marginal
vestigated dynamical properties of gray-scale image restordikelihood as a function of hyperparameters is calculated by
tion using the mean-fiel@-Ising spin glass model analyti- the replica method. We also derive Boltzmann machine-type
cally. They found that the MPM estimate gets worse than théearning equations to maximize the marginal likelihood by
degraded image when one fails to set the hyperparametegsadient descent. Flows in hyperparameter space are ob-
appropriately. Therefore, it is important to study how wetained by analyzing the learning equations. In the same sec-
should infer the optimal hyperparameters. As an approach tbon, we investigate the performance of the E&kpectation
estimate the optimal hyperparameters, thaximum mar- and maximizatioh algorithm [8] which is widely used to
ginal likelihood (MML ) method has been used by many au-estimate hyperparameters from incomplete data sets. It is
thors in practical situations,18]. If one maximizes the mar- well known that the EM algorithm shows faster convergence
ginal likelihood by gradient descent, Boltzmann machine-at the beginning of the algorithm than some other algorithm
type learning equations are obtained and these equatiom®es. However, there is no study to make this property clear
contain expectations over both posterior and prior distribuby using some solvable models. In this section we compare
tions. In order to carry out those expectations, we usually usthe performance of the EM algorithm with that of gradient
the MCMC method. However, it is hard to evaluate the per-descent explicitly. Section V is devoted to the summary.
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IIl. STATISTICAL MECHANICAL FORMULATION FOR 1
IMAGE RESTORATION FBSC({T})E—NH {6(ri—1)+8(r+1)} (5
(2 coshg,)™ i

In this section we explain how we formulate image resto-

ration as a problem of a disordered spin system. According to . 5 .
Nishimori and Wond 2], we consider a black and while im- With 7o/7" =5, the BSC[Eq. (2)] is recovered. We should

age. Then, an original image is denoted byNadimensional  Nofice that a surz €)({7}) for an arbitrary functiorf)({})
vector {EV=(&1,&,, . . . &) and each pixe, takes =1, IS calculated in terms df g gsdi7}) @s

These pixels are located on an arbitrary lattice in two dimen-

sion. In order to treat image restoration by statistical me-

chanics of disordered spin systems, we should assume that > Q({T}):f f d{rtFecesd{HQ{7}), (6)
the original image is given by priori Boltzmann-Gibbs 7

distribution _
where we defined{r}=dr,dr,- - -dry. Then, Bayes theo-

rem gives the posterior distribution

exp( BS% 3 fj)

P({&}) 7. . Z % exp( ﬁs% 5.5,). Pl = P {e)P{o})
W > P{Al{oh)P(la})
whereX;; (- - ) is carried out for all nearest neighboring pix- 7
els. Thus, we use a snapshot of the MCMC simulation for the el2ijoioj+hiiTio]
ferromagnetic Ising model as an original image(= ;%) = : (7)
appearing in the argument of the exponentialcorresponds > elijoiojthizio

to temperature. We obtain pictures of all black or all white
when we seff;— 0, while we obtain random noise pictures
in the limit of Tg—o. A particular original image{¢é} is  whereJ andh are hyperparameters and we introduced mod-
degraded to a particular damaged picturér} els of the prioEq. (1)] and the likelihood Eqg. (2)] as
=(7y,72, - -,7n) DYy a noise channel represented by the fol-
lowing conditional probability:

exr(‘]iz a'icrj)

