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Deterministic dynamics in the minority game
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The minority gameMG) behaves as a stochastically disturbed deterministic system due to the coin toss
invoked to resolve tied strategies. Averaging over this stochasticity yields a description of the MG’s determin-
istic dynamics via mapping equations for the strategy score and global information. The strategy-score map
contains both restoring-force and bias terms, whose magnitudes depend on the game’s quenched disorder.
Approximate analytical expressions are obtained and the effect of “market impact” is discussed. The global-
information map represents a trajectory on a de Bruijn graph. For small quenched disorder, a Eulerian trail
represents a stable attractor. It is shown analytically how antipersistence arises. The response to perturbations
and different initial conditions is also discussed.
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[. INTRODUCTION every agent is therefore a binary warbits long, henceu
belongs to the sd0,1, ... P—1} whereP=2". In order to
The minority game(MG) introduced by Challet and make a decision about which option to choose, each agent is
Zhang[1] offers possibly the simplest paradigm for a com- allotteds strategiesat the outset of the game, which cannot
plex, dynamical system comprising many competing agentd?€ altered during the game. Each stratBgyaps every pos-
Models based on the minority game concept have a broagible value of u to a prediction age{—1,1}, where
range of potential applications, for example, financial mar-— 1= (option 0) and > (option1). There are ¥ different
kets, biological systems, crowding phenomena, and routingossible binary strategies. However, many of the strategies in
problems[2]. There have been many studies of the statisticathis space are similar to one another, i.e., they are separated
properties of the MG1-4,6—-13, which treat the game as a by a small Hamming distance. It has been sh¢@irthat the
quasistochastic system. principle features of the MG are reproduced in a smaller
In this paper we examine the MG from a different per-reduced strategy spadRSS of 2™*! strategies, in which
spective by treating it as a primaritieterministicsystem and  any two strategies are separated by a Hamming distance of
then exploring the rich dynamics that result. Our desire t™ or 2™ 1 je., the two strategies ar@nticorrelated or
look at microscopic dynamical properties, as opposed to gloancorrelated respectively.
bal statistics, is motivated by the fact that the physical sys- The agents follow the prediction of their historically best
tems we are interested in modeling are only realized oncgerforming strategy. They measure this performance by re-
(e.g., the time evolution of a financial marke®nly limited  warding strategies with the correct mapping of global infor-
insight is therefore available from taking configuration aver-mation to winning decision and penalizing those with an
ages in such cases. In addition it is of great interest to exanincorrect mapping. Strategies are scored in this manner irre-
ine transient effects such as the response of the system #pective of whether they are played. As each agent will re-
perturbations and the mechanisms that determine the gamesgrd and penalize the same strategy in the same way, there is
trajectories in time. We find that we are able to provide aa common set of strategy scores that are collected together to
description of the resulting deterministic dynamics via mapform thestrategy-score vector.SThe common perception of
ping equations, and can hence investigate these importagtstrategy’s success or failure will lead to agents deciding to
effects. The outline of the paper is as follows: after brieflyyse or avoid the same strategy in groups—this leads to
discussing the MG in the remainder of this section, Sec. lcrowd behavior as analyzed in Refd,6].
examines the MG as a functional map. Section Il focuses on
the effect of the unde_rlyingj“quenched”) disorder arisi_ng Il MG AS A EUNCTIONAL MAP
from unequal population of the strategy space. Section IV
discusses the dynamics of the game on a de Bruijn graph. The minority game is often introduced heuristically as a
Section V provides the conclusions. set of rules determining the update of the agents’ strategies
The most basic formulation of a MG comprises an oddand the global information. It can however easily be cast into
number of agent®N who at each turn of the game choose a functional map, which reproduces the game when iterated.
between two options “0” and “1"[1,2]. These options could Moreover, this functional map can be iterateithouthaving
be used to represent buy/sell, choose rdadadB, etc. The to keep track of the labels for individual agents. We achieve
aim of the agents is common: to choose the least subscribdtis by introducing a formalism that groups together agents
option, the “minority” group. At the end of each turn of the who hold the same combination of strategies, and hence re-
game, the winning decision corresponds to the minorityspond in an identical way to all values of the global-
group and is announced to all the agents. The agents haverdormation set ©={0,1,... P—1}. This grouping is
memoryof m bits, hence they can recall the lastwinning  achieved via the tensd®, which is initialized at the outset
decisions. Theglobal information . available to each and of the game and quantifies the particular quenched disorder

