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Effect of looking at the car that follows in an optimal velocity model of traffic flow
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An extension of an optimal velocity model is proposed. In the new model, a driver looks at the following car
as well as the preceding car. We introduce an additional optimal velocity function that depends on the headway
of the following car. We investigate the effect of looking back at the car that follows and show that this
extension effectively stabilizes the traffic flow.
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I. INTRODUCTION metastable state is naturally induced in the result of the dy-
namical effect of the OV mod¢ll3,14]. The results of simu-

The investigation of traffic flow, especially of traffic con- lation by the coupled map model based on the OV model
gestion, is an interesting problem from a physical viewpoint[15] in realistic situations, such as two lanes and junctions,
Figure 1 shows some observed data of the freeway traffi@re in good agreement with the real traffic deta).
the so-called fundamental diagram, which expresses the re- The basic property of the formation mechanism of con-
lation between the flow and the density of ctd The traf-  9estions is most simply understood by the OV model. The
fic flow is divided into two states, a free flow statthe OV model can be extended by taking into account the effect
left-hand side of the peakand a congested flow stafthe of other cars as well as the preceding car. It is quite natura] to
right-hand sidg If the density is low, one can drive freely take account of the motion of the car next to the_ preceding
and the flow is almost proportional to the density. While the¢@r or the following car, as we often pay attention to the
density becomes high, drivers are forced to reduce the velodnotion of such cars. In granular flow theories, each particle
ity and congestion emerges. mteract_s with many other partl_cles arc_;und_ it. In the unified

There have been many attempts at constructing modeI_‘é'eWpO'“F of granular and traffic theories, it may be mean-
for freeway traffic to explain the mechanism of congestioningful to incorporate such an effeft7-21.
from the viewpoint of physick2—4]. In recent years, cellular
automaton modelE5,6], coupled map modelg7], and fluid 250 — T T T T T T T T
dynamical modeld8] have successfully described the dy-
namical formation of traffic congestion. The optimal velocity
(OV) model is a kind of car following model, which is very
simple and has succeeded in showing the dynamical forma
tion of congestiorf9—14]. In the OV model, the change of
traffic flow can be understood as a kind of phase transition. If -
the car density exceeds the critical value, the traffic flow g 1s0
becomes unstable and the congestion appears dynamicallg
The behavior of each car is described by a solitonlike solu-§
tion of the equation of the OV model. Moreover, simulations g
based on this model reproduce well the real data in the fun-§ '®
damental diagram. The diamond marks in Fig. 1 show the
result of simulation. The global shape of figure is in good
agreement with the observed flow. The transition point from .,
the free flow state to the congested flow state coincides witt
the observed data. We note that there exists a metastable ste
in the vicinity of the critical density, which is an important

property for characterizing the transition in real traffic. The 0 L 1 L L L L L L Lo
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*Email address: g44153g@cc.nagoya-u.ac.jp FIG. 1. Fundamental diagram: Small dots represent the obser-
TEmail address: genbey@eken.phys.nagoya-u.ac.jp vational data. Diamond marks are the results of simulations in the
*Email address: hasebe@aichi-u.ac.jp OV model.
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As is well known, the traffic congestion is an important 1000
problem not only from a physical viewpoint but also from a
social viewpoint. If the traffic flow is in the congested state,
much noise and much carbon dioxide are generated ani
much energy is wasted. In recent years, automatic driving ‘
control systems are utilized as a part of the intelligent trans- 700 ™ ' B
port systen{ITS). The suppression of the appearance of traf- i "y
fic congestion is one of the target of the ITS. We can discuss
how to stabilize the traffic flow in the context of the OV o
model[17,19, because the formation mechanism of traffic .E
congestion is naturally described by the OV model. In this
work we will attempt the most effective extension to the OV
model. The new term, which incorporates the effect of look-
ing back at the car that follows, is added to the original OV
model, and the effect of this term will be investigated con-
cerning the stabilization of traffic flow.