i
exp( B2 T a) Poh)=—— —
I
P({r = 2
(D = cosrg @
where the sun®,(- - -) is carried out for all pixels and we exp{ hEi Ti"i)
assumed that each pixel is degraded independedilyep- PH{o}) =———, (8)
resents a noise level of the channel because the above ex- Z
pression is rewritten aB(— &/ &) =p=1—P(&]|&) with p
=e Fr/(efr+e Fr) for all pixels independently. Therefore, respectively. A configuration{o}= (0,05, ... ,0y) de-
this kind of noise is referred to as thenary symmetric chan- notes an estimate of a particular original imgg¢. Z;; and
nel (BSCO). Z, in Eq. (8) are normalization constants given by
The BSC is easily extended to taussian channdlGC)
as follows:
ZH:E ex JE O'iO'J'), ZL:Z ex hz TiO'i).
g 1] T I
L 2 (ni= 7o)’ ©)
PAAH{EN=—=—Fexp| ———5
(V27N 27% It is important for us to bear in mind tha, is independent
of {o} for both the BSC and the GC. Actuallg, leads to
70
:FGC({T})eX%?Z Tifi)a 3
2= [ - [ tFesctmon{ N3 7o
1 Z (770 ( 2 coshh )N 10
F Tt =—"70¢+——8€X| _ . 4 = —
GC({ }) (\/ET)N p 2.2 ( ) 2COSh@T
If we replaceFg({7}) appearing in Eq(3) by for the BSC and
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Apparently, the best restoration of the original image is
ZL:f e J d{T}FGC({T})eX’{ h> 7 Ui) achieved when the overldy is as close to 1 as possible. For
' this averaged overlapl (J,h), the next inequality holdg2],

N75  N72h?
—exy — 5t (11) M(3,h)<M(Bs.B.). (17)

This inequality means that the averaged oveiNapakes its
maximum when one sets the hyperparameters to their true
Salues, namely)= Bs andh= 3. However, it is impossible
to derive the hyperparameter dependence of the overlap
around its optimal valud (8,8, from the above inequal-
ity. To investigate this dependence, Nishimori and Wg2[
H{aH)=—-3>, criaj—hz o (12)  introduced a mean-field version of the MRF model and cal-
i [ culated the overlap as a function dandh. The mean-field
) ) model is rather an artificial model in which every pixel is

In order to obtain the grand state, we usually use simulategonnected to the others; however, this model is very useful to
annealing 9] or mean field annealingLO]. discuss the behavior of macroscopic quantities of the system,

On the other hand, in the context of MPM estimation, wejike the overlapM. Using the replica methofL1], one ob-
first calculate the marginal distribution around a single pixekains saddle point equations

for the GC.

In the context of MAP estimation, we choose the estimat
{o} as a grand state of the following Hamiltoniérost func-
tion):

gj .
S 18
Plilrh= 3 PUatlin) (13 Mo= 1 4« &= tanf(Asmo), (18
and we choose the sign of the difference betw®énr;= Z e
+1|{7}) andP(o=—1|{7}) as an estimate of thi¢ch pixel 1 3 %
& as m=ﬁ Z Ui=m 7metanr(Jm+ thx
A h¢), 19
§i=argma>siP(oi|{r})=sgr( Y P(ai|{7})> 70h¢) (19
E eﬁsm0§
> oiP{otl{) _1 .k o
=sgn| — csar(oy. 14 TN S8 Doy ) DxEsorIme s
2 P({aH{rh rohe). 20

In this expression, we definéd), , as an average of thieh ~ where we defined the Gaussian integral measureDy
pixel o over the posterior distributiof¥) and this is written =dxe * 21 \[2. Equation (18) determines macroscopic
explicitly as properties of the original image given by the Hamiltonian
-2 at temperaturé’s(zﬁgl). From a statistical me-
15 oo hE o chanical point of viewm, corresponds to the magnetization
g o€ of the mean-field ferromagnetic Ising model. For a giTgn
(oi)3n= . (15  one obtainsn, by solving Eq.(18). SubstitutingT, mg, and
2 elZijoio) thiirio] noise parameters, (a center of Gaussiamand 7 (a standard
o deviation into Eq.(19), one obtains magnetization for the
. o . restored image systefw} as a function off ,(=J~1) andh.
Thls'corresp.onds to a local magngtlzatlon of the spin systenj}hen’ one substitutes(T,,h) into the expression d¥l, and
that is described by the Hamiltonidi({o}) at temperature  finqs the hyperparameter dependence of the overlap explic-

