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Precursors of catastrophe in the Bak-Tang-Wiesenfeld, Manna,
and random-fiber-bundle models of failure
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We have studied precursors of the global failure in some self-organized critical models of sdimdpile
Bak-Tang-WiesenfeldTW) and Manna mode]sand in the random-fiber-bundle mod&FB). In both BTW
and Manna model, as one adds a small but fixed number of sand (reights to any central site of the stable
pile, the local dynamics starts and continues for an average relaxationrtiamel an average number of
topplingsA spread over a radial distanéeWe find that these quantities all depend on the average hejght
of the pile and they all diverge ds,, approaches the critical height, from below: A~ (h,—h,,) %, 7
~(hc—hg,) 7, and é~(h.—hg,,) 7. Numerically, we find6=2.0,y=1.2, andv=1.0 for both BTW and
Manna model in two dimensions. In the strained RFB model, we find that the breakdown susceptibility
(giving the differential increment of the number of broken fibers due to increase in externalaioddhe
relaxation timer, both diverge as the applied load or stresapproaches the network failure threshoidfrom
below: y~ (0.~ o) *? and 7~ (o,— o) Y2 These self-organized dynamical models of failure, therefore,
show some definite precursors with robust power laws long before the failure point. Such well-characterized
precursors should help predicting the global failure point of the systems in advance.
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[. INTRODUCTION lanche size distribution and the corresponding lifetime distri-
bution. Extensive numerical checkings confirmed this self-
In a sandpile, whenever the local slope at the surface ofrganized critical behavior in both two- and three-
the pile exceeds the angle of repose, avalanches take plademensional sandpileg3,4]. Later, Manna introducefb] a
and the sand grains move to the neighboring sites. If théwo state and stochastic version of the BTW model, where
local slope of these neighboring sites increase, in turn, bethe threshold height has been chosen to be twip<2). The
yond the angle of repose, avalanches continue. Otherwise thieppling at any site reduces the height there to zero and the
dynamics stops until another sand grain is added to the pileéoppled heights add to the height of any stocastically chosen
The system finally attains a self-organized state where extrsite among the four neighboring sites of the toppled one.
grains, when added, get out of the system through successi¥ere also, with constant addition of sand grains, the system
avalanches from its boundary. Models of sandpiles have beegradually reaches again a critical state and there the ava-
developed to study such self-organization. Bak, Tang, anthnche size distribution and the corresponding lifetime distri-
WiesenfeldBTW) [1,2] introduced the random height sand- bution again follow similar scaling behavior. However, the
pile model, where height units are added randomly at angxponents for the Manna model seem to be diffef@ns]
site at a constant rate and a site topples when its heiglitom those of the BTW model. A similar self-organizing dy-
equals an integer threshold valbg, (=4 for square lattice, namics is also seen in a strained random-fiber-bu(iiFEB)
for example. Whenever any site topples, the local heightmodel[7-12], whereN fibers are connected in parallel to
becomes zero there and the height is locally conserved bgach other and clamped between their two ends. The strength
equal sharing among the nearest neighlffwar in number  of the individual fibers has a random distributigwhite,
for square latticeand the neighbors get one unit of height Gaussian or otherwigeUnder a loadF, a fraction of the
added to theirs’. The boundary of the system is completelyibers fail immediately whose strengths are less than the
absorbing. As more and more graifiseights are added stresso(=F/N). After this, the total load of the bundle re-
slowly to the system, the average heidhy, of the system distributes globally as the stress is transferred from broken
gradually increases and attains a critical heightlequiva-  fibers to the remaining unbroken ones. This redistribution
lent to the angle of repose of the sandpileeyond which the causes secondary failures that, in general, causes further fail-
growth of average height stops as the further addition ofires and so on. After some typical relaxation timé&lepen-
grains at any site causes successive avalanches or failuresdgnt ono), the system ultimately becomes stable if the ap-
all sizes. These happen due to the long-range correlatiordied stressr is less than a critical value., beyond which
developed and the additional grains finally get out of theall the fibers break and the network fails completely. Al-
system through its boundaries. The self-organized state hetbough the RFB model is not a self-organized critical (e
becomes critical as it involves power law behavior in ava-the failure state at-> o is not critica), it has some self-
organizing dynamicsstress redistribution for< o) similar
to the earlier ones and is very simple to tackle analytically.
*Email address: spradhan@cmp.saha.ernet.in The studies of these self-organizing model systems and their
"Email address: bikas@cmp.saha.ernet.in scaling behavior have been extremely useful in analyzing the
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statistics of fracture and breakdown in real materials, includ-
ing in earthquakef4,13,14.
An obvious question arises: Are there any precursors or
prior indications that can tell how far élowly) growing 2r
sandpile or a gradually strained fiber bundle is away from its
global failure point? The study of precursors in self- 14
organized systems was initiated by Acharyya and Chakra- 213 |
barti[15]. Here, the global failure is identified as the system S 212 [ o
spanning avalanche occurring at,=h.. They tried to =it s oqq | ‘e .
study the response of BTW model to pulsed addition of 1t =
grains (heights in two- and three-dimensional sandpiles, 21r
where “pulse” means a fixed number of grains, added at any 2,09
site to trigger the dynamics locally in time and space. Adding 208 :
a pulse of heights at any site of a stable pikere toppling 0 001 003
had stopped they measured the response of the system in L
terms of the number of affected or toppled sitdg @nd the 0 . . .
corresponding response or relaxation timg &t various av- 0 10000 20000 30000 40000
erage heightsh(,,) of the system. They observed that bath Time (iteration)

