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Spike-timing-dependent learning rule to encode spatiotemporal patterns in a network
of spiking neurons
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We study associative memory neural networks based on the Hodgkin-Huxley type of spiking neurons. We
introduce the spike-timing-dependent learning rule, in which the time window with the negative part as well as
the positive part is used to describe the biologically plausible synaptic plasticity. The learning rule is applied to
encode a number of periodical spatiotemporal patterns, which are successfully reproduced in the periodical
firing pattern of spiking neurons in the process of memory retrieval. The global inhibition is incorporated into
the model so as to induce the gamma oscillation. The occurrence of gamma oscillation turns out to give
appropriate spike timings for memory retrieval of discrete type of spatiotemporal pattern. The theoretical
analysis to elucidate the stationary properties of perfect retrieval state is conducted in the limit of an infinite
number of neurons and shows the good agreement with the result of numerical simulations. The result of this
analysis indicates that the presence of the negative and positive parts in the form of the time window contrib-
utes to reduce the size of crosstalk term, implying that the time window with the negative and positive parts is
suitable to encode a number of spatiotemporal patterns. We draw some phase diagrams, in which we find
various types of phase transitions with change of the intensity of global inhibition.

DOI: 10.1103/PhysRevE.65.011903 PACS nunier87.18.Sn, 82.40.Bj, 05.45.Xt

[. INTRODUCTION For a more complete understanding of the information

processing based on spike timings of neurons, it is, however,

In the past few decades there has been some theoretidag¢cessary to adopt more biologically plausible neural net-

interest in associative memory neural netwdrks4]. Ama-  work models because such features as the time evolution of
jor breakthrough was made by Hopfield, who has introducednembrane potentials and decay time of synaptic electric cur-
the stochastic neural network model with an energy functioff€nts play a significant role in the rhythmic behavior of neu-
[5]. By means of the method based on the statistical metOns. For this purpose, networks of spiking neurons are con-
chanical theory several authors have conducted the investf/déred to be suitable models for investigation, though it

gations on Ising spin network6—12 and analog neural €mMains an unsollved_pr.oblem to find the ade_q_uate learning
networks[13-18, which have clarified much of the funda- rule .to encode spike tlm!ngs n networks_ of spiking neurons.
mental properties of associative memory neural networks. Slnce netwqus of sp'lk!ng neurons W't.h. asymmetric syn-
Meanwhile, in electrophysiological experiments, a Signiﬁ_aptlc connections exhibit sequential firings of neurons

: » 30,31, one may consider that the learning rule to encode
cant effort has been devoted to clarify the capability of the[s atiotemporal patterns should generate asymmetric synaptic

real nervous system to memorize spatiotemporal pattern : ; ; ; ;
X . - connections. Actually, incorporating asymmetric synaptic
[19,20. Recently, it has been revealed that in the long spikenactions, Gerstnet al. has investigated the networks of

sequences of the rat h_ippocampus Shf?“ spike Sequences gpa integrated-and-fire type of spiking neurons with discrete
pear repeated|f21]. This phenomenon imply the capability ime dynamics, in which the encoded spatiotemporal patterns

of the rat hippocampus to memorize spatiotemporal patterngre successfully reproduced in spike timings of neurons in
on the basis of spike timings, and hence, concern has begRe process of memory retrieviB2]. Then, the question
raised about associative memory neural network models i&rises as to how such asymmetric synaptic connections are
which information is represented by spike timings of neuronsjeveloped in a real nervous system. The results of the recent
[22,23. electrophysiological experiments have revealed that the
To deal with the problem concerning spike timings of modification of a excitatory synaptic efficacy depends on the
neurons one might consider investigating networks of simplerecise timings of presynaptic and postsynaptic firif@@—
phase oscillators. Since some theoretical analysis is avaiB5]. A synaptic efficacy is found to increase if firing of a
able, the stationary properties of associative memory basegresynaptic neuron occurs in advance of firing of a postsyn-
on networks of simple oscillators have been studied extenaptic neuron, and to decrease otherwise. Accordingly, the
sively both in the case of an extensive number of storedime window to describe the spike-timing-dependent synap-
patterns and in the case of distributed natural frequencietic plasticity takes the form having the negative and positive
[24-28. Even in the presence of white noise as well as garts as is described in Fig. 1. Several authors have proposed
distribution of natural frequencies we can derive the storagéhat this modification rule serves to solve such the problems
capacity of networks of phase oscillators analyticd2§)]. as path navigatiof36,37, direction selectivity{ 38,39, com-
petitive Hebbian learning40], and biologically plausible
derivation of the Linsker’s equation as well as the Hebbian
*Electronic address: myosioka@brain.riken.go.jp learning rule[41]. In the present study, we aim to tackle the
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0.08 of an infinite number of neurons. By use of this exact reduc-
0.04 N\ tion we can draw some phase diagrams, which clarify the
\ condition for successful retrieval and the occurrence of phase
0.02 transitions. Furthermore, this method of analysis enables us
g 0 to find one surprising property of the present system: the
2 0.02 crosstalk term vanishes if the area of the positive part of the
) \ time window is equivalent to the area of the negative part so
-0.04 V) that the time integration of the time window takes the value
0.06 of zero. This result implies that the present form of the time
-100  -50 0 50 100 window, which has the negative and positive parts, is suit-
At [mseq] able to encode a number of spatiotemporal patterns.

The present paper is organized as follows. In Sec. Il, we

FIG. 1. The shape of the time window/(At) with 7w;  present the details of the neural network model we study, and
=10 (msec) andhy,,=5 (msec). then we introduce the spike-timing-dependent learning rule
to encode spatiotemporal patterns. In Sec. lll, we investigate

problem of how spatiotemporal patterns are encoded in & stationary properties of the network in perfect retrieval
network of spiking neurons on the basis of the spike-timing-State analytically. In the course of this analysis, it becomes
dependent modification rule. We introduce the spike-timing-c/€ar that the negative and positive parts of the time window
dependent learning rule, which gives asymmetric synaptié"ay an important role in reducing the size of crosstalk term.
connections so that networks of spiking neurons function a&" Sec. IV, we apply this method of analysis to the case with
associative memory. continuous type of patterns to clarify the condition for the

