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Critical amplitude ratio of the susceptibility in the random-site two-dimensional Ising model

Lev N. Shchuf and Oleg A. Vasilyev
Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia
(Received 19 February 2001; published 14 December 2001

We present a different way of probing the universality class of the site-diluted two-dimensional Ising model.
We analyze Monte Carlo data for the magnetic susceptibility, introducing a fitting procedure in the critical
region applicable even for a single sample with quenched disorder. This gives us the possibility to fit simul-
taneously the critical exponent, the critical amplitude, and the sample-dependent pseudocritical temperature.
The critical amplitude ratio of the magnetic susceptibility is seen to be independent of the concentiation
the empty sites for all investigated valuesgsk0.25. At the same time the average effective expongftis
found to vary with the concentratiap which may be argued to be due to logarithmic corrections to the power
law of the pure system. These corrections are canceled in the susceptibility amplitude ratio as predicted by
theory. The central charge of the corresponding field theory was computed and compared well with the
theoretical predictions.
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The effect of impurities on the critical behavior is one of the last few years. The interpretations of the results are rather
the central questions of phase transition phenonjén. controversial. Some of authors clajh0,11] that the critical
According to the Harris criterion, weak concentrations ofexponents, e.g., that of the magnetic susceptibijtyvary
impurities do not affect the critical exponents dfv>2,  with the impurity concentration, but that the ratio, sayy/v
whered is the system dimension, andis the exponent of (where v is the critical exponent of the correlation length
correlation length in the pure systefi]. In the two-  goes not change. Othef42,13 concluded that impurities
dimensional Ising mode{2DIM) one hasdv=2. In other  |ead, for the susceptibility as well as for other quantities,
words, the 2DIM is a marginal case, where logarithmic cor-opy 1o Jogarithmic corrections as for weak bond dilution. In

rections may become important in the vicinity of the phase,|| cases; the analyses have been performed either above, at,
transition, while critical exponents are not changed, as hag, pajow the critical pointT
W Cc

been found analytically for the specific heat and correlation Lo . . . -
length[4] as well as for the magnetic susceptibil[ty]. In- Th? main aim of the pr_esent stuc_j;_/ IS to |de_nt|fy the_ uni
versality class by computing the critical amplitude ratio of

deed, the widely accepted picture is thagak bonddilution h i tibility. thereb \a data both
changes the critical behavior of the correlation length of theb € magnetic susceptibility, thereby comparing data bo
elow and abovd .

pure model¢=1/|| by a logarithmic term into It is well known that the universality class is not only
characterized by its critical exponents but also by the critical
4 1 . . . . .
A1+ —goIn— amplitude ratio§14]. For instance, in zero external magnetic
™ ki field the critical behavior of the magnetic susceptibilityis
given by y=I'7"7 in the symmetric phase and by
~I" |7/~"" in the ordered phase, with andT"’ being the
where 7=(T—T.)/T is the reduced temperature, wilh,  critical amplitudes andy and y’ are the critical exponents.
being the critical temperature ag is a coefficient propor- T'/T"' is the critical amplitude ratio.
tional to the strength of disordéstrictly speakinggy is the Note that the critical amplitude ratio is very often quite
central charge of thbl=0 Gross-Neveu model related to the sensitive to the universality class. The basic idea is that if the
2DIM, see[4-8], andgy=0 for the pure 2DIM. Similarly,  values of exponents vary from the pure Ising model to the
the critical exponent of the magnetizatidf and the mag- percolation ones as reported [ih0,11], then one could ex-
netic susceptibilityy exponents remains the same as for thepect a variation of the critical ratib/I"’" as well. So, we may
pure 2DIM, with the critical behavior being modified by expect that the critical ratio will change from the value
logarithmic factors. This prediction for weak bond disorderT’ /T’ =37.693 65 known for the pure two-dimensional Ising
was confirmed numerically in a number of papgts,7]. model [15] to the percolation limit valud'/I"'~170 [16].

