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Mesoscopic nonequilibrium thermodynamics of single macromolecules
and dynamic entropy-energy compensation

Hong Qian*
Department of Applied Mathematics, University of Washington, Seattle, Washington 98195

~Received 18 February 2001; revised manuscript received 24 September 2001; published 4 December 2001!

We introduce axiomatically a complete thermodynamic formalism for a single macromolecule, either with or
without detailed balance, in an isothermal ambient fluid based on its stochastic dynamics. With detailed
balance, the theory yields mesoscopic, nonequilibrium for entropy (Y t) and free energy (C t) of the macro-
molecule.Y t andC t fluctuate. Expectation (d/dt)E@C t#<0, ‘‘ 5’’ holds if and only if the macromolecule is
at thermal equilibrium, in which we show thatY t still fluctuates butC t is a constant. The entropy fluctuation
of Landau,E@(DY t)

2#, precisely matches the fluctuation in the internal energy, which in turn equals the
fluctuation in heat dissipation. As a generalization of Clausius’ classic result, the dynamic fluctuations in the
entropy and energy of the macromolecule are exactly compensated at thermal equilibrium. For systems with
detailed balance, Helmholtz free energy is shown to be the potential of Onsager’s thermodynamic force.
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In recent years, the stochastic model for overdam
Newtonian-Brownian dynamics in a force field,

JdXt5F~Xt!dt1GdBt , ~1!

has found an increasing number of applications to a hos
macromolecular processes in equilibrium and more imp
tantly nonequilibrium steady state~NESS! @1,2#. These mod-
els are generalizations of the classical theory of polymer
namics in whichF usually is conservative@3#. In addition to
obtaining the stochastic dynamics from the model, howe
it becomes clear to us that an axiomatic isothermal ther
dynamic formalism can be developed based solely on
stochastic differential equation~1! in which Xt represents the
coordinates of the ‘‘atoms’’ in the macromolecule,J is a
constant, positive definite hydrodynamic interaction mat
F is the force not necessarily conservative@4#, andGdBt is a
white noise representing the collisions between the ma
molecule and the solvent.GGT52kBTJ according to Ein-
stein’s relation and defines the temperature of the isother
system. The solution to Eq.~1!, Xt , is stochastic, whose
probability density function satisfies the Fokker-Planck eq
tion

]P

]t
5“•S 1

2
A“P2J21F~x!PD ,

~A5J21GGTJ2T52kBTJ21!, ~2!

whereP(x,t) is the probability of the macromolecule bein
in conformationx at time t, Xt5x. In this paper, we show
how a complete, mesoscopic thermodynamic theory can
formulated based on Eq.~1!, which we callstochastic mac-
romolecular mechanics@2#. We then apply this formalism to
further elucidate a classic observation in the equilibriu
thermodynamics of proteins, the dynamic origin of entrop
enthalpy compensation@5#. Naturally, the enthalpy unde

*Email address: qian@amath.washington.edu
1063-651X/2001/65~1!/016102~5!/$20.00 65 0161
d

of
r-

-

r,
o-
e

,

o-

al

-

be

-

constant pressure is equivalent to the internal energy in
formalism. The significance of the nonequilibrium stea
state obtained from this formalism@6# and its applications to
free energy transduction in biological macromolecules, e
a protein molecule converting chemical potential into m
chanical work, have been discussed elsewhere@1,2,4#.

It is important to point out that even though there is
ready a vast literature on stochastic models based on Fok
Planck equation~2! @3,7#, it is not known that this approach
rigorously encompasses a comprehensive statistical the
dynamics. Furthermore, it is not known whether a thermo
namics exists for individual macromolecules. In this pap
we demonstrate the logical relation between models base
Eq. ~1! and ~2! and the principles of equilibrium and non
equilibrium thermodynamics. A complete statistical therm
dynamics for isothermal systems in equilibrium, nonequil
rium transient, and NESS, as an complementary
alternative to Boltzmann’s approach, emerges.

