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Mesoscopic nonequilibrium thermodynamics of single macromolecules
and dynamic entropy-energy compensation
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We introduce axiomatically a complete thermodynamic formalism for a single macromolecule, either with or
without detailed balance, in an isothermal ambient fluid based on its stochastic dynamics. With detailed
balance, the theory yields mesoscopic, nonequilibrium for entrafyy &nd free energy¥,) of the macro-
molecule.Y, and ¥, fluctuate. Expectationd/dt)E[ ¥,]<0, “="holds if and only if the macromolecule is
at thermal equilibrium, in which we show th still fluctuates butd, is a constant. The entropy fluctuation
of Landau,E[(AY,)?], precisely matches the fluctuation in the internal energy, which in turn equals the
fluctuation in heat dissipation. As a generalization of Clausius’ classic result, the dynamic fluctuations in the
entropy and energy of the macromolecule are exactly compensated at thermal equilibrium. For systems with
detailed balance, Helmholtz free energy is shown to be the potential of Onsager’s thermodynamic force.
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In recent years, the stochastic model for overdampedonstant pressure is equivalent to the internal energy in our

Newtonian-Brownian dynamics in a force field, formalism. The significance of the nonequilibrium steady
_ state obtained from this formalisp8] and its applications to
EdX;=F(X)dt+I'dB, (1) free energy transduction in biological macromolecules, e.g.,

_ . o a protein molecule converting chemical potential into me-
has found an increasing number of applications to a host ofpanical work. have been discussed elsewhtr2 4.
macromolecular processes in equilibrium and more impor- ; js important to point out that even though there is al-
tantly nonequilibrium steady statBlESS [1,2]. These mod-  (g4dy a vast literature on stochastic models based on Fokker-
els are generghzatlons of _the classwa.l theory of p-o-lymer dyplanck equationi2) [3,7], it is not known that this approach
nhamics in whichF usually is conservativgg]. In addition to  yigorously encompasses a comprehensive statistical thermo-
obtaining the stochastic dynamics from the model, howevergynamics. Furthermore, it is not known whether a thermody-
it becomes clear to us that an axiomatic isothermal thermopamics exists for individual macromolecules. In this paper,
dynamic formalism can be developed based solely on th§e demonstrate the logical relation between models based on
stochqsuc differential equanc_(ﬂ) in which X; represents the Eq. (1) and (2) and the principles of equilibrium and non-
coordinates of the “atoms” in the macromolecul, is a  equilibrium thermodynamics. A complete statistical thermo-
constant, positive definite hydrodynamic interaction matrix,qynamics for isothermal systems in equilibrium, nonequilib-
F is the force not necessarily conservati4g, andlI'dB;isa  rjym transient, and NESS, as an complementary and
white noise representing the collisions between the macrogternative to Boltzmann’s approach, emerges.
molecule and the solvenEI'"=2kgTE according to Ein-

stein’s relation and defines the temperature of the isothermal
system. The solution to Eql), X, is stochastic, whose STOCHASTIC MACROMOLECULAR MECHANICS

probability density function satisfies the Fokker-Planck equa- Following Qian[6] and Lebowitz and Spohjig], we first

tion introduce the instantaneous heat dissipatign
P (1 .
C_v.|ZAVP-E F(x)P|, 1
at 2 dW=F(X)edX=F(X)-dX+ S dXVFdX,,  (3)
(A=E " TTE T=2kgTE ), 2