Spiking neurons, we assume in the present study, intera@ccurrence of the perfect retrieval. The result of the numeri-
with each other without time delay, that is, every neuroncal simulations are presented showing good agreement with

obtains synaptic electric current immediately after one neuth€ result of the theoretical analysis. Then, in Sec. V, we treat
ron fires. In this case, the sequential firings of neurons fofh€ case of discrete type of patterns, which are successfully

memory retrieval take place with rather short time intervals retneved_ when t_he gamma oscillation arises. Finally, in Sec.
and one might consider such rapid pattern retrieval makes n¥l, we give a brief summary of the present study.
sense from a biological point of view. It may be desirable
t_ha_t the network equips a_certain_ mechanism to cont_rol spike Il. MODEL OF A NETWORK OF SPIKING NEURONS
timings of neurons to realize the information processing with
the adequate processing period. In real nervous system, some regions such as the neocor-
We hypothesize that the gamma oscillation is the keytex and the hippocampus are found to comprise a large num-
mechanism to solving this problem. In the various regions ober of pyramidal cells and interneurons. In these networks
real nervous system, such as the neocortex and the hippopyramidal cells typically connect to other neurdns., both
ampus, a population of neurons are found to exhibit synchropyramidal cells and interneuronsia excitatory synapses,
nized firings with a characteristic frequency of 20—80 Hz,while interneurons connect to pyramidal cells via GABAer-
and such synchronized firings of neurons, namely, theic synapseginhibitory synapses(GABA, gamma amino
gamma oscillation, attract much attention of researcherbutyric acid. When one pyramidal cell fires, the other pyra-
[42—-4d. When the gamma oscillation arises, firings of neu-midal cells obtain excitatory postsynaptic poten{iBPSP
rons occur only around discrete time steps, and the situatiodue to the excitatory synapses that connect pyramidal cell to
is somewhat similar to the case of the Hopfield model withthe other pyramidal cells. At the same time, some interneu-
the discrete time dynamics. We hypothesize that such disons surrounding the firing pyramidal cell also obtain EPSP
crete type of firing pattern serves to control spike timings ofdue to the excitatory synapses that connect the pyramidal cell
neurons. Some experimental and theoretical results suppdu interneurons. Since the threshold value for firing of inter-
the hypothesis that the global inhibition, which is induced byneurons is rather small, these interneurons begin to fire im-
the presence of interneurons, plays a significant role in germediately after the arrival of action potentials from the firing
eration of the gamma oscillatiop49-55. In the present pyramidal cell, and then such firings of the interneurons give
study, incorporating the global inhibition into the model, werise to the inhibitory postsynaptic potentigi®SP$ into a
aim to investigate the influence of the gamma oscillations ortarge number of pyramidal cells via GABAergic synapses. In
the properties of memory retrieval. this way, when one pyramidal cell fires, the other pyramidal
It should be noted that we can apply some theoreticatells obtain two kinds of postsynaptic potentials: EPSP in-
techniques to analyze the stationary properties of the presedticed by the direct arrival of action potential from the firing
system provided that the number of encoded patterns angyramidal cell and IPSPs mediated by firings of interneurons
sufficiently small(i.e., P/N<1, whereP is the number of surrounding the firing pyramidal cell.
encoded patterns and is the number of neuropsWhen For the purpose of elucidating the fundamental properties
retrieval is successful, the periodical behavior of every neuef the nervous system composed of pyramidal cells and in-
ron is identical, but shifts with respect to time depending onterneurons, we investigate a network Nfspiking neurons
the value of the target pattern, and thus we can reduce thateracting through two types of synaptic electric currents,
many-body problem into the single body problem in the limit namely, electric currents via plastic synapdgsand global

011903-2



SPIKE-TIMING-DEPENDENT LEARNING RULE TO ... PHYSICAL REVIEW BB5 011903

inhibition. The dynamics of a network of spiking neurons we equationg58,59, and so on. In the present study we assume
study is expressed in the form the Hodgkin-Huxley equations, and hence the degrees of
] freedom of a state of a neuron is(de., n=3). In the Ap-
Vi=1(Vi, W1, ... Wi,)+1(1), (1) pendix, we present the details of the Hodgkin-Huxley equa-
_ tions we adopt in the present study.
Wi;=g;(Vi Wi, ... W), loyri(t) denotes a sum of synaptic electric currents via
plastic synapseg;; , which is activated by the arrival of ac-
i=1,...N, j=1,...n, (2)  tion potential from other pyramidal cells. We define firing
. times of neurori as the time when the membrane potential
with V,(t) exceeds the threshold valig=0 and denotéth fir-
PR A _ . ing time of neuroni by t;(k). Then, the synaptic electric
H(O=loyri (O lind(D) + i (V) @ currentl oyr.i(t) is written in the form

whereV;(t) denotes the membrane potential of neuiramd

N
W;;(t) auxiliary variables necessary for neurons to exhibit _ B .
spiking behavior. The definition of the electric currents Ipyr’i(t)_Aper’Zj_ Ek JijSpydt =0}, i=1,... N,
Loyr,i(1):int(t), andleyi(t) will be explained in what fol- (4)

lows. Note that now we focus on the dynamics of a network

of N pyramidal cells and omit describing the detailed dynam-whereJ;; denotes a synaptic efficacy from neugjdo neuron
ics of interneuron$56]. For the dynamic$(V,Wy, ... W,) i, andA,,, is the variable controlling the intensity of synap-
and g;(V,Wy, ... ,W,), several authors have assumed thetic electric current ,,.;(t). We assume the time-dependent
Hodgkin-Huxley equations[57], the FitzHugh-Nagumo postsynaptic potentid,,(t) of the form

0, t<0
Syyi(t)= 1 t t 5
g e I :
Toyrl™ Tpyr,2 Toyr,1 Toyr,2
|
In what follows, we set ;=10 (ms) and 7,y The external electric currerit,,,;(t) is used to control
=5 (ms). initial firings of neurons. For the initial condition of the net-

For the sake of brevity, instead of describing the detailedvork, we set state of neuron¥(,{W;})(i=1, ... N) to be
dynamics of interneurons, we simply assume that IPSPs aig the stable fixed point of the dynamics of E¢B. and (2)
induced in other pyramidal cells immediately after oneNof wjith 1,(t)=0. It means that, without any external stimuli, all
pyramidal cells fire456], that is, we assume global inhibi- neyrons keep quiescent irrespective of the strength of synap-
tion 1in,(t) of the form tic efficacy J;;. Thus, for the purpose of invoking initial
firings that act as a trigger to retrieve the target pattern, we
use the pulsed form of the external electric currkent;(t)
only at the beginning of the evolution of the dynamics. Then,
the initial firings of neurons invoke the synaptic electric cur-
whereA,,, is the variable controlling the intensity of global rents, which become driving force for the next firings of
inhibition. Note that the global inhibitioh,(t) is indepen-  neurons. Note that the external electric curregt;(t) is
dent of indexi since every neuron obtains the same amountised only at the beginning. In the theoretical analysis below
of inhibitory electric current. The time-dependent inhibitory we setl ¢;(t) =0 because we focus on the stationary behav-

nt

A
(=" 2, 2 Swft=t(k}, ®)

postsynaptic potenties;,;(t) is described as ior in this analysis.
The aim of considering the present model is to investigate
0, t<O the properties of nervous system composed of pyramidal
-1 t t cells and interneurons. As is mentioned above, in real ner-
Sint(t)= —[ exr{ - ) —exr{ - )} vous system, pyramidal cells are found to interact with other
Tint, 17 Tint,2 Tint,1 Tint,2 pyramidal cells via excitatory synapses. Nevertheless, in

