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Two-point microrheology and the electrostatic analogy
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The recent experiments of Crocket al. [Phys. Rev. Lett85, 888 (2000] suggest that microrheological
measurements obtained from the correlated fluctuations of widely-separated probe particles determine the
rheological properties of soft, complex materials more accurately than do the more traditional particle auto-
correlations. This presents an interesting problem in viscoelastic dynamics. We develop an important, simpli-
fing analogy between the present viscoelastic problem and classical electrostatics. Using this analogy and direct
calculation we analyze both the one- and two-particle correlations in a viscoelastic medium in order to explain
this observation.
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[. INTRODUCTION sphere allow one to calculate, using the response function,
Eq. (1), the fluid’s viscosity. This viscosity encodes all the
The utility of microrheology in probing the structure of rheology of the Newtonian fluid.
soft materials has been recognized for some tidie This We have already examined the validity of the generaliza-
experimental technique uses the position correlations of thetion of the GSER to a viscoelastic medium in previous paper
mally fluctuating, rigid probe particles embedded in a soft[5 6] and have found that in many experimental systems
medium to measure the response of those particles to aRere is a significant frequency range over which @gis a
external force[2]. From that response function one can de-good approximation to the single-sphere response function.
termine the rheological properties of the material. In additiOﬂAt frequencies where the Sing|e-partic|e response function
to this passive form of measurement, the response functiogeviates significantly from Eq(1), the breakdown of the
can also be obtained directly by applying an external force tgsSER can be attributed to one of two sourcés:inertial
the probe beads. Such active versions of the experiment hagfects at high frequencies, €i) the effective decoupling of
been performed using magnetic particled. It may be network and fluid dynamics at very low frequencies. We
pointed out that sedimentation experiments used to measufve found that inertial effects typically become significant
the viscosity of fluids can be thought of as the zero-at such high frequencies that we may safely ignore them
frequency limit of the active form of microrheology experi- here. Moreover, in this paper, we will incorporate the appear-
ments. ance of nonshear modes by giving our course-grained model
The fundamental assumption underlying the data reducof a viscoelastic medium a complex, frequency-dependent
tion in these measurements is the relation between the rgulk modulus in addition to its frequency-dependent, com-
sponse function of a beadigid, spherical particleto an  plex shear modulus.
externally applied force and the rheological properties of the Nevertheless, there still remain fundamental questions re-
medium in which that bead is embedded. The form of theyarding the interpretation of microrheological data. In this
single-spherdof radiusa) response functiom** () that  paper we address one such question: Given that the presence
is commonly used is the generalized Stokes-Einstein relatiof the probe sphere can locally perturb the microstructural

(GSER, which has the form and, therefore, the rheological properties of the medium, how
can one extract information about the bulk, unperturbed me-

D= 1 S 1) dium? In other words, we imagine that each probe sphere is

" 6maG(w) "’ surrounded by a pocket of perturbed material with rheologi-

cal properties diferent from those of the bulk. For microrhe-
whereG(w) is the complex shear modulus of the medium.ology to be a useful experimental probe, it must be possible
The superscript points out that we are considering the posto extract the bulk, unperturbed viscoelastic moduli of the
tion response of a sphere to a force applied to that sammedium from the measured correlation functions. However,
sphere. The subscripted indices are the usual vectorial indgiven that the probe sphere is coupled to the bulk medium by

ces. a pocket of material whose rheological properties are modi-

This response function owes its name to the fact that, fofied by the introduction of that particle, one must assume that
a Newtonian, viscous fluid wheil@(w)=—iwz, o*Y re-  the correlations actually measure some convolution of the
duces to the Stokes mobility of a sphere of radiug\ mi- perturbed and bulk material properties.

crorheological experiment in such a one-component Newton- The assumption of the presence of such pockets is quite
ian medium consists of measuring the positionreasonable in many complex liquids. The pocket, for ex-
autocorrelations of a sphere diffusing in the Newtonian fluid.ample, may be a result of the equilibrium distribution of
These correlations are controlled by the sphere’s diffusivitypolymers near an impenetrable bead in solution; or it may be
which is obtained from the Stokes mobility via the Einsteinthe result of quenched inhomogenities produced by the ac-
relation. Thus, the measured position autocorrelations of thdon of the probe during the formation of the medium. For
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example, in microrheological studies of polymeriZedctin,
monomericG actin is polymerized in a solution already con-
taining the probe particleg7]. The proximity of the probe
particle may locally affect the polymerization kinetics and
lead to a positionally dependeii-actin density near the
probe spheres that is independent of equilibrium effects such
as the steric interaction between the actin rods and the
probes. We do not consider this situation in detail, but later in  FIG. 1. Diagram of the simplest inhomogeneous elastic medium
this paper we do explore the consequences of polymer depleensistent with the assumed rotational symmetry of the problem.
tion near the surface of the bead in equilibrium. In this ex-Each rigid sphere of radius is surrounded by a spherical pocket
ample the steric interaction of the polymers with the probewith radiusb, b>a of material with elastic constant,u. The
particle produces regions surrounding the beads with a softéiulk material has elastic constants;u. A force F is applied to
shear modulus than the bulk. Recently, Crockerl. [8]  sphere 1on the lef). We seek the resulting displacement of sphere
have proposed a modification of the standard microrheologi2 (on the righj, Ar,. In the following we will assume that the
cal technique that can remove the effect of the perturbedeparation of the two spheresis large compared tb; the picture
pockets by studying the interparticle position correlations ofis not drawn to scale.

rather distant probe spheres. This claim can be reexpressed in

terms of the two-particle response function or complianceo depend on the rheological properties of both the bulk ma-

tensorai(j”’m) defined by terial and the perturbed material in the pockets. It is interest-
ing to note that the combination of the results of Sec. Il B
r(w)=a"™(rM—r™ )FM(w), (2)  and Sec. Ill C suggest that one can experimentally determine

the material properties of both the bulk and perturbed media

wherer(™(w) is the displacement of theth sphere ang(™  through a combination of single-particle and two-particle mi-
is the external force applied to tmath sphere. The claim is crorheology experiments.
that when the spherdsf radiusa) are separated by a dis-  Motivated by this realization we study in Sec. IlID a
tancer, r>a, ai(_n‘m>(r,w) for n#m depends upon only the more physical model of the probe particle in a soft, complex
bulk properties of the material. medium. We now assume that the rheological properties of

