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Double scaling and intermittency in shear dominated flows
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The nature of intermittency in shear dominated flows changes with respect to homogeneous and isotropic
conditions since the process of energy transfer is affected by the turbulent kinetic energy production associated
with the Reynolds stresses. For these flows, a new form of refined similarity law is able to describe the
increased level of intermittency. Ideally a length scale associated with the mean shear separates the two ranges,
i.e., the classical Kolmogorov-like inertial range, below, and the shear dominated range, above. In the present
paper we give evidence of the coexistence of the two regimes and we support the conjecture that the statistical
properties of the dissipation field are practically insensible to the mean shear. This allows for a theoretical
prediction of the scaling exponents of structure functions in the shear dominated range based on the known
intermittency corrections for isotropic flows. The prediction is found to closely match the available numerical
and experimental data. The analysis shows that the larger anisotropic scales of shear turbulence display
universality, and determines the modality by which the dissipation field fixes the properties of turbulent
fluctuations in the shear dominated range.

DOI: 10.1103/PhysRevE.65.015301 PACS number~s!: 47.27.Nz
-
n
e

ur

,

en
e

u-

at
th
,

nc

f
e

tion

olds
ent

Eq.

e
e
rop-
rbu-

ns-

in
dis-
to
dif-
ed
his
e of
ve
At large Reynolds number~Re! turbulent flows are char
acterized by strong non-Gaussian intermittent fluctuatio
For homogeneous isotropic turbulence, a quantitative m
sure of intermittency can be given by using the struct
functions^dVp(r )& where

dV~rW !5@uW ~xW1rW !2uW ~xW !#•
rW

r
. ~1!

Then, the generalized dimensionless flatness

Fp~r !5
^dVp~r !&

^dV2~r !&p/2
, ~2!

exhibits intermittency, in the sense thatFp(r )→` for r→0
and Re→`. For h!r !L0, whereh is the Kolmogorov dis-
sipation length andL0 is the integral scale of turbulence
structure functions show scaling behavior, i.e.,^dVp(r )&
}r z(p), wherez(p) are anomalous scaling exponents@z(p)
Þp/qz(q)#, andz(3)51 due to the Kolmogorovfour-fifth
equation@1#. It is a remarkable result, obtained in the last t
years, thatz(p) are observed to be universal for homog
neous and isotropic turbulence@2#.

Much less information is available for nonisotropic turb
lence. Recently, a number of experimental@3# and numerical
investigations@4# in shear flow turbulence have shown th
intermittency increases when the shear strongly affects
energy cascade. In the language of scaling exponents
increase of intermittency means thatz(p) are different from
those observed in homogeneous and isotropic turbule
Based on direct numerical simulation~DNS! of turbulent
channel flow, it was recently proposed@5# that the increase o
intermittency is due to the breaking of the Kolmogorov r
fined similarity hypothesis~RKSH!, which for homogeneous
and isotropic turbulence reads@6#

^dVp~r !&}^e r
p/3&r p/3, ~3!
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where

e r5
1

B~r !
E

B(r )
e loc~xW !d3x ~4!

andB(r ) is a volume of characteristic sizer while e loc(xW ) is
the instantaneous local rate of energy dissipation. Equa
~3!, in its extended self-similarity~ESS! formulation

^dVp~r !&}
^e r

p/3&

^e r&
p/3

^dV3&p/3, ~5!

has been successfully checked for a wide range of Reyn
numbers in different homogeneous and isotropic turbul
flows @7#.

For shear flow turbulence, it has been suggested that
~5! should be replaced@5# by

^dVp~r !&}
^e r

p/2&

^e r&
p/2

^dV2&p/2, ~6!

for r @Ls whereLs5Ae/S3, S being the mean shear in th
system ande5^e loc&. Following these considerations, th
shear scale ideally separates, with regard to the scaling p
erties of structure functions, the range of scales where tu
lent kinetic energy production prevails (r @Ls) from the
range of scales characterized by purely inertial energy tra
fer (r !Ls).