900

800

II. OV MODEL
1000 1500 2000
First, we briefly review the original OV model and how position
the model explains the emergence of traffic congestions
[9,12]. The model is formulated as FIG. 2. Atypical pattern of congestion formation in the circuit:

The initial condition of the simulation is taken as the homogeneous

d2x dx flow. The positions of the cars are plotted. Cars are moving from

dt2n =a| V(Xpr1—Xn) — d_tn , (1) Ieﬁ to. right, and congestion clusters are moving backward in the
direction of the cars.

for each car number (n=1,2, ...).x, is the position of the  whereV’ is a derivative of the OV functiof2). The stability
nth car andx,.1—X, is the headway of this caa is a con-  of the homogeneous flow is decided by sensitivatyand
stant called “sensitivity,” which we set at the same value for mean headwal, which is the inverse of the car density.alf
all drivers.V(x) is called the optimal velocity functiofOV s smaller than 2, there exists a critical density for given
function), which expresses the relation between headway angh the unstable case, the congestion is formed with time evo-

the optimal velocity of each car. A driver controls accelera-|ytion. A typical example of the congestion formation is
tion or deceleration according to the difference between thghown in Fig. 2.

optimal velocity and his own velocity.

The OV function has the following property: the function
becomes zero for a small headway and approaches the maxi-
mum value for sufficiently large headway. The typical ex- Now, we investigate extended models to suppress the for-

IIl. EXTENDED OV MODEL

ample of the OV function is mation of congestion. In the OV model, the appearance of
congestion can be suppressed by choosing high sensitivity.
V(X)= a[tanh(x—B8)+ v], (2 Here we show that it is not the best way and present another
possibility, an extended model. In our extended model, a
wherea, B, andy are some positive constants. driver looks at the following car as well as the preceding catr.

The OV model has a homogeneous flow solution as ~ We call it the backward looking OVBL-OV) model. Naga-
tani has investigated a different extended model from ours
xO(t)=bn+V(b)t, 3y  for the same purpose. His model incorporates the next-
nearest-neighbor interacti¢th9], where a driver looks at the
preceding and the next to the preceding cars.
The BL-OV model is presented by the equation

where all cars are uniformly distributed("), —x{®’=b, and

are moving with the same velocity(b). The homogeneous
flow can be identified as the free flow in real traffic. We can 2
examine the stability of this solution by adding a small per-
turbation [9]. We put x,(t)=x{(t) +y,(t) and linearize

with respect toy,(t). y,(t) can be expanded by Fourier . . .
modes ex@kn-iw(K)t]. The condition where the homoge- where Vg(x) is the OV function for forward looking that

SNV A lays the same role ag(x) in Eq. (1). Vg(x) is the OV
neous flow solution is stable for a perturbation is given byll‘)un)étion for backward Ich)king V(Jhi(crz is Ba( f)unction of the
Im w(k)>0 for all k. The result is .

headway of the following cdrl7].
We choose two OV functions as

n

dx
57 =2 \VEGtni1= %) + Va(xn=Xn- 1)} = 5|, (6)

a>2V'(b)= (4)

o
cosiH(b—p)’ VE(x)=a'[tanh(x— B) + v], (6)
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FIG. 3. The phase diagram of the OV and BL-OV models: In /e (onfeR)

the upper region, the homogeneous flow is stable for both models. Fig_ 4. The critical sensitivities of extended OV models com-
In the middle region it is unstable only for the OV model, and in the pared to the OV modékolid line) are shown. The dashed line is the

lower region it is unstable for both models. ratio of critical sensitivities of the BL-OV to OV models,a(
—a")/(a' +a"). The dotted line is the ratio of critical sensitivities
Vg(X)=—a"[tanHx—B) + v], of the Nagatani model to the OV modely{(+ ay)/(ay+3ay).
wherea’, a”, B, and y are positive constants. Though In a similar way, we can find the stability condition of

(y) may take different values fovy and Vg, we set the another extended model, which incorporates the next-

same value ag () in the original OV model for simplicity. N€arest-neighbor interaction:
The velocity of the car is controlled according to the OV

functions, depending on both the distance to the preceding dn _ )4 . _ %
car and to the following car. The functiovig(x) has the a2 = VECRea=X0) + Ver O™ Xn )~ |
effect of increasing the velocity of the car, if the headway of 9

the following car becomes small. In this model, each car is
controlled so as to be positioned at the middle point betweewhere Vg and Ve are OV functions for the preceding car
the preceding car and the following car. and the next to the preceding car, respectively. The stability

In the same way as the OV model, we can find the homoeondition is
geneous flow solution: X, ;—x,=b and x,=Vg(b) ) ) )
+Vpg(b). The stability condition is . 2[VF(b)+VFF(b)]
VE(b) +3Vee(b)