In the following, we study the universality class of the Clearly, such a variation of about four times is much easier to
site-dilutedIsing model. The phase diagram of this modelcheck than the variation of the exponents that is reported to
contains two crucial points, the pure Ising fixed point at zercbe approximately 10%.
concentration of impuritiesg=0, and the percolation fixed To investigate the critical behavior of the magnetic sus-
point at q=q.=0.407 254[9]. The site-diluted 2DIM was ceptibility and the corresponding amplitude ratio, we carried
investigated numerically by quite a few auth¢i®-13 in out extensive simulations of the 2DIM with site dilution.

Numerical calculations of the critical amplitudes of the sus-
ceptibility are known to be difficult, even for the pure Ising
*Email address: lev@itp.ac.ru and Potts modelgl7-21] due to finite-size effects and ana-
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lytical corrections to scaling. For the diluted case, the prob+ithmic corrections, growing linearly with the small concen-
lem becomes even more delicate because of a lack of quatration of dilution up to the concentratiay* =0.1.
titative knowledge on the critical temperature and the (5) Central charge g of the N=0 Gross-Neveu model
possible crossover associated with the randomness induc¥de extract from numerics its dependence upon the concen-
logarithmic factors. tration of diluted sites and found the values coincide well
The crucial technical idea of the present work is a heurisWith ones predicted by exact expression for the charge in
tic fitting procedure to determine the critical amplitude ratio.terms of the site-diluted mod¢8] for the dilution concen-
The paper is organized as follows. First, we will summa-trationg up to aboutg*=0.1.
rize the main results. Then, we will describe the fitting pro-
cedure and demonstrate how it works for the pure model. I. THE MODEL
Then, specific results will be presented and discussed.
The main results of our study can be summarized as fol- Each site of a square lattice is either occupied by an Ising
lows. spin, S;= =1 or not. The fraction of empty sites is denoted
(1) New fitting procedureA sample dependent pseud- by d. The positions of nonoccupied sites were generated us-
ocritical temperatur@* (q; L, i) (i refers to the sample and ~ ing the shift-register generator with lags (9689,417) that is
is the linear dimension of the square latiidellows from known to be appropnate_ for selecting rgndomly lattice sites
fitting the susceptibility in the high- and low-temperature [22] At each concentration of empty sites chosen to be
L ~ ~_ ~ g=0, 0.03, 0.07, 0.1, 0.15, 0.18, 0.2, 0.22, and 0.25, the
phasef cl9se to criticality, to(7)=I'7""'" and x(7)  yymper of realizationéor samplesin the simulations ranged
=TI" |7|” 7eft, respectively.yets, vors are average effective between 10 and 25.
critical exponents determined in a range of temperatures, It seems obvious that the singular part of the magnetic
where finite-size effects and corrections to scaling may beusceptibility stems from fluctuations of spins belonging to
neglected=|T—T*(q;L,i)|/T is the sample-dependent re- the percolating cluster of occupied siteis23|. Those spins
duced temperature relative 1§ . The fitting condition is the that are d|sconne_gted from the percolatlpn cluster do nqt con-
. . - | tribute to the critical behavior. Accordingly, we took into
equality of the effective critical exponentg.s; and vy,

L : : . : account only the fluctuations of the spins in the largest clus-
which is applicable if the corrections to scaling are not Iargeter, thereby reducing the “noise” in the susceptibility due to

in the crit?cal region as is the; case for t'he 2D Isjng model. tha small clustergand reducing the computation tije
(2) Universality of the critical amplitude ratio for the

magnetic susceptibilitWe estimated the ratib/I"’ by fit-
ting our Monte Carlo data for lattices with linear dimension
L=256. The ratio seems to remain constant for all concen- For each concentration of empty sites, we computed the
trations of impurities we considered, i.e., fpin the interval magnetic susceptibility(T,q;L,i) in the critical region at
[0,0.25. This behavior may be interpreted as a manifestatiorabout 40 temperatures. The temperatures were chosen in the
of the universality class of the site-dilute Ising model beinginterval r,<|7| <7, where 7, is the rounding temperature
independent of the degree of dilution. It should be noted that, =1/ [24], above which finite-size effects may be ne-
theory predicts the cancellation of the logarithmic correc-glected, and, is the reduced temperature, above which cor-
tions [4,17,18 in the ratio of high-temperature and low- rections to scaling become importd@f. For the pure Ising
temperature susceptibilities and, thus, predicts the universafodel, r, may be estimated from the exact solutidr5],
ity of critical amplitude ratio, at least for small concentration
of impurities where Dotsenko-Dotsenko thed#yf are appli- keT x(7)=T|7|""(1+e,7+---), (1)
cable.