In this paper we demonstrate the validity of the Crockerth® medium vary continuously with the distance from the
hypothesis by solving the elastic problem of two spheredrobe sphere. Our previous algebraic solution to the two ma-
embedded in an inhomogeneous elastic medium. We calciierial problem(bulk and perturbed pocket matejialow has
late the mutual response function of these bead? and 0 be generalized to an integral technique. As an example, we
show, in the limit mentioned above, that this response func@PPly this teChnqu_‘e to a polymer solution with concentration
tion measures the bulk rheological properties of the mediun$ightly abovec® in order to study the effect of polymer

independently of the rheological properties of the regiondl€pPletion near the probe sphere. This problem is revelent to
immediately surrounding the two beads. recent experiments on DNA solutiof8]. Finally, we sum-

The remainder of the paper is organized as follows. Ifnarize these results and conclude in Sec. IV.
Sec. Il we identify an analogy between the viscoelastic prob-
lem that we posed and the physics of embedded conductors Il. THE ELECTROSTATIC ANALOGY
in an inhomogeneous dielectric. We use this analogy in com-
bination with well-known results for the mutual capacitance To keep our treatment as simple as possible, we will as-
of two spheres to elucidate the more complex viscoelastiSume that our viscoelastic medium is characterized by a local
problem. This heuristic analogy guides our approach to théelation between the stress; and the strainy;; described by
full viscoelastic problem that is studied in Sec. Ill. We ap-a local, frequency dependent, but possibly spatially varying
proach the full problem in stages by first considering a rheo€lastic constant tensdg;,, (x,w). The analysis we present
logically homogeneous material in Sec. lll A and then byhere will have to be modified if the local stress-strain relation
studying, in Sec. Il B a simple model of a rheologically does not hold as is argued to be the case in systems of ex-
inhomogeneous material consisting of the bulk medium andperimental interest such as actin netwof#§]. Under our
“pockets” of rheologically perturbed material surrounding assumptions, the equation of force balance in a linear vis-
each probe sphere as depicted in Fig. 1. We show, in the limgoelastic medium can be written as
that the radii of these anomalous pockets are small compared
to the separati(_)n of the probe_sphergs, that_ t_he interparticle — [ (Kijia (%, @) g 1= fi(X, 0), 3
response function can be obtained with a minimum of com-
putational effort through the use of a global property of the

stress tensor. Most importantly, the leading term in the interwhereu'(x'“’) is the local displacement variable ahx, )

particle response function is determined solely by the propiS @ local force density at. We compare the above expres-

erties of the bulk medium. Following up this result we turn sion to the Gauss’s law in an inhomogeneous dielectric me-
to the more computationally complex problem of finding the Y™
single-particle response function in this composite medium.

This is accomplished in Sec. Il C. This result will be shown —dj[ €k (X, ) I P(X,w) ] =4mp(X,w), 4
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TABLE I. Correspondence between the electrostatics and vispend only on the bulk values of the elastic constants and not

coelastics. on their values in the anomalous shells around the rigid
spheres, we will calculate the off-diagonal component of the
Electrostatics Viscoelastics inverse capacitance tensd,,.,n#m, for this system of
Potential(x) Displacements; () two spheres and check t@t it does not depend on the values
Charge density(x) Force densityf;(x) of the dielectric constante] near either of the conducting
Dielectric tensore;; (X, w) Elastic tensokKj (X, ) spheres.

To compute the mutual capacitance of two conducting
) _ . spheres one generally employs the method of images to it-
where € (x,w) is the local frequency-dependent dielectric graively fix the boundary conditionsE const) on each
constant tensorp(x, ) is the frequency-dependent charge snhere 'in turn. This procedure leads to a convergent series
density, andg(x, w) is the electric potential at. In Eq.(4)  for the capacitance tensor of two conducting sphéids.
we have assumed, as we have done with the elastic constagje apply a similar technique. To obtain just the component
tensor, that the dielectric tensor is local. We consider they the two by two inverse capacitance matrix that we seek we
above electromagnetic problem at low enough frequencies sgj|| study the problem where one sphefgayn=1) has a
that that we may ignore the transverse electric fields. unit charge on it and the other sphégay m=2) is charge

Compagng Eqﬁ_(Bgl and (‘}I')’k\)llve lnote thst tr:je fo||9v¥?]g neutral. The matrix element in questioi{,}) is then simply
Cﬁrrespcén e.rlce. 2 flse.e tha € )I may Ie :{atvr\:n. f the potential of sphere two. Furthermore, since we intend to
charge density in Eq4) is the scalar analog of the vector show that this component of the inverse capacitance tensor is

source,f;(x,w) in Eq. (3). Similarly the electric potential, . . . . —
¢(x,w) in Eq. (4) is analogous to vector displacement field, mdependent qf the value of the inner dielectric cpnstamt (
u(x,w) in Eqg. (3), and the position-dependent dielectric ten-Only n thg I'mk')t tr;]atr':he s;r)]here-s%here sepa(;a(lohs large

o Do ; ; compared to both the sphere and cavity radii, we may trun-
sor, € (x,w), has as its analog in E¢8) the elastic constant cate the series generated by the method of reflections at the

tensor,Kjjy (X, o). . . . : ;
: P - ._first term. The higher-order reflections will contribute correc-
Finally, we note that the rigidity of objects embedded in jons to our result that are smaller by factorsadt. or b/L.

the inhomogeneous viscoelastic medium requires that th . . ) ) ,
g 9 'e will return to the issue of higher-order correctionsii

displacement fieldi be constant on their surfaces. Therefore, . . o '
in order to maintain the analogy between the viscoelastiéjue tc.’ subdominant te(ms in the elastic displacement field
gnd higher-order reflections.

roblem and the electrostatic problem, we study collection . .
P P y At the lowest-order reflection we may ignore sphere two

of embedded conducting objects so that the electric potential |’ ; -0 L
is constant on their surf%ceé P while we discuss the free and polarization charge distribution