Equation~6! suggests that intermittency may increase
shear flows for two basic reasons. On the one hand, the
sipation field itself may be more intermittent with respect
homogeneous and isotropic conditions. On the other, the
ferent form of the equation may imply by itself an increas
flatness for given moments of the dissipation. The aim of t
paper is to discuss this issue in detail to explain the natur
intermittency in shear turbulence. As a first point, we gi
©2001 The American Physical Society01-1
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numerical and experimental evidence that the two regim
predicted by Eqs.~5! and ~6!, are indeed observed simulta
neously in the range below and aboveLs , respectively. This
gives the opportunity to check whether a similar transit
occurs also for the dissipation. In fact, the scaling proper
of the dissipation do not change across the shear scale an
not differ from those of homogeneous and isotropic turb
lence. As a consequence, the increase in intermittency is
tirely explained in terms of the new form of the scaling la
As shown later, the invariance of energy dissipation toget
with Eq. ~6! provides an accurate prediction for the anom
lous scaling exponents in shear turbulence. This implie
universal behavior of the intermittent fluctuations in t
shear dominated range, in the spirit of Kolmogorov ideas
the dynamics of the small scales. We discuss two sets of d
one obtained by a long and highly resolved DNS of hom
geneous shear flow turbulence@8#, the other by hot wire
measurements in the log region of a turbulent boundary la
@9#.

Concerning the homogeneous shear flow, we have con
ered a turbulent flow with an imposed mean velocity gradi
S free from boundaries. The Navier-Stokes equations
solved by using an efficient pseudospectral method@10# with
a third order Runge-Kutta scheme for time advancement
shown by Pumir@11# and recently confirmed by the prese
authors@8#, the flow reaches a statistical steady state cha
terized by large fluctuations of the turbulent kinetic ener
The growth of turbulent kinetic energy is associated to la
values of the Reynolds stresses, produced by a well defi
system of streamwise vortices via a lift-up mechanism@12#.
In this flow, because of shear scale fluctuations due to
mentioned behavior of both turbulent kinetic energy a
Reynolds stresses, the crossover between the two sc
ranges is not sharply defined. In fact, we observe an over
ping of the two scaling regimes, and the resulting scal
shows an effective slope. In order to reduce as much as
sible the fluctuations of the shear scale, a conditional s
pling is introduced by considering only flow configuratio
where the production term exceeds a given threshold. Am
these configurations, only those corresponding to a la
value of turbulent kinetic energy (E.aErms) are retained to
reduce the fluctuations of the ratioLs /h.

Concerning experiments, we analyze the velocity data
a flat plate boundary layer measured in a wind tunnel~test
section length of 150 cm! operated at 11.9 m/s. The boun
ary layer thickness is.25 mm and the Reynolds numbe
based on the momentum thickness is about 2200. The bo
ary layer has the expected logarithmic region with the us
log-law constants@13#. Hot wire measurements were pe
formed at several distances from the plate, using a cons
temperature anemometer. The data acquisition was
enough to achieve convergence of the sixth order struc
function.

We begin by analyzing the DNS of the homogeneo
shear flow. We have strong evidence that forr .Ls , Eq. ~5!
fails and the new form of RKSH is established, as reporte
Refs.@14,8#. Furthermore, the statistical properties of ener
dissipation^e r

q& are not distinguishable from those observ
in homogeneous and isotropic turbulence. The last statem
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can be directly checked by looking at Fig. 1 where we p
^e r

3& versus^e r
2& both for homogeneous shear flow and is

tropic turbulence while, in the inset of the same figure,
plot ^e r

2& versusr /h for both cases. At variance with DNS,
direct measurement of̂e r

q& is not available for the experi
mental data and we are not fully confident in the one dim
sional surrogate ofe loc as a direct measure of the local ra
of energy dissipation, the flow being strongly anisotrop
Nevertheless by using the one dimensional surrogate, we
practically reproduce the results shown in Fig. 1.

At any rate, to be cautious, we may avoid the explicit u
of the energy dissipation by plotting structure functions
the form suggested by Ruiz-Chavarriaet al. @15#. Specifi-
cally, here, we introduce indicators based on^dVp(r )& to
detect the two scaling regions and to compare our findi
with the predictions made in Eq.~5! and~6!. We remark that,
both for numerical and experimental data, the Reyno
number is not large enough to observe the scaling
^dVp(r )& and ^e r

q& with respect to separation. Thus we em
ploy the ESS to estimate the scaling exponents. This imp
that the exponentst(q) are defined by the relation̂e r

q&
}^dV3&t(q).

Following Eq. ~5! and ~6! and the above discussion, w
compute both for the DNS and the experimental data
quantity sp[^dVp&/^dV2&p/2 and rp[^dVp&/^dV3&p/3,
which are expected to satisfy the relations

sp}H ^dV3&t(p/2), r @Ls ,

^dV3&t(p/3)2t(2/3)p/2, r !Ls ,
~7!

and

rp}H ^dV3&t(p/2)2t(3/2)p/3, r @Ls ,

^dV3&t(p/3), r !Ls .
~8!