O=t. what follows, for the purpose of simplifying the situation, we
(7 assume that the synaptic efficaty can take not only posi-
tive value but also negative value. This assumption might be
Note thatS;(t) takes negative value in the interva&@. In  somewhat implausible, but allows one to introduce the
what follows, we setr,; ;=5 (msec) andr;,=2.5 (ms) simple learning rule, which is amenable to satisfactory level
so thatS;,(t) decays faster tha8,,(t). of analysis. In the next section, on the basis of naive assump-
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tion that this simplification does not change the fundamentau,-w1 10 (ms) andry ,=5 (ms), with which the time win-
properties of the system, we introduce the learning rule thagow W(At) takes the form described in Fig. 1. When neu-
is capable of encoding a number of spatiotemporal patterngens fire periodically according to pattern 1, namsfy, the
firing times of neurons are written in the form
A. The spike-timing-dependent learning rule to encode
spatiotemporal patterns

o _ _ _ _ shk)=st+kT, i=1,...N,
The periodical spatiotemporal patterns we investigate in
the present study are generated randomly with the constraint
that every neuron fires only once in one period. We represent k=...,-2-1012.... (12)
these spatiotemporal patterns by using the firing tirgfes
e[0T)(i=1,... N, u=1,...P), whereP is a number

Substituting Eq.(12) into Eqg. (10) we obtain a the rough
of patterns andl' is a period of spatiotemporal patterns. To ogtimation of the modification of synaptic efficacy,

chooses}* randomly from the intervdl0,T) we use the equa-

tion . .
T Adjer 2 2 Wisl(k) =S (k)]
=6qi", i=1,...N, u=1,... P, (8) i= i
— 1 1
whereQ is a natural number controlling the degree of dis- =2 ; W(si—sj+kiT—kiT)

creteness of spatiotemporal patterns and random intgger 5
is chosen from the interv@d,Q) with equal probability. We ~
term random patterns with finit® discrete type of patterns, “k;_w W(Sil_sj1Jr kT):W(Sil_SJ’l)’ (13
while we term those witl@Q— o continuous type of patterns.

In what follows, settingT=100, we study the case of dis-

crete type of patterns@=10) as well as continuous type where the periodical functioW/(At+T)=W(At) is defined
patterns Q— o). By considering the case of discrete type of as

patterns we aim to study the effect of the occurrence of the

gamma oscillation in the learning process. For convenience o

of the calculation below, we introduce the phase variabfes WA= D W(At+KT). (14)

defined as k=—o
2 2 _ . . -

O'=——qt=—s". (9)  Substituting Eq(10) into Eq.(14) yields the explicit form of
Q T the functionW(At),
To find a clue to encode spatiotemporal patterns in a net-

work of spiking neurons, we begin by estimating the modi- ~ _ 1 e AVrwi—exd — (T—At)/ ry 4]

fication of synaptic efficacy assuming that neurons fire peri- W(At)= — i

odically according to one of the spatiotemporal patterns. The w1 w2 1-e "W

results of the recent electrophysiological experiments sug- AU
gest that the modification of a synaptic efficacy depends on _ e e exp— (T At)lTWZ]
the precise timings of presynaptic and postsynaptic firings 1—e Trwe

[33—-39, and such modification of synaptic efficacyd is

approximately written in the form

O=<At<T. (15
AJocW(AL)
1 At At In the above estimation we have treated the case with only
—(exp( )—exp{ _) ] At<0 a single spatiotemporal pattern. Now we would like to ex-
) TwaT Twpe Tw,1 Tw,2 tend this result to the case with a number of spatiotemporal

1 At At patterns. Since the total change of synaptic efficacy is as-
vt s By 'S Bt O<At, sumed to be given by the sum of the individual changes, we
Wi w2 Wi w2 extend Eq(14) to the form
(10
with 1 : 1o
ik 3 -2 5 6 T,

At:tpost_tpre' (1D ) (16)

wheret,,s; andt,. denote firing times of presynaptic and
postsynaptic neurons, respectively. In what follows, we sewhere we take proper scaling with respectNoThis is the
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learning rule we adopt in the present study. In what follows,Then, from Eq.(17), we obtain
we investigate networks of spiking neurons in which synap-
tic efficacyJ;; is given by Eq.(16). As will be shown in the _ Apyr < T i o
next section, spatiotemporal patterns encoded by use of thipyri(D) = N > E W _W(ai —0)
learning rule(16) are retrieved successfully if we give an
appropriate initial condition. 7r
X E Spyrl t= 5 67— KT
IIl. ANALYSIS OF THE STATIONARY PROPERTIES OF

PERFECT RETRIEVAL STATE IN THE CASE OF A

Apyr < T e ‘:I'— 1
FINITE NUMBER OF ENCODED PATTERNS = N 2 E W 2—( oF — 61”“) Spyr t—— aj ,

The present neural networks happen to show rich variety (19)
of dynamical behavior depending on the value of the param-
eters such ad,,, andA;,;. Among these behavior the most \yhere
important one may be pattern retrieval in which every neuron
fires periodically according to one of the encoded patterns. In 5 _
such a case, firing times of neurons are written in the form Spy,(t)=kz Spyr(t+KT). (20

"_I"_
ti(k)= —01+ KT, i=1,...N, Substituting Eq(5) into Eq. (20) yields the explicit form of
the functionS,(t),

k=...,-2-1,01,2. (17)

eft/"'pyr,l eft/"'pyr,z

where we chose pattern 1 as the retrieved one. Note that, in yr(t)

generalT, which is the period of firing motion in the process
of pattern retrieval, is not equivalent 1o which is the period =
_ , . . 0=<t<T, (21
assumed in generating random patterns. Since no fluctuation
of firing times is allowed in Eq(17), we term the stationary
state defined by Eq17) as the perfect retrieval state. In this Where the periodical functioBy,,(t) satisfies the condition:
section, we conduct the theoretical analysis to elucidate th8py:(t+T)="Syy(t).
stationary properties of the perfect retrieval state. For the purpose of evaluating the correlation with respect
One purpose of the present analysis is to determine thto the variable®!, we decompose Eq19) into the form

value of the periodl. In the course of the present analysis,
we evaluate periodical synaptic electric currentgt) Lpyri(D)=Mi(t) +Z;(1), (22
=1 pyri()+lin(t) as a function ofT. Once we know the
time-dependent behavior of periodical synaptic electric cur-
rentsl;(t), we are allowed to calculate firing motion of neu- A =~

rons numerically by use of Eqsl) and(2). Then, based on M, ()= =L \7\/[_(91 01)]§ ( )

this firing motion, we determine the value of the peribd J

self-consistently. In what follows? is assumed to be finite

since perfect retrieval is impossible with an extensive num- _

ber of encoded patterns. _ 1 u T 4
Substituting Eq(16) into Eq. (4), we have Zi(t)_AnyZ N EJ: (_(6 of S EGJ :

h (24)
Ayyr [T
Loyri(t)= ISIY % 2 W[E(ﬂf‘—ﬁf‘)]

