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Fractional Fokker-Planck equation and oscillatory behavior of cumulant moments
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The Fokker-Planck equation is considered, which is connected to the birth and death process with immigra-
tion by the Poisson transform. The fractional derivative in time variable is introduced into the Fokker-Planck
equation in order to investigate an origin of oscillatory behavior of cumulant moments. From its séflaéon
probability density functiop the generating functiodGF) for the corresponding probability distribution is
derived. We consider the case when the GF reduces to that of the negative binomial dist(lBinif the
fractional derivative is replaced to the ordinary one. Tige moment derived from the GF of the NBD
decreases monotonically as the rgrikcreases. However, the; moment derived in our approach oscillates,
which is contrasted with the case of the NBD. Calculdtgdmoments are compared with those of charged
multiplicities observed irpE e"e”, ande’p collisions. A phenomenological meaning of introducing the
fractional derivative in time variable is discussed.
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[. INTRODUCTION existent in the high energy particle production processes.
In the branching equations, particles are assumed to be
The negative binomial distribution is often used for the produced successively. If a memory effect is introduced into
analysis of observed multiplicity distributions in high energy the branching process, it will be very interesting what results
hadron-hadroni{h) ande™e™ collisions. The cumulant mo- come out.
ment (or the H; moment defined by the cumulant moment The birth and death process with immigration is described
normalized by the factorial momenderived from the gen- by the following equation:
erating function of the negative binomial distributi@dBD)
does not show oscillatory behaviors as the rank of the cumu-
lant moment(or H; momen} increases. On the other hand, JP(n,H)
H; moments 0bt+ained from observed multiplicity distribu- at
tions inhh ande™e™ collisions show oscillatory behaviors
[1,2]. Those behaviors can be explained if multiplicity distri- —nP(n,t) ]+ Ny [(n+1)P(n+1t)—nP(n,t)],
butions truncated at the highest observed multiplicities are (D)
used for the calculation ofi; moments. Inhh collisions,
calculated results from the NBD and those from the modified L
NBD both fit the data wel[3,4]. In e*e~ collisions, calcu- whereP(n,t) denotes the probability distribution thatpar-

latedH; moments by the use of the modified NBBINBD) ticles are existent at time')\o denotes an immigratiqn ra'te,
describe the oscillatory behavior of the data well. However 1 @ death rate, ankl; a birth rate. If the initial condition is
those by the NBD oscillate much weaker than the data, anffken as
cannot explain the behavior of the d4&.
The NBD and the MNBD are derived from the branching P(n,t=0)=24
equations; the former is from a birth and death process with ' no:
immigration, and the latter is from a pure birtbr birth and
death procegsIn those branching equations, it is assumedthe solution of Eq(1) becomes the NBD.
that particles are produced instantaneously, in other words, The probability density function, Koba-Nielsen-Olesen
without memory. (KNO) scaling functiony(z,t) is connected to the probabil-
In high energy particle-particle collision processes, it isity distribution (multiplicity distribution) P(n,t) by the Pois-
considered that a proper time is needed for a secondary prgon transform,
duced particle to behave as an independent particle from the
parent particle after the collision of the parent with a target (ng)"
particle[6]. In high energy hadron-nucleus or lepton-nucleus _\No)" [~
collisions, this effect should be observed as a suppression of P(n,t)= n! fo zZ'ex =(no)z](z. t)dz @
multiplicity compared with the case of instantaneous colli-
sion, because the incident particle can collide with another
target particle in the same nucleus within the proper timeThe KNO scaling functiony(z,t) is obtained from the mul-
after the first collision. This proper time is called the forma-tiplicity distribution P(n,t) by the inverse Poisson trans-
tion zone[7], which means some memory effect should beform,

=No[P(N—1)—P(n, )]+ N[ (N—1)P(n—1})

1063-651X/2001/64)/0161238)/$20.00 65016123-1 ©2001 The American Physical Society



N. SUZUKI AND M. BIYAJIMA

P(z,t)= (N exf(no)z] f;go (%) P(n,t)
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o

Applying the inverse Poisson transfor(8) to Eq. (1), we
obtain the Fokker-Planck equation,

dx. (3

a(zt) 9 1d
e RGP CIUCUINN
where
a(z)=p-yz, b(2)=0’z,
_i = — 2:&
Py TN Ty O

In Eq. (5), >0, ¢®>0, andy is real. If time derivative in
Eq. (4) is replaced to the fractional one, we have reached to
the fractional Fokker-Planck equation in time variable as a
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1 2! 7] & z
P(z,t)= mvexl{— ELZO L%l)(g) E (—myt®),

®

whereE (—t) denotes the Mittag-Leffler function. #=1,
Eq. (8) coincides with they distribution, the KNO scaling
function of the NBD.