(3) Weak- and strong-dilution regiongVe found the value with e, =0.077 903 15. The corrections to scalireg,r, be-
of dilution g* = 0.1 up to which the predictions of the weak- come important only at rather large reduced temperatures,
dilution theory[4,5,8 works well could be explained as con- say, 7> 7,~0.13. Presumably, dilution does not affect
centration at which two intrinsic lengths coincide. The first is significantly[2].
the average distance between impurifiéld ;«cexp(18). The In the simulations, we used the one-cluster-flip algorithm
second is the percolation correlation lengtw (q.—q) *®  [25], discarding the first 0clusters for thermal equilibra-
characterizing the size of the holes formed on the lattice byion. Totally, 1¢ clusters were generated for each saniple
the diluted sites. For the concentration of diluted sites largeat given values ofj andT.
thang* the theory of weak dilution cannot be applied be-
cause the size of the conglomerates of the diluted sites be- lIl. THE EITTING PROCEDURE
comes larger than the average distance between the diluted
sites and the effective interaction between impurities should The fitting procedure is based on the assumption that the
be taken into account. critical exponent of the magnetic susceptibilifytakes the

(4) Variation of the average effective exponent;. We same value below and above the critical temperature.
find that the average effective critical exponent; varies ~ Thence, one may determine the sample-dependent pseud-
with the concentration of impurities, similar to previous ob- ocritical temperatureT; (q;L,i), as described above, with
servationd10-12. The variation may be attributed to loga- the average effective critical exponentg,; and y4¢¢ coin-

II. THE SIMULATIONS
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) FIG. 2. The critical amplitude ratio computed as the ratio of
~ FIG. 1. The ratios of the computed magnetic susceptibility di-g,sceptibility data in the ordered and the symmetric phases
ylded by the singular part |nclud|[1§7the leading corrections t_o scaI-X(T)/X(_ 7) for various concentrations of dilutiorg=0 (open
ing [exactly known Eq(1), r=|7|~*'Y1+e,)] for the pure Ising boxes, 0.03(open circley 0.07 (open diamonds 0.10(open starg
model in high-temperaturer () and low-temperaturer() phases (15 closed boxes 0.18 (closed circlel 0.20 (closed diamonds
for system sized =16 (open boxeg 32 (open circleg 64 (open 54 0.25(closed starsfor the system sizé = 256.
diamond$, 128 (closed boxes and 256(closed stans See text for
the further details. bility from the asymptotically exact value deeply in the or-
dered phase, which could be eliminated taking into account
ciding in the interval[ 7, ,7,]. In this way, we extracted the background ternDy=—0.10413... [26]. Actually,
sample-dependent critical amplitudé&) andI'’ (i) as well ~ we have checked the sensitivity of the fitting results to the

as the effective critical exponent.(i). inclusion of this term. One might estimate the accuracy of
the numerical value of the critical amplitude ratlaT’
IV ASSESSMENT OF THE ACCURACY (=37.8...) extracted from the Monte Carlo data to be
about 5%.