Equations~7! and ~8! allows us to compare the ESS e
ponents ofsp andrp against the exponents predicted by Eq

FIG. 1. ^e r
3& vs ^e r

2& in the homogeneous shear flow~circles!
and in homogeneous isotropic turbulence~diamonds!. In the inset
^e r

2& vs r /h for the two cases.
1-2
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~5! and~6!. Let us remark that Eq.~7! and~8! are also based
on the assumption thatt(q) are the same both for shea
dominated flows and homogeneous and isotropic turbule
as supported by the DNS data for^e r

q& shown in Fig. 1.
In Fig. 2 we plot logs6 against loĝdV3& for the data of

both homogeneous shear flow and the turbulent bound
layer. The fits forr @Ls are in close agreement with the valu
of t(3)520.59 expected from homogeneous and isotro
turbulence. In the inset we show the local slo
d@ logs6#/d@log^dV3&# computed from the homogeneou
shear flow dataset. The two dashed lines indicate the n
berst(2)23t(2/3) andt(3), i.e., the expected scaling ex
ponents forr !Ls and r @Ls , respectively. Figure 2 shows
as main result of this paper, the clear evidence of the
scaling regions below and aboveLs , i.e., the experimenta
and numerical evidence of the coexistence of two differ
intermittent regions in shear flow turbulence. To better ch
acterize this issue we report in Fig. 3 the experimental res
for three different wall normal distancesy1530,70,115. The
double scaling behavior is consistent with the relative po
tion of the shear scale with respect to the Kolmogorov sc
and to the integral scale. In fact, at the larger value ofy1, we
observe the slope change at larger separations consist
with the increase ofLs as expected in the log-layer (Ls

1

}y1). The double scaling region is bounded below by t
buffer region whereLs;h. The upper boundary, in principl
given byLs;L0, is not identified by the present data limite
to the near wall region. As a further check of the theory,
Fig. 4, we show logr6 versus loĝdV3& both for the homoge-

FIG. 2. Logs6 vs loĝ dV3& in the homogeneous shear flo
~circles! and in the turbulent boundary layer aty15115 ~triangles!.
DNS and experimental data are fitted at scalesr .Ls by power laws
with a slopes520.58 ands520.59, respectively. In the inset, th
local sloped@ log s6#/d@log^dV3&# vs r /h in the homogeneous shea
flow obtained by considering the conditional sampling witha
51.3 ~solid line!. The dotted lines correspond to the two scalin
given by Eq.~7! at scalesr ,Ls (20.3) andr .Ls (20.59) using
the values oft(q) for isotropic turbulence. Note thatLs /h519 and
that the conditional sampling procedure yields a value of.23,
vertical line in the inset.̂dV3& is made dimensionless with the rm
velocity ^u2&3/2.
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neous shear flow and the turbulent boundary layer while
the inset we show the local sloped@ logr6#/d@log^dV3&#. Also
for the variabler6 we can claim a very good agreeme
between the observed experimental and numerical res
against theoretical predictions. Our results are consistent
complementary with the generalized structure funct
^(dV31ardV2)p/3& proposed by Toschiet al. @16#.

Finally we remark that, by denotingẑ(p) the anomalous
exponents in shear flow turbulence andz(p) the anomalous
exponent in homogeneous isotropic turbulence, the ESS
timate becomes

FIG. 3. Logs6 vs loĝ dV3& in the turbulent boundary layer a
three different wall normal distances:y15115 ~triangles!, y1570
~diamonds!, and y1530 ~circles!. ^dV3& is made dimensionless
with its large scale valueV35^dV3(L0)&.