1063-651X/2001/64)/01610%8)/$20.00 65016105-1 ©2001 The American Physical Society



P. JEFFERIES, M. L. HART, AND N. F. JOHNSON

for that gamd4]. Q is sdimensional with rows and columns
of length 2P (in the RS$ such that entrf)g g .. is the

number of agents holding strategig®; ,R,,...}. The entries
of O (and also of the strategy-score vec®rare ordered by

increasing decimal equivalent. For example, strategies from

the RSS fom=2 are ordered0000, 0011, 0101, 0110. .},
therefore strategR is anticorrelated to strategyP2+1—R.
Q is randomly filled with uniform probability such that

Z QR,R',...:N-
R,R’,...

It is useful to construct a configuration of this tensw,
which is symmetric in the sense tha¥r g, .,
=VoiRr, Ry} Where p{R;,R,,...} is any permutation of
strategiesR; ,R,,... . Fors=2 we let¥=3(Q+Q7) [16].
Now we proceed to a formula for the attendaicef the MG
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TABLE |. Percentage of time steps in which the minority room
is changed by the stochastic decision of agents with tied strategies.
Percentages are shown for the digital and proportional payoffs. Sta-
tistics obtained from 16 numerical runs of the MG with=101,
s=2, and over 1000 time steps.

m xX=sgn x=1

2 7.2+4.2 0.7£0.6
3 6.3+3.0 2.4-0.8
4 9.4+2.1 3.4£0.8

S()=S(t—1)—a*""Vy(AS(t—1),u(t—1)), @)
P
m(t)=2u(t=1)— F’H(,u(t— 1)— E)
+H(=A(S(t—1),u(t—1))), (4)

(i.e., the sum of all the agents’ predictions and hence ac-

tions),

D

2P
A:_MD:RZ]- a/'RLnR,

whereaj is the response of strateto global information
p andng is the number of agents playing stratdgyWe can
defineng in terms of the strategy-score vect®rand ¥ and
hence rewrite Eq(1) to give the following fors=2:

2P 2
ASu)=, ak
R=1 R/

o

[1+Sgn(Sg—Sr/) ¥R R/
1

2P

+ > ahds, s, (biM2¥re 31— Vrr),
R#R’

)

where bin[n,p] is a sample from a binomial distribution of
n trials with probability of succesp. Here the constraint

bin[2¥ g g ,3]+bIN[2Vk g 3]=2¥rr applies in order

whereH(x) is the Heaviside function angl(A) is a mono-
tonic, increasing function of the game attendance quantifying
the particular choice of reward structufee., payoff. In
most of the MG literaturey(A)=sgn@) or x(A)=A [7].
Although the macroscopic statistical properties of the MG
are largely unaltered by the choice ypfwe later demonstrate
that the microscopic dynamics can be affected markedly.
This formulation shows that the MG obeys a one-step,
stochastically disturbed deterministic mapping between
states{S(t),u(t)} and{S(t+1),u(t+1)}. It is interesting
to ask the following question: “How important is the sto-
chastic term of Eq(2) to the resultant dynamics?” Table |
shows the frequency with which the outcofrsgn(=A)] is
changed by the stochastic disturbance to the mapping. We
can see that the stochastic term has a small but nonnegligible
effect on the game. For the strategy reward systeasgn,
the number of instances of coin tossing agents affecting the
outcome is greater than with the proportional reward system
of y=1. This is easily understood in terms of the homoge-
neity of the score vecto§; the y=sgn scoring system is
much more likely to generate tied strategies than yhel
system, which also incorporates the dynamics of the atten-