The generating functiofiGF) for the multiplicity distribu-
tion corresponding to the KNO scaling function, E8), is
derived in Appendix B, where thgth rank normalized fac-
torial moment and a formula for the¢; moment are obtained
from the GF. The normalized factorial moment is given by

j
T mE:O (=)™ CpE o —myt?)

Ty OO

[1-Ea(— 9] ©

The recurrence equation for tih€ moment is written as

i-1
Hy=1, HJ-=1—mE:1 i~1Cm-1

ijmFm

Fi

H,. (10

model for high energy particle production processes, in

which a memory effect is taken into account.

The normalized factorial moment and thlq moment for

The fractional calculus has been investigated for hundredd!€ NBD are given respectively as,

of years[8,9]. Recently, the fractional Fokker-Planck equa-
tion in time variable was derived from the continuous time
random walk{10]. It is applied to the analysis of anomalous
diffusion phenomengll]. The fractional derivative in space
variable is introduced into the Fokker-Planck equation to de-

scribe the Lgy procesg12].

We would take the fractional Fokker-Planck equation in

time variable corresponding to the branching equatiras

TN +])

= _ 11
" OoN (D
CT(+1)(j-1)! 1

MNes =T )

As can be seen from Eq89) and (11), difference between

a model for particle production processes, and to investigatgye normalized factorial moment derived from the FFPE (0

it's solution, which reduces to the distribution when the

<a<1) and that of the NBD ¢=1) is given by Mittag-

fractional derivative is replaced to the ordinary one. We alsq effler functions.

examine the effect of fractional derivative or introducing the

memory effect on the behavior of cumulant moments.

II. AMODEL FOR PARTICLE PRODUCTION PROCESSES
The fractional Fokker-Planck equati§RFPB,

P(z,t)

a oD “Lepp(z,1), 0<a<l,
Lep= Lo b 6
FP= " 57 a(z)—iﬁ (2)|, (6)
with the initial condition,
#(z,t=0)=08(z—2p), 2o>0, (7)

We can see from EqAL5) in Appendix A that

lim E,(—yt%)=0.

t—+o

Then, F; moment given by Eq(9) coincides withFyg j in
Eq. (11) in the limit of t— 4. Therefore,H; moment cal-
culated from Eq(9) also coincides wittHyg ; in the same
time limit.

Ill. CALCULATED RESULTS

At first, calculated results of the Mittag-Leffler function
E.(—1t) is shown in Fig. 1. It is a decreasing function of
variablet, and asa increases from O to 1, it decreases more
faster as a function of variable

In the following calculations, observed values(ofy and

is taken as a model for particle production processes. In ch?z(:(”z)i(n)z) for the charged particles are used. Then, if
(6), ¢D{ denotes the Riemann-Liouville fractional derivative @ and yt* are given,\ in Eq. (9) is determined by the

[8,9]. The derivation ofy(z,t) from Eg. (6) is shown in

Appendix A.
In the limit of z,— + 0, the solution of Eq(6) for y>0
reduces to

following equation:

3:<C2_L) [1-E(-n9F
A (N 1= 2E (= yt*) +E (- 29t9)
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FIG. 1. The Mittag-Leffler function calculated from E\15) ' T yt%=1.0

with @=0.25, 0.50, 0.75, and 1.00. 0,06 ©= yt*=1.5 ’ ]
o T =2, 0 /\

In order to see the effect of the fractional derivative, i.e., .04 [ | /' .
0<a<1, to the oscillatory behavior dfl; moments, calcu- i .
latedH; moments are shown in Fig(@ with «=0.25, and 0.02 - / \ -
yt*=1.5, 2.0, and 2.5, in Fig.(B) with a=0.50, andyt® i / \
=1.0, 1.5, and 2.0, and in Fig(@ with «=0.75, andyt® of RS Soos -
=0.5, 1.0, and 1.5. In our calculatioin)=29.2 andC? L \ \ 1
=1.274, observed values p collisions at\s=546 GeV, -0.02 | 1 ]
are used14]. If « is fixed, oscillation of thed; moment as i \

a function of rankj becomes weaker as the value of param- 004 e b
eteryt® increases. Ifyt* is fixed, oscillation ofH; moments 2 4 68 101 i 1“6

become much weaker asincreases from 0 to 1.

In Fig. 3, our calculation withh=0.5 andyt“=2.23 is 0.1 M
compared with théd; moment obtained from the data jrp i ".
collisions at\/s=546 GeV[14]. Parametent® is adjusted 0.08 -
with a step of 0.01 so that the first relative minimum of the o
calculatedH; moment should be located near the rank of that 0.06 |- [
obtained from the data as much as possible. The calculated Lot
first relative minimum value i$,= —3.32<10 °, and the 0,04
absolute value of it is much smaller than that obtained from
the data. However, we can see from Fig&)2and 3, the
calculatedH; moment witha=0.5 andyt“=1.0 oscillates
as strong as that from the data. [

In Fig. 4, the calculatedd; moment with #=0.5 and 0
yt“=90.0 is compared with that obtained from the data in I ]
e*e” collisions aty/s=91 GeV[15]. As can be seen from -0.02 - ©) .
the figure, the calculated value of the first relative minimum I P EP T RN AP AP S R
is almost the same with the data, and the strength of the 2 4 6 8 10 12 j 1416
oscillation of calculatedd; moment is comparable with the
data. FIG. 2. Calculated results ¢4; moments as a function of rank

The H; moment ine"p collisions in the pseudorapidity j; (& with @=0.25, andyt*=1.5 (\ =48.44), 2.5(16.93, and 3.5

rangé 1< <5 in the interval 185 W<220 GeV[16]is  (11.61; (b) with «=0.50, andyt*=1.0 (\=66.82), 1.5(15.4),
and 2.0(10.29; (c) with «=0.75, andyt*=0.5 (\=20.41), 1.0

(10.20, and 1.5(7.65. In each calculation{n)=29.2 andC?
=1.274, observed values of charged particlegpm collisions at
Js=546 GeVk [14] are used.

!pseudorapidityy is defined asy= —Intan(6/2), with the polar
angle of a particle.
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FIG. 3. Calculated result witha=0.5 and yt“=2.23 (A j
=9.16) is compared with the data of charged particlep prcolli- ) )
sions at/s=546 GeVt [14] where(n)=29.2 andC?=1.274 are FIG. 5. Calculatedd; moments as a function of rarlare com-

used. Parameter is fixed at 0.5, angt® is adjusted so that the first Pared with the data ie”p collisions in the pseudorapidity range

relative minimum of the calculated; moment is located gt=5 1<#»<5 in the interval 185W<220 GeV[16]. White circles

(=7). denote the calculated result with=0.50 andyt“=11.2, where
(n)=8.80 andC?=1.190 are used. White triangles show tHe

. . oment calculated with the NBD that is truncatednat 21, the
also analyzed, and the results are shown in Fig. 5. Cz‘;llculate:ﬁghest observed charged muliplicity, whefe,)—8.825 andh

H; moment W|'_[ha=0.5_ and?/t_ =11.2 \=20.00) well re- 1321 are used.
produces the first relative minimum of the data. For compari-

son, theH; moment calculated with the NBD, EqB11) ¢ jated with the truncated NBD is comparable with the data.
truncated at the highest observed charged multiplicity is also  £ctimation ofH; moment is obtained by the use of Eq.

