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We consider the quenched dynamics of the two-dimensional complex Ginzburg-Landau equation in its
turbulent regime. We initialize the system in a frustrated state and observe how frustration affects the evolution
towards the turbulent state. This process is performed for parameter values where, for random initial condi-
tions, the system evolves into the turbulent state. We observe that the glassiness of the initial condition can
inhibit the occurrence of the absolute instability close to the critical point for that instability in parameter space.
Sufficiently far from the critical point, the turbulent state will develop, but only after spending considerable
time in a transient metastable state of fixed vortex density. The parameter distance from the critical point is
found to scale as an exponential of a power of the lifetime of the metastable state, and with a power exponent
depending on the “depth” of the original quench. The limiting regimes of shallow and deep quench are
identified by their respective values of the exponent, and the distinct mechanisms leading to the relaxation to
turbulence in each case are highlighted.
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A ubiquitous equation in the study of pattern formation in  (3) There is an intermediate “vortex glass” regime in
oscillatory, nonequilibrium media is the complex Ginzburg-which metastable cellular patterns emerge. In this long lived
Landau equatioiCGL) [1-4]. This equation has been rec- non-equilibrium state, the vortices in a simulatiaee, e.g.,
ognized as essential to the study of slow modulations opanel(a) of Fig. 1] can be seen to tremble slightly, however,
oscillations in a continuous medium near a Hopf bifurcationthey persist for very long times. One can also clearly discern
threshold[5]. Furthermore, it is a robust model for the de- so-called “shock lines” defining the boundaries of the cells.
scription of the dynamics of point defects in Rayleigh- These shocks are local maxima of the norm figha=(A|)

Benard convectiofi6], as well as a simple description for the ¢reated by the interference of the plane waves emitted by the
behavior of spiral waves in systems such as the Belousovjafect core$9—11].

Zhabotinsky(BZ) reaction[7].

Extensive studies have been devoted to the dynamicag
scenarios in the different regimes of parameter space of th
two-dimensional2D) CGL (see for example Ref§5,8] and
references therein We will consider here the CGL in the
form

It is known that the transition to the defect turbulent state
ccurs through an absolute instabilil), see, e.g., Ref8].
Eor random initial condition$lC), this means that the insta-
bility is abruptly manifested beyond a critical poemt,, and
for a=a.; the system randomly generates and annihilates
defect pairs. Foa<a.,, random IC eventually relax into a
frozen so-called “vortex-glass” state. It should be noted that
— =A+(1+ib)AA—(1+ia)|A|?A, (1) the glassm_ess in thls_ case, rather tha_n being created py
ot disorder as in, e.g., spin-glass models, is a result of the in-
trinsic nonlinearity and competing length scales of the
whereA is a complex field and all other parameters are realmodel. Hence, as is also pointed out in a very interesting
The possible instabilitie$Benjamin-Feir, Eckhaus, convec- recent review paper on the subjdd®], it is of interest to
tive, and absolute 2D instabilitipare well documentetsee  seek an understanding of the effects of such nonlinearity-
e.g., Ref[8]). It is also well known that the 2D CGL exhibits induced frustration in the dynamics of the system. The sec-
three basic types of behavitrongly suggested by numeri- ond motivating factor for this work is the study of the inverse
cal experiments and in reasonable agreement with existingroblem in Ref[13]. The authors of Ref.13] considered the
theory), depending on parameter values: situation where a turbulent statereated numerically within
(1) The system can be in a defect “turbulent” state in the turbulent regimeis used as IC within the glassy regime.
which topological defectéspiral waves or vorticesare con-  They were able to show that below a critical point in the
tinuously generated and destroyed in pairs, thus preservinglassy state regime of parameters, the system relaxes directly
the total topological charge. to the vortex glass. Beyond the critical point, it supports a
(2) For a large range of parameter values, no vortices cametastable quasiturbulent state that eventually relaxes to a
be sustained in the asymptotic long time state, so eventuallgellular pattern. The logarithm of the lifetime of this meta-
all vortex pairs annihilate, leaving a quiescent patte8h  stable state was found to scale as a power of the distance in
This regime is often referred to as being phase turbyent parameter space from the critical point.
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FIG. 1. (Color) Panel(a): frustrated 2D vortex pattern f@=0.65,b=—0.75. Shown is the density plot of the norm figle: |A| of the
solution of Eq.(1) after the system has relaxed from its random initial conditions to the ground state “vortex glass” configuratioribPanel
the previous configuration is now shallowly quenched t00.9 and the frustrated initial condition will eventually “melt.” This panel shows
a snapshot during this relaxation process. Pé&cjelhere the resulting turbulent state is shown a long time after the initial quench. These
figures correspond to the regime && 1 (shallow quench