Recall that the goal of our calculation is to determine theo" sphere one and its surrounding cavity. That distribution is

compliance tensor introduced in E®). This response func- equivalent to a unit charge aF the center of sphere.one and
tion relates a set of forces applied to rigid objects embeddeH’V0 shells of bound, polarlzatlo_n charge. Or_1e shell is at the
in an (in general inhomogeneoudielectric to the displace- interface of th_e sphere_and the inner d|_e|ectr|ee) and th?
ments of those objects. In order to discuss this calculation iﬁ(_acond shell is at the mterfac_:e c_>f the inner and outer dielec-
terms of the simpler electrostatic problem, we need to contric (r=b). These. two polarization chgrge dens't'%””
sider the electrostatic quantity that is analogous to the <:on1"Zmd Touter: respec_tlvely, are _both s_pherlcally symmetric, and
pliance tensor. This quantity is the inverse capacitance tens e to the neutrality of the dielectric layer<r <b, we have
of a collection of conducting objects embedded in an inhoN€ relation
mogeneous dielectric. Since the electrostatic problem is a
simpler, scalar version of the viscoelastic problem, we begin 2 2 _
with an analysis of the that system. Afterward, insights %dﬂa Tinner " %dﬂb Touter=0 ®
drawn from the electrostatic problem should lead to compli-
mentary results in the elastic problem, which remains thélhus, at distances>b, including the position of sphere two
actual problem of interest. and its surrounding pocket, the electric field due to this
We study a particularly simple realization of the so farcharge distribution is simply that of a unit charge at the cen-
arbitrary inhomogeneous dielectric medium. The simpleter of the sphere one.
model is meant to begin the study of the “pocket model” We now consider the potential of sphere two in this elec-
discussed in Sec.(See Fig. 1 from within the electrostatic tric field. Because the spheres are conductors, the potential of
analogy. We consider that the inhomogeneous dielectric isphere two is the same as the potential at its center. That
made up of two materials. The bulk material has dielectricpotential is due to the linear superposition of the potential of
constant ;(x) = j;e. However, in concentric pockets a unit charge a distandeaway (at the center of sphere one
around the conducting spher@s radiusa) there are spheri- and that of two spherical shells of polarization charge cen-
cal shells of material {<r <b) with a different dielectric tered on sphere two. One shell is at the interface between

constant:e;; (x) = §;; . Hereafter, we assume that the dielec-sphere two and the medium with dielectric constanthile

tric tensor is diagonal and suppress its tensorial indices. second shell is at the interface between that dielectric mate-
To support the notion that the off-diagonal elements of therial and the bulk dielectriéwith dielectric constang). These

compliance tensorai(j”'m), n#m, in the elastic problem de- surface charge distributions, unlike those of sphere one, are
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not spherically symmetric. However, the surface integrals our solution of this problem is aided by two basic poirits:
the two polarization charge densities over the two surfacethe solution must be azimuthally symmetric, diid the so-
vanish independently of each other. Thus the net effect on thgition must be linear inez. With their aid, we immediately
potential at the center of sphere two due to each shell ofyrite the most general possible form of the displacement
polarization charge density is zero. The potential at the cengg|d

ter of sphere two is then solely due to the distant charge on

sphere one; we find that the potential of sphere two is simply I cosé
1/(4mel). To lowest order in reflections we have shown that u(x)= En: An

z
o +% er—m. (11)
l—zlzL T (6)  We have chosen these two sets of terms since they constitute
4mel the only solution of Eq(8) that are azimuthally symmetric.
As we will see,A,, and B,, are proportional tce so thatu
where the additional term@ot shown come from higher-  satisfies the requirement of linearity in We now put our
order reflections. These higher-order reflections will generiansatz, Eq(11), into the partial differential equation, E(B).
cally depend ora, b, ande. A more detailed discussion of Writing the radial f) and polar (9) components of that ex-
this derivation in addition to a discussion of the form of the pression separately we find
higher-order reflections is given in Appendix A.
It is worthwhile at this stage to point out that to the same n
level of approximationlowest-order reflectionsthe poten- M(n,g)-(B ):o, (12)
tial on sphere one due to a unit charge on sphere one does, in "
fact, depend on the properties of the inner, dielectric layerwhere the X2 matrix M(n,¢). depends on the Lanmon-
The potential on sphere one given by the diagonal element @ftants only through the dimensionless ratjes (u+\)/ .

the inverse capacitance matrix is This matrix is given by
3 4mabe [(1+)(n—=2)(n+1)—2] [(1+Hn(n+1)—2n]
Cii=——— 7% (@) (1+0)(n—2)—n (1+{)n—n?
bta ;_1) 13

A necessary and sufficient condition for EG2) to be satis-
Once again, the additional terms not shown come fronfied for nontrivial values ofA,,, B, is that defM(n,{)=0.
higher-order reflections. There are four such solutions=—2,0,1,3. By finding the
Based on this simple analysis it seems reasonable to exigenvectors associated with these eigenvalues we may write
plore the elastic problem in more detail to determine if thisthe most general solution of E(B) consistent with the two
basic result holds in the actual problem of rheologicalconditions discussed above,

interest.
aC; . .. ac, . - -
U(X)= ——[ y4r cosf+z]+ [3r cosf—z]+Csz
I1l. THE VISCOELASTIC PROBLEM r r3
A. The homogeneous medium r2
4 ~ ~
We begin the study of the viscoelastic problem by consid- + 2 [ y2r cosé—z], (14)

ering the displacement field produced by the displacement of

a rigid spherical particle embedded in a homogeneous, elagzhere the constants,, are determined from boundary con-
tic medium. A sphere of radiusis displaced byz. We now  ditions and the two dimensionless constants
calculate the resulting displacement field.

Local force balance in the medium demands that the dis- 1
placement field obey the partial differential equation Y7344 (15)
— 2
R 72:2 3—2¢g)° (16)
whereun andA are the two Lameonstants characterizing the
isotropic, elastlp_ medium. Equatig®) is supplemented by " are functions of the Poisson ratio:
boundary conditions at the surface of the sphere and at in-
finity 1 A
) I (17
u(|x|=a)= ez, 9
Since the Poisson ratio can vary betweett and 1/2[12],
lim u(x)=0. (10) 1/7<y;<1 and 1/X y,<2. In the incompressible limit\
x| —o0 —w)o—1/2, y;—1, andy,— 1/2. Since we are consider-
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ing complex, frequency-dependent bulk and shear modulinhomogeneous elastic medium by the simple, anomalous

o=o(w) depends on frequency and is in general complex.pocket discussed in our study of the analogous electrostatic
Examining the solution we see that the first term on theproblem. We assume that the spheres are surrounded by a

right-hand sidgRHS) of Eq. (14) decays only as t/away  spherical pocket of materi&bf radiusb) with elastic prop-

from the rigid sphere. The second term is a dipole field. Thesrties characterized by the Lameefficients\,u (see Fig.
third term is simply a constant shift of the entire medium thaty). The bulk material, far from the rigid spheres has Lame
is clearly a solution, but cannot contribute to the stress tenconstantsa, .