shown. The pararge.ters. of the truncated NBD are determingd ) from the F ; moment both in the theoretical calculation
by the minimumy~ fit with the observed charged multiplic- o in the calculation from the experimental data. In order to
ity dlstrlbutlon._ The first relative m|n|m_um_of the caIcu_I:;\ted see the relation between the behavior of themoment and
H; moment with the truncated NBD ibls=—3.42<10 that of the normalized factorial momeR{ as a function of
that is d|ffer§r;t from the first relatlve minimum rankj, we also analyze the; moment ine*p collisions in
Hy=—4.07<10"" obtained from_ th_e experimental data. the pseudorapidity range<l»<5 in the interval 185:W
However, the strength of the oscillation bf moments cal- <220 GeV[16]. The parameters are the same with those in
Fig. 5. TheF; moment calculated with Eq9) is compared
. ] with the data in Fig. @). Our calculated result in the nor-
i [ ete” 91GeV ] malized factorial moment well reproduces the experimental
0.0015 [ 4 data up to the fourth rank. The difference between them is
N :dafgo ) less than 1%. However, we cannot reproduce the fourth rank
0,001 . \ ay=t0._5 B Hj moment of the data from our calculation. This result in-
i . w>=20.70 ] dicates that the oscillation of thé; moment is very sensitive
\ to the value ofF; moments.
7 To see the effect of truncation for the normalized factorial
1 momentF;, those calculated with Eq11) (without trunca-
tion) and with the truncated NBD are shown in Figbp The
former is calculated witn)=8.80 andC?=1.190. Param-
eters of the truncated NBD are the same with those in Fig. 5.
The F; moment with truncation is much more suppressed
i ] than that without truncation at higher rapk
0000 Lt From Figs. 6a) and @b), we can see that the; moment
2 4 6 8 10 12z 14 16 calculated from the FFPE is smaller than that with Ed)
(without truncation. Therefore, introduction of the fractional
FIG. 4. CalculatecH; moments witha=0.50 andyt*=90.0  derivative in time variable suppresses the value=pfmo-
(A=25.36), as a function of rank are compared with those in ment compared with that of E¢l1) as the rank increases,
e"e” collisions at Vs=91 GeVk [15]. (n)=20.70 and C?>  and gives rise to similar effect as in truncation of multiplicity
=11.091 are used in our calculation. distribution.

0.002

0.0005 [

-0.0005 |- -
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FIG. 6. Calculated normalized factorial momeftsas a func-
tion of rankj are compared with the data &' p collisions in 1
<7<5 in the interval 185XW<220 GeV[16]. (a) White circles
denote the calculated result witk=0.50 and yt“=11.2 (\
=20.00), and black circles are the ddta). White circles denote the
result calculated with the NBD that is truncatedrat 21, where
(ny=8.825 and\=13.21 are used. Crosses show calculaigd
moment with Eq(11), wherex=13.10 is used.

The H;j moments and normalized factorial moments in
e"p collisions in 1<y<5 in the interval 185W
<220 GeV[16] are also calculated with sets of parameters
a=0.25 andyt“=16.0 \=19.94), or «=0.75 andyt®
=5.70 . =20.41). The results become almost the same wit
those shown in Figs. 5 and 6.

Observed charged multiplicity distributions in the pseudo-

rapidity windows, X #<#%.,, 7m=2, 3, 4, and 5, are also
given ine"p collisions in the interval 188 W<220 GeV
[16]. We also analyze the factorial moment of multiplicities

in each pseudorapidity window using the formulas given byd

Eq. (B6) or Eqg.(9) with «=0.5. Formula of average charged
multiplicity

(M=Nk(ng)[1=E(= 9], 13

PHYSICAL REVIEW E65 016123
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FIG. 7. Pseudorapidity windowA » dependence ofyt® («
=0.50) andkx(ng) in e*p collisions in the interval 188W
<220 GeV|[16]. Those values are estimated from the observed
average charged multiplicityn) in the pseudorapidity window »
(An=79m—1,7,=2,3,4,5)[16] by the use of Eq(13).

is applied to that of the window,< << #,,, which is speci-
fied by A p= 5,,— 1. Estimated value oft* and\k({ng) are
shown in Fig. 7. Roughly speakingt® increases exponen-
tially with A 7,

yt*~exq 0.83A 7],

and\k(ngy) increases with\  more slowly.