OF OUR APPROACH . . .
Next, with L =256 and for the different concentrations of

To check the accuracy of our approach, we studied alsdilution g, we consider the ratio of the Monte Carlo data for
the pure Ising model, where the critical amplitudes arethe magnetic susceptibility/ x', averaged over the various
known exactly. samples. The temperature scale has been determined by us-

First, we considered the ratio gf(7) =(M?—((IM|))?,  ing T*(q). Obviously, as shown in Fig. 2, the ratio is
as computed in the simulations, to the singular part of thénearly constant in the ranggr, ,7,]. In that temperature
magnetic susceptibility multiplied by the leading correctionrange, one may expect that both finite-size effects and cor-
to scaling[i.e., x(7;L)/7~?(1+e,7), see Eq(1)], with the  rections to scalings are negligible. However, crossover terms
linear dimensiorL of the square lattice ranging from 16 to in the presumed logarithmic corrections are expected to de-
256. To reduce finite-size effects, we set in the simulationpend rather sensitively on the degree of dilutigrni-iowever,
(IM])=0 in the symmetric, high-temperature phaSg>0. if they are of similar nature above and below the critical
The results are shown in Fig. 1, where the upper solid lingyoint, our approach circumvents this difficulty, as seems to
corresponds to the exact value of critical amplitude above thge consistent with the results depicted in that figure. It is a
critical point, '=0.962 582, and the lower solid line corre- commonly accepted pictufd 7,18 that the logarithmic cor-
sponds td"' =0.025537. Clearly, the critical amplitudes are rections should be canceled in the ratio of the high-
approximated closely in the range<|7|<r,, especially temperature and low-temperature susceptibilities. Our results
for L=256. Note some deviations of the magnetic suscepticlearly support such a scenario.
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TABLE |. Results of the fit to magnetic susceptibility for the lattice dize 256.

q r' r Veft T. rr’
exact 0.02553 0.96258 175 2.26918 37.685
0.00 0.02398) 0.9605) 1.7571) 2.26847) 40.21(20)
0.03 0.02372) 0.9468) 1.8143) 2.161Q2) 39.9619)
0.07 0.02394) 0.9612) 1.8856) 2.01463) 39.9839)
0.10 0.025%9) 1.003) 1.931) 1.90325) 39.6559
0.15 0.03261) 1.273) 1.951) 1.70984) 39.1459)
0.18 0.0372) 1.426) 1.992) 1.590%7) 38.9285)
0.20 0.0481) 1.705) 1.971) 1.51034) 39.9858)
0.22 0.0523) 1.998) 1.962) 1.4261) 39.1(1.4)
0.25 0.0664) 2.579) 1.972) 1.2981) 40.71.9)
V. SPECIFIC RESULTS AND DISCUSSION 4 4 8 q q
Our results on the critical amplitude ratio and the pseud- 9= 7%= (1+2/m)2 1-¢ %4'8431__(1' )

ocritical temperature, averaging over the sample-dependent
results, forL=256 and various concentrations of dilution, ) o )
are presented in Table | witholerror bars in parentheses. N Fig. 4, the coefficieng, from Eq. (3), is plotted together
One may emphasize that the pseudocritical temperature confdth the fit of the magnetic susceptibility data, below and
puted by us differs from the values of the “true” critical above the critical point, to Eq2). The results are expected
temperature reported by other authft6,11] (usually based

on finite-size analyse®y less tharO(1/L), reassuring us of
the correctness of our approach. It is remarkable, that the
ratio of critical amplitudes remains constant within the error l -
bars, while the critical amplitudes by themselves grow by i
almost a factor of 3, when varying the dilution fragp= 0 to i
0.25. We limit our simulations at concentratigrs=0.25 be- g O
cause larger dilutions need larger system sizes in order t 1
have a reasonably wide critical region. Unfortunately, simu-
lations of larger sizes is out of computation power at the
moment. Thesmall) deviation of the critical amplitude ratio _

in the pure case from the exact value could be reduced b)[—<
including in the fit the background term,. The fit in the

reduced pseudocritical temperature window 0:0%50.2 —
givesDy=—0.07(2) and ratid’ /"' =38.7(4) deviates only
by 20 from the exact value.