and 7 diverge ash,, approaches the critical height. They
also estimated the exponents involved in the power laws for FIG. 1. The growth of average height, [<hc(L)] of the
these divergences. However, these estimates for the expondhfW model against the number of iterations of adding unit heights
values were not quite accurate due to the small system sizés=100). In the inset, we show the finite size behavior of the
considered and strong pulses applied. Similarly, the brealkgritical heighth(L), obtained from simulation results for different
down susceptibility 15] of the RFB model was studied by L-
measuring the increment in the number of broken fibers with
the increment in the stress [16]. It was seen that this dif- h, ;, which represents the height of the sand column at that
ferential increase in the number of broken fibers due to insijte. A unit of height(one sand grainis added at a randomly
finitesimal increase in stress, diverges as the stregsap-  chosen site at each time step and the system evolves in dis-
proaches the global failure threshald . crete time. The dynamics starts as soon as any Eit¥ lias

In this paper, we have studied several precursors in thgot a height equal to the threshold valug,=4): the site
models of sandpiles and random-fiber-bundle. We have studopples, i.e.h;; becomes zero there, and the heights of the
ied the response of sandpile modéeth BTW and Manna four neighboring sites increase by one unit
mode) to pulsed addition of sand grairieeights; for unit
time or unit pulse width where the applied pulse strength is  h; j—h; ;—4, hj-1;—hj.1;+1, and h; j.;—h; ;- +1.
negligible, so that the statistical state of the system is not (1)
perturbed significantly by the applied pulse. We have identi-
fied three parameters, namely, the total number of topplings
(A), the corresponding relaxation time)( and the correla- If, due to this toppling at sitei(j), any neighboring site
tion length ¢); all of which diverge as the average height become unstabléts height reaches the threshold valtleey,
(h,,) of the pile approaches the critical heightJ. The inturn, follow the same dynamics. The process continues till
values of the exponents for the variations of these quantitied!l sites become stablh; ;<hy, for all (i,j)]. When top-
(A, 7, and &) with h,, nearh, have been estimated accu- Pling occurs at the boundary of the latti¢tour nearest
rately. In fact, the estimated value of the critical height or theneighbors are not availableextra heights get off the lattice
location of the catastrophe poiht, extrapolated separately and are removed from the system. - o
from the growing(precursoy values ofA, =, andé (for h,, With a very slow but _steady rate of_addltlon of unit height
values belowh,), agree quite well with the previous direct (sand grainat random sites of the lattice, the avalanches get
numerical estimatelsi 7] for the same. In the RFB model, we CO'related over longer and longer ranges and the average
have studied the breakdown susceptibility) (and the re- height b,) of the system grows with time. Gradually, the
sponse time £) required for the bundle to become stable correlation length §) becomes of the order the system size
when an initial load or stress (<o) is applied on it. Both L. Here, on average, the additional height units start leaving
y andr diverge asr approaches, . The growth behavior of the sys_tem as the system approaches towar_d a critical aver-
these precursors far below o, and the possibility of their 2g€ height¢(L) and the average height remains stable there
extrapolations for estimating the failure point of the net- (€€ Fig. 1 Also the system becomes critical here as the

work is discussed. distributions of the avalanche sizes and the corresponding
lifetimes follow robust power lawg3,4]. In fact, a finite size
Il. PRECURSORS IN THE BTW MODEL scaling fit hC(L)=hC(oo)+CL‘1’” [obtained by settingé