Tpyr,1™ Tpyr,2 1—e Umoyra 1—e Mipyr2)’

here

Since the tern¥;(t) emerges as a result of encoding a num-
ber of spatiotemporal patterns, we call the teiy(t)
<SS rft—t.(K)L. 18 crosstalk term. In the limit oN—«, the term M;(t) is

2 Sordt=(k) (18 evaluated as

finite Q

(29
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On the other hand, sinad#* (x=2) has no correlation with
0i1, in the limit of N— o, crosstalk ternz;(t) is evaluated as

Zi(t)=Apy(P—1)WS(1), (26)
where
Q-1
1 ~ [T
- W| — finite Q
e Q ¢=o (Qq) @7
)1 fzww T ]
270 >, 9/d6, Q— 0,
and
Q-1 =
1 - T _
— S| t+—=ql, finite
_ Qo ™' Qq Q
S(t)= ~ (28)
Lo [T, 0
ﬂ o Spyr z@ 0, .

Noti_ng EcE.(l4) and(20), we obtain another representation

of W and S(t),

L > W(%q>, finite Q
w={ "7 29
1 (= [T
zxw(z")da' Qe
and

S(t)= (30
1
~ Q—)OO,
z

where we usg” .Sy (t)dt=1.

Following almost the same schemelgg; i(t), from Eqgs.

(6) and (17), we obtain the global inhibitior;,.(t) of the
form

Q
Aint e T A
S |t+— finite Q
el ® 2, S| t+gd
int Aim 27 ';I-'_ . Q .
; —_— —
> | t5—-0/d9, ,
(3D
where
Sm(0= 2 Sn(t+kT). (32

Substituting Eq(6) into Eq.(32), we obtain the explicit form

of the functionS;(t),

PHYSICAL REVIEW E 65011903

-1 e_t/Tint,l e_t/Tint,Z

ént(t):

Tint 1™ Tint2\ 1—e” 7intt 1—e~ 7int2 ,

o<t<T, (33

where the periodical functioB;,(t) satisfies the condition:
S (t+T) =S, (1). Utilizing [~.,Sie(t)dt=—1, we obtain
another representation of,;(t),

| Agt 3 su H%q . finite Q
int(t)_ —Aim -
=, .
(34

Substituting Eqs(22) and(26) into Eq.(3), we obtain the
periodical synaptic electric currentgt) of the form

LD =MD+ i (D +AL(P-1)WS(t). (39

Note that now all the terms in the right-hand side of BBp)

are evaluated as a function 6f andT, and hence we can
evaluate the time-dependent behavioNafeurons as a func-
tion ' andT based on the dynamidd) and (2) together
with Eq. (35). In the case of perfect retrieval, the periodical
behavior of every neuron is identical, but shifts with respect
to time depending on the valu# . In fact, noting Eq(25),
one can show that a sum of synaptic electric currey{ty
satisfies the condition

N, j=1,... N. (36)

By use of this property, the behavior bf neurons is easily
evaluated once we know the behavior of a single neuron, that
is, what we need to solve is not a many-body problem but a
single-body problem. Hence, we focus on investigating the
behavior of a single neuron wit'=0 in what follows.

For a single neuron With?i1=0, we rewrite the dynamics
Egs.(1), (2), and(35) in the form

V=F(V,Wy, ... W,)+I(t), (37)

Wy=g;(V, Wy, .. i=L...n, (9
with

L) =M () + (D) +Apy (P-DWS(t), (39

where, from Eq(25), the termM (t) is rewritten in the form
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Q-1 F (@
A ~ [T T —
5” w(aq)spyr t+gal. finite Q, 0 T ——
M(t) = 4=0 R m— —Fo Y
A 20 [ T _ T ; T2 q 12
pyr o o 50 |
5 jo W ZWa)Spy, t+ 277‘9)01‘9’ Q. 2 L
(40) — 0 oA No N Ko N
§ (; 4
T . < ) .
Note thatl;,(t), W, andS(_t) in Eqg. (39) is given by Egs. = _/_\/{\/\/ LA ANUN
(31), (27), and(28), respectively. — -100 1 10 msec 1
By use of the Hodgkin-Huxley equations, we can ev~aluate AT 2T -T o T 2T 37T
the dynamicg37)—(39) numerically for arbitrary value of . t [msec]

—_
=
~

As is describe in Fig. 2, witfi that is sufficiently close to the 150

solution T*, the neuron exhibits periodical firing behavior, ‘ ‘ | —
and hence the firing times are written in the form 100 pA

t(k)=r(T)+kT, k=...,-2-1,012.... (41

Note that we can evaluate the explicit form of the function
r(T) by conducting the numerical integration of the dynam-

ics (37)—(39) for various value ofT.
On the other hand, since we evaluate the periodical syn- 2T T o T of
aptic electric current39) based on the assumpti¢h7), with

the solutionT* the firing times take the form

I [nA/cm?] and V [mV]
o

—_
)
~

Tx 150 . T r

t(k)=5— O+KT=kT*, k=...,~2-1012.... 100 |
(42

Hence, from Eqgs(41) and(42), we obtain the condition

r(T*)=0. (43

| [uA/em?] and V [mV]
o

-100 | ' 10 msec

2T T o T 2t
t [msec]

Since we have evaluated the explicit form of the function
r(T) by the numerical integration, we can solve F4@) so

as to obtain the solutiof* .
In the above analysis, we did not take account of the Fig 2. The stationary behavior of the single neuron dynamics
stability of the solution. Strictly speaking, the present net-(37)—(39), which is analytically derived for the purpose of evaluat-
works may happen to fail in perfect retrieval for lack of the ing the periodical firing behavior of a network of neurons. For the
stability even wherT is successfully evaluated in the above several value off, which is close to the solutiofi*, the time
analysis. However, as far as we investigate by numericadvolution ofI(t) andV are plotted together with the firing times,
simulations, every solution we obtain in the present analysighich are marked by closed circlpg) T=T*—10,(b) T=T*, (¢
seems to ensure the stability as will be shown in Sec. IV anf—Fx 4 10]. Inset, A magnification representing the behavior of

Sec. V. I(t) andV within one period. Note that the firing time takes the
form t(k):kﬁ' (k=...,—2,-1,0,1,2...) only in the case of
A. The time window W(At) with the negative and positive (b). The value of parameters a@—o, A,,=20000, andA;
parts is suitable to encode a number =250, which are the same values as we use in Figs. 3 and 4.

