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Damage spreading in the mixed spin Ising model

Ce-Jun Litf and H.-B. Schttler'
Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602

Jia-Zhen Hu
Department of Applied Physics, Shanghai JiaoTong University, Shanghai 200030, People's Republic of China
(Received 6 July 2001; revised manuscript received 10 September 2001; published 17 December 2001

We apply the damage spreading technique to study a mixed spin Ising model consisting of spin 1/2 and spin
1 with a crystal field interaction on the square lattice within a kind of Metropolis dynamics. The completely
different behavior, depending on the value of the crystal field interaction, strongly suggests there may exist a
dynamical tricritical point where the phase transition may change from the second order to the first order for
this model.
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[. INTRODUCTION terpenetrating sublattices have spins one-halfi{2) and
spins one f-1,0). Mixed spin systems provide good results
The damage spreadii®S) technique, i.e., measuring the for studying ferrimagnetism. The magnetic properties of the
Hamming distance between two different initial configura-mixed Ising models have been studied using high-
tions as they evolve in time, was first studied in theoreticatemperature series expansiof0], renormalization group
biology in the context of genetic evolutidd]. Later the DS (RG) [21-23, mean field [24], effective field [25-27,
concept found its way into the physics systgtr12]. In this ~ Monte Carlo(MC) simulations and numerical transfer matrix
method one essentially monitors the time evolution of two orcalculations[28,29, and free-fermion approximatiof80].
more copies of the same system with different initial con-Besides at equilibrium conditions as stated as above, within
figurations subject to a specific dynamics and to the sam@ean field approach, the kinetics of the model in the pres-
thermal noise. It turns out that this method is less sensitive tence of a time-dependent oscillating external field, has also
the static fluctuations, when compared to the conventionabeen studied31].
Monte Carlo method where the time evolution of a single Among those works, there exist two opposite conclusions
copy is investigated. The DS method has been successfulf@r the mixed spin Ising model on the square lattiGgthe
applied to many magnetic models, such as cellular automat&G analysig21], effective field theory[27], and the mean
Ising ferromagnet,p-state clock, Potts, ANNNI, Ashkin- filed theory[24] indicate that there exists a compensation
Teller, discreteN vector, XY, the Heisenberg, spin glasses, point or tricritical point at finite temperaturéij) RG scheme
etc. Besides its wide variety of applications, the relationshig22] and MC and numerical transfer matrix techni§@8s,29
between DS and the time-dependent thermodynamic propethen got a contradictory conclusion. In this paper, the DS
ties in the Ising mode]14], the possible connection of the technique is applied to study the MSIM on the square lattice.
damage transitio(wvhere the damage Vanish@m‘]d the per- We found that the mixed Spin Ising model may exhibit a
colation transition of geometrical clusters of correlated spindricritical point at finite temperature.
[15—17 are also investigated. In Sec. Il we describe the model and the damage spread-
Most of the above systems which the damage spreadinid technique that we will use. In Sec. Ill we present the
technique has been applied to are the systems with the se@sults for the “pure” mixed spin Ising model in which the
ond order phase transition. Also, the DS technique has beeifystal field interaction is zero. On the basis of Sec. Ill, we
used to study the critical properties of the BEG model on gerform the DS calculations for the MSIM with nonzero
honeycomb lattice in the vicinity of tricritical line and how crystal interaction in Sec. IV. Finally, Sec. V presents the
the DS technique may be applied to identify the tricritical remarks and conclusions.
point is also showed18]. For the g-state Potts model on
square lattice the DS studies also showed that it is possible to Il. THE MODEL AND A KIND
calculate the critical temperature of the model as well as to OF METROPOLIS DYNAMICS
give some indication of the order of the phase transitidj. ) ] ) )
The DS technique represents nowadays an important tool in e consider a mixed spin Ising model on the square lat-
the study of the dynamic as well as the static behavior ifice given by the Hamiltonian
magnetic systems.
_ Here, we will use the DS technique_to s_tudy a mixed _spin H= —JE 7S, +GE 2, (1)
Ising model(MSIM) on the square lattice in which two in- G ]

where theS takes the values-1 or O located in alternating

*Email address: liu@hal.physast.uga.edu sites with spinsc==*=1. The spinso are spin 1/2, but we
"Email address: hbs@hal.physast.uga.edu choose to put the factor of 1/2 into the interaction parameter.
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Each spinS has onlyo as nearest neighbors and vice versa. 1 Ns
The first summation is carried out only over nearest neighbor (D(1))= NC E Dj(1), (9
pairs of spins, and the second summation only runs over all si=1
sites of S sublattice.J is the exchange interaction, a@lis
the crystal field interaction parameter.