T=1. Thus, in order to investigate properties of the MPMmy. In Fig. 1 we plot the overlagM as a function of 1
estimation for image restoration, we should study the randor@ETm)_ We setr=r,=1 (8,=r,/72=1) and temperature

field Ising model described b¥{({o}). Then, we are inter-
ested in the quantity

of the original image is chosen 85=0.9. The overlap for
the two cases of the fiel, namely,h=,TJ=7,TJ/ 7
=0.9=h,, (@ andh=1 (b) are shown. We should notice
_ : _ that the MAP estimate is obtained in the limit @f,—0
M(J'h)_gz,f PUehPAnHENEsg(oi)sn).  (16) keeping the ratidn/J constant. Therefore, the overlap for the
_ ~ MAP estimate depends on the ratiéJ and takes its maxi-
which means the averaged overlap thween an arbitranaum when we set/J=B,T,=0.9[see Fig. 1(@)]. From this
original pixel ¢ and the MPM estimate;=sgn(o;);). figure we see that the overlap takes its maximumT gt
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M
o H{oh) =3 h{ooy, (22
0.755 where we rescaled the couplingas J/N to take a proper
(a) thermodynamic limit(the Hamiltonian should be of order
N).
0.75 Then, probabilityp,({c}) that the system visits a state
(b {o} at timet obeys the master equation
0.745 N
dpi({a})
—ar =2, [PFo)wFi{o})
0.74 , - -
05 ! 12 —p({ohwi{oh)], (23)

14

where we defined single spin flip operatey by
FIG. 1. 10(=T,, dependence of the overldp. The tempera-

ture of the original image iTs=0.9 and the noise level I8,
=1y/=1(rg=7=1). We set the fieldh as h=p8.TJ
:(TOTS/TZ)JZO.QJEhopt (@ and h=1 (b). In the limit of 14
—0, we obtain the overlap of the MAP estimation. In both cdags
and (b), the overlapM takes its maximum &t ,,=T=0.9.

Fi{oh)=(o1,02, ..., =0y, ..., on)={a} . (29

Distribution P,(m,a), which is the probability that the sys-
tem has macroscopic order parameters

1 1
=T.=0.9 andh=8,=7,/7?=1. In the next section, we fo- m({o})= N E oi, a({oh= N E oy (25
cus our attention on the dynamics of the MPM estimation. ! !

at timet, is written in terms of the distributiop,({o}) of the
lIl. DYNAMICS OF IMAGE RESTORATION microscopic stat¢o} as

In the preceding section we showed the performance of
the MPM estimation. However, in those calculations we as-  p (m a)=>, p,({o})s(m-m({a}))d@—a{a})),
sumed that the system already reached the equilibrium state. o
In other words, each stafer} obeys the Boltzmann-Gibbs (26)
distribution~e~ {7} When we need to generate the distri- _ _ _ o
bution to calculate the MPM estimate sga(); ), we often ~ Where &(---) is a delta function. Taking a derivative of
use the MCMC method and simulate the equilibrium state€t(M&) with respect tat and substituting Eq23) into this
on computer. Therefore, it is important to study how the€XPréssion and making a Taylor expansion in powers of
system relaxes to its equilibrium state and grasp the behavigk/N and 2ryo /N (the so-called<ramers-Moyal expan-
of time evolutionary observables analytically. As far as weSIon, we obtain
know, there is no research to deal with dynamics of image

restoration including hyperparameter estimation analytically. > efsmot

In this section, for the infinite range mean-field MRF model, dP,(m,a) d

we derive differential equations with respect to macroscopic™ gy~ (?—mpt(m,a) M= 5 coshiB.ma) cosli B.mo)
S

order parameters of the restored image system from the mi-
croscopic master equation.
First of all, we should remember that a transition rate