wheree and- denote integrations in the Stratonovich and Ito
whereP(x,t) is the probability of the macromolecule being sense, respective[]. According to this definition, the heat
in conformationx at timet, X;=x. In this paper, we show dissipation,dW;, is equal to the work done by the system,
how a complete, mesoscopic thermodynamic theory can bghe product of forcé and displacemerdX. This is the law
formulated based on Eql), which we callstochastic mac-  of energy conservation. Using the expresgibnit is easy to
romolecular mechanicg2]. We then apply this formalism to  show that the mean rate of the heat dissipatiog) (6,8]
further elucidate a classic observation in the equilibrium
thermodynamics of proteins, the dynamic origin of entropy- d
enthalpy compensatiofi5]. Naturally, the enthalpy under hd:&E[Wt]:f F(X) - J(x,t)dx, (4)
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1 s entropy increase. In a time independent stationary state, the
I == 5AVP(XH+EF(X)P(x1) ) 5=0inEq.(9), and the entropy producticey, is balanced by
the heat dissipatiohy. This is the general case for an iso-
is the probability flux in Eq.(2), dP(x,t)/dt=—-V-J. In  thermal NESS.
mechanical terms, the mean heat dissipation rate is the prod- Equation (10) also indicates thae, equals zero if and
uct of the molecular force and the flux. only if F=(2A/2)V In P=V In P/kgT. That is the force field
The dynamic ofW, is itself Brownian motionlike witthgy F has to be conservative with an internal potential energy,
as its mean ratgb]. Its fluctuations can be characterized by aF = —VU. For system with the potential, also known as de-
“heat diffusion coefficient,” tailed balancd14], the stationary solution to Eq2) is P
=7 "te Y/%eT where the normalization fact@is the parti-
:ZkBTJ F)EF(OP(XAX,  (6) ti_on function in Gi_bbsian equilibrium statistical mec.hanics
(isothermal canonical ensemhldt can be mathematically
] . ) i o shown thate,= 0 is a sufficient and necessary condition for
which has a dimension c[fenerg)?]_/[nme]. The st_atlstlcal the stationary stochastic proceésdefined by Eq(1) being
properties ofW; have been extensively explored in connec-iime reversible[15]. Therefore, time reversibility, detailed
tion to the Gallavotti-Cohen symmetry and fluctuation theo'balance, and zero entropy production are equivalent with an
rem[6,8,10. , o equilibrium [16].
Onsager’s thermodynamic force is different from the me- g, systems satisfying the potential conditier — VU,
chanical forceF(x) [11]. In terms of Eq(2), we introduce a thermodynamic forcH also has a potentiall= — V¥,
second thermodynamic quantifjl(x,t), the thermodynamic whereW (x)=U(x) +kgT In P. We note that the expectation

(dW)?
dt

E

force [12] of \I,tE\I,(Xt)’
1
H(x,)=F(x)— EAVInP(x,1), (M E[W]=E[U(X) +ksTINP(x)]= f P(x,HHU(x)dx—TS,
11
and a third thermodynamic quantity, the entrdpgccording (D
to the well-known formula, which in fact is the Helmholtz free enerdy7]. The first
term in Eq.(11) is the mean internal energy. More impor-
S= _kBI P(x,t)In P(x,t)dx, (8) tantly, it is easy to show that
E[V]=hy—TS=—e,<0. (12)

whereP(x,t) is the solution to Eq(2). In terms of Eqs(7)
and(8) we have the increase of the entropy at constant temi an isothermal system, the Helmholtz free energy decreases

peratureT, and reaches its minimum at the equilibriumkgT In Z. This
is precisely the statement of second law of thermodynamics
TS= kBTf (INP+1)V-Jdx for an isothermal system.
Finally, with the potential condition, we have

— — . —_ . 1

= J“‘BTV InP—F)-Jdx f': Jdx —dU(X) =~ VU(X)-dX— 5d% VVU(X,) - dX,

- . - 1

f - dx=hq =F(X)-dX+ 50X VF(X)-dX,. (13
:ep— hd, (9)

Comparing Eq(13) with Eq. (3), we see that the heat dissi-

in which we identify, following Onsager,II-Jdx with the  pationdW,=—dU(X,), the internal energy fluctuation. This
entropy production ratée,) [13]. It can also be rewritten as is the first law of thermodynamics. Hend#;= —U(X,) is
stationary and its expectation and variance are the internal
energy and heat capacitZ() of a single macromolecule at
thermal equilibrium.