Here we investigate the effects of initial frustration on the =0.75,0.65,0.55. . .,0.15. The resulting final configuration
turbulent dynamics. Specifically, we conduct numericalis a frozen cellular pattern of the type shown in the top left
simulations within the intermediate regime of parameter valpanel of Fig. 1, for, i.e.a;,=0.65. We will use the subscript
ues and obtain frozen vortex configurations. Then, we initialin for the initial (i.e., the equilibrium frustrated configuration
ize the system with these configurations as IC but within thdor this parameter value that will subsequently be used as IC
turbulent regime of parameter space and follow the ensuingn the quenching simulatiopsFor the quenched values af
dynamics. For our numerical studies of the time evolutionwe will use the subscripjuen Quenching the frozen states
we have used fourth order explicit and implicit methods. Theof b=—0.75,a=a;, to parameter valueb=—0.75,ayen
boundary conditions are periodic in both the spatial variables>a.;, we observe the following:

x andy. The vortices are identified as local minima of the (1) For ag,en<ac, there is a hysteretic inhibition of the
norm field in the neighborhood of its zer¢$4] and the turbulent phase. In particular, f@g,ene (81,82 in our
numerical calculations are performed along a horizontal linesimulations ofO(10*~1C) time units, the system does not
in the (a,b) parameter space. It should also be noted that altlevelop the defect turbulent stat, , is dependent on the
of the presented results are far-0. These can be suitably “depth” of the initial quench, i.e., how far the original pre-
interpreted for values cA<<O using the symmetries of the quenched value;, is from a.;. As expected and docu-
model. Hence, we sdét=—0.75 and varya. For random IC  mented by the data of Table I, if the system is frustrated for
we find that the Al occurs & ;~0.855[15]. “nearby” parameter valuegshallow quench then it will be

We now initialize the system with random IC fa;, more difficult for it to avoid the frustration and identify its
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TABLE I. Critical valuesa, , for differenta;, . 3.8

ain 0.75 0.65 0.55 0.45 0.35 3.6
ac, 0.875 0.875 0.865 0.855 0.855 a4l
3.2t

ground stat¢16]. Hence for a shallow quench, the hysteretic
interval is larger. As the quench deepens, the situation gradu-
ally approaches the one with random IC and the system is sal
able to identify the Al already adgye~2ac 1, without hys-
teretic effects. We conclude that initial frustration can freeze 2.6
the system into the glassy state, even when its ground state is
turbulent, displacing in parameter space the point of mani- 24
festation of the Al. -
(2) Forag,er=ac2, the system will eventually be able to 10
avoid the frustration induced by the IC and reach the turbu-
lent grqund state configuration. HOV\_/ever, t_he initial glass_i- FIG. 3. Plot of logy(T) as a function oflog,(a—ay) in a
ness still has an effect on the dynamlcs_. AS IS well known, Insemilogarithmic plot. The slops of this line iss=1/6 and the
the turbulent state the number of vortices in the system i$hterceptp=logy( 7).
very high and continuously fluctuating, while the same is not
true for the fixed vortex density glassy configurations. Prob-~_
ing the time evolution of the vortex number in the system for
the case at hanha typical result is shown in Fig.)2We
observe that the initial frustration induces a fixed number o
vortices for a period of time. The time intervalfor which
the vortex number remains at the original value determine

