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The nature of intermittency in shear dominated flows changes with respect to homogeneous and isotropic
conditions since the process of energy transfer is affected by the turbulent kinetic energy production associated
with the Reynolds stresses. For these flows, a new form of refined similarity law is able to describe the
increased level of intermittency. Ideally a length scale associated with the mean shear separates the two ranges,
i.e., the classical Kolmogorov-like inertial range, below, and the shear dominated range, above. In the present
paper we give evidence of the coexistence of the two regimes and we support the conjecture that the statistical
properties of the dissipation field are practically insensible to the mean shear. This allows for a theoretical
prediction of the scaling exponents of structure functions in the shear dominated range based on the known
intermittency corrections for isotropic flows. The prediction is found to closely match the available numerical
and experimental data. The analysis shows that the larger anisotropic scales of shear turbulence display
universality, and determines the modality by which the dissipation field fixes the properties of turbulent
fluctuations in the shear dominated range.
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At large Reynolds numbeiRe) turbulent flows are char- where
acterized by strong non-Gaussian intermittent fluctuations.
For homogeneous isotropic turbulence, a quantitative mea- 1 = 13
sure of intermittency can be given by using the structure Er—mfg(r)floc(x)d X (4)
functions{5VP(r)) where

- andB(r) is a volume of characteristic sizewhile e|oc()2) is
SV(N)=[U(X+1)—Uu(x)]- [_ (1)  the instantaneous local rate of energy dissipation. Equation
r (3), in its extended self-similarityESS formulation
Then, the generalized dimensionless flatness <ffl3>
SVP(r))er SV3)PB, 5
(VD) (BVP(E)er (V) ®)
Fo(h)=———"7, 2
(OVA(r))P

has been successfully checked for a wide range of Reynolds
exhibits intermittency, in the sense tHaj(r)— for r—0 numbers in different homogeneous and isotropic turbulent

and Re- . For 7<r<L,, wherez is the Kolmogorov dis-  flows [7]- ,
sipation length and_, is the integral scale of turbulence, For shear flow turbulence, it has been suggested that Eq.

structure functions show scaling behavior, i.svP(r)) (o) should be replacefb] by
«r¢(P) where{(p) are anomalous scaling exponefit§p)

/2
#p/gl(q)], and(3)=1 due to the Kolmogorovour-fifth (SVP(r))ox () (8V2)Pi2, (6)
equation1]. It is a remarkable result, obtained in the last ten (er>p’2

years, that{(p) are observed to be universal for homoge-

neous and isotropic turbuleng2)]. for r>L¢ whereL = \e/S%, Sbeing the mean shear in the

Much less information is available for nonisotropic turbu- system ande={¢,.). Following these considerations, the
lence. Recently, a number of experimeri@jland numerical shear scale ideally separates, with regard to the scaling prop-
investigationg4] in shear flow turbulence have shown that erties of structure functions, the range of scales where turbu-
intermittency increases when the shear strongly affects thient kinetic energy production prevails#L.) from the
energy cascade. In the language of scaling exponents, aange of scales characterized by purely inertial energy trans-
increase of intermittency means thigp) are different from  fer (r<Ly).
those observed in homogeneous and isotropic turbulence. Equation(6) suggests that intermittency may increase in
Based on direct numerical simulatidibNS) of turbulent  shear flows for two basic reasons. On the one hand, the dis-
channel flow, it was recently proposEsl that the increase of sipation field itself may be more intermittent with respect to
intermittency is due to the breaking of the Kolmogorov re-homogeneous and isotropic conditions. On the other, the dif-
fined similarity hypothesi$RKSH), which for homogeneous ferent form of the equation may imply by itself an increased

and isotropic turbulence reaf§] flatness for given moments of the dissipation. The aim of this
oI5\ pi3 paper is to discuss this issue in detail to explain the nature of
(8VP(r))ox(e™)rPs, () intermittency in shear turbulence. As a first point, we give
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numerical and experimental evidence that the two regimes, 1k o
predicted by Eqs(5) and (6), are indeed observed simulta- 0.8 o]
neously in the range below and abdvg, respectively. This ' ge
gives the opportunity to check whether a similar transition 0.6 Q@
occurs also for the dissipation. In fact, the scaling properties ®

of the dissipation do not change across the shear scale and do ~; g 4| @@(9;
not differ from those of homogeneous and isotropic turbu- A
lence. As a consequence, the increase in intermittency is en- "’\uf o
tirely explained in terms of the new form of the scaling law.