STOCHASTIC MACROMOLECULAR MECHANICS

Following Qian@6# and Lebowitz and Spohn@8#, we first
introduce the instantaneous heat dissipationWt ,

dWt[F~Xt!+dXt5F~Xt!•dXt1
1

2
dXt“FdXt , ~3!

where+ and• denote integrations in the Stratonovich and
sense, respectively@9#. According to this definition, the hea
dissipation,dWt , is equal to the work done by the system
the product of forceF and displacementdX. This is the law
of energy conservation. Using the expression~1! it is easy to
show that the mean rate of the heat dissipation (hd) @6,8#

hd5
d

dt
E@Wt#5E F~x!•J~x,t !dx, ~4!

where
©2001 The American Physical Society02-1
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J~x,t !52
1

2
A“P~x,t !1J21F~x!P~x,t ! ~5!

is the probability flux in Eq.~2!, ]P(x,t)/]t52“•J. In
mechanical terms, the mean heat dissipation rate is the p
uct of the molecular force and the flux.

The dynamic ofWt is itself Brownian motionlike withhd
as its mean rate@6#. Its fluctuations can be characterized by
‘‘heat diffusion coefficient,’’

EF ~dWt!
2

dt G52kBTE F~x!J21F~x!P~x,t !dx, ~6!

which has a dimension of@energy2#/@ time#. The statistical
properties ofWt have been extensively explored in conne
tion to the Gallavotti-Cohen symmetry and fluctuation the
rem @6,8,10#.

Onsager’s thermodynamic force is different from the m
chanical forceF(x) @11#. In terms of Eq.~2!, we introduce a
second thermodynamic quantity,P(x,t), the thermodynamic
force @12#

P~x,t ![F~x!2
1

2
JA“ ln P~x,t !, ~7!

and a third thermodynamic quantity, the entropySaccording
to the well-known formula,

S52kBE P~x,t !ln P~x,t !dx, ~8!

whereP(x,t) is the solution to Eq.~2!. In terms of Eqs.~7!
and~8! we have the increase of the entropy at constant t
peratureT,

TṠ5kBTE ~ ln P11!¹•J dx

52E ~kBT¹ ln P2F!•J dx2E F•J dx

5E P•J dx2hd

5ep2hd , ~9!

in which we identify, following Onsager,*P•J dx with the
entropy production rate(ep) @13#. It can also be rewritten a

ep5E S 1

2
A“ ln P~x,t !2J21F~x! D T

3JS 1

2
A“ ln P~x,t !2J21F~x! D P~x,t !dx, ~10!

which is always non-negative. This is the second law of th
modynamics. Equation~9! is valid for all isothermal Brown-
ian dynamical systems, with or without detailed balance
stationary state and in transient process. It encompasses
the first and second laws of thermodynamics. In fact
makes the second law quantitative by providing a rate
01610
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entropy increase. In a time independent stationary state,
Ṡ50 in Eq.~9!, and the entropy productionep is balanced by
the heat dissipationhd . This is the general case for an iso
thermal NESS.

Equation ~10! also indicates thatep equals zero if and
only if F5(JA/2)“ ln P5“ ln P/kBT. That is the force field
F has to be conservative with an internal potential ener
F52“U. For system with the potential, also known as d
tailed balance@14#, the stationary solution to Eq.~2! is P
5Z21e2U/kBT, where the normalization factorZ is the parti-
tion function in Gibbsian equilibrium statistical mechani
~isothermal canonical ensemble!. It can be mathematically
shown thatep50 is a sufficient and necessary condition f
the stationary stochastic processXt defined by Eq.~1! being
time reversible@15#. Therefore, time reversibility, detailed
balance, and zero entropy production are equivalent with
equilibrium @16#.

For systems satisfying the potential conditionF52“U,
the thermodynamic forceP also has a potential,P52“C,
whereC(x)5U(x)1kBT ln P. We note that the expectatio
of C t[C(Xt),

E@C t#5E@U~x!1kBT ln P~x!#5E P~x,t !U~x!dx2TS,

~11!

which in fact is the Helmholtz free energy@17#. The first
term in Eq. ~11! is the mean internal energy. More impo
tantly, it is easy to show that

E@Ċ t#5hd2TṠ52ep<0. ~12!

In an isothermal system, the Helmholtz free energy decrea
and reaches its minimum at the equilibrium,2kBT ln Z. This
is precisely the statement of second law of thermodynam
for an isothermal system.

Finally, with the potential condition, we have

2dU~Xt!52“U~Xt!•dXt2
1

2
dXt•““U~Xt!•dXt

5F~Xt!•dXt1
1

2
dXt•“F~Xt!•dXt . ~13!

Comparing Eq.~13! with Eq. ~3!, we see that the heat diss
pationdWt52dU(Xt), the internal energy fluctuation. Thi
is the first law of thermodynamics. Hence,Wt52U(Xt) is
stationary and its expectation and variance are the inte
energy and heat capacity (Cv) of a single macromolecule a
thermal equilibrium.

