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Damage spreading in the mixed spin Ising model
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We apply the damage spreading technique to study a mixed spin Ising model consisting of spin 1/2 and spin
1 with a crystal field interaction on the square lattice within a kind of Metropolis dynamics. The completely
different behavior, depending on the value of the crystal field interaction, strongly suggests there may exist a
dynamical tricritical point where the phase transition may change from the second order to the first order for
this model.
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I. INTRODUCTION

The damage spreading~DS! technique, i.e., measuring th
Hamming distance between two different initial configur
tions as they evolve in time, was first studied in theoreti
biology in the context of genetic evolution@1#. Later the DS
concept found its way into the physics system@2–12#. In this
method one essentially monitors the time evolution of two
more copies of the same system with different initial co
figurations subject to a specific dynamics and to the sa
thermal noise. It turns out that this method is less sensitiv
the static fluctuations, when compared to the conventio
Monte Carlo method where the time evolution of a sing
copy is investigated. The DS method has been success
applied to many magnetic models, such as cellular autom
Ising ferromagnet,p-state clock, Potts, ANNNI, Ashkin-
Teller, discreteN vector, XY, the Heisenberg, spin glasse
etc. Besides its wide variety of applications, the relations
between DS and the time-dependent thermodynamic pro
ties in the Ising model@14#, the possible connection of th
damage transition~where the damage vanishes! and the per-
colation transition of geometrical clusters of correlated sp
@15–17# are also investigated.

Most of the above systems which the damage sprea
technique has been applied to are the systems with the
ond order phase transition. Also, the DS technique has b
used to study the critical properties of the BEG model o
honeycomb lattice in the vicinity of tricritical line and how
the DS technique may be applied to identify the tricritic
point is also showed@18#. For the q-state Potts model on
square lattice the DS studies also showed that it is possib
calculate the critical temperature of the model as well as
give some indication of the order of the phase transition@19#.
The DS technique represents nowadays an important to
the study of the dynamic as well as the static behavior
magnetic systems.

Here, we will use the DS technique to study a mixed s
Ising model~MSIM! on the square lattice in which two in
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terpenetrating sublattices have spins one-half (61/2) and
spins one (61,0). Mixed spin systems provide good resu
for studying ferrimagnetism. The magnetic properties of
mixed Ising models have been studied using hig
temperature series expansions@20#, renormalization group
~RG! @21–23#, mean field @24#, effective field @25–27#,
Monte Carlo~MC! simulations and numerical transfer matr
calculations@28,29#, and free-fermion approximation@30#.
Besides at equilibrium conditions as stated as above, wi
mean field approach, the kinetics of the model in the pr
ence of a time-dependent oscillating external field, has a
been studied@31#.

Among those works, there exist two opposite conclusio
for the mixed spin Ising model on the square lattice:~i! the
RG analysis@21#, effective field theory@27#, and the mean
filed theory @24# indicate that there exists a compensati
point or tricritical point at finite temperature;~ii ! RG scheme
@22# and MC and numerical transfer matrix technique@28,29#
then got a contradictory conclusion. In this paper, the
technique is applied to study the MSIM on the square latti
We found that the mixed spin Ising model may exhibit
tricritical point at finite temperature.

In Sec. II we describe the model and the damage spre
ing technique that we will use. In Sec. III we present t
results for the ‘‘pure’’ mixed spin Ising model in which th
crystal field interaction is zero. On the basis of Sec. III, w
perform the DS calculations for the MSIM with nonze
crystal interaction in Sec. IV. Finally, Sec. V presents t
remarks and conclusions.

II. THE MODEL AND A KIND
OF METROPOLIS DYNAMICS

We consider a mixed spin Ising model on the square
tice given by the Hamiltonian

H52J(̂
i j &

s iSj1G(
j

Sj
2 , ~1!

where theS takes the values61 or 0 located in alternating
sites with spinss561. The spinss are spin 1/2, but we
choose to put the factor of 1/2 into the interaction parame
©2001 The American Physical Society14-1
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Each spinS has onlys as nearest neighbors and vice ver
The first summation is carried out only over nearest neigh
pairs of spins, and the second summation only runs ove
sites ofS sublattice.J is the exchange interaction, andG is
the crystal field interaction parameter.