As shown later, the invariance of energy dissipation together o2k
with Eq. (6) provides an accurate prediction for the anoma-
lous scaling exponents in shear turbulence. This implies a
universal behavior of the intermittent fluctuations in the 04 10 10°
shear dominated range, in the spirit of Kolmogorov ideas on L L Lm I

1
the dynamics of the small scales. We discuss two sets of data, 0.5 0.6 07, 08 039 1 14

one obtained by a long and highly resolved DNS of homo- <‘€r>/8
geneous shear flow turbuleng8], the other by hot wire

measurements in the log region of a turbulent boundary Iayeén

%,
%

FIG. 1. (€)) vs (€?) in the homogeneous shear fldwircles
d in homogeneous isotropic turbuleridéamonds. In the inset

[9]. 2
. . vs r/y for the two cases.
Concerning the homogeneous shear flow, we have consng—e’> K

ered a turbulent flow V.Vith an impose_d mean velocity gradien[san be directly checked by looking at Fig. 1 where we plot
S Tre% E‘)rom _bounda][]!_es. 'It'he Ngwer-S’;okles fﬂ%ft"?ﬂf are3) versus(e?) both for homogeneous shear flow and iso-
solved by using an etficient pseudospectral me Wi tropic turbulence while, in the inset of the same figure, we
a third order Runge-Kutta scheme for time advancement. AsI 2 /. for both . th
shown by Pumif11] and recently confirmed by the resentpm<'5r> versusr/ for both cases. At variance with DNS, a

y y cor y D Mirect measurement dfe’') is not available for the experi-
authorg 8], the flow reaches a statistical steady state chara - ental data and we are rnot tullv confident in the one dimen-
terized by large quctuatio_ns _of the turk_)ulent kinetic energy. ional surrocate of... as a dire)ét measure of the local rate
The growth of turbulent kinetic energy is associated to Iargg% energy d?ssipatig); the flow being strongly anisotropic
values of the Reynolds stresses, produced by a well defin o , . :
system of streamwise vortices via a lift-up mechan[42]. Ngft’_régﬁlerss ?g duséggt;zerggeltg'r:hegs'r?nr?llzs.uml)gate’ we can
In this flow, because of shear scale fluctuations due to th8 Atlanyyratg o Lée cautiousu e maV;/I a\I/oidI%He explicit use
mentioned behavior of both turbulent kinetic energy and e ' . . ;
Reynolds stresses, the crossover between the two scali thfe energy dissipation by plﬁttlng ;trljlcture functpps n
ranges is not sharply defined. In fact, we observe an overllaﬁ- E;I OLm sugge;t?d dby Rl_‘"fj'_c tavarﬁaa .d[f?]\./pSpecl -
ping of the two scaling regimes, and the resulting scalmgc""ty't t?]re'tv\\llve in rlp uce indica o(rjst ased ( (r)}f_ Od'
shows an effective slope. In order to reduce as much as pog-‘_atﬁ‘t:h e d.ot_sca ing (;eglorés e)m dc()6§ovrcpare ou|: trl1n tmgs
sible the fluctuations of the shear scale, a conditional samYith the predictions made in E¢5) and(6). We remark that,
pling is introduced by considering only flow configurations bothbfor _numetn(l:al and expre1r|rtnentsl data,ﬂ:he Relynold?
where the production term exceeds a given threshold.Amongump er IS not |arge enougn to onserve the scaing o
these configurations, only those corresponding to a largedV"(r)) and(e/) with respect to separation. Thus we em-
value of turbulent kinetic energyet a&,me) are retained to ploy the ESS to estimate the scaling exponents. This implies