Figure 3 shows the dilution-dependent critical amplitudes 4
I' andT'’, given in Table |, as well as the values obtained
from the fit to the magnetic susceptibility averaged first over
samples. The nice agreement of the results shows that th
order of the averaging plays no role. The statistical errors are - 8
slightly lower in the former case, as already mentioned by o
Wiseman and Domanj27]. oo o

The effective exponeny,; is also given in Table I. Ob-
viously, starting in the pure case,¢ first increases quite
rapidly with dilution, but changes only mildly at stronger
dilution, g=0.2. The initial variation ofy.¢;, at weak dilu- 0.01 - T g T - T T |
tion, may be explained quantitatively. Analytically, the mag- 0.0 0.1 0.2 0.3 0.4
netic susceptibility has been calculatg®|28] to have the

form q

FIG. 3. The critical amplitudeF (closed boxesandI’’ (closed
x(1)=T|7""(1+0.07790315)(1—gIn|7) "8, (2) circles of the magnetic susceptibility as function of the concentra-
tion of empty sitesg. Open signs denote results of the fit to the
magnetic susceptibility first averaged over samples. Horizontal lines
with the coefficientg given[29] by refer to the exact values for the pure Ising model.

|
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4.5 It seems that this valug*~0.1 could be explained as
follows. There are two lengths for the diluted model in ad-
dition to the two length scales one has in the Ising model,
4.0 H ¢ namely, the correlation lengtée 1/7 and the system size.
The first lengthl;<exp(—1/g) is defined[4] by the value at
which the termgln|7 in Eqg. (2) becomes of the order of
3.5 1 unity. The next length is the percolation correlation length
[23] £, (. — ) ~*> One could check that these two lenghts
coincide forg~0.1. Physically this means that fqi>q* the

P

3.0 disorder is no weaker than assumed in the theories men-
i tioned above.
o5 The critical amplitudes are practically the same for the

weak dilutionq<g*. Also the effective exponents are vis-

g . ibly modified in this region by logarithmic corrections. They
start to grow in the region of the “strong” dilutioig* <q

<. and their ratio seems to remain unchanged. Probably,

one could expect to see a crossover regime from Ising to

percolation universality class in the very vicinity of the per-

colation point.

2.0

1.5

1.0 VI. CONCLUSIONS

Of course, reliable Monte Carlo data on even larger sys-
tem sizes may still be desirable in order to check the univer-
sality of the ratio of critical amplitudes for the magnetic sus-
ceptibility, as suggested by our study. One should also try to
analyze systems with even stronger dilution, i.e., closer to
the percolation limif23]. Nevertheless, our data already pro-
vide evidence that the two-dimensional Ising model with site

q dilution is described by the same critical exponémbdulo
logarithmic correctionsand the same critical amplitude ratio

FIG. 4. The coefficieng=4mg, as a function of the impurity of the mag.net'ic su;ceptipility as the pu_rg Ising m(_)del' in the
concentration. The solid line denotes the analytic result of fgf.  fange of dilutions investigated. The critical amplitude ratio
Circles (star correspond to fits of Monte Carlo data for the sus-1'/I'" is always quite close to the pure Ising value 37.69 and
ceptibility in the low-(high-) temperature phase. far away from the perCOlation value 160-2@@hich is

known from simulation$16,18). The small apparent varia-
to agree for weak dilution; indeed, the agreement holds up ttion of the average effective exponent with the degree of
g=0.1. Otherwise, pronounced deviations set in for strongedilution may be explained as being due to logarithmic cor-
dilution. In fact, Fig. 4 demonstrates two facts. On one handrections.
it is a check of the recent analytic, supposedly exact result by
Plechko on the coefficierg. On the other hand, it is consis-
tent with Eq.(2), which, in turn, readily explains the varia-
tion of the average effective exponepi;;, computed in the We acknowledge useful discussions with B. Berche, P.
interval[ 7, ,7,], with dilution (see also Ref6]). Taking the  Butera, B. Derrida, W. Janke, and J.-K. Kim. Our special
logarithmic derivative of Eq(2) and properly choosing the thanks to W. Selke for asking many interesting questions we
temperature interval for the averagifig0] of the In7term,  tried to answer in the present paper, and for his useful com-
one can get a linear dependence of the effective exponemtents to this paper. The work has been supported by grants
veii* 714(1+aq) with a coefficienta of the order of unity. from NWO, INTAS, and RFBR. O.A.V. thanks the Landau
This coincides quite well with the values ¢f;; in the table  stipendium committegForschungzentrum/KFA "liah) for
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