Wk({o-}) from {0}5(011021 ce a0k e !O-N) to {U}, Xf DXtanl'(Jm-i- hrx+ hTof)
=(01,05,...,— 0y, ...,0q) leads to -
1 2 eﬁsmof
wi({o})=5{1-otanfh({a}) ]}, 7 __&
2 T aghima | a 2 costi Bsmg)
h({oh=x S opeh (21)
O¢)—=5 (0 T o
“ Niout xf DX( 7+ roé)tani( Im+hrx+hrof)
in the context of the Glauber dynamics of the MCMC +O(N™Y). 27

method. It is important for us to bear in mind that the Hamil-
tonianH({c}) of the system is rewritten in terms bf({c}) Thus, we derived the time-dependent distribution of macro-
as scopic quantities from the microscopic master equation, Eq.
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(23). Finally, we construct differential equations with respectpractical situations, we do not know the optimal value of the
to the macroscopic quantitiesanda. Substituting a form of hyperparameters before we carry out the MCMC simula-

distribution tions. Therefore, we need to determine the optimal value by
using only information about the degraded im&gé. Of
P.(m,a)=&6(m—m(t))s(a—a(t)) (28  course, it is possible for us to construct some robust algo-
rithms for hyperparameter tuning and several authors re-
into Eq.(27) and calculating some integrals, we obtain ported such algorithms based eslective freezing13] or
guantum fluctuatiof14]. However, if one seeks the optimal
2 Bemoé restoration, hyperparameter estimation becomes a very im-
dm - e w portant problem.
—=—-m+ —f Dx tanh(IJm+hx+h7yé), About ten years ago, Ibd 2] studied the performance of
dt 2 cosli Bsmo) J —-» the MML method with the assistance of the MCMC simula-

(29 tions for the same problem as ours. However, as he men-
tioned in his paper, the results are not enough to make its
E . performance clear due to the difficulties of simulating the
z o equilibrium state within reliable precision. With this fact in
T —a+ Z—J Dx(7x+ rpé)tani(Im+h7x mind, in this section we calculate the marginal likelihood as
cosliBsmg) J = , -
a function of hyperparameters analytically. From the mar-
+hro). (30)  9inallikelihood, we derive Boltzmann machine-type learning
equations and investigate their behavior quantitatively.
These two equations describe a relaxation of the system to
the equilibrium state. We should notice that the order param-
eterais a slave variable in the sense that the order parameter

da

A. Maximum marginal likelihood method

m relaxes independently, whereas the relaxatioa @épends In statistics, the maximum marginal likelihod@ML )
on m. Therefore, the behavior @ is completely determined method is used to infer hyperparameters appearing in the
by m. For this reason, from now on, we disregard E2[). posterior distributio1,7,15. In the context of image resto-

It is easy to see that in the limit af>o anddm/dt=0, ration, marginal likelihoodthe logarithm of marginal likeli-
the saddle point equatiqi9) is recovered. As the overldg  hood is given by
is written in terms ofm [see Eq(20)], the time evolution of
the overlap is obtained by substituting the time dependence
of the magnetizatiom(t) into the expression dfl. —K(J,h:{g,q-})zlog; P{r{o}hP({o})

Using the same technique as the procedure to derive the
differential equation with respect to, the differential equa-
tion for the magnetizatioom; of the prior systemP({o})
=expUzijoio))/Z expUZijoio;) is obtained as

:Iog E erijUi(Tj+h2iTi0'i _IOgZH
g

—logZ,, (32

dmy
e —m;+tani(myJ). (31
t whereZ; andZ, are given by Eq(9). We should remember

Although in these equations we regard the hyperparamﬂatersthatz'- is independent of} for both cases of the BSC and

and h as constant variables, one should treat them as tim the GC. Usually, we attempt to maximize the marginal like-
dependent parameters that,JQt) andh(t) from the view- Sihood by using gradient descent with respeci emdh. This

P P ’ SR . result leads to the following Boltzmann machine-type learn-
point of hyperparameter estimation. Of course, details of th

time dependence al(t) and h(t) depend on a particular ?ng equations:
algorithm the of hyperparameter estimation. In the next sec-

tion we investigate properties of hyperparameter estimation dJ IK(Ih:{E,7)
as a dynamical process of the coupling cons@ht and the Ci=r=— e
field strengthh(t). dt dd
IV. HYPER-PARAMETER ESTIMATION 203 (%: O'ia'j)ejzijgigﬁhiifiai

In Secs. Il and Ill we investigated both static and dynami- IS i+ e
cal properties of image restoration. From those results, we ; emmn T
obtained hyperparameter dependence of the overlap explic-

itly. Moreover, for a particular constant hyperparameter set .