Our numerical simulations are implemented on a squ
lattice withN spins and linear sizeL (N5L2 sites! subjected
to periodic boundary conditions. A configuration of lattic
spins at timet is

C~ t !5$s~ t !,S~ t !%5$s i~ t !,Sj~ t !%, i , j 51,2,3, . . . ,N/2.
~2!

In order to make a configurationC(t) evolve in time, we use
a kind of Metropolis dynamics that has already been app
to theS51/2 andS51 Ising model on a square lattice@32#.

During each time intervaldt51/N, one spin sitei is cho-
sen randomly. This site holds either as spin or anS spin.
The spin valueD i(t1dt) at time t1dt is then proposed by

D i~ t1dt !5H 1, Zi1~ t !<1/2

21, Zi1~ t !.1/2
~3!

if i is a s spin site;

D i~ t1dt !5H 1, 0<Zi1~ t !,1/3

0, 1/3<Zi1~ t !,2/3

21, 2/3<Zi1~ t !,1

~4!

if i is anS spin site.Zi1(t) is a uniform random number, 0
<Zi1(t)<1.

One then updates the spin according to the following
namics rule:

Ci~ t1dt !5H D i~ t1dt !, Pi~ t !>Zi2~ t !

Ci~ t !, otherwise,
~5!

where

Pi~ t !5exp~2DHi /T! ~6!

DHi5H$D i~ t1dt !%2H$Ci~ t !%, ~7!

where 0<Zi2(t)<1 is another uniform random number,T is
the temperature of the system in unit ofJ/KB , G is in unit
of J, andKB is the Boltzmann constant.

We consider two different initial configurationsCA(0)
andCB(0) at timet50, and let them evolve in time accord
ing to the above dynamics rule with the same sequenc
random numbers for updating the spins. Then two confi
rations at timet, CA(t) and CB(t), are computed through
the following Hamming distance~or damage! between them:

D~ t !5
1

N (
i 51

N

@12d„Ci
A~ t !,Ci

B~ t !…#, ~8!

whered(,) is the Kronecker delta function. PhysicallyD(t)
measures the fractions of the spins that differ in the t
replicas at timet. In calculations, we averageD(t) over
many samples. The average distance is
01611
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^D~ t !&5
1

Ns
(
j 51

Ns

D j~ t !, ~9!

whereD j (t) is the damage distance for thej th independent
trial, Ns is the number of independent sample, the sum
over all trials @here, we have not used the convention
method, that is, the average was taken over only th
samples whoseD(t) are not zero#.

We also study the ‘‘damage susceptibility’’

sD(t)5A^D2~ t !&2^D~ t !&2, ~10!

which measures the fluctuations of damageD(t). We shall
see that this quantity will provide a set of information
characterize different phases of the system, and it is v
sensitive to the phase transition.

We will also investigate a quantity that we define as t
ratio of NSj 50 ~number of spins whose spin valueSj50) to

N/2 in Ssublattice at the equilibrium state. We may regard
as the probability that one spin takes zero value in theS
sublattice. In order to decrease the fluctuations, we take
average over those two replicas~configurationsA andB)

^PSj 50&5
1

Ns
(
k51

Ns FNSj 50
A 1NSj 50

B

N
G

k

, ~11!

where^PSj 50& depends on the temperature, time, initial co

ditions, and the noise.^ & in Eq. ~11! denote an average ove
many samples. It is actually another type of order parame

In the following calculations presented here, we takeJ
.0 ~ferromagnetic!, the initial configuration is chosen to b

CA~0!52CB~0!51, ; i , j , ~12!

where we have assumed that there are no zero values in
SA andSB sublattices att50, i.e., ^D(0)&51. Similarly, if
we takeJ,0 ~antiferromagnetic!, i.e., the mixed Ising ferri-
magnetic model, the initial condition could be chosen
spins inS sublattice to be11, spins ins sublattice to be
21 in configurationA, spins inB then keep opposite toA.
The calculations could have been done starting with ot
initial conditions, e.g., two random initial configurations.
this condition, the equilibrium of the system takes longer
be established at a low temperature, however, the res
would be very similar@32#.