3+

log, (T

—log, 0(a—ac)

Aquen2 With Aquent;2> ac,2: T,>T,. But also for a fixed
Aquen ac 2 for two differenta;, 1> a;, » IC-related values of
ﬁi“ (ain'1;2<ac,2),. Taquen’amyl>Taquen'am’z. The above no-
tions suggest the interpretation of the paramatas a “tem-
jerature” for the system. In this perspective, for a suffi-

by the IC, can be interpreted as the duration of a metastab@ently %nergenc “thermal® qpench, 'the syste“m has enough
state. Such a metastable state is not present for random IC, ifi"€9Y to overcome the disorder-induced “energy barri-
which case a large number of vortices arise from the ICErS’ @nd reach its ground state. It should also be emphasized
almost immediately. This metastable state can be explainett!i1at deeper quenches imply larger Jumps in the stgady value
as the by-product of the initial frustration of the configura- of the modulus of the select(_ed §p|ral waves. Th".c‘ simple
tion that necessitates an interval of time prior to the relax2rgument can also be used to justify the observed differences
ation of the system to its ground state, and its overcomin&et\"/een shallow and deep quenches.

the glassiness in favor of this turbulent ground state. Once (3) The distance o, from the(new critical pointa »

again the deeper the quench, the easier it becomes for tﬁgales as an expongntlal of a power_of the I|fgt|me of the

system to find its way out. This can be interpreted in twometastable state. This type of relaxation behavior has been

ways. For a fixed IC-reIa.\teda- say 0.65, foragyens observed in a number of glassy systems such as frustrated
. ins . 1 quen

Josephson junction arraysee, e.g., Ref.17]) or semicon-
ducting materialgsee, e.g., Ref$18,19). In particular,

45
(o)
- Qquen— dc2™ exd —(T/7) 5]- (2
40} - . . . . o o
- A typical manifestation of this scaling is shown in Fig. 3 for
R quenching froma;,=0.65. The values ob,r depend again
35¢ on the “depth” of the initial quench. For the different values
g ° of a=4a;,, the corresponding fitted values éfare given in
3 - Table Il. It can be seen thadtincreases as;, is lowered(for
30 -
o TABLE Il. Values of é for differenta;,, .
25 -
I - ] Qin 3
0.75 0.998
2 L L L L L L L L
0500 200 300 400 _ 500 600 700 800 0.65 0.998
0.55 1.123
FIG. 2. The number of vortices as a function of time for a 0.45 1.447
typical quenching process beyoad,. For a well-determined pe- 0.35 1.986
riod of time T (this is how T is defined, the system is in the 0.25 2.026
frustrated metastable state. Eventually, however, it relaxes to the 0.15 2.014

ground state of defect turbulence.
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FIG. 4. (Color) The three panels are exactly analogous to those of Fig. 1 but for a deep gagreB.15 ands~2 for this case. It can
clearly be seen that the mechanism melting the pattern is different from the shallow quench case of Fig. 1.

decreasing initial frustrationlt is interesting to note thatis  |eading order expansion showW&3] that logoy~(a—ay).
always observed to lie between 1 and 2. In fact for the lim-Hence one expects, based on this analysis, that

iting cases of shallow and deep quench, saturation of the

value of § is observed to the corresponding limié=£€1,5 a—a.~T 1 (3)

=2, respectively. This suggests limits of unimolecular and

bimolecular type relaxation mechanisms. In fact, the differ-for a random initial condition. The exponential behavior and
ent limits correspond to different relaxation mechanisms thathe delay, both in the manifestation of the Al as well as in the
are the pathways for “melting” the cellular structure in the identification of the turbulent ground state, can thus be natu-
shallow and the deep quench cases. In the numerical experially attributed to the glassiness inherent to the IC of the
ments it was also observed that the “half-life” timeis  system.