(J,h), we derived the differential equations which describe > (.2 Ui"i)e e

the relaxation of the system. As one of the authors reported — J , (33
in [4], if one fails to set the hyperparameters appropriately, 2 eIZijoio

the restored image gets worse than the degraded image. In -
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o dh_ KQhiE T CIKQh{E D e
" dt oh N
o e‘]zij"i"j"'hziTiUi eﬁsmof
3 (3 ) L T
= - , =—smt o x log
> elijoiojthIito sh 2 2 cosli Bsmo) J —--
(o8 J )
(34) X cosiIm+hrx+ hrog)]+§m1—log 2coslim,J)

wherec; andc, are relaxation times. Thus, by solving these L0 h? — _K(J,h) 37)
two equations, we maximize the marginal likelihood 272 2 o

—K(J,h:{£,7}) and obtain the values of hyperparameters as
a fixed point of the equations. Then, we should notice thatvherem andm, are magnetizations of the spin systems de-
these two equations contain expectations of the quantitiescribed by the posterior and the prior, respectively. It should
3jjoi0; andX 7oy over the posterior and the prior distribu- be noticed that as we used the GEgs. (3) and (4)], the
tions. Therefore, when we solve Eq83) and (34) numeri-  average[logZ, J;; » simply led to (Nh?/2)— (N7o/27%) [see
cally, we should calculate these expectations at each timeq. (11)].
step of the Euler method. Ibd2] carried out the MCMC In Fig. 2, we plot the averaged marginal likelihood as a
method to calculate the expectations and evaluated time d&inction of J andh. In this figure we see that the averaged
pendence of the hyperparametdrandh numerically. How-  marginal likelihood takes its maximum when we choose the
ever, the accuracy of his computer simulation is not reliablehyperparametersl(h) so as to be identical to their true val-
because the time to simulate the equilibrium state is noties (Bs=1/T=1.18,=7,/7°=1) (we set 7o=7=1T,
enough. Accordingly, it is worthwhile to investigate the per- =0.9). This fact is easily checked by the following inequal-
formance of the MML method analytically using the solvableity [16]:
model. In this section, we use the infinite range mean-field
MRF model and solve the learning equatiq88) and (34)  {—[K(Bs.B:{& ) 1ie 4 —{—[K(I,h{& 7H) e o}
exactly.

As our interest is an averaged performance of _the MML :2 PBT({T}|{§})PBS({§})|092 PB,({T}H‘T})
method, we should calculate the averaged marginal likeli- &7 4
hood,

XPg{oh) =2 Pg ({7He)

—[KQ,h:{&, ) ]en=

|OgE eWUIN)Zjjoioj+h3iTi
g

6 xPg({ghlog 2 Pr({rHl{ohPa{o})
_ (JIN)Zjj 00
g2l € } o =3 Py, 5, ({7)I0g(Py, 5 ({))/Pa({7)=0, (39
~llogZ Jie.q, B9 where we used the non-negativity i§éiliback-Libeler infor-
mationand we defined
where the bracket: - - |;, , means the average over the dis-
tribution P({7}|{£}) P({£}) and the sunE;;(- - -) should be exr{ x> Tiffi>
carried out for all pairs of pixels. We should keep in mind _ i
that we rescaled the coupling constantJasl to make the Px({rtl{oh)= '
averaged marginal likelihootifference of free energyof > ex XZ TiUi)
orderN. In general, it is hard to carry out this kind of aver- ! '

age, namelyflogZ],; ». Then, we replace the average with
an average of thath moment ofZ, that is,Z" by using ex;{ XE Ti §i>
I
Px({r}{&h= : (39
. [Zn]{gr}_l GX%X Tifi)
logZ]i; p= lim——=———. (36) T
[logZ]i¢ Iim =
EX[{ YZ O'iO'j)