We expect that these three quantities^D(t)&, sD(t) , and
^PSj 50&, together with the temperature, initial condition, an
any other parameters, will lead to the information about
criticality of the system.

III. RESULTS FOR MSIM WITH GÄ0

We first study the ‘‘pure’’ mixed spin Ising model with
zero crystal field interaction. For this model, hig
temperature series expansion@33#, RG @21,23#, the equiscale
transformation@34#, etc. have shown this model belongs
the same universality class as the standards51/2 Ising fer-
romagnetic model. In the study of damage spreading meth
4-2
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it is now generally believed that for the standards51/2
Ising model, the dynamical phase~damage spreading! tran-
sition occurs at the same temperature as its correspon
static model.

In our DS procedure, the simulations have been p
formed for four lattice sizes. The results are averaged o
1500, 800, 400, and 200 samples forL510, 20, 30, and 40
respectively. Figure 1 shows the^D(t)& as a function of the
temperature and the time. We know that the equilibrium
reached at all temperatures except in the critical reg
where finite-size and finite-time effects can be seen. T
shape of̂ D(t)& in Fig. 1 is very similar to the standard Isin
model studied using DS technique within the heat bath
namics and the same initial condition@11#. For the standard
Ising model, within the heat bath dynamics and the init
condition ~12!, it has been proved that the damage dista
^D(t)& is equivalent to the order parameter, the average m
netization, of the system at timet @13#.

We clearly observe two distinct regions in Fig. 1:~i! a
low-temperature region (T,TD ,TD>2.0), where ^D(t)&
does not vanish for all cases;~ii ! a high-temperature regio
(T>TD), where thê D(t)& vanish for all system sizes an
time t. Two distinct temperature regions divided by a dama
spreading transition temperatureTD are believed to denote
the corresponding static continuous phase transition.
damage spreading features in Fig. 1 have been observe
most of the Ising-like systems.

We observed that the finite-time effect fort51000 andt
52000 is relatively small for our chosen initial condition.
the following calculations, we will assume that the syste
have reached their equilibrium states att51000 for the cho-
sen initial condition~12!.

In view of the temperature dependence of the fluctuat
sD(t) , our simulation shows that there is an almost null flu
tuation in the low- and high-temperature region, except n
the damage spreading transition temperatureTD where it
rises abruptly. Figure 2 shows thesD(t) as a function of

FIG. 1. Average damagêD(t)& as a function of temperature fo
the mixed spin Ising model withG50 on the square lattice. Th
symbols for different times and the same lattice superimpose, i
cating the establishment of the equilibrium.
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temperature for the four system sizes.
From the maximum values ofsD(t) , we may locate the

phase transition temperatureTs . We estimate~run for sev-
eral different random number sequences! Ts(L) to be 1.90
60.05, 1.9960.04, 2.0260.05, and 2.0260.03 for L
510, 20, 30, and 40, respectively. From these data, we
a more accurate estimate for the damage spreading~dynami-
cal phase transition! temperature thanTD , which is Ts

>2.02 for this model.
The feature of the simulation result of^PSj 50&2T rela-

tionship for the model is that it increases as the tempera
increases. As we have known from Eq.~1!, the^PSj 50& may
roughly reflect the relationship between internal energyU
and the temperatureT whenG50. Indeed, theS-like shape
of ^PSj 50& is very similar to the exactU2T relationship for
the standard Ising model on the square lattice.

In order to obtain a more reliable estimate for this d
namical transition temperature, we use the finite-size sca
procedure@12#. For each samples, we calculate the distanc
Ds(t) at timest51,2,3 . . . . The calculation can always b
stopped when the distance vanishes since it remains ze
any later time.