to conserve agent number. The second term of this attertanceA. Therefore, in they=sgn scoring system there will
dance equatiofiEq. (2)] introduces a stochastic element in be a much higher proportion of coin tossing agents and thus
the game; it corresponds to the situation where agents maygreater effect on the game. We pause here to note that when
have several top scoring strategies and must thereby tosstiae MG is modified to include a decaying “score memory,”
coin to decide which to use. We note that E8). could be i.e., when Eq(3) is modified to
rewritten replacing the sgn function with tanh. The effect of
this would be to make the number of agents playing strategy
R, (as opposed to their other stratelgy) vary smoothly as a
function of the separation in the score of the two strategiesyhere 0<B<1, then the chance of strategy scores being
rather than simply playing the best. This modification isequal rapidly tends to zero with time and hence the game
similar in concept to that of the thermal minority game automatically can become completely deterministic.
(TMG) [8,9] wherein agents play their best strategy with a The general effect of the stochastic contribution to the
certain probability depending on its score. The differenceViG is to break the pattern of behavior emergent from the
here would be that, in contrast to the TMG, the system wouldeterministic part of the map. It is therefore of great interest
still be entirely deterministic, hence lending itself readily toto examine further what the dynamics of this deterministic
similar analysis as presented here. behavior are. To do this we replace the stochastic term of Eq.
With this formalism, the game can be described concisely2) by its mean. The equation thus beconiés,(S,u) in
by the following coupled mapping equations: Ref.[13]],

S(t)=pBS(t—1)—a*“" Py (A(S(t—1),u(t—1))),
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2P 2P If we average over uniformly occurring states@fwe then
A(Su)=>, ak >, [1+sgnMSg—Sx)]¥rr . (5) have for each strategy
R=1 T_ =
Rt 2P
Physically this replacement is an averaging process; when (6SR),,~— P2 E (aga’;,)MqR,_
R =1

Sr,= Sgr, We have half the agents who hdiR;,R,} playing

R, and the other half playing, [17]. Equations3), (4), and  \yg now use the orthogonality of strategies in the RSS,
(5) now define a deterministic map, which replicates the be-

havior of the MG between disturbances caused by the coin 0 for Ry#Ry,
tossing agents; we refer to this system as the “deterministic 1 v 1 for R.—R
minority game” (DMG). We will now use this system to P > aR,aR, 17 72,
investigate the emergence of microscopic and macroscopic . -1 for Rzzﬁl_
dynamics.

This yields

lll. DISORDER IN W

N

The game is conditioned at the start with the initial state (0SR) =~ W{PR_PR}' ®)
{S(0),u(0)}. It is also given a¥ tensor for a particular
parameter sell,m,s The game’s future behavior will be in- where R=2P+1—R is the anticorrelated strategy .
herited from¥'; games with sparsely and densely filled ten- Equation(8) now shows us explicitly that strategies and their
sors hence behave in entirely different ways. By assumin@nticorrelated partners attract each other in pairs. The mag-
that each entry of) is an independent binomial sample nitude of the score increment is also of interest; for low
Qr, r,=DbIN[N, 1/(2P)?], we may categorize the disorder in and highN the attractive force is large, which will cause the
theQ tensor by the standard deviation of an element dividedtrategies to overshoot each other and thus perform a con-

by its mean size. Fos= 2, this gives stant cycle of swapping positions. As we increaser de-
creaseN, the attractive force becomes weaker and so the
"(QRlsz) (2P)2—1 score cycling adopts a longer time period; it eventually be-

comes too weak to overcome the separate force arising from
the asymmetry in¥’. Hence the system moves away from
the strongly mean reverting behavior #
We can investigate this change of regime further by ex-
amining( Sg) , for finite disorder in¥ (see note on validity
of averaging[18]). Again using the orthogonality of strate-
ies in the RSS, we have

m(Qr r,) N

which rapidly becomes large as increases. For lown and
high N, the game is said to be in an “efficient phage?]
where all states of the global-information setare visited
equally and hence, on average, there is no drift in the strat-
egies’ scores, i.e{Sg);=0. In this regime, the disorder in
the Q tensor is small and thus all elements are approximately (8Sg) = 5SSy spestoring
of equal magnitude. This in turn implies that the dynamics of a
the game are dominated by the movemert ohther than by
the asymmetry of). The attendance of thes€2) game =— 2 (Yrr—Yrr) 9)