Our numerical simulations are implemented on a squar
lattice with N spins and linear size (N=L? siteg subjected
to periodic boundary conditions. A configuration of lattice
spins at timet is

C(t)={o(t),S(t) ={a;(1),S(D)}, i,j=1,2,3... N/2.

In order to make a configuratiod(t) evolve in time, we use which measures the fluctuations of damdy@). We shall
a kind of Metropolis dynamics that has already been applieg¢ee that this quantity will provide a set of information to
to theS=1/2 andS=1 Ising model on a square lattif82].  characterize different phases of the system, and it is very
During each time intervabt=1/N, one spin sité is cho-  sensitive to the phase transition.
sen randomly. This site holds eithersaspin or anS spin. We will also investigate a quantity that we define as the
The spin value;(t+ 8t) at timet+ ot is then proposed by ratio of Ns,=o (number of spins whose spin val&=0) to
N/2 in Ssublattice at the equilibrium state. We may regard it

whereDj(t) is the damage distance for thith independent
érial, N is the number of independent sample, the sum is
over all trials [here, we have not used the conventional
method, that is, the average was taken over only those
samples whos®(t) are not zerg

We also study the “damage susceptibility”

A(t+ot)= L Ziy()<1/2 3) as the probability that one spin takes zero value in $he
! -1, Zi1(tH)y>1/2 sublattice. In order to decrease the fluctuations, we take an
o o average over those two replicesonfigurationsA andB)
if i is ao spin site;
Ns [N& _,+NS_
1, 0=Z,(1)<1/3 (Pe_o)= Ni D Si‘ON e (11
] =
Ai(t+6t)=1 0, 1/3<Z;,(t)<2/3 (4 s k=1 K
-1, 213<Z;,(1)<1 where(Pg _o) depends on the temperature, time, initial con-
g J . .
if i is anS spin site.Z;;(t) is a uniform random number, 0 ditions, and the n(?'s@ in Eq. (11) denote an average over
<7, ()=1. many samples. It is actually another type of order parameter.

One then updates the spin according to the following dy- In the following calculations presented here, we tdke
>0 (ferromagnetig, the initial configuration is chosen to be

namics rule:
A(t+3Y),  Pi(h)=Z(t) CH0)=-C%0)=1, Vi, (12)
Ci(t+6t)= . (5)
Ci(t), otherwise, where we have assumed that there are no zero values in both
where S* and SP sublattices at=0, i.e.,(D(0))=1. Similarly, if
we takeJ<<0 (antiferromagnetig i.e., the mixed Ising ferri-
Pi(t)=exp(—AH,; /T) (6) ~ Magnetic model, the initial condition could be chosen as:
spins inS sublattice to bet 1, spins ino sublattice to be
AH;=H{A;(t+ 6t)} —H{C;(1)}, 7) —1 in configurationA, spins inB then keep opposite tA.

The calculations could have been done starting with other
where 0<Z;,(t)<1 is another uniform random numbérjs initial conditions, e.g., two random initial configurations. In
the temperature of the system in unitdKy, G isin unit  this condition, the equilibrium of the system takes longer to
of J, andKp is the Boltzmann constant. be established at a low temperature, however, the results

We consider two different initial configuration8”(0) would be very similaf32].
andCB(0) at timet=0, and let them evolve in time accord-  We expect that these three quantit{@t)), op(r)» and
ing to the above dynamics rule with the same sequence (z(ﬂDSj:()), together with the temperature, initial condition, and
random numbers for updating the spins. Then two configuany other parameters, will lead to the information about the
rations at timet, CA(t) and C®(t), are computed through criticality of the system.
the following Hamming distancéor damaggbetween them:

lll. RESULTS FOR MSIM WITH G=0

1 . A B
DO=YJ El [1=8(Ci(D),Cr(W)]. (8) We first study the “pure” mixed spin Ising model with
zero crystal field interaction. For this model, high-
where §(,) is the Kronecker delta function. PhysicalD/t) temperature series expansi@8], RG[21,23, the equiscale
measures the fractions of the spins that differ in the twaransformation34], etc. have shown this model belongs to
replicas at timet. In calculations, we averagB(t) over the same universality class as the standa#dl/2 Ising fer-
many samples. The average distance is romagnetic model. In the study of damage spreading method,
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. FIG. 2. Damage susceptibilityp ) as a function of temperature
FIG. 1. Average damagd (1)) as a function of temperature for for mixed spin Ising model withG=0 on the square lattice at

the mixed spin Ising T“Ode' witks =0 on the square ""_‘t"ce- Th_e 1=1000. The dotted lines indicate the positionsTg{L). We esti-
symbols for different times and the same lattice superimpose, indi-

cating the establishment of the equilibrium. mate the damage spreading temperafyérom op ;) to be 2.02.

o ) temperature for the four system sizes.

Ising model, the dynamical phasgamage spreadipdran-  phase transition temperatufe,. We estimate(run for sev-
sition occurs at the same temperature as its correspondingy) different random number sequenc@s(L) to be 1.90
static model. o +0.05, 1.99-0.04, 2.02:0.05, and 2.020.03 for L

In our DS procedure, the simulations have been per— 10, 20, 30, and 40, respectively. From these data, we get

formed for four lattice sizes. The results are averaged oveX more accurate estimate for the damage spreddiyrgami-
1500, 800, 400, and 200 samples for 10, 20, 30,and 40, ¢4 phase transitiontemperature tharTp, which is T,

respectively. Figure 1 ghows tHB (1)) as a function. _of _the =2.02 for this model.
temperature and the time. We know that the eql.ullbrlum. IS The feature of the simulation result 6P _o)—T rela-
reached at all temperatures except in the critical region. . . o i

where finite-size and finite-time effects can be seen. Thgonshlp for the model is that it increases as the temperature
shape of D(t)) in Fig. 1 is very similar to the standard Ising ""¢"€3S€s: As we have k'nown. from Eg), th_e<PSi:°> may
model studied using DS technique within the heat bath dyfoughly reflect the relationship between internal enety
namics and the same initial conditiph1]. For the standard and the temperaturé whenG=0. Indeed, theSlike shape
Ising model, within the heat bath dynamics and the initialof (Ps,—o) is very similar to the exad) — T relationship for
condition (12), it has been proved that the damage distanc¢he standard Ising model on the square lattice.

(D(t)) is equivalent to the order parameter, the average mag- In order to obtain a more reliable estimate for this dy-
netization, of the system at tinmg13]. namical transition temperature, we use the finite-size scaling
We clearly observe two distinct regions in Fig. @} a  procedurd12]. For each sampls, we calculate the distance

low-temperature region <Tp,Tp=2.0), where({D(t)) D4(t) at timest=1,2,3 ... . The calculation can always be
does not vanish for all casei) a high-temperature region stopped when the distance vanishes since it remains zero at
(T=Tp), where the(D(t)) vanish for all system sizes and any later time.

timet. Two distinct temperature regions divided by a damage With definition one measures the characteristic time
spreading transition temperatufg, are believed to denote and characteristic square tire as

the corresponding static continuous phase transition. The
damage spreading features in Fig. 1 have been observed in

most of the Ising-like systems. Tl(L’T’S):Z tDs(t)/Zt Ds(t) (13
We observed that the finite-time effect for 1000 andt

=2000 is relatively small for our chosen initial condition. In

the following calculations, we will assume that the systems Tz(L,T.S):E tZDs(t)/E D4(t) (14)

have reached their equilibrium statesat1000 for the cho- t t

sen initial condition(12). _
In view of the temperature dependence of the fluctuatiorand scaling form
ap(y), our simulation shows that there is an almost null fluc-

tuation in the low- and high-temperature region, except near (L, T,8)~u(L)f1(v(L)(T—Tc),s) (19
the damage spreading transition temperatlige where it
rises abruptly. Figure 2 shows they, as a function of (L, T,8)~u?(L)f,(v(L)(T—T,),s). (16)