THE MATCHING ENTROPY AND ENERGY
FLUCTUATIONS

We now focus on systems with detailed balance. T
above thermodynamic formalism suggests the fluctua
Ut[U(Xt) as a mesoscopic, generalization of internal e
ergy of a macromolecule in an isothermal aqueous solut
Then its expectationE@Ut#5*U(x)P(x)dx, which equals to
the standard internal energy in thermodynamics. Similarly
2-2
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the same spirit, we can introduce fluctuating entropyY t[
2kB ln P(Xt), which can be viewed as the mesoscopic, n
equilibrium generalization of entropy. It is important to poi
out that this definition is consistent with the Boltzmann
microscopic entropy based on the volume of the phase sp
In our caseP(Xt) is the probabilistic measure of the pha
space. The expectationE@Y t# is the Gibbs entropy in Eq.~8!.

We now show that the mesoscopic generalizations im
diately lead to an interesting thermodynamic result in eq
librium. We note that whileUt and Y t are fluctuating in
equilibrium, their difference,

Ut2TY t5U~Xt!1kBT ln P~Xt!52kBT ln Z, ~14!

the mesoscopic equilibrium free energy, however, is not fl
tuating. We can further compute the fluctuations in the m
soscopic entropy and internal energy,

T2E@~DY t!
2#5E@~DUt!

2#

5E U2~x!e2U(x)/kBTdx

2S E U~x!e2U(x)/kBTdxD 2

5kBT2
]

]T
E@Ut#

5kBT2Cv . ~15!

Furthermore,

TE@DY tDUt#5E@~DUt!
2#. ~16!

Therefore, the fluctuations of the mesoscopic internal ene
Ut and entropyY t are perfectly correlated. They compensa
in the dynamical fluctuationsof a macromolecule.

ENTROPY FLUCTUATION AND ITS MESOSCOPIC
INTERPRETATIONS

The relation between entropy fluctuation and heat cap
ity in Eq. ~15! was known to Landau who also advocated t
concept of entropy fluctuation@18#. It has been a difficulty
concept to many who consider entropy to be a functiona
the distribution@19#. Here we offer a more plausible inte
pretation of the concept based on our mesoscopic view f
the previous section.

Let us considerN identical, independent macromolecul
in the aqueous solution, (X1 ,X2 , . . . ,XN), each with its own
stochastic dynamic equation~1!. The concentration of the
number of molecules in conformationx can then be defined
as

Cx,t5(
j 51

N

d~x2Xj !. ~17!

Note that since theX’s are stochastic, the concentrationCx,t
fluctuates. However, the classic statistical mechanics is o
concerned with themost probable Cx,t since the relative fluc-
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tuation in Cx,t is insignificant in the thermodynamic limi
whenN→`. Nevertheless, theCx,t fluctuates.

The macroscopic entropy is defined as a functional of
density functionCx,t . Therefore, it fluctuates with theCx,t .
We now show that this fluctuation is indeed the mesosco
fluctuation introduced in the formalism for single macromo
ecules. We consider a general thermodynamic quantity

q5E Q~x!Cx,tdx. ~18!

If one had neglected the fluctuation inCx,t , a fluctuation inq
would be inconceivable.

Noting Eq.~17!, the expectation ofq is readily computed

E@q#5E Q~x!dx(
j 51

N

E@d~x2Xj !#

5E Q~x!dx(
j 51

E d~x2yj !

3P~y1 ,y2 , . . . ,yN!dy1 , . . . ,dyN

5NE Q~x!P~x!dx

5NE@Q~Xt!#,

where the joint probability for X1 ,X2 , . . . ,XN ,
P(x1 ,x2 , . . . ,xN)5P(x1)P(x2), . . . ,P(xN) since the mac-
romolecules are assumed to be independent in the solu
Similarly, the variance inq

var@q#5(
j 51

N

varF E Q~x!d~x2Xj !dxG
5(

j 51

N

var@Q~Xj !#

5N var@Q~Xt!#

5N var@Qt#,

in which Qt[Q(Xt) @20#. Therefore, the fluctuations inq
due to fluctuating in the distribution functionCx,t , is exactly
the mesoscopic fluctuation we have introduced in the prec
ing section for single macromolecules. The mesoscopic vi
however, clearly indicates a stochastic dynamic origin
these fluctuations.