(10

a>2[V'F(b)+Vé(b)]2
Ve(b)—Vg(b)

: ()

If we use the explicit formVe= a/[tanh&—pB)+v], Ver
= ay[tanhk—pB)+y] and a=a{+ a};' then Eq.(10) be-

which reduces to Eq4) when we switch off/g. To com- ~ COM€S

pare the OV and BL-OV models, we assume that they have

the same homogeneous flow soluti@ for any mean head- a> 2a / ay+ay (11)
way b. This condition is equivalent toV(b)=Vg(b) cosﬁ(b—ﬁ)\ ant3ay)’
+Vg(b), which results ina=a’—«". Using this relation
together with Eq(6), Eq. (7) is rewritten as The stability of the homogeneous flow state obviously
increases in this model also. In order to show the relation
2u a' —a among the stability conditions of these three models, we plot

(8)  the ratio of critical sensitivities Eq(8) to Eq. (4) as well as
Eqg. (11) to Eq.(4) (Fig. 4. These ratios can be written only
by "/’ or ay/ay, which expresses the ratio of the new

" cosb—p)| &'+ o)

Obviously, the quantity on the right-hand side in E8). is

always smaller than that in Ed4) for the original OV

model. This means the free flow becomes stable, even if welthjs condition comes from the assumption that the model has the
take low Sensitivity where the flow is unstable in the original same homogeneous flow solutitB) for any mean headwaly. The

OV model. The phase diagram of the original and extendedriginal form of OV function in Ref[19] is (1— y)V(Xps1—Xy)

OV models clearly shows this resifig. 3). The stable area + yV(x,.,—X,.1), and therefore the condition is automatically
for the BL-OV model is larger than that for the OV model. satisfied.
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term to the original term of the OV functioAsThe BL-OV 1.2 ¢
model stabilizes the homogeneous flow more than the origi-> 1.1
nal OV model and another extended model incorporating thes 1
contribution of the next to the preceding car. % 0.9
We also investigate the relaxation time of a small distur- >
bance. Imw(k) can be evaluated in the same way as the
derivation of Eq.(4). As mentioned in Sec. I, the stability
condition of the homogeneous flow solution is k) >0
for all k. The relaxation time is determined by the lowest
value of Imw(k). We note that the unstability arises first
from the longest wavelength mo#te-0. The lowest value of  (a) car number
Im w(k) is obtained fork=27/N, which is the minimum
value ofk, whereN is the number of carf9]. The lowest 1.2 -
value of Imw(k) for the OV model is > 11 \
|(2 2 g 1F _\_\\
e \J! _ 2 - _ 2 - 09 \___
Im w 2av (b)[a—2V'(b)] 2a(aa 2a%), (12 o o
and that for the BL-OV model is %0'®
k? [VE(b)+Vg(b)]?
Im o~ 5 [V(b) = Vi(b)]} a—2 - - 8 ; ®07080° 5575575 '
Ve(b)=Vg(b) () car number
2
= :—[a(a”r a")—2a?]. (13 FIG. 5. Superposed solid lines represent the damping behavior
a

of the disturbance for the original OV modg) and for the BL-OV

. . . ) model(b). The headway of only one car is twice as long as that of
Obviously the right-hand side of EG13) is always larger  tne others in the initial condition. The shock wave travels in the left
than that of Eq.(12), as a=«a'—a”. Then the relaxation gjrection.

time for the BL-OV model is shorter than that for the OV
model in any sensitivity and any choice of parameters of OMpq cars is an important problem. Actually, traffic congestion
funct|_ons. The disturbance damps faster in the BL-OV mode}ggits in the consumption of much fuel. Such quantity can
than in the OV model. be estimated by the changes of velocity, that is, the changes
of the kinetic energy of cars. We compare the BL-OV and
IV. SIMULATION OV models with regard to “energy consumption.” Suppose
that a disturbance is added in the homogeneous flow, which

In order to demonstrate how the stability of free flow is propagates like a shockwave, then the velocity of each car

improved in the BL-OV model, we perform the simulation.
The situation is as follows: 100 cars are running on the cir-
cuit with the length 100. The mean headwayis1 and the
mean velocity is tanh(1). We take the parameters of OV
functions asa=1.0, 8=1, y=tanh(1),a’=1.3, anda” 8 |
=0.3. The last two conditions come from the fact that two
models must have the same homogeneous flow solution for
any density. In this parameter setting, the homogeneous flow
is stable under the conditiona>2 for the OV model and
a>1.25 for the BL-OV model.