016114-3



CE-JUN LIU, H.-B. SCHUOTLER, AND JIA-ZHEN HU PHYSICAL REVIEW E65 016114

1.70 - v
Ho—L=10

I L o—L-20 /V/
1.65 1 —A—1=30

1 —v—L=40 /
1.60 1

1.55 1
) o -60
A A
0‘1,1.50- = Z ?g + va
1 e 044 v o0 o A i0O
1.45 o 20 )
| + 30 . v
024 x Bo1 a o
1.40 4 .6.0] o :
+ V%E °
vA:
1.351 004 X X X x X X X X X X X x X T xRox >woa | EOx
1.30 i ! ! ! i ! i ! 00.0I2'0I4'0I6l0I8I1I0I1I2'1I4.1I6'1I8'2I0'2I2..2I4l2l6.2l8
1.975 2.000 2.025 2.050 2.075 2.100 ’ ' ' ' ’ ' ' ) ’ ’ ' ’ ’ ’ '

K,TH KgTH
FIG. 4. Average damageD(t)) as a function of temperature
andG for mixed spin Ising model wittG#0 on the square lattice
at L=40, t=1000, andNs=200. A completely different behavior
of (D(t)) can be observed fo&/J<3.0 and forG/J>3.0. The
vertical dotted line marks the exactly known value Tof for the

standard Ising model on the square lattice.

FIG. 3. Ratio(R) versus temperaturE for different sized. for
the mixed spin Ising model witls=0 on the square lattice. The
full line is a guide for the eye. All curves cross in the region of
T.=2.000=0.010.

We can find that the ratio

(R(L,T,s))=1,(L,T,8)/75(L,T,8)~f3w(L)(T—T,)) IV. RESULTS FOR MSIM WITH G#0

@7 We choose several values &f for the study using DS
is independent of lattice size at the dynamical transition procedure. In the following calculations, we take the param-
temperaturd ; when we take an average over many sampleseters to bel. =40, t=1000, andN = 200. Figure 4 shows
This means that for large, all the curves(R) plotted as  the results of D(t)) as a function ofl andG.
function of T for different L should cross at the same tem- We may observe a completely different behavior of
peratureT ¢, i.e., the dynamical critical temperature. In Fig. 3 (D(t)): for G/J<3.0, the behavior ofD(t)) are very simi-
we plot(R) averaged over 1500, 800, 400, and 200 samplefar to the previouss=0 case(the G=0 result is also pre-
againstT for L=10, 20, 30, and 40, respectively. Our esti- sented in the figupe there exist Ising-like continuous phase
mate of T, for this mixed spin Ising model witlis=0 and transition for the model for thos& values; forG/J>3.0,
the initial condition(12) is T,=2.000+0.010. This result is contrary to theG/J<3.0 cases{D(t)) is zero for all tem-
consistent withT,=2.02 from o) and is also consistent perature regions. From Fig. 4 we may estimate the approxi-
with its static transition temperature at 1.95680], and  mate(continuou$ dynamical transition temperatufg, to be

2.016+0.078[33], etc. 255, 25, 2.25, 2.2, 1.9, and 1.45 f&/J=—-6.0, —3.0,
We may use this method to estimate the dynamical critical- 1.0, 0.0, 2.0, and 3.0, respectively.
exponentz defined at the dynamical critical temperatirg In Fig. 5, we plot theopyy curves. Similar things as in

as 7~L? whereL is the linear size and is the relaxation Fig. 4 can be observed: fdB/J<3.0, peaklike curves of
time for the dynamic$13]. Near the critical temperature, the op can be seen, which are the features of second order
fluctuation is very strong, and unlike the standard Isingtransition; for G/J>3.0, opm=0 for all temperature re-
model, we have no exact solution ®f for this model. We gions. We may get more accuratécontinuous dy-
expect rather large error bars in the estimate of the criticahamical transition temperatures thafi, to be T,
exponentz. We user; in Eq. (13) to measure the average =2.3+0.035, 2.250.04, 2.19-0.035, 2.02-0.03, 1.62
vanishing timg 7] at T, and repeat the simulations on differ- +0.04, and 1.260.02 for G/J=—6.0, —3.0, —2.0, 0.0,

ent sized =10, 20, 30, and 4Qzis the slope of the I4f;)) 2.0, and 3.0, respectively. Similarly, we may use the same
versus In(). We have estimated with the initial condition finite-size scaling procedure as in Sec. Ill to get the im-
(12) for this “pure” MSIM to be proved dynamical transition temperature results.