With definition one measures the characteristic timet1
and characteristic square timet2 as

t1~L,T,s!5(
t

tDs~ t !/(
t

Ds~ t ! ~13!

t2~L,T,s!5(
t

t2Ds~ t !/(
t

Ds~ t ! ~14!

and scaling form

t1~L,T,s!;u~L ! f 1„v~L !~T2Tc!,s… ~15!

t2~L,T,s!;u2~L ! f 2„v~L !~T2Tc!,s…. ~16!

i-

FIG. 2. Damage susceptibilitysD(t) as a function of temperature
for mixed spin Ising model withG50 on the square lattice a
t51000. The dotted lines indicate the positions ofTs(L). We esti-
mate the damage spreading temperatureTs from sD(t) to be 2.02.
4-3
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We can find that the ratio

^R~L,T,s!&5t2~L,T,s!/t1
2~L,T,s!; f 3„v~L !~T2Tc!…

~17!

is independent of lattice sizeL at the dynamical transition
temperatureTc when we take an average over many samp
This means that for largeL, all the curveŝ R& plotted as
function of T for different L should cross at the same tem
peratureTc , i.e., the dynamical critical temperature. In Fig.
we plot ^R& averaged over 1500, 800, 400, and 200 samp
againstT for L510, 20, 30, and 40, respectively. Our es
mate ofTc for this mixed spin Ising model withG50 and
the initial condition~12! is Tc>2.00060.010. This result is
consistent withTs52.02 from sD(t) and is also consisten
with its static transition temperature at 1.9569@30#, and
2.01660.078@33#, etc.

We may use this method to estimate the dynamical crit
exponentz defined at the dynamical critical temperatureTc
as t;Lz, whereL is the linear size andt is the relaxation
time for the dynamics@13#. Near the critical temperature, th
fluctuation is very strong, and unlike the standard Is
model, we have no exact solution ofTc for this model. We
expect rather large error bars in the estimate of the crit
exponentz. We uset1 in Eq. ~13! to measure the averag
vanishing time@7# at Tc and repeat the simulations on diffe
ent sizesL510, 20, 30, and 40.z is the slope of the ln(^t1&)
versus ln(L). We have estimatedz with the initial condition
~12! for this ‘‘pure’’ MSIM to be

z52.6560.26 ~Tc52.000!. ~18!

So far, we have had the knowledge of ‘‘pure’’ mixed sp
Ising model with zero crystal field interaction using DS tec
nique. In the following section, we use the same DS met
to investigate the MSIM when crystal field interaction is n
zero. We find that the behavior of the model strongly d
pends on the crystal field interaction.

FIG. 3. Ratio^R& versus temperatureT for different sizesL for
the mixed spin Ising model withG50 on the square lattice. Th
full line is a guide for the eye. All curves cross in the region
Tc52.00060.010.
01611
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IV. RESULTS FOR MSIM WITH GÅ0

We choose several values ofG for the study using DS
procedure. In the following calculations, we take the para
eters to beL540, t51000, andNs5200. Figure 4 shows
the results of̂ D(t)& as a function ofT andG.

We may observe a completely different behavior
^D(t)&: for G/J<3.0, the behavior of̂D(t)& are very simi-
lar to the previousG50 case~the G50 result is also pre-
sented in the figure!, there exist Ising-like continuous phas
transition for the model for thoseG values; forG/J.3.0,
contrary to theG/J<3.0 cases,̂D(t)& is zero for all tem-
perature regions. From Fig. 4 we may estimate the appr
mate~continuous! dynamical transition temperatureTD to be
2.55, 2.5, 2.25, 2.2, 1.9, and 1.45 forG/J526.0, 23.0,
21.0, 0.0, 2.0, and 3.0, respectively.

In Fig. 5, we plot thesD(t) curves. Similar things as in
Fig. 4 can be observed: forG/J<3.0, peaklike curves of
sD(t) can be seen, which are the features of second o
transition; for G/J.3.0, sD(t)50 for all temperature re-
gions. We may get more accurate~continuous! dy-
namical transition temperatures thanTD to be Ts

52.360.035, 2.2560.04, 2.1960.035, 2.0260.03, 1.62
60.04, and 1.2660.02 for G/J526.0, 23.0, 22.0, 0.0,
2.0, and 3.0, respectively. Similarly, we may use the sa
finite-size scaling procedure as in Sec. III to get the i
proved dynamical transition temperature results.

The interesting features of^PSj 50& as a function ofT and

G/J are plotted in Fig. 6. We can also see that there exist
different regions forG values.

~i! G/J<3.0, the^PSj 50& curves are very similar to the

G50 S-like curve. There exist continuous phase transitio
within thoseG values. In the limit ofG→2`, this model is
reduced to the standard Ising model.S ands can only take
11 or 21 values.