IV. CONCLUDING REMARKS

The FFPE corresponding to the birth and death process
with immigration is taken as a model for particle production
processes with a memory effect. It is solved according to the
procedure proposed by Barkai and Siljéyg]. From the so-
lution of the FFPE, we obtain the generating function for the
multiplicity distribution, where parameter connected with
the fractional time derivative is contained. df is put to 1,
the distribution becomes the NBD.

The normalized factorial momer; calculated with Eq.

(9) becomes much smaller than that with E#jl) obtained
from the GF for the NBD as the rarjkincreases, where Eq.
(9) coincides with Eq(11) if a=1. This fact means that the

high multiplicity component in the multiplicity distribution is
r§uppressed ilv<<1, compared with the NBD{=1) with

the same/n) andC2.

When« is less than 1, the oscillation &f; moment ap-
pears, and as decreases from 1 to O, the oscillation be-
comes much stronger. This is caused by the fact that the
fractional derivative (8<«<1) is introduced into the time
erivative in Eq.(6). It can be said that introducing the frac-
tional derivative gives similar effect on the normalized fac-
torial moment and théd; moment as in the truncation of
multiplicity distributions.

If « is fixed, as can be seen from Fig. 1, the oscillation of
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H; moments become weaker @&* increases. The first rela- 1 z+275(1-p) 7 (\—1)12
tive minimums ofH; moments obtained from the data are Gs(2)= k_pex - kp 2o(1—p)
about—6.7x10 3 in pp collisions, —4.1x 10 2 in ep col-

lisions, and—4.1x10"“ in ete™ collisions. We have ana- 2Vzzy(1—p)

lyzed the data witlw=0.5. Estimated values oft* from the X1 kp ' (AB)

data are 2.2%or 1.0, 11.2, and 90.0, respectively. The result
of our analysis is consistent with the general featureslof wherex>0, andk andp are real; those are written respec-

moments shown in Fig. 1. tively as,
ACKNOWLEDGMENT 2B a? B
)\2—2, k=2—, p=1—e s, (A7)
One of the author§M.B.) is partially supported by a o Y

Grant-in-Aid for Scientific Research from the Ministry of
Education, Science, Sports, and Cultut&rant No. Coefficient) is positive. In the following, we assume that
09440103. v=N1—\,>0. Therefore, coefficienk becomes positive.

Equation(A6) can be expanded as

APPENDIX A: FRACTIONAL FOKKER-PLANCK
EQUATION Gy2)= 7,

1({z\»1 z
kKl Rk
We consider the FFPE,

2 m!

m=0 F(m+ )\)

aP(z,t
l’//;t ) DL Lemp(zt), 0<a<l, K K
whereL " "1)(z) denotes the Laguerre polynomial.
d 19 Applying the Laplace transform to E¢AL), we find
Lep=— 57 a(z)— > Eb(z) : (A1) _
kg +ut-e W6 g
with the initial condition 0 UR(u)+u Js s(2)ds
W(z,t=0)=8(z—20), 2,>0. (A2) =[1—-ul"*Ry(u)]8(z—2), (A9)

In Eq. (A1), coefficientsa(z) andb(z) are given by Eq(4).  whereR4(u) is the Laplace transform d&(t),
oD{ denotes the Riemann-Liouville fractional derivative

8,9] defined b = )
[8,9] defined by Rs(u)zjo R(t)e™Udt. (A10)

1 d" [t
B _ - _ an-6-1
oDf()= I'(n—19) dtnfo(t 7 f(r)dr, Furthermore, we assume that each side of &®) is

equal to zero
n—1=<6<n, (A3)

1-—a Oﬁés(u)
S

1- o — _
U “Ro(u)=1, u 3

=uR(u). (A1l
wheren is a positive integer. lix=1, Eq.(Al) reduces to uR(W). (A1)

Eq. (4).
According to the method proposed by Barkai and SilbeyThe solution of Eq(A11) is given by
[11], we assume that