2P

here reduces to R'=1
N 2P 2P § < sy
A(S IU‘)N Z aR 2 Sgr(SR SR') (6) _R/:l [Sgr( R~ R’) I RR’
+sgnMSg+ S ) Vrr - (10

The second sum in Eq6) corresponds to a quantityg,
which is based on the rank of strate@y specifically gg Equation (9) has two distinct contributions. The first term
=2P+1—2pg, wherepg is the rank of strategyR, with  5S3* arises from disorder i alone and is time indepen-
pr=1 being the highest scoring apg= 2P being the low-  dent, representing a constant bias on the score increment.
est scoring. Hence E@6) becomes The second terndSs>*""Iacts as a mean reverting force on
the strategy score; its magnitude depends on how many strat-
7) egies lie b_etween i_t and its ant_icorrelated parfijest as in
Eq. (8)]. Figure 1 illustrates this for a case whe®g>0;
here the net contribution t8SEES°""9s likely to be negative
We now examine the increment in strategy scad&(t)  as there are more contributing elements with a negative sign
=§(t)—S(t—1). For simplicity, we here assume the propor-than with a positive sign. The strategi€ s —|Sg| < Sg:

N
A(S.p)~ 7pza q.

tional scoring system of=1. Hence <|Sgl always contribute terms-sgn&)(Vrr +Vrr) t0
N SSEMIaNnd so will always act as a mean reverting compo-
5S=—a*A(S,u)~— —a“(af‘ a. nent. Terms from stratggles ou'gslde this range'W|II always be
4P? divided into equally sized positive and negative groups as
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SR Rl \PR R’ \PRR p

N + -
R —_— + -
R —_— 0 -

)

— - - P
R _ -
- 0
—_— - +
- +

FIG. 1. Schematic representation of the signs of contributing ,

terms tosSestoing
FIG. 3. Contour plot of ¥, /), i.e., an average of the strategy

shown in Fig. 1. These groups will on average cancel oupopulation tensor reordered each turn with strategies running from
each other’s effect on the score increment. highest to lowest scor@op to bottom and left to right Black areas

We can model the average magnitude of each term in Eqdndicate low population and white areas indicate high population.
(9) by using the same binomial representation for the eleThe averaging is carried out over 50 rufaifferent Q) and 1000
ments ofQ as before. The mean magnitude of the bias andurns within each run. MG game parameters 0.32,5=2.
restoring-force termg|5S2%9) and (<|5S'Res‘°“”9[)sR)R are

thus approximately given as follows: ng, the greater its contribu_tio_n is to the attendance as can be
seen from Eq.1). As ng is increased aboveg .r, the
<|S%'aﬂ)R~ JIN/P)[1-1/(2P)?], probability of the game outcomle-sgn@)] b_eing oppqsed
to ak becomes greater and hence stratBdyeing penalized
estorin Ny is also more probable. This effect will arise if the quenched
([ 0SR™") s Jr~ P2 (11 disorder in¥ is such that more agents hold stratégyhan