This is referred to as theeplica method 11]. By using the Py({o})= ! ,
replica method, we obtain the averaged marginal likelihood z ex YZ P
per pixel as v TR
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FIG. 2. J dependence of the averaged marginal likeliheold
(upper figure. We seth=0.5,1 andh=1.5. We see that K takes
its maximum when we choos&h asJ=1.1(=1/T;) andh=3,
=1. h dependence of the averaged marginal likeliheold (lower
figure). We setJ=0.5,1 andJ=2.1. We see that-K takes its
maximum when we choosg&h asJ=1.1=(1/T,) andh=p8,=1.
For both figures, we chosen(m;) as a solution of Eq(19) and
m,=tanhgm,) for J=1/T; andh=4,.

exp( Y, gigj)

1]

Py({&h)= : (40)
g ex Y; gigj)
Px,Y({T})Eg Px({r}H{o})Py({a})
=§ Px({ TH{EHPy({£}). (4)

Thus, we confirm that our mean-field model is not agains{:1

PHYSICAL REVIEW E 65016125

For the marginal likelihood35), averaged learning equa-
tions with respect tal and h are obtained by the gradient
descent

dJ__VK(J,h:{g,T})

CJ__ ]
dt 4J (e
dh IK(J,h:{&,7})
T 42

{&.7

The right-hand sides of the above equations are also evalu-
ated by the replica method. After some algebra, we obtain

dJ m?2 E effsmof

g o]
_:___|_ S —
Cat 2 M3 cosh B.mg) J_OCDX
2
m;
Xtanh IJm+hrx+hryé) + 5 m;tanim,J),

(43)
e:Bsmo‘g
Ch'dt ~ 2 coshiBemg) ) - X(7x+ 708)
X tanHIm+h7x+h7é) — 72h, (44)

where we should remember thatand m; obey the differ-
ential equations

E eﬁsmof

dm z ®

at m+mﬁsmo) _watanr(vaL hrx+h7y¢),
(45
dm;
W=—m1+tanr(m1\]). (46)

By solving these coupled equations, we obtain time depen-
dences of the hyperparametdig),h(t) and relaxation pro-
cess of the systems, namaty(t),m;(t). In this paper we fix
the relaxation times as;=c,=1.

In Fig. 3 we plot time dependences of the hyperparam-
etersJ,h and order parameters,m,. From this figure we
see that the final state of the hyperparameters is optimal,
namely, 0, ,h,)=(1/Ts,B,= 79/ 7?)=(1.1,1) and this con-
vergent point is independent of the initial conditions. Time
evolutions of the overlay are also plotted in Fig. 4upper
figure). We find that the overlapM converges to the best
possible value in Fig. 1. In Fig. 5 we plot flows of hyper-
parameted-h. From this figure, we find that each flow does
ot take the shortest path to the solution and goes a long way
round the solution.

this general inequality. We should mention that the static

properties of the hyperparameter estimation were investi-
gated by several authors using the generalized Gaussian
model[17], mean-field approximatiofi], and cluster varia-

tion method[18].

B. EM algorithm

In the preceding section we investigated the process of the
MML method by gradient decent as a dynamics. In this sec-
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24
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FIG. 3. From the upper left to the
lower right, time dependences of the
hyperparameterd, h and the magne-
tizations m, m; are plotted. In

8 100 80 % f each graph, we choose the initial con-
dition (a) J(0)=0.45h(0)=1m(0)
=m,(0)=0.4; (b) J(0)=0.45h(0)

1M ~0.5m(0)=m,(0)=0.4; (c) J(0)
=2.25h(0)=1,m(0)=m,(0)=0.4;
(d) J(0)=2.25h(0)=0.5m(0)
=m,(0)=0.4. We set true values of
the hyperparameterf,=0.9, B,=1.
0.2
0.1
03¢ 20 40 t B0 80 o 20 40 t B0 80 T
tion we analyze the performance of tB& algorithm[8] as Q(J,h[J;,hy)

another candidate to maximize the marginal likelihood.