Ry(u)=u*"texd —su"]. (A12)
z,t=JRtG z)ds, A4 ) ~ . .
Wz 0 (DG(2) (A4) ThenR4(t), the inverse Laplace transform BE(u), is writ-
ten as
and that functiorG4(z) satisfies the following equations:
1 cotio ut t~ ¢ [cotioe 1
R (t)=—.J Ry(u)e''du= f o
d s 2 e 2 e
LeeGs(2) = - Gs(2), o i ) co-i
Xexpo——o%|do  (cy>0). (A13)
Gol(2)= 8z 2o). (A5) ‘{ - (0=0)
Then functionGg(z) is given as Therefore, the solution of the FFRE1) is given by
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t wa DG A [{ z i m! fi=(n(n—=1)---(n—j+1))
‘//(Zi )_ 0 S( ) S(Z) S= k)\ €X k =, F(m+)\) ﬁJH(u)
z z Y
xL%l)(E>L§T§1>(?°) E (—myt?),  (Al4) u=1
whereE (—t) for t>0 denotes the Mittag-Leffler function 2,121 n(n=1)---(n=j+1)P(n). (B2)

of ordereda [13],
From Egs.(2) and(B1), the GF is written by the use of the

E (—1)= sin( aw)fxexr[—(xt)”"‘] Laplace transform of the KNO scaling functiai(z,t) as
1 H(l—u/(no))zf P(z,t)e Ydz (B3)
X dx.  (A15) 0
x2+2x cod am)+1

Then the GF corresponding to E@A17) is given as
It is written in the infinite series as

5 = - S, FmEN [-kngu-1)]

E, (—myt®).
Ea(Z)anom. (Al6) m=0 MIT'(X\) [1—k(ngy(u—1)]™+ 5

In the limit of zo—+0, Eq. (A14) reduces to The multiplicity distribution and the factorial moment are

given from Eqs.(B2) and (B4), respectively, as

1 Z)\*l F{
z,t ——exg — - LA 1)( )E myt e m
NZD= 100 o 2 (. =S m'“g“) (—D)'T(m+n+x-1)
(AL7) (MU= 2 2 Fom=nin=ni

If =1, Eq.(A17) coincides with they distribution, the (k(ngy)™+n-!
KNO scaling function of the NBD. X iy E (—myt?), (B5)

We have considered the FFPE fpr=\;—\,>0, where ( {no))
the birth rate\, is less than the immigration rade,. In the i
case fory<O0, the solution of the FFPEAL) in the limit of TN N
zo— +0, is given by fj=(k(ng))’ TN mz:o (= D)"CmEo(—myt?).

(B6)

oo
Z)\l

(A -1)
zb)= INOSAP E: L (|k|) EL=(M+M[¥[t]. The|th rank normalized factorial moment is given by

If =1, the above equation coincides with thedistribu- i (—1)™ CE.(—myt?)
- jembEael ™

tion. However, we cannot calculate the factorial moment fi  TO+j)
from it, because the exponential damping factoz rariable Fi=—5= J e
is not contained in the equation, contrary to E417). (M TOOA [1-Eua(=t9)] B7)
APPENDIX B: GENERATING FUNCTION The kth rank cumulant moment is defined by the following
AND FACTORIAL MOMENT equation:
The GF for the multiplicity distributiorP(n,t) is defined _
as AInTI(u)
Kj=—"""— . (B8)
o au! _
u=1
II(u)= >, P(n,t)u". (B1)
n=0

From Egs.(B6), (B7), and (B8), we obtain a recurrence

o o ) ] equation for theH; moment,
The multiplicity distribution and thgth rank factorial mo-
ment are given from EqB1), respectively, as j—1 EF
j—mfm
Hi=1, H;=1- Z j-1Cn-1—F —Hm. (B9
1 6"II(u) j

n| aun

P(n,t)=

u=0 where

016123-7
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If «=1, Eq.(B4) reduces to the generating function for
the NBD with mean multiplicity(np) =kA(ng)(1—e~ "),

(Np)

-\
Mpg(u)= 1—T(u—1)} . (B10)

From Eq.(B10), the NBD is given as

PHYSICAL REVIEW E 65016123

(A +n) ({ng)/\)"
(MT(M+1) (1+(ngy/n)nr

P(nt)= (B11)

The normalized factorial moment and tH@ moment for the
NBD are given, respectively, as

CT(A+])

T+ -1
Moo
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