~|he(L) —hg(*)| "*=L], where C is a constant, withy
=1.0 givesh,=h(«)=2.124(see inset of Fig. )L Similar

Let us consider a BTW model on a square lattice of sizdinite size scaling fit withv=1.0 gaveh (=)=2.124 in ear-
LXL. At each lattice sitei(j) there is an integer variable lier large scale simulationsl7].

A. Model
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FIG. 2. The variations of the precursors with, [ <h.(L)] in the BTW model for different system sizds= 100 (plus), L=200(cross,
andL =300 (open circlg. (a) For relaxation timer; in the insetr°8is plotted againsh,, . (b) For the total number of topplings; inset
showsA ~%Svs h,, plot. (c) For the correlation lengtl; in the inset,¢ 1 is plotted againsh,, .

B. Simulation studies for pulsed perturbation ash,, approaches the critical height [see Fig. 2a)]. Near

We have taken random height BTW systems on squarfc.7 follows a power lawr~(h.—h,,) ~7, where y=1.2.
lattice of different sizesl(=100, 200, and 300). At a fixed The plot of 7~ with h,, is a straight line with negative
value ofL, for any pile configuration at an average heightslope. Extrapolating the straight line and locating the vanish-
hay» When all sites of the system have become statje  ing point of 7~ one can estimate the critical poilt,
namics have stoppgda fixed number of height unith, =2.13+.01 [see inset of Fig. @)] that is very close to the
=4 (pulse of sand grainss added at any central point of the previous numerical estimate.=2.124[17].
system. Just after this addition, the local dynamics starts and Another response parameter, the average size of the dam-
it takes a finite time or iterations to return back to the stableage (QA), i.e., the average number of topplingsgter the ad-
state[ h; ;<<4 for all (i,j)] after several toppling events. For dition of pulsg has been measured as follows: the number of
each value oh,,(<h.), we take about Iinitial configu-  topplings for each configuration at each valuéngf is noted
rations and this response or relaxation time has been notexhd averaged out over the initial configuratigabout 10 in
for each of them. The average relaxation time obtained numbej. Thus, the averagA for that value ofh,, is esti-
taking averages over all configurations and is seen to divergmated and this is also seen to divergehas—h. [see Fig.

016113-3



SRUTARSHI PRADHAN AND BIKAS K. CHAKRABARTI PHYSICAL REVIEW E65 016113

2(b)]. Near the critical point, we findA~(h,—h,,) ?, 0.8
where §=2.0. The plot ofA "% vs h,, gives a straight line
with negative slopgsee inset of Fig. @)] that can again be 07 Pt e
used to estimatéh. (=2.12+.01) after extrapolating the fo72
straight line up to the vanishing point a&f /%, 08 1
We have also measured the correlation lengtbf the
system during the same experiment. When the pulse is added 05 1 %
at any central pointig,jo) of the system at somle,, , top- 204l go 071 [ ¢
pling starts there and gradually it moves toward the bound- Nl j= *
aries . We have marked the farthest affected sitgj{) osl /
(where at least one toppling has occurred due to the pulse ¢
with respect to the central sitéq(jo) where the pulse had 02| / 07 Li
been added. Clearly, the avera@aer configurationsdis- 0 91-03 0.02
tance between the central and the farthest affected sites 0.1 L
((@g,jo)—(.i1)]) is a measure of the correlation length of
the system at that,, . This correlation lengtl€ is seen to 0f ' .
diverge ash,,—h. [see Fig. 2c)] following a power law¢ 0 _10000 ) 20(300 30000
~(he—hy,) ", wherev=1.0. The plot ofé~ " vs h,, [see Time (iteration)

inset of Fig. Zc)] is a straight line. The vanishing point of
&1 gives an estimate of the critical poiht and we find
h,=2.13+0.01. This is also close to the previously esti-
mated critical value.