T

epzf (%AV InP(x,t)— 2 F(x)

P(x,t)dx, (10) THE MATCHING ENTROPY AND ENERGY

1
AV InP(x,t)—E F(x)
FLUCTUATIONS

2

Lo}
X5

which is always non-negative. This is the second law of ther- We now focus on systems with detailed balance. The
modynamics. Equatio(®) is valid for all isothermal Brown- above thermodynamic formalism suggests the fluctuating
ian dynamical systems, with or without detailed balance, inU;=U(X;) as a mesoscopic, generalization of internal en-
stationary state and in transient process. It encompasses batgy of a macromolecule in an isothermal aqueous solution.
the first and second laws of thermodynamics. In fact, itThen its expectatio&[ U,]= fU(x) P(x)dx, which equals to

makes the second law quantitative by providing a rate fothe standard internal energy in thermodynamics. Similarly, in
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the same spirit, we can introduce fluctuating entrafyy= ~ tuation in C, ; is insignificant in the thermodynamic limit
—kg In P(X,), which can be viewed as the mesoscopic, nonwWhenN— 2. Nevertheless, th€, ; fluctuates.
equilibrium generalization of entropy. It is important to point ~ The macroscopic entropy is defined as a functional of the
out that this definition is consistent with the Boltzmann’s density functionC, ;. Therefore, it fluctuates with th€, ;.
microscopic entropy based on the volume of the phase spacé/e now show that this fluctuation is indeed the mesoscopic
In our caseP(X,) is the probabilistic measure of the phase fluctuation introduced in the formalism for single macromol-
space. The expectatid# Y,] is the Gibbs entropy in E48).  ecules. We consider a general thermodynamic quantity

We now show that the mesoscopic generalizations imme-
c_iia_tely lead to an interest?ng thermodynamic resul_t in _equi- q:f Q(X)Cy (dx. (18)
librium. We note that whileU; and Y, are fluctuating in

equilibrium, their difference, If one had neglected the fluctuation@y ,, a fluctuation ing

U—TY,=U(X)+kgTINP(X)=—kgTInZ, (14 Would be inconceivable. _ ' '
Noting Eq.(17), the expectation of is readily computed
the mesoscopic equilibrium free energy, however, is not fluc-
tuating. We can further compute the fluctuations in the me-

N
soscopic entropy and internal energy, E[q]=f Q(x)dxgl E[S(x=X)]

T2E[(AY,)%]=E[(AU,)?
[(AY)2]=E[(AUp?] =fQ(x)dezl S(x—y;)

:f UZ(X)efu(x)/kBTdX
X P(yllyZ! ERCE !yN)dyli e 1dyN

2
—U U(x)e~Y0keTdx =Nf Q(x)P(x)dx
a =

:kBTzﬁE[Ut] NE[Q(Xt)]y
where the joint probability for X;,X,, ... Xy,

=kgT?C, . (19 P(X1,X9, ... Xn)=P(X)P(Xp), ... ,P(xy) since the mac-
romolecules are assumed to be independent in the solution.

Furthermore, Similarly, the variance im
TE[AY AU, J=E[(AU)?]. (16)

N
var[qujz1 va“ Q(x) 8(x—X;)dx

Therefore, the fluctuations of the mesoscopic internal energy
U, and entropyY'; are perfectly correlated. They compensate

N
in the dynamical fluctuation®f a macromolecule.
y :,Zl vaf Q(X;)]
ENTROPY FLUCTUATION AND ITS MESOSCOPIC 3
INTERPRETATIONS =Nval Q(X,)]
The relation between entropy fluctuation and heat capac- =NvafQ],

ity in Eq. (15) was known to Landau who also advocated the. . _ . .
concept of entropy fluctuatiofL8]. It has been a difficulty which Q;=Q(X;) [20]. Therefore, the fluctuations iqg

concent to many who consider entrony to be a functional oP“€ to fluctuating in the distribution functiddy ., is exactly
-Pt 1o many by oo he mesoscopic fluctuation we have introduced in the preced-
the distribution[19]. Here we offer a more plausible inter-

; S ing section for single macromolecules. The mesoscopic view,
pretation of the concept based on our mesoscopic view frorﬂ A, . . -

. ; owever, clearly indicates a stochastic dynamic origin of
the previous section.