of spatiotemporal patterns

It has been shown that the crosstalk term of the standartpre, whenW takes the nonzero value, the quality of pattern
type of the Hopfield model vanishes with an appropriate'etrieval changes depending on the number of encoded pat-
learning rule as far as the number of encoded patterns #§rns; AsP increases, the size of the synaptic electric current
finite. In such a case, perfect retrieval is always realized ird;(t) increases or decreases depending on the sigk, @nd
respective of the number of encoded patterns. In the case efventually perfect retrieval becomes impossible. For these
the present neural network, the periodical synap& electrigeasons, it may be highly desirable thatt takes the small
current(395) includes the crosstalk ter,, (P—1)WS(t),  value in the present purpose.
which is proportional td®—1. From Eqs(5) and(30), one It should be noted thahe quantity Wwhich is defined by
can show thaS(t) always takes the positive value. There- Eq. (29, is the average of the function (&t) over the time
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Ate(—o,), and thus the presence of the negative and (@
positive parts in the form of the time window(}t) is of
advantage to reduce the value of. W fact, the form of the
time windowW(At) we assume in the present study satisfies
the condition

neuron

Z W(éq)_o, finite Q

q=—»

“4 R

f W(7)d7=0, Q—oo. 0 100 200 300 400 500
o t [msec]
b)

Therefore, from Eq(29), we obtain
2n r

W=0. (45)

In the present case, the crosstalk tefm, (P —1)WS(t) o 1l
vanishes completely. Accordingly, perfect retrieval is always
realized irrespective of the number of encoded patterns as far

asP is finite. In what follows, settingy=0, we analytically
evaluate the stationary behavior of the network. It turns out ‘ ‘ ‘ .
that the result of the present analysis shows the good agree- 0 100 200 300 400 500
ment with the results of the numerical simulations even when t [msec]

a number of patterns are encoded.

FIG. 3. The result of the numerical simulation witQ
—, Apy,=20000, Aj;;=250, P=3, and N=2000. (a) The

IV. THE CASE OF CONTINUQUS TYPE OF PATTERNS traces of firing times of neurons are plotted with points. In the

(Q—=) interval O<t<a.,Tex—=12, we apply the pulsed external electric
A. Perfect retrieval with the weak intensity of global currentl o,(t) of the form(46) with T.,,=60 so that the initial part
inhibition of the target pattern is forced to be retrievélg). Setting the vertical

o o axis to represent the phase variables of the target pattermwe
For the initial condition of the network, we set state of repiot the result ir(a).

neurons ¥, ,{W;})(i=1,... N) to be at the stable fixed

ggmt of I;[he dynamlcks of Eqs('l) antd (Z.?Ehw'tp Ii(t):Ot. rents. Since it is somewhat difficult to see whether the target
ince -all neurons xeep quiescent without any ex ernaﬂ)attern is retrieved or not in Fig(&, setting the vertical axis

stimuli, to invoke initial firings that act as a trigger to re- .
trieve the target patterx;q1 we use the external electric cur- to represent the phasg var lables of the target paﬁiarrw_e
' replot the same result in Fig(k3, where we see the continu-

rentlex;(t) of the form ous type of firing pattern implying the occurrence of the

Pext 0<3'<ag,Toy and S'<t<S'+At,, perfect retrieval of the target pattern.

loxei(t)= _ In Fig. 4@, we describe the dynamical behavior of a
0, otherwise, neuron with¢!=0. In this result, the neuron is found to fire

(46) periodically after a long time. In the case of perfect retrieval,

with we are allowed to apply the theoretical analysis conducted

above so as to evaluate the periodical firing motion of a
T neuron in the limit of an infinite number of neurons. The
eXtgl (47)  result of the theoretical analysis is described in Fih)4
2m ! Good agreement between the numerical result in Fig) 4

and the theoretical result in Fig(l) implies the validity of
where the parametemext- Textv Atextv and Aext A€ ap- the present analysis.

propriately chosen so that an initial part of the target pattern

is forced to be retrieved. In what follows, we s8t,;

=10 Atoo=1 8...=0.2. andT...~T (Once note thai B. The phase transition occurs with change of the intensity of
- 1 ext™ -+ ext™ Y& ext .

is not equivalent tar.) global inhibition

In Fig. 3(a), we describe the result of the numerical simu-  As is discussed in the previous section, in the case of the
lation with the weak intensity of global inhibitio®\;,;  weak intensity of global inhibition, perfect retrieval of con-
=250 in the case oQ— = andA,,,= 20 000. After the ini- tinuous type of patterns is realized. On the other hand, when
tial firings that are invoked by the application of the externalthe strong intensity of global inhibition is applied, we ob-
electric current ¢, ;(t), perfect retrieval is realized as a re- serve the discrete type of firing pattern as is described in Fig.
sult of the emergence of the periodical synaptic electric curb, where we sei;,;=1250. In the present study, we call

~1_
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FIG. 4. (@ Time evolution of the membrane potentidlof a FIG. 5. The result of the numerical simulation witQ

neuron with6=0, which is observed in the numerical simulation — > Apyr=20000, Aj,=1250, P=3, and N=2000. () The
in Fig. 3, is plotted together with a sum of the synaptic electrictraces qf flrlng times of neurons are plott_ed with points. Note that
currentsl;(t) =1 pyr (1) + 1int(t) + Loxi(1). (b) The result of the the- thle vertlc_al axis represents the phase variables of the target pattern
oretical evaluation of the stationary behavior of a neuron. In thefi - (b) Time evolution of the membrane potentilof a neuron
numerical simulatior(a), the neuron exhibits periodical firing mo- With /=0 is plotted together with a sum of the synaptic electric
tion after a long time, and this periodical firing motion shows the CUrrentli(t) =1y, i(t) + line(t) + 1 exqi(t).
good agreement with the result of the present analysis

the region PR, while outside the region the perfect retrieval

. . .. is impossible.
such a discrete type firing pattern as the gamma oscillation: In this phase diagram, the critical intensity of the global
In this discrete type of firing pattern we find a number of. . .. . S . c
components of the continuous type of firing patterns of shor{nhlbltlon in the case o, =20000 is evaluated akp,

P ) yp gp .~ .~.~630. To clarify the occurrence of the phase transition at
duration. During the occurrence of each component, inhibi-, .~ .. " e ;

. . . this critical intensityA;,;, for various value of;,; we com-

tory synaptic electric currentiy(t) accumulate until they ute a distribution of the inter spike intervalsls), which
begin to suppress more firings of neurons. After a stop og '

. S L . . re the time intervals of sequential firings of neurons in the
continuous firings, the inhibitory synaptic electric currents , imerical simulations. Note that what we compute is not the
lint(t) decay fast owing to the short decay timgg, ; and
Tint2- Subsequently, neurons begin to fire again because of 30000
the synaptic electric currentg,, ;(t), which have the longer
decay timest,y,; and 7., than those ofl;(t). The PR
gamma oscillation in the present study is induced by the 20000
iteration of this process.