FIG. 3. The growth of average height, [<h.(L)] of the
Manna model against the number of iterations of adding unit
heights L =100). In the inset, we show the finite size dependence
of the critical heighth.(L), obtained from simulation results for
differentL.

Ill. PRECURSORS IN THE MANNA MODEL
A. Model distribution has got power laws similar to the BTW model, at
this self-organized critical state &t,,=h.. However, the

We consider now the Abelian Manna model on a squar@xponents seem to be differei,6], compared to those of
lattice of sizeL XL, where the sites can be either empty or BTw model, for this stochastic model.

occupied with unit height i.e., the height variables can have
binary statesh; ;=1 or h; ;=0. A site is chosen randomly

; . : L B. Simulation studies with pulsed perturbation
and one height is added at that site. If the site is initially

empty, it gets occupied ~We have considered Manna model on square lattice of
different sizes L =100, 200, and 300At a fixed value o,
hij—hi;+1. (2)  for any pile configuration at an average height , a fixed

number of heighté,=2 has been added at any central point
If the chosen site is previously occupied then a toppling orf the stable pile(for which dynamics had stoppedJust
“hard core interaction” rejects both the heights from that siteafter the addition, the local dynamics starts and it takes a

finite time (iteration number to return back to the stable

hij—hi;—2 (3)  state[h; ;<2 for all (i,j)] after several toppling events. For

each value ofh,,(<h.) this response time for each pile
and each of these two rejected heights stochastically choosegnfiguration has been noted and the average relaxation time
its host among the four neighbors of the toppled site. The is obtained from the average over’ldifferent configura-
toppling can happen in chains if any chosen neighbor wagions. Near critical point is seen to divergésee Fig. 4a)]
previously occupied and thus cascades are created. After tlas h,, approaches the critical height with a power lawr
system attains stable staigynamics stoppeda new site is  ~(h.—h,,) 7, wherey=1.2. The plot ofr ¥ with h,, is
chosen randomly and unit height is added to it. Thus, the straight line[see inset of Fig. @&)] with negative slope.
system evolves in discrete time steps. Here again, the bounéxtrapolating the straight line and locating the vanishing
ary is assumed to be completely absorbing so that heighgsoint of 7~ Y7, we have estimated the critical height as
can leave the system due to the toppling at the boundary. =0.72+0.01, which is very close to the previous numerical

With a slow rate of addition of heights at random sites,estimateh.=0.716 for this mode(see inset of Fig. 3

initially the average height of the system grows with time The size of the damage, i.e., the total number of topplings
and soon the system approaches toward a critical averadafter the addition of pulgehas also been measured for the
heighth., where the average height stabilizes and does naibove cases. The avera@aver about 10 configurationy
change with further addition of heighisee Fig. 3 The number of topplingsA also diverges as average heidty,
critical average height, has a finite size dependence and aapproaches the critical height, and near critical poinA
similar finite size scaling fih (L) =h(c)+CL™ " gives  grows asA~(h,—h,,) %, wheres=2.0[see Fig. 40)]. The
v=1.0 andh,=h.(*)=0.716 (see inset of Fig. 8 This is  plot of A~ vs h,, gives a straight line that can be used to
close to an earlier estimate,~0.71695[18], made in a estimateh,(=0.72+0.01) after extrapolatiofisee inset of
somewhat different version of the model. The avalanche siz€ig. 4(b)].
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FIG. 4. The variations of the precursors with, [ <h.(L)] in the Manna model for different system sizés=100 (plus), L=200
(cross, andL =300 (open circle. (a) For relaxation timer; in the insetr~ %8 is plotted againsh,, . (b) For the total number of topplings
A; inset showsA %% vs h,, plot. (c) For the correlation lengtlj; in the inset,& 1 is plotted againsh,, .