The interesting features (()st:()) as a function ofl and

G/J are plotted in Fig. 6. We can also see that there exist two

So far, we have had the knowledge of “pure” mixed spin different regions foiG values. o
Ising model with zero crystal field interaction using DS tech- (1) G/J=<3.0, the(Ps _o) curves are very similar to the
nique. In the following section, we use the same DS method=0 Slike curve. There exist continuous phase transitions
to investigate the MSIM when crystal field interaction is not within thoseG values. In the limit ofG— —«, this model is
zero. We find that the behavior of the model strongly de-reduced to the standard Ising modsland o can only take
pends on the crystal field interaction. +1 or —1 values.

z=2.65-0.26 (T,=2.000. (18
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B Ising model on the square lattice using damage spreading proce-

FIG. 5. Damage susceptibilityp, as a function of temperature dure. The solid line corresponds to the second order transition. The
andG for mixed spin Ising model wittG+0 on the square lattice dotted line represents the first order transitiand only serves as a
atL=40, t=1000, andN.=200. A completely different behavior guideling. The upper-left arrow points to the transition temperature
H ’ S - .

can be observed foB/J<3.0 and forG/J>3.0. The full line is a  °f the standard Ising model.

guide to th(_a eye. The arrow points to th_e transition temperature of atveerSando spins. WherG becomes large, the probabil-
standard Ising model on the square lattice. ity for Ssublattice spins to take the zero values increases, the
interaction of the total system becomes weak, and the second
(il) G/3=3.01, contrary taG/J<3.0 cases{Pg_,) de- order phase transition temperature also becomes small. How-
creases as the temperature increases. In the JIimIBesf ever, when the interaction of the system is too small, it can-
+o0, this model reaches to a new phase that we may call thBOt Support the long range order of the system, i.e., there is
staggered quadrupolar phase, similar to a phase in the BER® continuous phase transition. We may analyze th‘!s pro?lem
model[35]. In this phaseS sublattice has;=0 at every site from another angle. If we regard tig=0 state as a “hole,
and theo sublattice has sites occupied randomly dy- then theS sublattices are occupied lay= + 1 and the holes.

+1 or —1. This phase can be reached at low temperatur&arametes can change the relative number fspins and
T=0.1 andG/J=5.0 as shown in Fig. 6 in our DS dynamics the holes in thes sublatticedit has the meaning of chemical
approach. potentia). WhenG— —, there is no hole in th& sublat-

We may explain the behavior of this model as follows. Intice. Both sublattices are occupied byspins, corresponding

this model, we only consider the nearest-neighbor interactiofP the standard Ising model. Whé&increases, the number
of holes increases. Whed— +«, the S sublattices are all
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FIG. 6. Ratio(Ps_g) as a function ofT and G for the mixed