R'#R. As « is raised and the quenched disorder¥h
The termy enumerates the average net number of terms iigrows, this effect will become increasingly important. Hence
SSRSPMIthat act to mean reveBky, i.e., the excess number it can be seen thal'p r: and{Sg, S/} are not independent
of terms with negative sign--sgn&y). Averaged over the &S assumed in obtaining E@L1), but are instead correlated
entire set of strategies, we haye-=2P. Figure 2 shows that through the effect of market impact; this correlation becomes
our approximate form for the average strategy score bias iff'0re Significant as is increased.
Eq. (12) is extremely good over the entire range af The nature of the correlation betweeWggr and
—P/N whereas the approximation of the restoring-forcelSr,Sr'} introduced by market impact is nontrivial in form
term becomes progressively worse @sds increased. This as can be seen from Fig. 3. We will not discuss the details of
effect can be explained in terms of the “market impact” of a @ analytic reconstruction o¥, ,» here, but will instead

strategy. The greater the number of agents using a strate§yMPply note some straightforward constraints on its form. Let
us take the approximation that on average, the ranking of the

strategies{pr} is given by the ranking of their bias terms
{8SR™Y. This will be trueon averagdor a system described
by Eqg. (9. We then use the approximation thasias
~N[0,J(N/2P)(1—1/4P?%)]. Ordering the bias terms, re-
sulting from samples drawn from this distribution, gives us
that¥, .. satisfies

(5509 )_P—p
Erf( JIN/PI[1-1/4P7]) P

wo- [ - bias (theory)
- — - restoring (theory)
—@— bias (numerical)

10 - —6—rrestoring (numerical)

0.1 . . ; ‘ . : . _
0 01 02 03 04 05 06 07 with 5S2*° given by—E,z,rP:l(‘l’p,pf—‘l’;p')1 as in EQ.(9).

This relation gives us an indication of how the rank of a
strategy is affected by its excess population, and is consistent
FIG. 2. Numerical and approximate analytical magnitude of av-with the form of ¥, ,, as shown in Fig. 3. Note that in the
erage score increment terfi®S32y )5 and((l¢SS[§S“”"‘9|>SR)R absence of market impact we would not be able to write

0=P/N
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down any equation linking these parameters and Fig. 3
would be flat with no structure.

We have thus shown how market impact is profoundly
manifest within the structure of the M@E]. In particular,
Fig. 2 shows clearly that consideration of market impact is  _z0¢
necessary in the calculation of the transition point from effi- ™
cient to inefficient regime§l]. The game enters the ineffi- '
cient regime if the magnitude of the bias term to the score -
increment(arising from disorder in¥) exceeds the magni-
tude of the restoring-force term. We can calculate when on
average strategies begin to drift by looking at when
(16S%*9)r= (| 6S™"*™)s )r in Eq. (11). This occurs near
a=a.~ml4. This overestimation of the transition point

(which numerically occurs in the DMG at arouid=0.39 FIG. 4. De Bruijn graptD, [2] corresponding ton=2. Vertices
could be corrected by taking into account the nonflat strucare Jabeled with the state, edges are labeled with the quantity
ture of ¥, ,,. We would like to stress here that only on ss/|y(A)|. The dotted line shows one of the two possible Eulerian
average does there exist a specific point at which the gantils of this graph.
passes from mean reverting to biased behatedficient to
inefficient regimg. Because the behavior of the game is dic-
tated by the disorder i and not just by the specific param-
etersN,m,salone, a knowledge of is not enough informa- The previous section was concerned with the behavior of
tion to classify the game as being in either the efficient orthe strategy-score vect®; and often treated the dynamical
inefficient regime. The value le’c cannot therefore be con- Variab|e,u as a random process to be averaged over. This
sidered a “critical” value in this system away from the ther- however glosses over the subtle and very interesting dynam-
modynamic limit of largeN andP. ics of u itself as dictated by Eq4). (Reference$10,13 also
Equation(9) can also yield insight into the dynamics in consider aspects qf dynamics) To aid in our discussion,
the regime past the transition point. We were able to predicle note that Eq4) describes a trajectory along the edges of
from Eq. (8) that in the efficient regime, pairs of anticorre- a directed de Bruijn grapb,(m). Figure 4 shows an ex-
!ated strategies W.OU|d cycle around each other thqs.produ%mple of such a graph fan=2. As explained in the previous
ing an everchanging score rank vectarIn the inefficient section, in the efficient regim® is strongly mean reverting.