The correlation length§) of the system has been mea- V. PRECURSORS IN THE RANDOM-FIBER-BUNDLE
sured following the same procedure as in the BTW model, MODEL
described in the previous section. The averameer about
. . . L A. The model
10° configuration$ correlation lengthé again divergegsee

Fig. 4(c)] ash,,—h. and near critical poing follows the We consider a RFB model containiry elastic fibers
power lawé~ (h,—hg,) ", wherer=1.0. The plot of¢ " clamped at two ends, where the failure stress of the indi-
vs h,, is a straight line with negative slope and the vanishingvidual fibers are distributed randomly and uniformly within
value of ¢ estimates the critical density,=0.72+0.01 0 and 1(white distribution. Global load sharing is assumed
[see inset of Fig. @)] that is again close to the estimated and the applied load on the bundle is democratically shared
critical density from direct numerical study. among the existing intact fibers of the bundle. With the ap-
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plication of any small load= (=oN, with o<1) on the
bundle, an initial stress sets in. At the first steprN num-

ber of fibers are broken off, leavindlu;(o)=(1—0c)N
number of unbroken fibers. After this, the applied force is
redistributed uniformly among remaining intact fibers and
the stress (per fibey is then readjusted to a value
F/[Nuy(o)]=0o/(1— o). With this new readjusted stress,
some extra fibers for which the strengths are below the above
readjusted stress fail and the total number of broken fibers
increases to a valud[ag/(1—o)], leaving Nu,(o)=[1 s 100 -
—o/(1—0o)]N unbroken fibers. This, in turn, readjusts the
stress again and induces further failure giving rise to a recur- 02t 50 - 1

sive relation /)y

04

s 0 01 02 03 04
c

200

150

Up(o)=1- (4)

Up—1(0)

0 0 100 200 300 400 500
for the fractionu of unbroken fibers at theth and (i—1)th n
iteration for stressr. This dynamics of successive failure G . i broken fib i .

ropagates, therefore, ifdiscrete¢ time until Nu,_ (o FIG. 5. Fraction of the unbroken fibers, at different times or
ngu %a)<1 or the Suciréssiveestress readjustr?]eln(ts) makjéerationsn in a RFB model with uniform strength distribution, for

n 4, 2 L o _
so little change that even one fiber cannot be found in thél'ﬁe(;ezrzs‘g';ee: ;E'c'?g'al) ngzs(gp_eg'zslfg:;sln”d_0'5‘;55(2(:{(‘)’;2;1
. . . =0. , 0=0. o=0.

\r/]gltL\:veorlégraglr:]?nz;rﬁg%ltf)wﬁaee? g:ﬁ];Zcﬁzséveengf:c:{wu;tﬁq;ngle). Note that the last value ef is greater thaw (= 1/4), and
fract'(sn of unbroken fibers here by the ’f' ed point val ethe fraction of unbroken fibers goes to zero here. Inset shows how

* : unb! ! . Y Ixed point value,, susceptibilityy (up trianglg and the relaxation time (filled
u* (o). The critical stressr . is determined by tha#- above circle) both diverge asr— o= 1/4).
which there is no fixed point and,(o0)—0 asn—o. Be- ¢
cause of the above simple recursion relatiénfor u, in the
uniformly distributed RFB model, we can easily analyze the
asymptotic features of its dynamics. The differential form of We have simulated the RFB model with a very slow but

B. Study of the precursors

the above recursion relatidd) can be written as steady increase of initial streeson a bundle containindy
fibers N~ 10%). Application of some small initial stress

du (U>—u+o) (=F/N) triggers the dynamics by breaking off a fraction

an- T u 5 (1—u,) of fibers, and global readjustment of the stress

causes further failuresuf 1<<up). As mentioned before, af-
ter a few steps or iterations, whé&ju,_ (o) —u,(o)]<1,
the dynamics stops and the bundle becomes stable. We note
this relaxation timer required for the stabilization. For each
(initial) stresso, we start afresh with the intact bundle and
u* :E +(0e—0) 12 (6) note the relaxation time for eaech The observation contin-
2 ues until we reach the threshold stress(=1/4), above
which the bundle fails totallysee Fig. 5. The relaxation
whereo.=1/4. The other root is neglected here as it is un-time 7 is seen to diverge as— o following a power law
stable[see Eq.(7)]. Expanding the Eq(5) near the fixed 7~ 7y~ (o.—0) Y2 (see inset of Fig. bthat can be ex-

The fixed point value ofi is obtained by settingu/dn=0.
This gives

point value(6) of u, we can writeu=u* + ¢, and plained easily using E(8).
Similar studies have been made for the breakdown sus-
de e(2u* —1) ceptibility y=dm/do, wherem=N[1—u*(o)] is the total
an= " u—*: —el4(o.— )Y (7)  number of fibers broken finally by stress(see inset of Fig.