FIG. 4. Average damagêD(t)& as a function of temperatureT
andG for mixed spin Ising model withGÞ0 on the square lattice
at L540, t51000, andNs5200. A completely different behavio
of ^D(t)& can be observed forG/J<3.0 and forG/J.3.0. The
vertical dotted line marks the exactly known value ofTc for the
standard Ising model on the square lattice.
4-4
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~ii ! G/J>3.01, contrary toG/J<3.0 cases,̂ PSj 50& de-

creases as the temperature increases. In the limit ofG→
1`, this model reaches to a new phase that we may call
staggered quadrupolar phase, similar to a phase in the B
model@35#. In this phase,Ssublattice hasSj50 at every site
and thes sublattice has sites occupied randomly bys i5
11 or 21. This phase can be reached at low tempera
T50.1 andG/J55.0 as shown in Fig. 6 in our DS dynamic
approach.

We may explain the behavior of this model as follows.
this model, we only consider the nearest-neighbor interac

FIG. 5. Damage susceptibilitysD(t) as a function of temperatur
andG for mixed spin Ising model withGÞ0 on the square lattice
at L540, t51000, andNs5200. A completely different behavio
can be observed forG/J<3.0 and forG/J.3.0. The full line is a
guide to the eye. The arrow points to the transition temperatur
standard Ising model on the square lattice.

FIG. 6. Ratio^PSj 50& as a function ofT and G for the mixed
spin Ising model on the square lattice atL540, t51000, andNs

5200. Two completely different regions can be observed forG/J
<3.0 and forG/J.3.0. The upper arrow points to thêPSj 50&
51.0 that corresponds to the staggered quadrupolar phase.
lower arrow points to thêPSj 50&50.0 that corresponds to the sta
dard Ising model.
01611
e
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re

n

betweenSands spins. WhenG becomes large, the probabi
ity for Ssublattice spins to take the zero values increases
interaction of the total system becomes weak, and the sec
order phase transition temperature also becomes small. H
ever, when the interaction of the system is too small, it c
not support the long range order of the system, i.e., ther
no continuous phase transition. We may analyze this prob
from another angle. If we regard theSj50 state as a ‘‘hole,’’
then theSsublattices are occupied bys561 and the holes.
ParameterG can change the relative number ofs spins and
the holes in theSsublattices~it has the meaning of chemica
potential!. WhenG→2`, there is no hole in theS sublat-
tice. Both sublattices are occupied bys spins, corresponding
to the standard Ising model. WhenG increases, the numbe
of holes increases. WhenG→1`, the S sublattices are all

FIG. 7. Finite-temperature phase diagram for the mixed s
Ising model on the square lattice using damage spreading pr
dure. The solid line corresponds to the second order transition.
dotted line represents the first order transition~and only serves as a
guideline!. The upper-left arrow points to the transition temperatu
of the standard Ising model.

FIG. 8. Total magnetization of the system^uM (t)u& as a function
of T andG for the mixed spin Ising model on the square lattice
L540, t51000, andNs5200. Similar to^D(t)&, two completely
different regions can be observed forG/J<3.0 and forG/J.3.0.
For eachG/J.3.0 value,̂ uM (t)u& independently goes to zero, ex
cept for the remanent finite-size and finite-time effects.
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occupied bySj50 spin states. At the equilibrium state, fo
the G changes between2` and 1`, the holes can move
and they have a tendency to gather to form clusters in o
to make the system stable. When theG increases to a critica
value,s spins can no longer form the infinite clusters, th
there is no long range order and no continuous phase tra
tion. However, the finites spin clusters and the formation o
the equivalent ‘‘hole clusters’’ can support the first ord
phase transition for the system. Here, the so-called ‘‘h
cluster’’ means that the spins of theSsublattice within a hole
cluster are all occupied by hole (Sj50). Although thes
spins occupy thes sublattice within a hole cluster—the
have no interactions among them—it is equivalent to
cluster which is completely composed of holes. The confi
ration of spins can verify this point.