Let us consideN identical, independent macromolecules these fluctuations.

in the aqueous solutionXg,X,, . . . ,Xy), each with its own
stochastic dynamic equatiofl). The concentration of the ENTROPY AND HEAT
number of molecules in conformationcan then be defined |t js a classic result of Clausius that entropy change equals
as to heat dissipation in isothermal quasistatic processes. Our
N result suggests that both concepts can be generalized dy-
_ v namically to isothermal equilibrium, and their fluctuations
Cxt 121 AX=X;). 17 are indeed equal, as we have shown. In our formalism, the

energy conservation is instantaneous, hewd#,=—dU;.
Note that since th&'s are stochastic, the concentratiGy,  The free energy, on the other hand, has to be constant over
fluctuates. However, the classic statistical mechanics is onlthe entire conformational space in an equilibriudn(x) =
concerned with thenost probable ¢ since the relative fluc- —kgT InZ, while Y (x) andU(x) are not. This is a demon-
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stration for the concept dbcal equilibrium which is essen-  soscopic energy,=U(X,) and entropyY = — kg In P(X,).
tial in the general theory on nonequilibrium thermodynamicswhile the former can be computed along a stochastic trajec-
[21]. Therefore, TdY;=dU;=—dW, anddU,/dY =T, all  tory, the latter cannot until the probability distribution func-
instantaneously tion P(x,t) is known. This difference reflects the fundamen-
tal difference between the two physical quantities, energy
THE RATE OF g, and entropy. The former iwcal while the latter isnonlocal
due to circular balance. One cannot know the value of en-
tropy of a state until knowing how likely it occurrs in com-
f)arison with other states. It is possible to formally express
the P(x,t) in terms of a path integrd23]. Maes also sug-
gested a space-time approach to the prodl24h. In a ther-
modynamic equilibrium, howeveR(x) can be determined

compute its time derivatived@,/dt), the change in entropy
production ratg7]. With some algebra we hay&2]

de
d—p= —2kBTf (V-3)2P~Y(x)dx locally up to a normalization factor due to detailed balance.
t Hence, dY,=TdU;.
In summary,
—f (IITE ~HI)(V-J)dx. (19 _ _ _
EdX;=F(X;)dt+I'dB; (conformational dynamigs
Near a NESSV-J is small and the second term has the dW;=F(Xp)edX; (heat dissipation
leading order. However, with detailed balance and near an y = —,InP(X,,t) (entropy)

equilibrium, IT is also small; hence, the first term, which is _ .
negative, becomes the leading term. Therefore, near an equi- = F(X) +TVY (X;,t)  (thermodynamic force

librium, thee, monotonicallyapproaches to zero. This is the js 5 complete set of equations that provides the stochastic
Glansdorff-Prigogine’s principle of minimal entropy produc- gynamics of a macromolecule, its heat dissipation, its en-

nates, and Eq(19) is not necessarily negative. (Onsager. With this set of equations, one can comphte
=(d/dt)E[W,] and e,(=0) from entropy balance
DISCUSSIONS AND SUMMARY T(d/dt)E[Y{]=e,—hgy. If a system is detail balanced, i.e.,

While our thermodynamic formalism is strictly for iso- ~ .Y Y- -I;henwt:Uqu(Xt)' andIl= —V\I’(Xt)_vvhere

thermal processes, it can be used to compare a system unc}gl(xt):q,t_Uf_-l_—Yt IS _free energy, d/dt)E[.lI.,t]._ —

different temperature. In a thermal equilibrium, as we haveSo and _r_eaphes Its m|n|mum.I§BTIn_Z "?‘t e_qumbnum. _In

shown, the fluctuation in internal enerdgy;=U(X,) is di- th_el ?%%X';'/E”Tum the probability distribution forX, 2'S

rectly related to the heat capaciB,=dE[U,]/dT. Such re- e ’ ° Uzt_TYt = —kgTInZ, and E[(AY)"]

lations, if any, in nonequilibrium steady state have not been” (L/T)EL(AU)“]=kgC,, the heat capacity.

explored. Furthermore, one can easily introduce an external

force into the Eq(1) to represent the pressure, and thus we ACKNOWLEDGMENTS
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