FIG. 4. Logr6 vs loĝ dV3& in the homogeneous shear flo
~circles! and in the turbulent boundary layer aty15115 ~triangles!.
Both data are fitted forr ,Ls by a power law with a slopes5
20.22. In the inset, the local sloped@ log r6#/d@log^dV3&# vs r /h for
the homogeneous shear flow obtained by conditional sampling
a51.3 ~solid line!. The dotted lines give the two scalings, Eq.~8! at
scalesr ,Ls (20.22) andr .Ls (20.41), with values oft(q)
taken from isotropic turbulence. Dimensionless quantities defi
as in Fig. 2
1-3
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TABLE I. Scaling exponents of structure functions~DNS! above and below the shear scaleLs in com-
parison with homogeneous and isotropic turbulence and predictions of Eq.~9!.

p 1 2 3 4 5 6

r ,Ls 0.36 0.69 1.00 1.28 1.54 1.78
r .Ls 0.38 0.72 1.00 1.23 1.42 1.56
Homogeneous and isotropic turbulence 0.36 0.69 1.00 1.28 1.54 1.
Eq. ~9! 0.39 0.73 1.00 1.23 1.42 1.58
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2D G2
p

2
1zS 3p

2 D . ~9!

The first term comes from the fact that in shear turbulen
we may express

^dV3&}^e r
3/2&^dV3&3z(2)/2, ~10!

which impliesẑ(2)52/3@12t(3/2)#. Equation~9! provides
a theoretical estimation for the scaling exponents of struc
functions in shear dominated flows by using the interm
tency corrections of isotropic turbulence. These values
compared against their direct measure in the DNS of
homogeneous shear flow in Table I.

In summary, either in the experimental and numerical
sults structure functions clearly show the existence o
double scaling with a sharp transition across the shear s
Both ranges manifest intermittency, and the intermittency
larger in the shear dominated range. The simultaneous p
ence of the two different levels of intermittency is explaine
ia
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A priori, by reasoning in terms of the classical Kolmogor
similarity, a more intermittent velocity fluctuations shou
imply an increased intermittency of the coarse grained
ergy dissipation. We have shown that this is not the case.
dissipation field maintains its statistical properties throu
the transition, with no apparent difference with homogene
isotropic turbulence. In fact, the transition is associated w
the failure of the classical Kolmogorov similarity. Above th
shear scale the new form of refined similarity establish
implying the observed increase of intermittency with exac
the same exponents of the energy dissipation as foun
isotropic turbulence. This property has been exploited to p
dict the scaling exponents of velocity structure functions
shear flows from the intermittency corrections of isotrop
turbulence, see Table I. Hence universality, expressed in
form of invariant scaling exponents of the energy dissipat
combined with a suitable form of refined similarity, is foun
to be able to explain the statistics of velocity fluctuations
shear turbulence extending, in a way, the classical Kolm
orov description of the small scales.
ut

ue,

ett.
@1# A. N. Kolmogorov, Dokl. Akad. Nauk SSSR30, 301 ~1941!;
reprinted in Proc. R. Soc. Lond. Ser. A434, 9 ~1991!.

@2# R. Benzi, S. Ciliberto, C. Baudet, and G. Ruiz Chavarr
Physica D80, 385 ~1995!.

@3# F. Anselmet, Y. Gagne, E.J. Hopfinger, and R. Antonia,
Plasma Phys.140, 63 ~1984!.

@4# F. Toschi, G. Amati, S. Succi, R. Benzi, and R. Piva, Ph
Rev. Lett.82, 5044~1999!.

@5# R. Benzi, G. Amati, C.M. Casciola, F. Toschi, and R. Piv
Phys. Fluids11, 1284~1999!.

@6# A.N. Kolmogorov, J. Fluid Mech.13, 82 ~1962!.
@7# R. Benzi, L. Biferale, S. Ciliberto, M.V. Struglia, and R. Trip

icccione, Physica D96, 162 ~1996!.
@8# P. Gualtieri, C. M. Casciola, R. Benzi, G. Amati, and R. Piv
,

.

.

,

,

Phys. Fluids~to be published!.
@9# B. Jacob, A. Olivieri, and C. M. Casciola, Phys. Fluids~to be

published!.
@10# R. S. Rogallo, NASA Tech Memo81315, 1 ~1981!.
@11# A. Pumir, Phys. Fluids8, 3112~1996!.
@12# S. Kida and M. Tanaka, J. Fluid Mech.274, 43 ~1994!.
@13# A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics

~MIT Press, Cambridge, MA, 1975!, Vol. 1.
@14# R. Benzi, C. M. Casciola, P. Gualtieri, and R. Piva, Comp

Math. Appl. ~to be published!.
@15# G. Ruiz-Chavarria, S. Ciliberto, C. Baudet, and E. Leveq

Physica D141, 183 ~2000!.
@16# F. Toschi, E. Leveque, and G. Ruiz-Chavarria, Phys. Rev. L

85, 1436~2000!.
1-4