reduce the fluctuations of the ratiq/ 7. that t?e exponents(q) are defined by the relatiofe/')
Concerning experiments, we analyze the velocity data of{8V>)"?. _ |
a flat plate boundary layer measured in a wind turitest Following Eg.(5) and (6) and the above discussion, we

section length of 150 cioperated at 11.9 m/s. The bound- compute both for the DNS and the experimental data the
ary layer thickness is=25 mm and the Reynolds number quantity o,=(8VP)/(sV3)P? and p,=(8VP)/(5V°)PR,
based on the momentum thickness is about 2200. The boun#thich are expected to satisfy the relations
ary layer has the expected logarithmic region with the usual SV3)7(p12) -
log-law constantd13]. Hot wire measurements were per- (6V%) ’ r=Ls
formed at several distances from the plate, using a constant Tp>
temperature anemometer. The data acquisition was long
enough to achieve convergence of the sixth order structurg
function.

We begin by analyzing the DNS of the homogeneous [<5V3>r(p/2)—r(3/2)p/3' rs>Lg,

pOC

7
<5V3> T(p/3)— 7'(2/3)p/2’ r< LS ’ ( )

shear flow. We have strong evidence thatiforL, Eq. (5)

fails and the new form of RKSH is established, as reported in
Refs.[14,8]. Furthermore, the statistical properties of energy
dissipation( /') are not distinguishable from those observed Equations(7) and (8) allows us to compare the ESS ex-
in homogeneous and isotropic turbulence. The last statemepbnents ofr, andp, against the exponents predicted by Egs.

3\ 7(p/3) (8)
(8V3)7P3), r<Ls.
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10 6 FIG. 3. Logog vs logéV) in the turbulent boundary layer at

three different wall normal distanceg? =115 (triangles, y" =70

) (diamond$, and y™ =30 (circles. (8V3) is made dimensionless
FIG. 2. Logog vs logéV® in the homogeneous shear flow with its large scale valub®=(5V3(Lo)).

(circles and in the turbulent boundary layeryat = 115 (triangles.

DNS and experimental data are fitted at scales ¢ by power laws o
with a slopes= —0.58 ands= —0.59, respectively. In the inset, the N€0us shear flow and the turbulent boundary layer while in

; 3
local sloped[log agJ/d[log(8V3)] vs r/ 7 in the homogeneous shear the inset we show the local 5|OF§|09 pel/dlog(sV7)]. Also
flow obtained by considering the conditional sampling with ~ for the variableps we can C|6}|m a very good agreement
=1.3(solid line). The dotted lines correspond to the two scalingsbetween the observed experimental and numerical results

given by Eq.(7) at scales <L (—0.3) andr>L, (—0.59) using against theoretical predictions. Our results are consistent and
the values ofr(q) for isotropic turbulence. Note that/»=19 and  complementary with the generalized structure function
that the conditional sampling procedure yields a value=3,  ((8V3+ ar 5V?)P) proposed by Toschit al.[16].

vertical line in the inset{5V3) is made dimensionless with the rms Finally we remark that, by denotinﬁp) the anomalous

; 2\3/2 . ’
velocity (u%)™. exponents in shear flow turbulence af{g) the anomalous
exponent in homogeneous isotropic turbulence, the ESS es-

(5) and(6). Let us remark that Ed7) and(8) are also based timate becomes

on the assumption that(q) are the same both for shear
dominated flows and homogeneous and isotropic turbulence,