sor. The fourth term grows ag as one moves away from the Using Eq.(14) we write down solutions to the force bal-

Sphere. In order to SatiSfy the bOUndary conditions at infinityance equations that app|y in the inner’ anomalous region, and
for the problem under consideration we must €8t=C,  the outer bulk material, respectively,

=0. The remaining two constants are determined by the

boundary conditions at the surface of the rigid sphere. We aC| . . ac, . R o
find u'(x)=T[y1r cosf+z]+ ——[3r cosf—z]+C3z
r
3 ;
= £\ 32 (0 cosO+ mp?2)— i (37 cosO-2) Car? —. -
u(x) = I (711 cosO+ 1,2) 771r3( , i [y, coso—2], 21)

(189 a’

wheren;=1/(5—60) and n,=(3—40)/(5—60). We note
that in the incompressible limit, the displacement field [37 cosf— 7]
around the displaced sphere takes the form of what would be r3 '

the perturbation of the velocity field of an incompressible (22)
fluid produced by the same sphere inserted in a uniform flow

in the z direction (at low Reynolds numbgr = o , . .
Since we wish to calculate the response of the sphere tf the above equatiory, , are identical to they's defined in
an applied force we need to determine the force applied t&ds. (15—(16) with the Poisson ratio equal to that of the

the sphere that resulted in the imposed displacement.of inner material. Usinog the boundary cond.ition_at i”“”i.ty: Eq.
To do this we calculate the restoring force of the medium on(lo)’ we have selCg,=0. _We are left with six remaining
the sphere. The external foréeis the negative of the force constants that are determined by two boundary conditions at

the medium exerts on the sphere. We can calculate the Iatté'?e sy_rface of th_e spheisee Eq.(9)] qnd four bou'ndary.
. A conditions at the interface of the two different elastic media,
force, which by symmetry must point in tredirection by

intearating the stress tensor over the surface of the sphere x|=b. These four conditions enforce the continuity of the
Integrating v u P splacement fieldu' (|x| = b) =u®°(|x|=b) and stress tensor:

bCy . . b3CS
ul(x)= T[W cosf+z]+

obtain oy (IX|I=b)=07(|x|=b),j=r,6 at that interface. These
conditions are sufficient to determine the six remaining con-
F,=— j; a?dQ[ oy, cosd— o, ,sind]. (190  stants.

Recall that we wish to show that the long-range part of
From this result we obtain the response func{iah the interparticle response function measures the bulk mate-

rial properties of the medium independently of the local

Jde o(w)—1/2 modification of the material’s elastic properties by the rigid
a(w)= 9F, 6ram(w) 2(o(w) = 1)} (200 spheres. In order to do this we first concentrate on the part of

the displacement field°(x) that varies as t/ We will inde-

We note that in the incompressible limit(w)— 1/2, we pendently solve for the coefficient of this term. Such a solu-
recover the form of the Stokes mobility of the sphere in anfion allows a good approximation to the displacement field in
incompressible fluid. The only difference between that resulthe far-field regime and will test the ideas discovered via the

and Eq.(20) in the incompressible limit is the substitution of lectrostatic analogy. .
the shear modulugy(w), for iw7. To calculate the coefficiens]"' we employ a global con-

straint on the stress tensor: the integral of the flux of the
stress tensowr;;dS; over any closed surfadgvith local out-
ward normal parallel todS;) enclosing the rigid sphere,
which applies a forc& to the elastic medium, must be equal
Having solved the single-sphere problem, we are in a poand opposite to that applied force. The integral of the stress
sition to extend the analysis to the two-sphere response fungensor over such a surface isF. Thus we may write this

tion in a spatially inhomogeneous elastic medium. As in thecondition, for a particular spherical surface of radiysvith
analogous electrostatic problem, we approach this problerp~ 3 in the following form:

via the method of reflections. To compute the response func-
tion to lowest order, we simply need to calculate the dis-

placement field at the location of the second sphere due to a
force applied to the first sphere. Once again, we model the