ENTROPY AND HEAT

It is a classic result of Clausius that entropy change equ
to heat dissipation in isothermal quasistatic processes.
result suggests that both concepts can be generalized
namically to isothermal equilibrium, and their fluctuation
are indeed equal, as we have shown. In our formalism,
energy conservation is instantaneous, hence,dWt52dUt .
The free energy, on the other hand, has to be constant
the entire conformational space in an equilibrium,C(x)[
2kBT ln Z, while Y(x) andU(x) are not. This is a demon
2-3
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HONG QIAN PHYSICAL REVIEW E 65 016102
stration for the concept oflocal equilibrium, which is essen-
tial in the general theory on nonequilibrium thermodynam
@21#. Therefore,TdY t5dUt52dWt and dUt /dY t5T, all
instantaneously.

THE RATE OF ep

The ep defined in Eq.~10! is instantaneous and time de
pendent in a nonequilibrium transient. Thus, one can furt
compute its time derivative (dep /dt), the change in entropy
production rate@7#. With some algebra we have@22#

dep

dt
522kBTE ~“•J!2P21~x!dx

2E ~PTJ21P!~¹•J!dx. ~19!

Near a NESS,“•J is small and the second term has t
leading order. However, with detailed balance and near
equilibrium, P is also small; hence, the first term, which
negative, becomes the leading term. Therefore, near an e
librium, theep monotonicallyapproaches to zero. This is th
Glansdorff-Prigogine’s principle of minimal entropy produ
tion rate@21#. Near a NESS, however, the second term do
nates, and Eq.~19! is not necessarily negative.

DISCUSSIONS AND SUMMARY

While our thermodynamic formalism is strictly for iso
thermal processes, it can be used to compare a system u
different temperature. In a thermal equilibrium, as we ha
shown, the fluctuation in internal energyUt[U(Xt) is di-
rectly related to the heat capacityCv5dE@Ut#/dT. Such re-
lations, if any, in nonequilibrium steady state have not be
explored. Furthermore, one can easily introduce an exte
force into the Eq.~1! to represent the pressure, and thus
expect a thermodynamic formalism for isobaric systems
be developed in parallel.

It is also noted that there is a difference between the
s
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soscopic energyUt[U(Xt) and entropyY t[2kB ln P(Xt).
While the former can be computed along a stochastic tra
tory, the latter cannot until the probability distribution fun
tion P(x,t) is known. This difference reflects the fundame
tal difference between the two physical quantities, ene
and entropy. The former islocal while the latter isnonlocal
due to circular balance. One cannot know the value of
tropy of a state until knowing how likely it occurrs in com
parison with other states. It is possible to formally expre
the P(x,t) in terms of a path integral@23#. Maes also sug-
gested a space-time approach to the problem@24#. In a ther-
modynamic equilibrium, however,P(x) can be determined
locally up to a normalization factor due to detailed balan
Hence,dY t5TdUt .

In summary,

JdXt5F~Xt!dt1GdBt ~conformational dynamics!,

dWt5F~Xt!+dXt ~heat dissipation!,

Y t52kB ln P~Xt ,t ! ~entropy!

Pt5F~Xt!1T¹Y~Xt ,t ! ~ thermodynamic force!,

is a complete set of equations that provides the stocha
dynamics of a macromolecule, its heat dissipation, its
tropy ~Boltzmann!, and its thermodynamic driving force
~Onsager!. With this set of equations, one can computehd
5(d/dt)E@Wt# and ep(>0) from entropy balance
T(d/dt)E@Y t#5ep2hd . If a system is detail balanced, i.e
F52“U. ThenWt5Ut[U(Xt), andP52“C(Xt) where
C(Xt)[C t5Ut2TY t is free energy, (d/dt)E@C t#52ep
<0 and reaches its minimum2kBT ln Z at equilibrium. In
the equilibrium, the probability distribution forXt is
Z21e2U(x)/kBT, Ut2TY t 5 2kBT ln Z, and E@(DY t)

2#
5(1/T2)E@(DUt)

2#5kBCv , the heat capacity.
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@1# F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys.69, 1269
~1997!; H. Qian, J. Math. Chem.27, 219 ~2000!.