regime wherein the strategy scores have appreciable bias, This implies that the set of states of the gaffieu} is finite.
would be natural to assume that would rapidly find a  As the system is Markovian and deterministic, this in turn
steady state as the strategy scores diverged. This in fact dokmplies that it must exhibit periodic behavior in this regime
not happen; for example, consider the outermost pair of stra@s return to a past state would then be followed by the revis-
egies in the score spaciee., the current best and its anticor- iting of the trajectory from that state. In the inefficient re-
related partner, the wopsat a point in the game. For these gime where the strategy scores are biased, the set of states
strategies, Eq(9) is given approximately by {S,u} is unbounded and we may expect aperiodic behavior
of the DMG.
We now examine the structure of the periodic behavior in
2P the efficient regime. One observation from numerical simu-
(OSr) =~ — E (Yrr— YRR lations is that the period, i.e., return time to any sfBeu}
R'=1 is observed over many runs to Be=2P for the y=sgn
2P scoring system whereas for the=1 system the period is
—sgnSy) E (VYrr+VrR)- much longer and run dependent. This periodic behavior
R'=1 B seems able to exist up to the point where the occurrence of
zero attendancé(S,u) =0 causes stochastic disturbance to
_ wu [17]; after this point we can no longer treat our system as
Irrespective of the disorder in¥, we have |5S”®  deterministic. Such periodic behavior must satisfy the condi-
=|oSe™M. It is thus likely that this strategy pair will at-  tions {AS;,qe=0, A ueyge=0}. T=2P is in fact the shortest
tract each other until at least one other pair takes their placgossible period that satisfies these conditions. The two edges
as best/worst. This behavior will lead to a nonstationary leading away from any vertex on the de Bruijn graph must
vector even in this regime. necessarily incur score increments of the opposite sign:
The present analysis has described general properties afa*|y(A)|,—a*|x(A)| corresponding to positive and nega-
the game such as the transition in behavior between efficienive attendance, respectively. The vectars' and a*27#!
and inefficient regimes. It has also shown that dynamicakre orthogonal; hence the only way that an increment to the
processes such as the changing naturg o&n be quantita- score ofa*ly(A(S(t),«(t))) can be negated in order to
tively explained purely in terms of the quenched disorder inachieveAS;, =0, is to return to that vertexi.e), u(t’)
the strategy population tensér. = u(t) a particular number of times such that

S L

IV. DYNAMICS IN  u SPACE

016105-5



P. JEFFERIES, M. L. HART, AND N. F. JOHNSON PHYSICAL REVIEW &5 016105

TABLE II. An example of how the game cascades from an

2 x(A(S(t"), (1)) =0. (12 initial state[cf. Eq. (14)]. HereP=4 anda*- S(0)=20. The atten-
(t" dance (right column exhibits persistent, and then antipersistent,
This condition must be satisfied at all vertices of the graphbehav'or'
because the sdt'}, which satisfies Eq(12) must have a SgnA(t))

minimum of two entries(each of opposite attendance & S(0)—2PZsgrA(t"))
thereby leading the game to different, new vertices until a”20—8><(0):20 1
are spanned. _ y 20-8x(0+1)=12 1
Cor]5|der the(zsgn scoring s'ys.tem. The condition COITe- 56 gy (0+1+1)=4 1
sponding to Eq(12) is easily satisfied at each vertex with a
set{t’} of exactly 2 entries,\ being an integer. We now
have the situation where all edges of the graph are visite
equally. The shortest way of doing this is with=1; this
cycle is known as an “Eulerian trail.” This dynamical stable

state of the game acts as an attractor; the MG in the efﬁCie”lZPE{t,}sgn(A(t))|<2P. Subsequently the attendance
phase will rapidly find this state after undergoing a stochasticEAm) becomes perfectigntipersistent When this antiper-

disturbance. We note that the time-horizon minority gamegigience occurs at each vertex, the game has locked into one
[13] exhibits similar behavior for special values of the time

m m+1 . . .
horizon 7. This trajectory of the DMG along a Eulerian trail of the |22 /3 f Fag]lfenan tra|ls._ The analysis r?bove_cim be
corresponds to the occurrence of perfect antipersistence generalized for different scoring systentsuch asy=1)

the (A|u) time series. This antipersistence has been empiri\-’Vhere’ n general,_n IS _found that the_ game ex_h|b|ts strong
cally observed in many studies of the M®,7,15. but not perfect antipersistence iA|) in this regime.