B. The inhomogeneous medium: The results
for distant particles

F,=— 35 r2dQ o2, (23)
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where choice of the appropriate form of the stress terggr, Wwhere the response along the line of centers is given by
or ay,, is determined by magnitude of i.e., whether the
surface of integration is contained in the inner region or in _ 1
the bulk material. In the above equation we have taken the a(r)= Amrp(w)’
force on the sphere to be in talirection and the integral is
over all solid angles. Counting powers roin the stress ten- and the response perpendicular to the line of centers is
sor and noting that-~ Vu, we find that only the part of the
stress tensor coming from the term unproportional toC} a, (r)= 1
can contribute to the result. This term, which depends on the + 87ru(w)
radial distance from the sphere as?lis the only one that
will lead to anr-independent result on the RHS of E§3).  We have explicitly written the frequency dependence of the
Since the left-hand sidd.HS) of this equation is clearly Lameto emphasize the applicability of this calculation to the
independent, the other contributions to the stress tensor corsemplete viscoelastic problem. We note, however, that by
ing from C,, n>1 must all vanish under the angular inte- neglecting inertial terméwvhich has been justified previously
gration. in the single-sphere case at frequencies of experimental in-
From the global stress constraliitqg. (23)] and our solu- terest[6]), we are here imposing a more stringent require-
tion for the displacement field we determine the coefficientment. The above result assumes that two spheres are close
C{ to be enough and that there is no significant phase shift between
the oscillation of the two spheres at the probing frequency
i.e., |r|<clv, wherec is the speed of sound in the medium.
. (249 Even for soft materials with relatively high compressibility,
it is possible to have the necessary separation of length
) scales,b<r<c/v for Egs. (25—(27) to hold at all experi-
The analogous coefficient in the inner regi@l,, is given mentally accessible frequencies.
by the same expression, however, the Lauefficients take Finally, it is interesting to observe that in the incompress-
the values of the inner regiom,\. We may use the above ible limit A(w)— 2, the ratio of the response along the line
result to eliminate one variable from the set of six that mustof centers to that perpendicular to the line of center:is.
be determined to completely solve the present elastic probFhe experimental determination of the deviation of this ratio
lem. Before we continue this program, however, it is usefulfrom 2:1 measures the compressibility of the material at the
to calculate the far-field part of the viscoelastic, interparticlefrequency of observation.
response function. We have already seen, from the electro-
static analogy, that only the dominant long-range part of the ¢ gingle-particle response in the composite medium
sphere-sphere interaction is expected to be free of the influ- . i
ence of the anomalous pockets. We seek, therefore, to dem- It_ls interesting to compare the above results for the inter-
onstrate, in a manner analogous to the problem of the invergearticle response function in the composftero shel) me-
capacitance of two conducting spheres in an inhomogeneoiium with the single-particle response in the same medium.
dielectric, that the interparticle response function is indepenEom the electrostatic analogy we expect to find that the
dent of the rheological properties of the local pockets surSingle-particle response function depends on the elastic prop-
rounding the particles in the viscoelastic problem. erties of both types of materials making up the composite
To do this we again use the lowest-order term in the serie@edium. Below we will show this to be the case. That cal-
solution of the two-sphere problem that is generated by thé;ula_tlon also demonstrates that th_e comparision of the_ single-
method of reflections. This lowest-order term simply givesParticle response to the two-particle response functions al-
the displacement of sphere 2 in response to an applied ford@Ws one to determine the material properties of both
on sphere 1 as the value of the displacement field at th@'aterials making up the composite medium. This result
location of sphere 2 due to the displacement of sphere Ehows, at least Wlthln the simplified pocket model of the
where that displacement field is calculated without regard tgnhomogeneous medium, that measurements of the probe
the boundary conditions on sphere 2 or its surrounding shefparticle aut.ocorrelatm.ns combined with two-p0|r_1t measure-
of perturbed material. Thus the solution of the far-field partments of distant particles completely characterize the bulk
of the single-sphere problem is precisely the result that wéhaterial and perturbation zone surrounding the probe. In a
need. The corrections to this result coming from higher-ordelater section we will revisit this result and show that even in
reflections will be smaller than the previously calculated part MOré physical model, in which the material properties of
by a nonzero power di/r, wherer is the separation vector e medium vary continuously with distance from the probe,
between the two spheres. These corrections are discussed!irs Still possible to extract information about the perturbed
Appendix A. Ignoring higher-order corrections coming from r€gion(as well as the bulk propertiggom a combination of

both higher-order reflections and the dipolar part of the faroN€- and two-point correlation measurements. _
field u. we find In order to solve for the single-particle response function,

we must continue along the lines of the previous section and
(21) “n R solve for the complete deformation field in the two-shell me-
aij 7= a)(Nrirg+ay (N8 —rir), (25 djum surrounding a particle. As above we put a fofee

(26)

M) +3u(w)
MNMow)+2u(w)

. (27)

_F
"~ 8mau

AN+3u
N+2u

C?
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=Fz on the particle and determine the deformation field. I Z;

From the value of that field at the surface of the probe sphere Z(y1,v2,B)= Z,’ (34
(Ir|=a) we calculate the displacement of the probe and thus

the response function in question. Returning to Eg%) and  where

(22) we note that there are now only four undetermined co- o N .
efficients: From Eq(24) we already knowC], C in terms 2,=6B%(y1+ y2)pr(k—1)+ (y1+3)pr(y2—2—2y,K)
of the applied forcd=. We now continue with the simple but _ _

tedious task of matching boundary conditions at the interface ~ +2B8%y2(xk—1)[p(y1+3) = kp(y1+3)]

of the two elastic media and at the surface of the sphere as

discussed in the previous section. +BL(y1+3)(y2=2)p—(3+ 572+ y1(3+ y2) Ipx
At the surface of the sphere we find that — — — - — —
e sprere W + P94y, y1+6(y1+ 7)1+ B3 (va— B)k
C,—CL+CL—CL=¢, 28 — -
et 29 <{(~p(v2+ DPLL+ 724k~ )}, @9
71C1+3Ch+ 7,C,=0, (29  and
wheree is the displacement of the sphere in theirection. 2= 4{y,[1+28%(k—1)— 2k}, (36)

The above set of equations actually contributes only one re- _
lation among the remaining four unknown coefficients sincewith «=u/u and
Eqg. (28) only exchanges one of these unknowns for the, as
yet, undetermined sphere displacement. It is this quantity, _A+H3u
however, that we need to determine the response function. p= N+2u’
From the continuity of the displacement field at the
interface of the two elastic media £ b) we find two more  there is a corresponding tenthat applies to the material of
relations, the inner region.
_ _ _ _ It may be checked that the above expressiggs. (33)—
C9—-C=pC|—p3C,L+Cy—pB2C), (300 (36)], reduces to the simpler result for the single-particle
response function in a homogeneous medium (&g, when
0 0_ oo i 3i -2 A the elastic properties of the two shells are equated. As ex-
NC+3C=pnCit36°Cot B TyoCar (3D pected the full result is a complicated function of both the
elastic constants of the inner, perturbed shell of the material,

For the remaining relation needed to specify all four un—an%t?ﬁ lrjange of tr}etr;])erturbaTdmé f the ab it and
determined coefficients, we require the continuity of one oth because of the complexity of the above result an
V\%ecause many applications of the these techniques apply to

systems that are essentially incompressipl@ymeric solu-

tions and melts fall into this categari is worthwhile to also

record a simplier version of the response function that ob-

o o — — 3ni tains when both the perturbed and the bulk material may be

HIC1(1=y1) —6Co]=p[B(1~y1)Ci+—6B°C; considered to be incompressible. In that limit we find that the
+,3_2(2—72)Ci4]- (32) correction factor takes the form

(37)

whereB=Db/a.

media ¢=b). We choose to considew, = u[dgu,/r
+d,Up—U,/r]. This yields the condition