As far as perfect retrieval is concerned, it is uncompli- 10000 |
cated to investigate the properties of the stationary state ana-
lytically, while the analysis becomes quite difficult once the
system settles into the other state such as discrete type of 0
firing patterns. Nevertheless, within the scope of the present 0 500 1000 1500
analysis, we can determine the critical intensity of global Aint
inhibition Af,;, which f:haracterizes the phase transition.be- FIG. 6. Ajn— Ay, phase diagram showing the condition for the
tween the perfect retrieval state and the other state. In Fig. §ccyrrence of the perfect retrieval in the case@f>o. In the
we depict theAj,— Ay, phase diagram showing the condi- yegion represented by PR, the perfect retrieval is realized since the
tion for the occurrence of perfect retrieval. In~the region yeriod is successfully evaluated in the present analisie text
denoted by PR, the period of the perfect retrieVab suc-  Outside the region represented by PR, the other type of stationary
cessfully evaluated, that is, the perfect retrieval is realized irstate is realized.

Apyr
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(@) 30000
20 PR
15 | 20000
,3. e
2 g
£ 10 <
3 10000
5 L
kO . ;."l 0 + *
0! 0 500 1000 1500
0 500 1000 1500 A
int
Aint
L) 200 FIG. 8. Same as Fig. 6, except ti@at=10.
global inhibition we find a variety of stationary behavior,
150 | ] which is much richer than that in the case of continuous type
T of patterns.
@ 100
£
= 50 / A. Two types of perfect retrieval state
Following the same scheme as continuous type of pat-
0 s s terns, we describe tha;,;—A,,, phase diagram in Fig. 8.
0 500 1000 1500 Unlike the case of the continuous type of patterns, we find
Aint the two kinds of critical intensity of global inhibitioA{,,(1)

andA?

FIG. 7. (&) A distribution of the interspike interval@Sls) is
plotted for the various value oA, in the case ofQ—o, A,
=20000, P=1, andN=2000. See text for the definition of the
ISIs we compute(b) A;,,, dependence of the periddobtained from
the present analysis. We see the phase transition at the critical i
tensity of global inhibitionAf,,~630, beyond which perfect re-
trieval is impossible.

ISIs of a single neuron but the ISIs of all neurons, that is,
when neuroni and neuronj fire sequentially at; and t;
respectively, we compute the time intertat-t; . The result

of the computation of ISIs is plotted in Fig.(d. Since,
below the critical intensity,, the continuous type of firing
pattern is realized, every ISI becomes almost zero. Beyond
the critical intensityA?,,, owing to the occurrence of non-
perfect retrieval we see the distribution of the I1SIs with two
components, namely, the component with the short ISIs and
the component with the long ISlIs. The appearance of the
component with the short ISIs is attributed to the emergence
of the continuous type of firing patterns of short duration
while the appearance of the long ISls is attributed to the
period during which firing of neurons are suppressed. In Fig.
7(a), we clearly see the occurrence of the phase transition at
the critical intensity of global inhibitior\,,; .

V. THE CASE OF DISCRETE TYPE OF PATTERNS
(Q=10

As in the case of continuous type of patterns, perfect re-
trieval is realized even in the case of discrete type of pat-
terns. In Fig. 9, we describe the result of the numerical simu-
lations, where we see the discrete type of firing pattern as a
result of the retrieval of the discrete type of pattern with

—_
=
=

I [uA/cm?] and V [mV]

(a)

-100

(2) inthe region with 13008 A,,,=23 000, that is,
we see two types of the phase transitions with change of the
intensity of global inhibitionA;,; .

To elucidate the nature of these two types of the phase
r1i[ansitions, fixingApy,=17 000, we conduct the numerical
simulations for the various value &,;. In Fig. 9, we de-
scribe the result of the numerical simulations wiff,;
=250, which is weaker than the first critical intensity

2n

500 600 700 800 900 1000
t [msec]

1 ' ' N
00 y

50

i I

i !

H

i i i

| lll A i 2 I, ]
VVAVIVAV NV IVV NIV

500 600 700 800 900 1000
t [msec]

FIG. 9. Same as Fig. 5, except tf@t=10, A,,,= 17000, and

=10. In the numerical simulation in Fig. 9, we assume thea,,,=250. Note that each point ifa) shows firings of~N/Q neu-
weak intensity of global inhibition 4;,;=250). In the case rons, because a cluster of neurons with the same valu# dife

of discrete type of patterns, with change of the intensity ofsynchronously.
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FIG. 10. Same as Fig. 5, except ti@at=10, A,y,=17 000, and FIG. 11. Same as Fig. 5, except ti@at 10, A,,,=17 000, and
Ajp=1250. Aii=T750.

) ) o B. Disordered state with the intermediate intensity of global
Al (1). As is expected from the phase diagram in Fig. 8, inhibition

perfect retrieval occurs with this intensity of global inhibi-
tion. In this case, global inhibition is so weak that the influ-
ence of global inhibition on the properties of the retrieval

With the intermediate intensity of global inhibition
Al (L) <A <A (2) the perfect retrieval is impossible as
T is shown in Fig. 8. In Fig. 11, we describe the result of the
state is insignificant. _ _ numerical simulations with the intermediate intensity of glo-

On the other hand, when we apply the stronger intensityy) inhibition A;,,,= 750, where we find the disordered firing
of global inhibition A;,; than the second critical intensity pattern. In this case, the dynamical behavior of a neuron is so
Af(2), theglobal inhibition exerts the significant influence complicated that it is quite difficult to specify whether the
on the nature of the retrieval process. In Fig. 10, we describme evolution ofl;(t) andV; is periodic or not. In addition,
the result of numerical simulation with;,= 1250, where ~Neurons with the same value 6} exhibits the different dy-

we see the perfect retrieval with the long period. With thenamical behavior, because we see the slight distribution of
strong intensity of global inhibition the gamma oscillation the firing times of neurons with the same value djf in
arises and affects to make the retrieval period long. In thé 9 11a).

retrieval process of discrete type of patterns, a cluster of For the purpose of elucidating.the difference of the disor-
e ) dered state from the perfect retrieval state, we compute the
neurons withé;=2m(1/Q) fire after a cluster of neurons

. 1 . 7 7 ISIs for various value of; as is described in Fig. 12. In the
wl|t£1 0; =$7T(O_/%) fire. Firing of a cfluster of_ nel:rong with 0 intervals A, <A, (1) and A, (2)<Ay, WherE the
0;=2m(0/Q) induces two types of synaptic electric cur- perfect retrieval is expected to occur, the ISIs take 0/@).