In the EM algorithm, we first average the logarithmic- _ _
iikelihood function =| 2 P({o}l{rhlog P({r}l{a})P({«r})_{g ,
3 -
|ng({7'}|{0'})P({0'})ENZ 0'i0'j+h2 T, 2 (2 O-io-j)e(Jt/N)EijUiUJ+htziTi°’i
ij i o i
=J .
J Ji IN)3jiojoi +hZi7i0j
—|092 ex —E 0i0;j Ee(t iy
o N 7 - e}
N7, N7?h? . | eGt/N)Zjjoi0;+hZi7i0;
27 +h
E eUt/N)Zjjoioj +hZiTio|
over the time-dependent posterior distribution 7 {&7}
J N72  N72h?
e /N)Zjjojoj+hZ 70} —log 24 EXF{N% 00 +F_ 5
P({otl{rh= . (48)
z e(‘]t/N)Eija'i"j+htEiTi"i (49)

(o8

where we divided the coupling constatsand J; by N to
take a proper thermodynamic limit. Then, the EM algorithm
This average is referred to agafunction. As we are inter- is summarized as follows.
ested in the averaged behavior of @éunction, we need the (i) Step 1 Set initial values of the hyperparametégs h,
following averaged) function: andt—0.
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FIG. 4. Time dependences of the overldpfor the case of the FIG. 5. Flows in the hyperparameter spacdeh). We set the

MML by gradient descentupper figure and the case of the EM Mtial conditions J(0)=Jo=0.45, h(0)=ho=1, and m(0)
algorithm (lower figurg. For both cases, we choose the initial con- =m,(0)=0.4 (upper figure af‘d J(0)=Jo=2.25, h(0)=ho=1
dition as (@) J(0)=0.45, h(0)=1, m(0)=m,(0)=0.4; (b) J(0) andm(0)=m,(0)=0.4 (lower figure. True values of the hyper.pa-
=0.45, h(0)=0.5, m(0)=m,(0)=0.4: (c) J(0)=2.25, h(0)=1, rameters ared), =1/T;=1.1, h, =B,=1. For the case of gradle_nt
m(0)=m,(0)=0.4: (d) J(0)=2.25, h(0)=0.5, m(0)=m,(0) descent(GD), the flows go a long way around the _solutlon
=0.4. We set true values of the hyperparame®&ys 0.9, 3,=1. (J4 ,h,)=(1.1,2). In order to compare the MML by gradient de-

. . : scent with the EM algorithm, we also plot flows of the EM algo-
We see that for both cases, the optimal oveNay is obtained as  ~ .
a fixed point of the dynamic,:s P ! rithm (EM). We see that the EM algorithm takes shorter paths than

the MML by gradient descent.

(ii) Step 2 lterate the following E(expectation and M
(maximization steps until an appropriate convergence con-

‘]m(t)E eﬁSmO‘f
dition is satisfied. For the E step: calculéJ,h|J; ,h,). For Q(J,h[J;.hy) _ Im(t)? ¢

the M step: updatd, andh, by N B 2 2 costi Bsmg)
Jt+1: al’gma)jQ(J,h \]t ,ht) X J’iwDX ta.nr[\]tm(t) + htTXJF htTog]
hy.1=argmaxQ(J,h|J; ,hy), hzg effsmot w
> coshiBm) costt Bamo) 700DX(TX+ 7€)
and
J
X tant Jim(t) + hyrx+ h €]+ Eml(t)z
t—t+1.
log 2 cosfim,(t)J] + o o (50)
—log 2 cosfim —_— .
For our infinite range mean-field MRF model, the averages 9 ' 272 2
[--Jie,n In EQ. (49 are calculated by using the replica
method and we obtain At the next time stepJ;..; andh,, are given by the condi-