. . 6k'24+108%k" —9B%’ k+ 2k K"+ + k—3k?
We now have four equations to determine the unknown co- 4Bk 108 IB7wc st 24"+ 3B(2+ K= 3K7)

efficients:C}, 5 ,,CS and another equation to eliminate one of 2[K"—2pB°k’]
these four coefficients in favor of the quantity that we seek— (38)
the displacement of the spheke, The response function for

the single sphere in the two-shell medium is then given by

wherex’=«k—1 andk”=3+2«.
We end this section of the paper by noting that the above
c calculations not only give the complete result for the single-
== ai(jl,l): 5 ,u,az(h’yz”g)é” ) (33) ggmcle response function in the two material cpmposne me-
ium but they also determine the next-to-leading order cor-
rections for the interparticle response function of two spheres
The response function has been written as the product of thg the same composite medium. We discuss this point further
single-particle response in an incompressible bulk materigh Appendix A. Here we record the coefficient of the dipolar
with shear moduluge and a correction factarZ(vy,,y,,8), termin the displacement field. Based on arguments presented
which depends on the ratio of the radius of the anomaloug Appendix A, it can be shown that this dipolar term gives
pocket to the radius of the spherg=b/a, andall of the the next-to-leading order correction in the two-particle re-
elastic constants. The correction factor in terms of the consponse function for distant particles. The dipolar coefficient
stantsy, , [defined in Eqs(15) and(16)] is given by of the displacement field in the bulk mediurg@g) has been
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completely determined already in the course of our solution

of the single-particle response function presented above. We .
have found that in the case where both media are incom-
pressible it takes the form %

F o (1—k)(3+28%+58% R N,
C3= (39) "™y

~ 8mbu 3(3+2k)+685(1—k) |

As expected on more general grounds, this next-to-leading
order correction depends on all the elastic constants and the M
ratio of pocket radius to the sphere radius. r *

n

D. Differential shell method

A more physical model of the anomalous region surround- _ _ o .
ing the probe particle allows for the rheological properties of F_IG._2. lefere_ntlal shell method: Using stress and displacement
. . . . continuity at the interface of theth and (+ 1)th shells we deter-
the medium to varycontinuouslywith distance from the

be. | der t ¢ titi fits to th inal mine the coefficients of displacement fiell™! in terms of the
Probe. In order to periorm quantitive Tits 10 € SINGIe- .o tricients of the displacement field. Later, taking the thickness

particle response function measured in a complex fluid Vig e shelis to ZerQAT =t ,, ;I —0 we arrive at a set of differ-

microrheology, it is necessary to fit the_ data to f’:‘ C_Ontinupu%ntial equations governing the variation of the displacement field
model of the anomalous zone. As we will see, this fit requires.qefficients—theC's.

a theoretical model of the variation of the complex material's
rheological behavior as a function of distance from the gqiq components of the field is
sphere. In this section, we first present a general set of equa-

tions describing the variation of the four displacement-field 2a 233 1(r,\2
coefficients with distance for a given functional form of the r_AC1+ — AC,+AC;3— 5(5) AC,=0, (40
variation of the shear modulus with distance from the probe: n n

w=pu(|r]). As an illustration of this method we then apply
our procedure to the case of a polymer solution at concerwhereAC;=C{'"*—Cf'. Taking the limit of thin shells, i.e.,
trations nearc*, the overlap concentration.

Having solved the two-shell model above, we can now ~ 4G
generalize this technique to many shells. To compute the ACi_NW
displacement field in the continuous variation limit, we di-
vide the material into spherical shells of infinitesmal thick-
nessAr, centered on the probe particle. Within each spheri
cal shell we may take the Lanemefficients to be constant.
Now we can determine a relation between the set of displace- 2_a-C N 2_6\3-C G o
ment field coefficients in thath shell (C'},i=1, ... ,4) to rot o322
those of then""* shell (C*'},i=1,...,4) byusing the
same set of boundary conditions at the interface of the twq)sing a similar procedure to match thg parts of the dis-
shells as have been applied abdgee Fig. 2 Taking the  placement field we find the differential equation
thickness of the shells to zero we determine derivatives of
the displacement field coefficients with respectrtdrhese . a.
linear differential equations can be integrated to give the Cy=—-C;+
variation of the displacement field coefficients, and thereby '

determine the form of the stain field. The single-particle re- h - . f hi
sponse function follows naturally. For the two-particle re- 1€ remaining two equations come from matchingdie

sponse function, we assume that there still exists the larg&Nd7rs COMponents of the stress tensor. We recall from Sec.

separation of length scales between the distance separatngC [see the discussion following Eq28) and (29)], how-

the two probe particles and the distance over which there i§Ve"; that only one more equation is needed to determine the

an appreciable variation of the elastic constatte size of coefficients since we already know the functional form of

the anomalous zomeThe two-particle response function, Cy,

which does not depend on properties of the anomalous zone,

therefore, still applies. Below we derive the differential equa- C.= F

tions for the displacement field coefficients for the case 1" 8rau(w)’

where the material is everywhere incompress[iNér) =

for all r]. from the same global property of the stress tensor applied in
Matching the displacement field at the interfdce=r, the two-particle problem. We again choose to enforce the

we find two equations. The first coming from matching thecontinuity of o, 5, which, in the thin shell limit, yields

=ArC;, (41

n

r=r

we arrive at the differential equation

r\2.
5) C,=0. (42)

3.
Co+

2

r .
C,. (43)

a

r

(44)
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a r
63C2=5 5Ca

a3

o

. r. u

We now find two differential equations for the variables

C, and C, by eliminating C5 in Eqg. (40) using Eq.(42).
Furthermore we use our solution f@; to write the set of
differential equations in the following forrfafter undimen-
sionalizing:

X5

, Voon x* d ( Mo )
B2(x)+ 5 BiX) =~ 73 4% (X)) (46)
) X, d m x°
Bz(x)—ZB4(x)=—&(ln %) Ba(X) = 77 Ba(x) |,
(47)

wherex=r/a, -’ indicates a derivative with respectxpug
is @ modulus scales=r/a, and

PHYSICAL REVIEW E 65 011501

with Eq. (43) allows the determination @5 at the surface of
the sphere in terms of an integral over thmiquely deter-
mined functionsB, andBy,,

Bg<1>=—f{

The solution is effected by choosifgy(x=1) [using Eq.
(49) to determineB,(x=1)] and then integrating the differ-
ential equations from=1 to infinity. B,(x=1) is chosen so
that this function goes to zero at largeGiven this solution
for B, andB, one can integrate E¢52) to determineB(1).
Finally, with the full set of initial values oB,, B3, andB,
one can evaluate the response function using(&@).