@2# H. Qian, e-print physics/0007017.
@3# M. Doi and S.F. Edwards,The Theory of Polymer Dynamic

~Clarendon, Oxford, 1986!.
@4# Models with nonconservative forces have been developed

molecular motors and their stationary solutions repres
NESS in which the chemical energy in the form of ATP h
drolysis is converted to mechanical work. This class of mod
opens the vista for studying mesoscopic dynamics and ther
dynamics at NESS. See@1,2# and H. Qian, Phys. Rev. Lett.81,
3063 ~1998!.

@5# H. Qian and J.J. Hopfield, J. Chem. Phys.105, 9292~1996!; H.
Qian, ibid. 109, 10 015~1998!; R.M. Levy and E. Gallicchio,
Annu. Rev. Phys. Chem.49, 531 ~1998!.

@6# H. Qian, Phys. Rev. E64, 022101~2001!.
or
t

s
o-

@7# J. Honerkamp,Statistical Physics: An Advanced Approac
with Applications~Springer, Berlin, 1998!.

@8# J.L. Lebowitz and H. Spohn, J. Stat. Phys.95, 333 ~1999!.
@9# B. O” ksendal, Stochastic Differential Equation, 4th ed.

~Springer, New York, 1995!.
@10# G. Gallavotti, Phys. Rev. Lett.77, 4334~1996!; G. Gallavotti

and E.G.D. Cohen,ibid. 74, 2694~1995!.
@11# L. Onsager, Phys. Rev.37, 405 ~1931!.
@12# The P corresponds to the affinity in the master equation f

malism Ai j 5kBT ln (pjqji /piqij) where $qi j % is the transition
rate andpi the statei probability. Similarly, the ‘‘mechanical
work’’ *F(Xt)+dXt corresponds tokBT ln (qji /qij). See@6,13#
for more details.

@13# J. Schnakenberg, Rev. Mod. Phys.48, 571 ~1976!.
@14# H. Risken,The Fokker-Planck Equation: Methods of Solutio

and Applications~Springer-Verlag, New York, 1984!.
2-4



el
ro

s
m
-
te
it
t

er
an

c

v.

-

nd

f

B:

MESOSCOPIC NONEQUILIBRIUM THERMODYNAMICS OF . . . PHYSICAL REVIEW E 65 016102
@15# M-P. Qian, M. Qian, and G.L. Gong, Contemp. Math.118, 255
~1991!; H. Qian, Proc. R. Soc. London, Ser. A457, 1645
~2001!.

@16# In the literature, the notion of detailed balance has two clos
related, but different meanings. For a stationary Markov p
cess, it means the transition flux fromi to j equals exactly the
transition flux from j to i; hence the net flux is zero. Thi
notion can be mathematically shown to be equivalent to ti
reversibility. Stationarity does not imply time reversibility. De
tailed balance is also used as a property of a Markovian sys
that, when reaching its stationary state, is time reversible w
zero flux. The second notion can be mathematically shown
be equivalent to the potential condition. By the laws of th
modynamics, an equilibrium has to have detailed balance;
a system without energy input has to be detail balanced.

@17# It can be shown that the free energyC is equivalent to the
relative entropy. The latter is well-known as a Lyapunov fun
tion for the stochastic dynamics~2! @13,14#. For a physical
interpretation of the relative entropy, see H. Qian, Phys. Re
01610
y
-

e

m
h
o
-
d

-

E

63, 042103~2001!.
@18# L.D. Landau and E.M. Lifshitz,Statistical Physics, 3rd ed.

~Pergamon Press, Oxford, 1980!, Vol. 1.
@19# A. Cooper, Prog. Biophys. Mol. Biol.44, 181 ~1984!.
@20# In terms of the probability theory,Xk are independent, iden

tially distributed random variables. Hence,Q(Xk) are indepen-
dent, identically distributed. Therefore, the expectation a
variance of the sum ofQ(Xk) is the sum of the expectation
E@Q(Xk)# and variance var@Q(Xk)#.

@21# P. Glansdorff and I. Prigogine,Thermodynamic Theory o
Structure, Stability, and Fluctuations~Wiley Intersciences,
New York, 1971!.

@22# The first term in Eq.~19! is associated with 2*(]P/]t)•Jdx
and the second term with*P•(]J/]t)dx2*(]P/]t)•Jdx. See
J.-l. Luo, C. Van den Broeck, and G. Nicolis, Z. Phys.
Condens. Matter56, 165 ~1984!.

@23# H. Haken, Z. Phys. B24, 321 ~1976!.
@24# C. Maes~unpublished!.
2-5