According to our DS results, we may schematically p
the finite-temperature phase diagram for this model, and
Ts obtained fromsD(t)2T relationship in Fig. 5 as the~sec-
ond order! phase transition temperature. In Fig. 7, the ge
eral shape of the phase diagram shows reasonable agree
between our results and the Monte Carlo simulations@28#,
except for the range ofG/J.3.01 where the first order tran
sition could occur in our DS approach. From the data of
calculations, we estimate the tricritical point to b
(Ttri , Gtri /J)5(1.2660.02,3.00). The known static value
for the tricritical point for this mixed spin Ising model on th
square lattice are~1.232, 4.198! @21# and ~0.9936, 3.9376!
@27#, etc.

We have also performed the same calculations for thJ
,0 mixed Ising ferrimagnetic model~using the initial con-
dition stated in Sec. II such that^D(0)& is still 1!, and the
very similar features have been obtained. Therefore, we
pect that there exist both the second and the first order p
transitions for this mixed spin Ising model on the squa
lattice depending on the values ofG.

V. REMARKS AND CONCLUSION

The mixed Ising ferrimagnetic system is relevant for u
derstanding bimetallic molecular ferrimagnets that are s
thesized in search of stable, crystalline materials, with sp
taneous magnetic moments at room temperature@36#. In this
paper, we investigate, through the damage spreading t
nique, the dynamical behavior of the mixed spin Ising mo
on the square lattice within a kind of Metropolis dynamic
We find that the behavior of the system strongly depends
the values of the crystal field parameterG. For a large and
negative value ofG, the systems behave similar to the sta
dard Ising model and have continuous phase transitions.
a large and positive value ofG, the model reaches to a sta
gered quadrupolar phase where theS sublattice sites are
completely occupied bySj50. When G changes between

@1# S. A. Kauffman, J. Theor. Biol.22, 437 ~1969!.
@2# N. Jan and L. de Arcangelis, Annu. Rev. Comput. Phys.1, 1

~1994!, and references therein.
@3# H. J. Herrmann, inComputer Simulations in Condensed Ma
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2` and1`, our damage spreading result strongly sugge
the existence of a tricritical point.

We should point out that, unlike the conventional crite
for the first order transition, the damage spreading res
here seem not to give us the explicit evidence for the fi
order transition, such as, an obvious discontinuity for
order parameter. In Fig. 8, we calculate one thermodyna
order parameter, the total magnetization of the system u
the same initial condition of Eq.~12! ~we take an average
over A andB configurations!. Its behavior is quite similar to
the ^D(t)&2T relationship. We do not observe the obvio
discontinuity or ‘‘jump’’ for ^uM (t)u&, ^D(t)&, or ^PSj 50& at

the tricritical pointG/J53.0 where we regard it as the mee
ing point of the second order and the first order transit
lines, even if we may claim that atG/J53.0 those three
quantities have had the largest ‘‘jump’’ in the critical regio
when compared to otherG/J,3.0 cases as seen in Figs. 4,
and 8.

Very recently, we used the same DS dynamics to calcu
the S51 Blume-Capel model on the square lattice whe
only one spin variableSi takes 0, or61 for each lattice site
with the same form of the Hamiltonian as in Eq.~1!. The S
51 Blume-Capel model has well-known tricritical behavi
as shown in Ref.@37#. From our simulations of this mode
~not shown in this paper!, we got quite the same shapes a
features for these quantities,^D(t)&, sD(t) , ^PSj 50&, and

^uM (t)u& as the mixed spin Ising model, except at the t
critical point ~i.e., above meeting point!. An obvious discon-
tinuity or ‘‘jump’’ of ^D(t)&, ^PSj 50&, and^uM (t)u& can be
observed for the Blume-Capel model. Also, the estima
dynamical tricritical point for this Blume-Capel model b
DS technique is in excellent agreement with other a
proaches. Unlike theS51 Blume-Capel model, we canno
observe an obvious discontinuity at the tricritical point in t
mixed spin Ising model because there is only oneS51 sub-
lattice for this model. Due to the small discontinuity in th
mixed spin Ising model, we may also name this first ord
transition the ‘‘weak’’ first order transition~for a similar case
the reader may refer to theq-state Potts model@38#!, and we
also expect that the results could be improved if system
L is increased. Further studies on this simple but fruit
model, the behavior of which is not yet well establishe
would be welcome.
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