5). One findsy~ (o.— o) Y2 in agreement with the previ-
ous observationgl1,16. This can be easily explained from
aso— o, which gives solution (6).

u,=Uu* +constx exp —n/ ), (8) V. SUMMARY AND CONCLUDING REMARKS

In all the three dynamical models of failure we have con-
sidered here, we find that long before the occurrence of glo-
bal failures, the growing correlations in the dynamics of con-

TO:E(O o) 12 9) stituent elements manifest themselves as various precursors.
4 "¢ The number of topplinga, relaxation timer, and the cor-

where
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relation length&, in both BTW and Manna model, grow and the BTW and BTW-FES models; as mentioned before, no
diverge following power laws as the systems approach theisuch difference in théh, estimate seems to exist for the

respective critical points h, from below: A~(h,
—hy,) "%, 7~(h,—h,,) 7, and é~(h;—h,,) ". For two-
dimensional systems, we find numerically he¥e-2.0, v

Manna and Manna-FES models. This difference in the
values for the BTW case might explain the difference in the
exponent values we obtaindéor h,,<h;) and those ob-

=1.2, andv=1.0 for both BTW and Manna model. We tained for the corresponding FES modfr h,,>h.).

could not thus detect any significant difference in the power

For the random-fiber-bundle model, we find that the

laws for these precursors. We also could not detect any sidsreakdown susceptibilityy (giving the increment in the
nificant finite size effect in these precursors. Though this sizeaumber of broken fibers for an infinitesimal increment of
independence of the quantities we studied look quite unnatdead on the networkand the corresponding relaxation time
ral at first sight, there are strong reasons. Basically, we studgrequired for the network to stabilize, after successive fail-

the behavior foh,,<h., the precursor behavior, wheéds

ures of the fibers both diverge as the external load or stress

necessarily finite. As we add here the tiny pulse at somapproaches its global failure point, from below: y~ (o
central site of a relatively large system, the boundary effect- o) ~*2 and 7~ (o, — 0,,) ~ Y2 These results for the RFB

cannot be really felt because of the smallnes§ obmpared
to L for most values oh,, . This explains the lack of finite
size effect in our precursor studi¢which, of course, is
clearly manifest when we check our model resultshgt
=h¢(L)]. It may also be noted that since fog, nearh, in
our system¢ becomes of the order af, ath,,=h.(L), our
result suggesta ~L2% and 7~L*?2 This, in fact, supports
the earlier analytic result fdn,,=h.(L) for large but finite
systems, as obtained by DhEk9]. Generally, if we write
A~ &%, we then ged;= 6/v=2.0 for the fractal dimension
of the avalanche clusters.

Apart from the previous attempft$5], an indirect study in
the fixed energy sand-pileFES model[18] also indicated
similar power law behavior away from the critical poieis-
sentially for h,, aboveh.). In the BTW-FES model, the
observed exponent values fer and ¢ differ significantly

model are, of course, analytically derived here for uniform
distribution of strength of the fibers. It may be mentioned
here that a similar behavior for the time-to-fractufer o
aboveo; diverging with the same exponent 1/2 for was
observed in a RFB model, where the fibers relax, under
stress, to the elastic strain through viscous dampR.
However, the relaxational dynamics in this visco-elastic RFB
model is not due to théself-organizing stress redistributions
among the surviving fibers and, as such, is quite different in
its origin. In fact, this time-to-failure vanishes in the limit of
zero damping coefficient20]. However, the similarities in
the behavior in such distinctly different situations also indi-
cate interesting possibilities.

Knowledge of the precursors and their power laws should
help estimating precisely the location of the global failure or
critical point from the proper extrapolation of the above

from those of ours’. However, for the Manna-FES model,quantities, which are available long before the failure occurs.
these exponent values are close to our estimates. The FE$ie usefulness of such precursors can hardly be overempha-
version of the models are somewhat different by constructiosized.

and the discrepancies in case of BTW-FES estiméates-

pared to our9’ seem to be physical in their origin. Due to
lack of stochasticity, BTW model can stabilize in several
“metastable” stategaboveh.) and nonuniversality occurs
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