spin Ising model on the square latticelat 40, t=1000, andN; FIG. 8. Total magnetization of the systéhM (t)|) as a function
=200. Two completely different regions can be observedG6d  of T and G for the mixed spin Ising model on the square lattice at
=3.0 and forG/J>3.0. The upper arrow points to th®s—-o) L =40, t=1000, andNs=200. Similar to(D(t)), two completely
=1.0 that corresponds to the staggered quadrupolar phase. Thiferent regions can be observed 6/J<3.0 and forG/J>3.0.
lower arrow points to théPSJ:O):O.O that corresponds to the stan- For eachG/J>3.0 value{|M(t)|) independently goes to zero, ex-
dard Ising model. cept for the remanent finite-size and finite-time effects.
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occupied byS;=0 spin states. At the equilibrium state, for —c and+, our damage spreading result strongly suggests
the G changes betweer « and +«, the holes can move the existence of a tricritical point.
and they have a tendency to gather to form clusters in order We should point out that, unlike the conventional criteria
to make the system stable. When théncreases to a critical for the first order transition, the damage spreading results
value, o spins can no longer form the infinite clusters, thenhere seem not to give us the explicit evidence for the first
there is no long range order and no continuous phase trangfder transition, such as, an obvious discontinuity for the
tion. However, the finiter spin clusters and the formation of Order parameter. In Fig. 8, we calculate one thermodynamic
the equivalent “hole clusters” can support the first orderCrder parameter, the total magnetization of the system using
phase transition for the system. Here, the so-called “holdh€ Same initial condition of E(12) (we take an average
cluster” means that the spins of tSsublattice within a hole  OVerA andB configurations Its behavior is quite similar to
cluster are all occupied by holeS(=0). Although theo the (D(1))—T r‘?‘l,at'O”fh'p- We do not observe the obvious
spins occupy ther sublattice within a hole cluster—they discontinuity or ‘jump for ((M(1)[}, (D(1)), or(Ps,—o) at
have no interactions among them—it is equivalent to thethe tricritical pointG/J= 3.0 where we regard it as the meet-
cluster which is completely composed of holes. The configuing point of the second order and the first order transition
ration of spins can verify this point. lines, even if we may claim that &/J=3.0 those three
According to our DS results, we may schematically plotquantities have had the largest “jump” in the critical region
the finite-temperature phase diagram for this model, and usehen compared to oth&/J<3.0 cases as seen in Figs. 4, 6,
T, obtained fromop;)—T relationship in Fig. 5 as thesec- and 8.
ond ordey phase transition temperature. In Fig. 7, the gen- Very recently, we used the same DS dynamics to calculate
eral shape of the phase diagram shows reasonable agreem#re@ S=1 Blume-Capel model on the square lattice where
between our results and the Monte Carlo simulatifizg], only one spin variabl&, takes 0, or+1 for each lattice site
except for the range dB/J>3.01 where the first order tran- with the same form of the Hamiltonian as in Ed). The S
sition could occur in our DS approach. From the data of our=1 Blume-Capel model has well-known tricritical behavior
calculations, we estimate the tricritical point to be as shown in Ref[37]. From our simulations of this model
(Tyi» Gy /3)=(1.26=0.02,3.00). The known static values (not shown in this papgrwe got quite the same shapes and
for the tricritical point for this mixed spin Ising model on the features for these quantitieéD(t)), op . (PSJ_:O), and
square lattice ar¢l.232, 4.198[21] and (0.9936, 3.9376  (|M(t)|) as the mixed spin Ising model, except at the tri-

[27], etc. critical point(i.e., above meeting pointAn obvious discon-
We have also performed the same calculations forJthe tinuity or “jump” of (D(t)), <st:0>v and(|M(t)|) can be

<0 mixed Ising ferrimagnetic modélsing the initial con- ghqerved for the Blume-Capel model. Also, the estimated
dition stated in Sec. Il such thaD(0)) is still 1), and the  gynamical tricritical point for this Blume-Capel model by
very similar features have been obtained. Therefore, we eps technique is in excellent agreement with other ap-
pect that there exist both the second and the first order pha?)‘?oaches. Unlike th&=1 Blume-Capel model, we cannot

transitions for this mixed spin Ising model on the squareypserye an obvious discontinuity at the tricritical point in the
lattice depending on the values Gf mixed spin Ising model because there is only &el sub-
lattice for this model. Due to the small discontinuity in the
V. REMARKS AND CONCLUSION mixed spin Ising model, we may also name this first order
: : . . : transition the “weak?” first order transitioffor a similar case
The mixed Ising ferrimagnetic system is relevant for un-
J g y the reader may refer to thepstate Potts mod¢B8]), and we

derstanding bimetallic molecular ferrimagnets that are syn | hat th I d be i dif .
thesized in search of stable, crystalline materials, with sponf-i so expect that the results could be improved If system size

taneous magnetic moments at room temperd@ée In this L is increased. Fgrther stu_d|e§ on this simple but frwtful
paper, we investigate, through the damage spreading tecm_odel, the behavior of which is not yet well established,
nique, the dynamical behavior of the mixed spin Ising modelVould be welcome.

on the square lattice within a kind of Metropolis dynamics.

We find that the behavior of the system strongly depends on
the values of the crystal field parameter For a large and C.J.L. wishes to thank J. A. Plascak, Shan-Ho Tsai, D. P.
negative value o5, the systems behave similar to the stan-Landau, S. P. Lewis for helpful conversations, and the Center
dard Ising model and have continuous phase transitions. Féor Simulational Physics, the Department of Physics and As-
a large and positive value @, the model reaches to a stag- tronomy, University of Georgia for the use of the computer

gered quadrupolar phase where tBesublattice sites are facilities. This work was supported by U.S. National Science

completely occupied bys;=0. WhenG changes between Foundation under NSF Grant No. DMR-9970291.
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