larger for highem;,, (data not shown The monotonic behav- The elementary mechanism by which turbulence eventu-
ior here may not persist in the saturation limit. However, asally “melts” the initial cellular structure is shown in Figs. 1
the parameters are varied between the saturation lifniisn  and 4. In the case of shallow quenglell-formed cellular
shallow to deep quenghthe variation is indeed monotonic. structure defects start forming initially at the corners of the
The above conclusions are in qualitative agreement with theonfiguration(in the vicinity of the so-called edge defects
intuition that the shallower the quench, the more effectivd 11]). Then, in a way reminiscent of the inverse procedure
frustration will be in preventing the system from reaching its(illustrated by Fig. 3 of Ref[13]) of the procedure men-
ground state, in agreement with the comments in the previtioned in Ref.[11], the turbulent rings of vorticity gradually
ous paragraph. It should be noted here that the behavior e&duce the areas “shielded” by the larger defects. They even-
Eq. (2) is a direct result of the initial frustration. An initial tually allow defect turbulence as they suppress the radii of
perturbation(for random or nonfrustrated )Gwill grow be-  the droplets of larger vortex shielded regions to zero. On the
yond the Al critical point asy'. This signifies that the time contrary, for a deep quench the initial configuration consists
needed for entering the turbulent regimesis-|log,ox| "X. A of defect pairs and quartets rather than of a cellular structure
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with individual defects well separated by shock lines. In thisscribed scenario. We conclude that frustrated initial condi-
case, the “melting” process resembles the process in Retions can affect the relaxation to the turbulent state. In par-
[13]. The initially very narrow vortices start growing uni- ticular, they can move the critical point, causing a hysteretic
formly. The uniformity can be viewed in two ways. On the effect in the occurrence of the transition. Even when the
one hand all vortices grow. However, the growth appears téransition does eventually take place, these effects temporally
be in turbulent droplets of uniformly increasing radius. Thesedelay its appearance compared to the random or nonfrus-
eventually overwhelm the pattern, creating the defect turbutrated IC case by inducing a metastable state of fixed vortic-
lent state. The relaxation path between the two saturatioity. Frustration is manifested through an exponential behav-
regimes follows the variation of the relative influence ofior of the parameter distance from the critical point as a
these two distinct mechanisms. function of a power of the lifetime of the metastable state.
We note that even though our results have been obtainetihe exponent of the power depends on the “depth” of the
along a horizontal line in thea(b) parameter space, we have initial quench, saturating to limiting values for shallow and
found the described scenario to be general for the quenchindeep quenches. It would be of interest to identify and follow
into the turbulent regime of the 2D CGL. In particular, we more closely further characteristics of this nonlinear glassy
performed simulations along the vertical line= 1.0, where, system, to understand how nonlinearity and length scale
for random IC, Al sets in ab, ;~ —0.495. Forb;,=—0.4, competition can induce “disorder.” In particular, studies of
inhibition of the transition was observed urtiil ,~—0.515.  the possible effective thermodynamics of the vortex motion,
Also, scaling similar to the one shown in Fig. 3 was ob-or of variations in the frozen state as a function of the system
served. The existence of such a general scenario is consistgparameters, are interesting topics for future work.
with the implications of the existence of a similarity trans-
formation [given by Eq.(47) in Ref. [2] for the relevant P.G.K. gratefully acknowledges support from the Alex-
linearized homogeneous equafjamhich transforms the re- ander S. Onassis Public Benefit Foundation. Research at the
sults for the case ob#0, to the casdb=0 with a newa  Los Alamos National Laboratory has been performed under
=(a—h)/(1+ab). This is merely an argument in support the auspices of the US DOE under Contract No. W-7405-
(but, by all means, not a propbf the genericity of the de- ENG-36.
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