rents: the global inhibition as well as the excitatory Synapt'CAnalytically evaluated?,,.-dependence G/Q in Fig. 12b)

electric current that evokes firing of a cluster of neurons W'thshows the good agreement with the result of numerical simu-

0i1=27-r(1/Q). The emergence of the global inhibition pre- |4tions in Fig. 12a). Meanwhile, in the intervalAS, (1)
vents the immediate firing of the next cluster. After a certain_ 5_ (<AC (2), where perfect retrieval is impossible, we
n n 1 )

time interval the %Iobal inhibition decays, and then a clustelgeg the quite complicated distribution of the ISIs. It turns out
of neurons with6;'=2m(1/Q) begins to fire owing to the hat with change of the intensity of global inhibition two
excitatory synaptic electric current. As a result of the inter-yynes of phase transitions occur at the critical intensity
action of these processes, the gamma oscillation arises $¢ (1) andAS,(2).

that the pattern retrieval occurs with the long period. It turns
out that the occurrence of the gamma oscillation gives the
appropriate spike timings for memory retrieval of discrete
type of patterns though it is of disadvantage in the case of We have investigated associative memory neural net-
continuous type of patterns. works of spiking neurons interacting through two types of

VI. DISCUSSION
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@ 20 . ' Aicnt(Z) (sge theAim—A_pyr. phase diggram in Fig.)8Whe_n
the intensity of global inhibitiord,,; is weaker than the first
critical intensityA,,;(1), retrieval is successful as in the case

15 ¢ . o .
= of the continuous type of patterns. In addition, even with the
é 10 strong intensity of global inhibitiod;,;, perfect retrieval is
g realized provided that the intensi#y,,, is stronger than the

second critical intensityA”,(2). In this case, the gamma
oscillation arises, and it gives the appropriate spike timings
for retrieval of discrete type of patterns. With the intermedi-
ate intensityA?, (1) <A, <Ai(2) we have observed the
rather complicated firing patterns as is shown in Fig. 11.

(b) . ' It is noted that the crosstalk terfy, (P —1)WS(t) van-
ishes if the time windowV(At) satisfies the conditio44).
Although the results of some electrophysiological experi-
ments indicate the slight dominance of the positive part of
the time windowW(At) over the negative part, the presence

of the negative part is still profitable to reduce the siz&\bf
because of E¢(29). Although the function of the form like
the sombrero may also satisfy the conditigd), the present
. . form of the time windowW(At) is considered to be more
0 500 1000 1500 adequate to encode spatiotemporal patterns since the emer-
Aint gence of the excitatory synaptic electric current before firing
. of a neuron in the retrieval process is attributed to the posi-
FIG. 12. () Same as Fig. (&), except thatQ=10 andA,y  tjve part of the time windowV(At), while the fast decay of
=17000.(b) Ajy; dependence of/Q obtained from the present thjs excitatory synaptic electric current after firing is attrib-
analysis is plotted. We see the two types of phase transitions at thgted to the negative part. We have to, however, keep in mind
critical intensity of global inhibitionA7,,(1)~420 and Aicm_(Z) that the assumption that synaptic efficakycan take nega-
~1080. In the intervahii (1)< Ain <Ay (2), theperfect retrieval  tjye value as well as positive value may be somewhat im-
Is impossible. plausible from a biological point of view since synapses
among pyramidal cells are found to be excitatory in experi-
synaptic electric currents: currents via plastic synapses antents. The present learning ru(@6), which gives either
global inhibition. Based on the result of the electrophysi-negative synaptic efficacy or positive synaptic efficacy by
ological experiments, we have introduced the spike-timing-Chal’lCe, is introduced based on the rough estimation of the
dependent learning ruld6), which encodes spike timings of modification of synaptic efficacy in the Sec. Il A. This rough
neurons so that networks function as associative memory. estimation is somewhat tricky since some quantities diverge
To elucidate the stationary properties of perfect retrievalin its procedure owing to the absence of the dumping effect.
state, we have evaluated the periodical firing motion of neuRubinet al. has investigated the modification of synaptic ef-
rons analytically in the limit of an infinite number of neu- ficacy incorporating several types of dumping scheme so that
rons. Based on this method of analysis, we have shown thdfie synaptic efficacy is restricted to positive val66], and
the present form of the time windoW/(At) has the great such the approach may be required to get further insight.
advantage in encoding a number of spatiotemporal patterns In the present study, we have investigated the stationary
since the crosstalk term is proportional to the quan‘v_uy properties of perfect retrieval state analytically in the limit of

which has been shown to vanish owing to the negative and" infinite number of spiking neurons provided that the num-

positive parts of the time windowV(At). ber of encoded patterns is finite. The method of_ our analy_s_ls
We have examined to encode two types of spatiotempordjan Pe extended to the cases such as superimposed firing

patterns: continuous type of pattern®-G-o¢) and discrete patterns, in which the firing times of neurons are defined as

type of pattern Q=10). In the case of continuous type of %

patterns, perfect retrieval is realized with the weak intensity _ 1 =

of global inhibition, while it is impossible with the strong Gl =g tormod 2/ kT, i=1,... N,

intensity of global inhibition since the occurrence of gamma

oscillation prevents the realization of perfect retrieval. Ap- k=...,-2-1,012..., (48)

plying the present method of analysis we have drawn the

Aint— Apyr Phase diagram in Fig. 6, in which we have evalu-where pattern 1 is the target pattern and positive intéger

ated the critical intensitA,,; characterizing the phase tran- denotes the degree of superimposifigiking |=1 corre-

sition between the perfect retrieval state and the other statgponds to the case of perfect retrigvdh addition, more
Meanwhile, in the case of discrete type of patterns, wecomplicated firing patterns such as a mixture state, in which

have found two types of perfect retrieval state, which arewo or more patterns are retrieved at the same time, are ex-

characterized by the two critical intensitieS,;(1) and pected to be realized under an appropriate initial condition,