; _ ; " In the analysis above we introduced the effect of the ini-
Now consider they=1 scoring system. The condition of o
X gsy tial condition on the score vect@(0) (see also Refl14]).

Eq. (12 is very much harder to achieve over all vertices asH i v VieBr0 h

the dynamics of\ are incorporated back into the score vector 10WEVEr, we could just as correctly vie$(0) as the current

S making the sefS, 2} very much larger. This explains the state, left by some other game process such as a sh_ock to the
y iy ystem, a buildup from some other game mechanism or a

very much longer period of this game, which, even over ver hasti bation. It is therefore i : .
long time windows, can appear aperiodic. The Eulerian trai tochastic perturbation. It is therefore interesting to examine
ow the DMG evolves after a given staf§(0),x(0)} is

will still, however, be an attractor to the dynamics withi . v -
y bun imposed. The “initial” conditionS(0) must obey the form

space, since the antipersistence is still strong(in the - L )
b P Ak) o —Sg; this is to ensure thaa priori no strategies are

efficient phasg It is not however perfect as was the case forS.R: ! : .
the DMG using they=sgn scoring system. given a bias. It would be unphysical to break this rule; strat-

To quantitatively explain this antipersistence, we make€9Y Ralways loses the same number of points as its anticor-

20-8X(0+1+1+1)=—4 -1
0-8X(0+1+1+1-1)=4 1
0-8X(0+1+1+1-1+1)=—4 -1

the following approximation: related partneR gains in any reasonable physical mecha-
nism. We expect that if the elemerfig(0) have magnitude
sgrnA)~sgna-s). (13)  less than P, then the system will very quickly lock into the

. . ) . Eulerian trail trajectory and visit all. states equally. How-
This approximation can be understood by referring back WQver, if the elementtSq(0)|> 2P then Eq.(14) predicts that
Eq. (7) whereS now plays the same role as the rank measurgnere will be persistence in(x) until the dynamical stable
g. Itis valid for the regime where the strategy SCOres argaie js found. This persistence in trajectory at each node of
densely spaced, i.e., for the _eff|C|ent reglmelloyv disorder inpe de Bruijn graph will lead to the game visiting only a
V. Consider they=sgn scoring system wherein the score gmga)| subset of the vertices on the graph unlike in the stable

Vectgfl is Si[n)p'y given by (1) :-S(OZ state situation. This reduced cycling effect may lead to a bias
—2j-1sgn(A(j))a*". We use the fact that the vect@”  in the attendance over a significant period of time, i.e., a
anda*2*#1 are orthogonal to transform E(L3) to the fol-  “crash” or “rally.”

lowing form: We now demonstrate the recovery of the DMG from a

randomly chosen initial score vect§(0). Wetake a system
sgr(A(t))wsgr( a*-S(0)—2P>, sgn(A(t))|, (14  Wwith low disorder in¥ andm=2 (such that =8). How-
'} ever, we drawSg(0) from a much wider uniform distribution
spanning—100 to 100.(Note we maintainSg= — Sg as re-
where we recall that the set of timgs’'} are such that quired) Figure 5 shows the evolution of the game out of this
u(t")=u(t)=pn for 0<t’<t. This dynamical process oc- state. The initial condition is soon “worked out” of the
curring over timed’ rather thart is zero reverting. Let us system—it rapidly finds the Eulerian cycleu
demonstrate this by taking an example. IR+4 and the =0,0,1,3,3,2,1,2 .., after only 174 turns. As can also be
initial strategy score be such thatS(0)=20. The time se- seen, the game adopts several different types of cycles on its
ries of sgn(A(t)) thus becomes as shown in Table Il. Henceway towards this stable state. The switch between cycle
the game cascades from its initial state, the attendance attgpes occurs as each vertex snaps from persistent to antiper-
given vertex of the de Bruijn grapjA|«]) exhibiting per-  sistent behavior.
sistent behavior until a point is reached such flaét S(0) We have hence discussed and explained the dynamics of
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|