We further organize this calculation by defining the effec-
tive shear modulus of the medium to be that value of the
shear modulus needed to write the response function in the
form that it would have taken in an incompressild@mo-

Mo

1 ! 2D/
) + —B5(2)+2z°B,(z) { dz

1d
Czdz 2
(52

8mauyC; geneousnaterial. In other words, we definey; by
= F (48)
€ 1
whereF is the magnitude of the force applied to the sphere. F % Bmapes 53

We find it simpler, once again, to study the response function
by fixing a known force on the sphere and computing itsHere the vectorial indicies have been suppressed since, by
displacement. rotational symmetrye"~ &; for an isolated sphere. With

Equations(46) and (47) can be integrated from the sur- this definition we write the effective response function in
face of the probe spherg=1. Having a set of two first- terms of the initial values d8,, B3, andB, and the modulus
order differential equations we require two boundary condiscale as
tions to determine a unique solution.

There are two boundary conditions coming from the Meft Mo
specification of the displacement field at the surface of the wo 3| wm(l)
sphere. In general, this vectorial equation specifies two inde-
pendent relations, however, since the magnitude of th&Ve note that in the homogeneous medilg=B,=0 and
sphere’s displacement is, as yet, unknown, we obtain onlyy/u(1)=1. In addition, we find thaB,=—1/3 so that
one boundary condition for Eq&46) and (47), Mei= Mo @S required for consistency.

As an example of the differential shell method we con-
sider the case of a semidilute polymer solution—see Appen-
dix B. To apply the methods of one-point microrheology to
this case, one would measure the fluctuating position of a
probe patrticle in the liquiddue to Brownian diffusionand
compute from the position autocorrelations the diffusivity of
that probe. Using the Stokes-Einstein relation one could then
extract a measurement of the viscosity. However, such a
measurement should be an underestimate since the probe

eéphere produces a spherical pocket of polymer-depleted so-
the magnitude of the sphere’s displacemerih terms of the : P :
B amplitudes. We still need another boundary condition toIUtIon surrounding itsee Appendix B for detailsThe local

. . . polymer concentration will approach its bulk value essen-
specify a unique SO.IUt'On of Eqe46) a_nq (47). The secono! tially exponentially with distance from the sphere with a
boundary condition is thd,, the coefficient of the quadrati- “healing length” controlled by the polymer correlation
cally growing term in the general solution of the displace-

. ; . o length in the solution. This polymer-depleted shell of fluid
mlent f|elg with azimuthal symmetry, must vanish in the Iargehasga lower viscosity than tr?atyof the b%lk. We take a con-
r limit. Thus

tinuous polymer concentration profile suggested by self-
consistent calculatiorf43—-15 and numerically integrate the
differential equations for the case that the polymer correla-
tion length is 30% of the sphere radius and the bulk solution
Similarly, we know that there should be no constant term inviscosity is four times the value of that of the solvent. The
the displacement at large distances from the sphere sgariation of the coefficient8,, ... ,B, with distance from
lim,_..B3(x)=0. This boundary condition in combination the probe sphere are shown in Fig. 3.

-1
B2(1)+B3(1)—By(1)

4

(54

Mo

1
B,(1)+ 534(1)=—m-

(49

The second equation

_ Mo €

~By(1)+B(1) ~By(1)=8muoar

lim B4(x)=0.

X—00

(51)
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I SARARRRARERE RRARS APPENDIX A: CORRECTIONS FOR CLOSER PARTICLES:
HIGHER-ORDER REFLECTIONS AND SUBDOMINANT
] TERMS IN THE STRAIN FIELD

There are two classes of corrections to the result of Sec.
, ] Il B for the interparticle response function of two distant
1 15 2 25 3 35 4 spheres. These corrections produce terms that are higher or-
rla der ina/R whereR is the(large separation of the two probe
15 - s spheres. In general, these corrections depend on all the elas-
1 2 3 4 tic constants of the composite medium. It is, therefore, im-
r/a portant to at least estimate the relative importance of these
FIG. 3. The variation of the dimensionless displacement field€'mS in order to determine how distant two probe particles

coefficients computed numerically. The characteristic length scal@ust be in order for their correlated fluctuations to be gov-

for the variation of the polymer concentratigthus the solution ~€rned primarily by the bulk elastic constants. _
viscosity) is 0.30 in the dimensionless unit$éa. The inset shows The two classes of corrections are due to either subdomi-

the variation of the fluid viscosity with distance from the sphere. Nant terms in the displacement field of sphere one at the level
of the zeroth-order reflectiofin which we ignore the role of
) . . ) . second sphere in determining its subsequent displacé¢ment
Using Eq. (54) we find that indeed the single-particle corrections to the displacement field that result from higher-
measurements suggest that the viscosity is smaller than itsrder reflectiongiteratively correcting the boundary condi-
bulk value. For this particular case the effect is small—thetions of u at the surface of each sphere and pocKet this
viscosity measurement coming from one-point microrheol-section we determine which of these effects first presents
ogy is about 73% of the actual bulk value. If the depletiondeviations to the far-field results presented earlier. We have

zone were larger compared to the sphere radius, the effect efready seen that subdominant corrections in the far-field

. ) . . - . . . 73
the anomalously small value of the solution viscosity in the@'® of a dipolar form, decaying with distanceRs®. These
depletion zone would be more significant. corrections also depend on the properties of the inner pock-

ets. We now look at the corrections coming from higher-
order reflections.
Because the full elastic problem in the composite medium
IV. SUMMARY is quite complex, once again it is helpful return to the elec-

In this paper we have studied the single-particle and twolfoStatic analogy for guidance. As before, we replace the
particle response functions in an inhomogeneous viscoelast/{9!d Particle of radiusa and its surrounding spherical pocket

medium. These response functions must be known in ordtff radiusb) of anomalous material by its electrostatic ana-

to use microrheological measurements as a probe of the m {g: & conducting sphere of radiassurrounded by a region

terial properties of soft materials. We restricted our analysi€f radiusb with dielectric coefficiente. To simplify the for-

to the type of inhomogeneity that is caused by the introduchIas we set the bulk dielectric constant to unity. We con-

tion of the probe particles themselves. We have assumed thiide" first the potential at sphere two to lowest order. At this

the rheological anomally in the material relaxes to the unper:{grgaar‘:g;‘n‘gii m(?i)élztgtlrirsplgg(::;teghzrgi?:tpsﬁ;e g‘ftﬁgd
turbed bulk value as some function of radial distance from ", = 9 cp yap Q .
rigin of that sphere. First we calculate the potential at the

the probe particles. To make a model system that has thg
ep particies. . ! Sy gecond(unchargeﬁi sphere and then we determine the cor-
simplest possible inhomogeneity of this form we have con-