First we show how fast the disturbance disappears. The
initial condition is that only one car has larger headway than
the others. The behavior in this situation is beyond linear
analysis. Figure 5 shows the behavior of disturbance under
the conditiona=2.5. The disturbance is absorbed much
faster in the BL-OV model than in the OV model. The sta- 0 . . . .
bility of traffic flow is improved for the BL-OV model also 0 2 4 6 8 10
when it exhibits nonlinear behavior.

From a social viewpoint, the consumption of fuel for driv-

10

BL-OV model

OV model --------

energy consumption

sensitivity a

FIG. 6. The solid line represents the energy consumption for the

BL-OV model and the dashed line represents that for the OV

2In the BL-OV model,a"/a’=1 cannot be realized because of model. The energy consumption diverges at the critical sensitivity
the conditiona=a'—a". a=2.0 for the OV model ané=1.25 for the BL-OV model.
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FIG. 7. Superposed solid lines represent the damping behavior 27 \
of the disturbance for the BL-OV model with tuned parameters.
. ) ) ) . . 0 L L L L
oscillates several times until the disturbance disappé&ags 0 2 4 6 8 10
5). The changes of velocity result in the additional consump- sensitivity a

tion of energy compared to the case of no disturbance. We
use the following quantity for estimating such additional en-  FiG. 8. The solid line represents the energy consumption for the
ergy consumption: BL-OV model with tuned parameters. The energy consumption for
the BL-OV model diverges at the critical sensitiviay=0.32.
1

EIZ E _(Uﬁqax_vﬁﬁin)l (14 . .

cars waves The choice of these parameters gives not only low energy

consumption but also a small critical sensitivity. The above

whereX.,,4c denotes the summation for all periods of oscil- grocedure of choosing parameters has a large advantage in

lation until the disturbance disappears. Figure 6 shows th o : .
energy consumption for the BL-OV and OV models. Thestabmzmg the free flow, when the BL-OV model is applied

BL-OV model obviously causes less consumption of energ 0 thﬁ reaLtrf;l]fflg ﬂOW'. ion in thi
than the OV model in any value of sensitivity. Throug t_ e Investigation in this paper, Wwe can suggest
that any basic theory for the control of traffic flow should

incorporate the effect of backward looking. This effect im-
proves the stability of traffic flow concerned with the follow-
In this paper, we have investigated the effect of backwardng two points. First, traffic flow is always disturbed by in-
looking in the OV model. In our extended model, the stabil-tersections or other road conditions in real traffic. So, how
ity of traffic flow has increased. This extension enables us tdast the flow absorbs such disturbances is important. If we
suppress the formation of congestion effectively and to retake into account backward looking in the OV model, the
duce the energy consumption. The OV model and two exdisturbance in free flow damps much faster than the original
tended models have been compared under the condition thafodel. Second, it is a general property that the formation of
they have the same homogeneous flow solution for any densongestion is suppressed by developing high sensitivity. On
sity. Among these models, the BL-OV model provides thethe engineering side, high sensitivity requires that the control
most stable flow'm any of the cases discussed in th!s Pape&ysiem respond sensitively to the change of headway and
The suppression of the emergence of congestion Is one locity. But it is technically difficult. As we have mentioned
the most important problems of the social domain. The, gec |1 the stability region is extended in the phase dia-
BL-OV model has the ability to tune parameters for such ram for the BL-OV modelFig. 3, which incorporates the

o o S ot v e sy Lfect fbacoard lookig. Th means T h efct i
example, if we intend to stabilize the flow Bt 8=1 and izes the trafflc_: fl(_)w even at low sensitivity. The_ idea of
y=tanh(1), we choose the OV function as backward looking is beyond the usual control of drivers, but
' can be realized by some engineering techniques of the ITS.
Ve(x)=0.7tanhx— 1)+ tank 1)], Such a realization seems easier than the development of a
sensitive control system.

V. SUMMARY AND DISCUSSION

Vg(x)=0.3 [ —tanh(x—1)+tanh1)]. (15
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