the dynamics for the efficient and inefficient regimes leads to
the well-documented result that the occurrence of different
v | (m+1) bit words is even in the efficient regime but very
uneven in the inefficient regimé].

l ‘ recovery from an initial score vect®(0). This difference in

N W
e ——
e

global information p[t]

V. CONCLUSION

0 50 100 150 200 250 The results in this paper confirm that the MG can be use-
time step t fully viewed as a stochastically disturbed deterministic sys-
tem, and that this deterministic system can be described con-
cisely by coupled mapping equatiofisgs. (3), (4), and(5)].
We used this system to explore the dynamics of the score
vectorS(t). We showed that the score increment comprises a
bias and restoring-force term, the comparative magnitude of
these terms being governed by the disorder in the strategy
population tensoK). Furthermore, we were able to obtain
analytic approximations for the bias and restoring-force
terms. We showed how the market impact effect correlated
the strategy population to the score vector and how this then
time step t affected our approximations.

We also discussed the dynamics of the global information
n(t) as a trajectory on a de Bruijn graph. We were able to
show that in the efficient regime the system would be peri-
-50 - odic and that the favored periodic trajectory was that of an
Eulerian trail. Analytically we were able to demonstrate how
?ntipersistence and persistence arise in the attendance at a
Aertex (Alx), and how this would manifest itself in efficient

and inefficient regimes either in response to a perturbed state
or an initial condition ofS(0).
In short, this analytic treatment has not only again ex-

the stable state and how the system enters that state from Bfined why MG systems cross over from efficient to ineffi-
initial or perturbed state. This analysis has been done for the/€nt behavior(this effect was explained here simply in
system in the efficient phase where the quenched disorder &'MS of the quenched disorder and in absence of the ther-
¥ is low. The inefficient regime will, in general, show a Medynamic limi}, we have also shown how it is possible to
different set of dynamics. As discussed earlier, the inefficientn"avel the rich dynamics and explore effects that happen
phase is characterized by score vectors that have an appiithin @ given realization of the system and not simply on
ciable drift; this is an effect of the disorder ii. The corre- average. The analytical treatment of this work may also be
sponding unbounde8(t) vector leads to an unbounded set easily used to mveshgate; extensions to the model. For in-
of states for the systef§, u}. This suggests that the overall stance, th_e grand-canonical MGs], “.S.ed asa quel for
dynamics may be aperiodic, i.e., the system never returnslg flnanc!al markets, represents a minimal alteration to Eq.
a past state. We can however say something about the nature" BY using the same 'technlql_Jes as presented here we can
of the resulting dynamics i space. As the score vector Investigate effects in this modified model such as how large

diverges the score rank vectprbecomes more well defined drawdowns occur and how S.tab'“ty and volatility are _ef-
- L . _ fected by both parameter choice and external perturbation.
(although not completely stationary in time, as mentioned in

Sec. Il)). This is tantamount to there being a certain degree
of persistence in the attendance at a vertéju(). This will
lead to the motion around the de Bruijn graph being limited We are grateful to A. Short and P. M. Hui for useful dis-
to a certain subspace, just as that described above for tlmeissions and comments.

score Sg[t]

FIG. 5. An example of the convergence of the DMG onto the
Eulerian trail attractor. Top graph shows the dynamics in the glob
informationw(t). Bottom graph shows the dynamics in sc8¢gt)
for 1<R<4 (out of 2P=8). Game locks into attractor at turn 174.
Game parametefd=101,m=2, s=2.
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