as supported by the DNS data ) shown in Fig. 1. or
In Fig. 2 we plot logsg against logsV®) for the data of 12
both homogeneous shear flow and the turbulent boundary 11
layer. The fits for>L4 are in close agreement with the value 10
of 7(3)=—0.59 expected from homogeneous and isotropic
turbulence. In the inset we show the local slope A ©
d[log ogl/d[log(6V®)] computed from the homogeneous m> 8 ,
shear flow dataset. The two dashed lines indicate the num- "\? 75
bers7(2)—37(2/3) andr(3), i.e., the expected scaling ex- N7
ponents forr<Lg andr>Lg, respectively. Figure 2 shows, °;>
as main result of this paper, the clear evidence of the two "\? 6
scaling regions below and abolg, i.e., the experimental
and numerical evidence of the coexistence of two different
intermittent regions in shear flow turbulence. To better char- 5
acterize this issue we report in Fig. 3 the experimental results , , |
for three different wall normal distancgs =30,70,115. The 3 223p 4 6
double scaling behavior is consistent with the relative posi- <dV'>/<u™>

tion of the shear scale with respect to the Kolmogorov scale

; +

and to the integral scale. In fact, at the larger yalug wag ircles and in the turbulent boundary layeryat = 115 (triangles.
ot_)serve t_he slope change at larger _separatlons consistent¥i yata are fitted for<L, by a power law with a slopes=

with the increase ol s as exp_ecte_d in the log-layet { —0.22. In the inset, the local slomlog pgl/d[log(sV®)] vsr/ 7 for
«y™). The double scaling region is bounded below by thethe homogeneous shear flow obtained by conditional sampling with
buffer region wheré s~ ». The upper boundary, in principle «=1.3(solid line). The dotted lines give the two scalings, £8). at
given byL¢~L,, is not identified by the present data limited scalesr<L  (—0.22) andr>L, (—0.41), with values ofr(q)

to the near wall region. As a further check of the theory, intaken from isotropic turbulence. Dimensionless quantities defined
Fig. 4, we show logyg versus logéVv®) both for the homoge- as in Fig. 2

FIG. 4. Logpg vs logéVv®) in the homogeneous shear flow
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TABLE I. Scaling exponents of structure functio@BNS) above and below the shear scalgin com-
parison with homogeneous and isotropic turbulence and predictions ¢dPEq.

p 1 2 3 4 5 6

r<Lg 0.36 0.69 1.00 1.28 1.54 1.78

r>Lg 0.38 0.72 1.00 1.23 1.42 1.56

Homogeneous and isotropic turbulence 0.36 0.69 1.00 1.28 1.54 1.78

Eq. (9) 0.39 0.73 1.00 1.23 1.42 1.58
. p 3 p 3p A priori, by reasoning in terms of the classical Kolmogorov
(P=3z|1-75]| |- 55 (9 similarity, a more intermittent velocity fluctuations should

imply an increased intermittency of the coarse grained en-
The first term comes from the fact that in shear turbulence€rgy dissipation. We have shown that this is not the case. The

we may express dissipation field maintains its statistical properties through
the transition, with no apparent difference with homogeneous
(8V3)oc (32 (5V3)34)12, (100 isotropic turbulence. In fact, the transition is associated with

the failure of the classical Kolmogorov similarity. Above the

which impliesZ(Z):zla[l—7(3/2)]_ Equation(9) provides shear scale the new form of refined similarity establishes,
a theoretical estimation for the scaling exponents of structuranplying the observed increase of intermittency with exactly
functions in shear dominated flows by using the intermit-the same exponents of the energy dissipation as found in
tency corrections of isotropic turbulence. These values aresotropic turbulence. This property has been exploited to pre-
compared against their direct measure in the DNS of thelict the scaling exponents of velocity structure functions in
homogeneous shear flow in Table I. shear flows from the intermittency corrections of isotropic

In summary, either in the experimental and numerical returbulence, see Table I. Hence universality, expressed in the
sults structure functions clearly show the existence of dorm of invariant scaling exponents of the energy dissipation
double scaling with a sharp transition across the shear scaleombined with a suitable form of refined similarity, is found
Both ranges manifest intermittency, and the intermittency iso be able to explain the statistics of velocity fluctuations in
larger in the shear dominated range. The simultaneous preshear turbulence extending, in a way, the classical Kolmog-
ence of the two different levels of intermittency is explained.orov description of the small scales.
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