N
o

\

T/Q [msec]
=

\
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though theoretical treatment of them may be difficult to (@

achieve. We have shown that perfect retrieval is realized in on |
the region represented by PR in Figsa)éand 8a). Never- -
theless, what happens below the perfect retrieval phase re- -t
mains unclear for lack of the method of analysis. On the . LoD
basis of the numerical simulations, we have shown that dis- I T
ordered state can occur below the perfect retrieval phase in oo B
the case of discrete type of patterns as is described in Fig. 11. C e e e - -
Whether this disordered firing patterns is chaotic or not is of oo

interest, but is beyond the scope of the present study. 0 . . . .
It is worth noting that the learning rulg.0) is applicable 0O 200 400 600 800 1000
to a wide class of spatiotemporal patterns. For example, fol- t [msec]
lowing almost the same scheme as the present study, we (b)
would be able to encode spike trains generated by indepen- on [

dent Poisson process. In this case, the firing rate assumed in -
the Poisson process is expected to affect the quality of T g
memory retrieval, because the presence of the refractory pe- oo
riod of neurons prevents retrieval of the spike trains with the © Wl - e
high firing rate. It is of interest to investigate the properties -
of the retrieval process of the present model under the influ- .
ence of white noise. It has turned out that the occurrence of
the gamma oscillation contributes to the realization of re- 0r ‘ . ‘
trieval of discrete type of patterns, and investigating the sta- 0 200 400 600 800 1000
bility of such the gamma oscillation against noise is of par-
ticular interest. It is also of interest to study the retrieval
process of networks of neurons with heterogeneity. FIG. 13. We estimate the storage capacify= P¢/N based on
It seems to be difficult to carry out the rigorous derivationthe numerical simulations witth=2000. As a number of stored
of the storage capacity of the present model, though it mighpatternsP increases, the distribution of the firing times of neurons
be possible to evaluate approximate value of the storage checomes wider as a result of the increase in the size of the crosstalk
pacity by reducing the present model into networks of simplgerm. In the case ofa), pattern retrieval is still successful since the
phase oscillator§61]. In the previous study we have intro- loading ratea=P/N=0.007 is less than the storage capaecify
duced the method to reduce networks of spiking neurons int®n the other hand, in the case (b, pattern retrieval is impossible
the Hopfield models when networks of spiking neurons ex-since the loading rate=0.01 is beyond the storage capacit§.
hibits roughly synchronized firinf23]. This reduction tech- The value of parameters arQ=10, A,,=17000, and Ajn
nique might also be applicable to the present model to obtairT 1250-
the approximate value of the storage capacity when discretgqreq; represents the conduction delay of action potential
type of patterns are encoded and firing pattern of Neurong,m neyronj to neuroni. Even in this case, following the
becomes discrete. For the purpose of elucidating how global,; e scheme as RE23), the stationary properties of perfect
inhibition affects the retrieval properties of tt‘e network, We etrieyval state can be evaluated analytically provided that the
e o e 1, e ndependent random varaes obeyng 2
of patterns Q=10, A,,,=17000, andN=2000, see Fig. ecerlieil:]glfrobabdll_ny distributiorPq(d;). -
) Y . U y, we discuss the implication of the present study in
13). With the strong intensity of global inhibitionAin: e Jight of the experimental studies regarding place cells in
=1250), the storage capacity is estimated toatie-0.008, e rat hippocampus. It has been reported that place cells in
while with the weak intensity of global inhibitionA,:  the rat hippocampus begin to exhibit the environment-
=250) it is estimated to be*~0.006. It seems that net- gpecific distribution of center of place field after exploring
works with strong intensity of global inhibition are a little ggyeral environmenté.e., exploring a number of test cir-
more tolerant wi_th regarc_j to s_uch fluctuati_on_a_s_ crosstall&uits) [62—64. These results imply that the rat hippocampus
term than that with weak intensity of global inhibition. is capable of memorizing not only a single pattern but also a
In the present study, the occurrence of the gamma osCilyymper of patterns, and this aspect of the rat hippocampus
lation is assumed for the purpose o_f controlllng.splke timingSmay be well accounted for by the present model. In the
of neurons. On the other hand, it is also possible to controhresent study, encoded periodical spatiotemporal patterns are
spike timings of neurons by assuming the conduction delayetrieved with the different time scale depending on the in-
with respect to action potentials. In such a case, the spik&gnsity of global inhibition. Some recent results of experi-
timing-dependent learning rule takes the form ments begin to suggest that the spike sequences observed in
the hippocampus of running rats is replayed in a time-

t [msec]

1P compressed manner during sharp wave burst in slow-wave
Jj=w > W(s{‘—sf‘—dij), (49  sleep[65,21]. These results imply that the spike sequences
N =1 memorized in a running rat is replayed with the different
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time scale when rats is in slow-wave sleep. Actually, with thegiant axon[57]. In the present study, for the dynamics
parametersA,,,=50 000, A;,;=500, Q=10, 7,,, ;=5 f(V,Wq, ... W) and g;(V.Wq, ... W,) (j=1,...Nn),
(ms), the present neural network model exhibits the perfectve assume the Hodgkin-Huxley equations, which are written
retrieval accompanied by the high frequency oscillationin the form

(~150 H2 in spite of 7,y 1<<Tin1. Such high frequency

oscillation, namely, the ripple oscillation, is really observedCm f(V,Wy, ... \W3)

in the rat hippocampus, and some experimental results sup- — — —
port the hypothesis that the ripple oscillation is the retrieval = gnaWaWa(Va= V) + GcWa(Vi= V) + gLV V),

process transferring the memory stored in the hippocampus (A1)

to the other region$Ref. [66]). For a more complete under-

standing of a real nervous system it might be necessary to 91(V,Wq, ... W3)=ay(1-W;)—=B1W;,  (A2)

assume interactions among interneurons though we neglect

them for brevity in the present study. 92(V, W1, ... Wa)=ap(1=W5) = BoW,,  (AJ)
When a rat is running, a population of neurons in the

hippocampus exhibit the theta rhythm, which is roughly syn- 93V, Wy, ... Wa)=a3(1-W3)— BsWs,  (A4)

chronized firings of neurons with a characteristic frequenc;(/vith
of 7—9 Hz. To get more insight into the information process-

ing conducted in the hippocampus it may be necessary to pay 10—V

more attention to the role of the theta rhythm in the retrieval @;=0.01(10-V) / [GXF< 10 ) - ] (AS5)
process of the spatiotemporal patterns. In the presence of the

theta rhythm, the sequential firings of neurons are suppressed B,=0.125 exp— V/80), (AB)
during the period when the averaged activity of neurons

takes the low value. In such a case, we may need to assume 25—V

some kind of synaptic electric currents that act as a trigger to ap=0.2(25~ V)/ [ex;{ 0 ) - ] (A7)

retrieve the target pattern for individual theta cycles. Giving
a good account for these problems will be one of the future B,=4 exp —V/18), (A8)
targets of our study.
a3=0.07 exg— V/20), (A9)
ACKNOWLEDGMENTS

30—V
| gratefully acknowledge helpful discussions with Profes- B3= 1/ [ex;{ 10 ) —1], (A10)
sor Fukai and Professor Yamaguchi on several points in the

present paper. whereV represents the membrane potential, Sidand W,

the activation and inactivation variables of the sodium cur-
APPENDIX: THE HODGKIN-HUXLEY EQUATIONS rent, andWj the activation variable of the potassium current.

Hodgkin-Huxley equations are the ordinary differential The values of parameters _aré/ya=50 (mVv), Vi
equations with four degrees of freedom, which have beer® —77 (MV), V =—54. 4 (mV), gy,=120 (mS/cm), gx
developed to describe the spike generation of the squid’s-36 (mS/cm), g, =0.3 (mS/cm), andC,,=1(uF/cn?).
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