016125-9
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FIG. 6. From the upper left to
the lower right, time dependences
of the hyperparameterd, h and
the magnetizationsn, m, for the
EM algorithm are plotted. In each

graph, we choose the initial condi-
tion (& Jg=0.45, hg=1, m(0)

0.75 m

=0.5, m(0)=m;(0)=0.4; (c)
J0:2.25, h():l, m(0)=m1(0)
=0.4; (d) Jy=2.25, hy=0.5,
m(0)=m,(0)=0.4. We set true
values of the hyperparameters
Ts=0.9, 8,=1.

tions 9Q/9J=0 anddQ/dh=0. These two conditions lead By using mean-field treatment, we obtain nonlinear maps

to nonlinear maps

1 {m)2-my (03
Jt+1—mtanh - 2m1(t)

m(Q S s
13

i 2my(t)cosh Bsmp)

xfm DxtanH Jm(t) +h;x+h7€]|, (51

2 eBSmO‘f

g oo
h ——f Dx(7X+ 7
ot 27°cosh{ Bsmg) J —= ( o)

X tanH Jy;m(t) +h,7x+hy7o&]. (52

In the above nonlinear mapsyn(t) and my(t) are time-

with respect tan(t) andm;,(t) as

2 eﬁsm0§
g o]

m(t+ l)=—2 Cosi Bamo) %Dx

X tanf J;m(t) + h,7x+h7o€], (53
m,(t+1)=tanj Jmy(1)]. (54

By solving these nonlinear maps, E¢51)—(54), we obtain

the time dependence of the hyperparamefgrd, and the
magnetizationam(t),my(t). We plot the results in Fig. 4
(lower figure, Fig. 5, and Fig. 6. From these figures we see
that both the MML method by gradient descent and the EM
algorithm obtain the optimal hyperparameterg, (h,)
=(1.1,1); however, the EM algorithm shows faster conver-
gence than the MML by gradient descent. In addition, the
flows of the EM algorithm in the hyperparameter space are
shorter than those of the MML by gradient descent. From the
posterior distribution appearing in th@ function (49), we
see that performance of the EM algorithm highly depends on
the initial choice of the hyperparametelg and hy. There-

dependent magnetizations for the systems described by tHere, for the systems which have lots of local minima, the

posteriorP({o}|{7}) and the the prioP({o}), respectively.

final solution is sensitive to the initial condition on the hy-
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perparameters. However, for our model systghe infinite  timal hyperparameters. We also found that the speed of con-
range random field Ising modethere is no local minima in  vergence for the EM algorithm is faster than that of the
the marginal likelihood function. As a result, the final state ofMML method by gradient descent. In addition, the paths to
the EM algorithm is independent of the initial conditions. the solution in hyperparameter space by the EM algorithm
are shorter than those of the MML by gradient descent. Thus,
V. SUMMARY in this paper, we could compare two different methods to
) . ] ] . _estimate hyperparameters without any computer simulations.
In this paper we investigated dynamical properties of im-oyr analytical treatments are applicable to studies of perfor-
age restoration by using statistical mechanics. We introduceghance for the other method, including tteterministic an-

an infinite range mean-field version of the MRF model a”dnealing EM algorithn{19,20. Moreover, besides image res-
solved it analytically. We (_jenved differential equations W!th toration, our approach is useful for the other problems, for

scopic Master equation. We also studied dynamics of hypelseries prediction§23], or the density estimation problem
parameter estimation in the context of the maximum marfo41

ginal likelihood method by using gradient descent and the
EM algorithm. For the MML method by gradient descent,
Boltzmann machine-type learning equations were evaluated
analytically by the replica method. On the other hand, the We thank Hidetoshi Nishimori, Masato Okada, Yukito
EM algorithm led to nonlinear maps and these maps weréba, and David Saad for fruitful discussions. Our special
also evaluated analytically. We compared these two algothanks are due to Toshiyuki Tanaka for useful discussions
rithms and found that for both algorithms we obtain the op-and comments.
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