. ) . . rection to that potential coming from higher-order reflec-
S|dered_not only the_ pocket model(ton3|s_t|ng O.f a spheri- ions. See Fig. 4 for a diagram of the electrostatic problem
cal cavity surrounding each probe particle with perturbeoltnde'r Conside.ration
vispoelastic propertie)s but a]so a moré physical mpdel in Using the azimufhal symmetry of the problem we can
which the material’s rheological properties vary contlnuouslyWrite the general form for the electrostatic potentale, in
1 H ter
with distance from the probe sphere. We have also show%e bulk material (>b) by

that the combination of one-point techniqueich measure

a combination of the properties of the unperturbed, bulk ma- Q /
terial and the rheological anomalous material immediately ¢oute,(r):4— E —fP/(cosa)
surrounding the probe sphéreand two-point techniques mT/r=ory

(which measures the bulk rheological propestiabows the o
experimentalist to probe details of the probe-particle medium n 1 E D,r~“+Dp (cosh), (Al)
interaction. 4me ~o ’ ’
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that the argument presented there can be extended to an ar-

VAN
-z bitrary number of such dielectric shells; this suggests that the
" effect of any radially symmetric dielectric coefficient varia-
Q R tion on the potential of the central conducting sphere always

vanishes at the level of the zeroth reflection.
Next, we consider the first correction to the potential on
sphere two coming from higher-order reflections. Since there
FIG. 4. Schematic diagram of the simpler electrostatic problemg no free charge on either sphere two, or its surrounding
designed to test the importance of first-order reflections upon th‘aielectric, we know that the integral of the normal compo-

elastic response function. The first sphere, that is charged, can B, i of the electric displacement field over a surface just
replaced by a simple point gharge to this order in the reflegtlops: W?nside the dielectric shelland just outside the surface of
focus on the res:pons.{potfantla) F)_fthe second sph.ere that §|ts in .|ts sphere twd vanishes,

pocket of material with dielectrie. The bulk material has dielectric

constante=1.

36 D,r?dQ=0— 3@ E,r’dQ=0. (A5)
wherer_, r- are the minimum, maximum aof andR re- r=a+ r=a’

spectively. The function® ,(x) are the the standard Leg-

endre polynomials. The first term represents the potential du&he vanishing of the same integral of the normal component
to the point charge at=2R (we take the origin of the coor- of the electric field follows from the fact that the dielectric
dinate system to be at the center of the spharel the sec- constant in the material outside sphere two is assumed to be
ond term gives the corrections to that potential field in thespherlcally symmetric. This assumption is clearly valid in the

bulk due to polarization charges induced at the interface O§omewhat artifical two-shell model of the composite me-

the two dielectric media and on the conducting sphere. Thes%'um’ but it should remain valid in a more physical model in

corrections are given in terms of the yet unspecified coeffi’Vhich the dielectric constants vary continuously with dis-

cientsD,. We can similarly write the expression for the tani:_elfrom tf;e t[r)]robe pa;r;t;]clttes, frl]t lel."iSt las I;)r?"g as thﬁ.t\r’]\'o
potential in the pocketa<r <b), particles are farther apart that a “healing length” over whic

the material recovers it bulk properties away from the probe

% particles.
GDinnelT) = 2 [E r +F, r “*D]P (cosh), (A2) We now study the polarization charge induced on the di-
/=0 electric interfaces surrouding sphere two. It is clear that we

) o can replace the dielectric shell around sphere two with two

in terms of two sets of unknown coefficients, andF,.  gpherical surfaces of bound, polarization charge deraity
We are trying to find the potential of the conducting r —5 andr=b). Our solution of the electrostatic problem

sphere two [f|=a). Since the sphere is an equipotential yefined in Fig. 4 shows that the bound polarization charge on

surface, we find from Eq(A2) thatE,=F,=0 for all 7 the guter surface of the pocket surrounding sphere(aithe
#0. Furthermore, if we define, to be the as yet unknown g qer of lowest reflectionss given by

potential of the sphere, we find that

Fy . i bt 2/+1 1€l5 coss
Eot - = do. (A3) el )=Q 2 or T )| | PAcost)

(A6)

We now note that there are no free charges in the system

other than the distant char@® so the surface integral of the In the above equation, we have defined

electric displacement field over a sphere of radiup<r

<R must vanish. This condition forcd3,=0. From that . a| >+t

result and the continuity of the radial component of the elec- _/+ (/+1) b

tric displacement vector at the interface of the two dielectric I'y=e€ v Zes (A7)

media ¢ =b) we determine that,=0 as well. Finally, from 1— 5

the continuity of tangential components of the electric field

at the same interfacey (binner— Pouted |r—5 X =0, we find

that the remaining coefficient of interes,, is given by: It is clear in the above result that if there is no dielectric

Eo=Q/(47R) so from Eq.(A3) we arrive at the result Qiscontinutiy at the edgg of the pocket= 1) this polariza-
tion charge density vanishes.
Q We now compute the bound charge at the interface be-
¢o:m- (Ad)  tween the conducting sphefavo) and the inner dielectric.

To distinguish the bound polarization charge from that free

This rather remarkable conclusion is that the presence of thgharge on the conductor, we need to calculate the difference
anomalous dielectric pocket does not effect the result of thé charge density at=a between the general case and the
zeroth-order reflection at all. We can physically understancBart'CWaV case of no anomalous dielectric; i.e., we determine
this result along the lines presented in the text. We also note(6) = oinnel 0) — Tinnel 0) |e=1 to be
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B * a’ 1 Collecting our previous results we find that the net dipole is
7(0)=Q>, (2/+1)——E,P,(cosf), (A8) given by
/=1 R/+l
here=,, is given b SPPCLE e i (1—-p3)(1+2p°)
where= , is given =—z — - ,
,159 y net R2 p 2+ et 2(em 1)p3 p p
2/+1 (A13)
g /(e O/ a| wherep=a/b. The most significant point coming from the
1+/(er)=(1=e)(7+1) b calculation is that we have confirmed that the polarizibility

(A9) of the combination of the conducting sphere and dielectric

shell does, in fact, depend on properties of that dielectric

Since we are interested in understanding the next-toshell. Without performing any further detailed calculations,

leading order correction to the result presented in this papaye may assume that the polarizibility of the conducting
for the mutual response function of distant spheres, we magphere plus dielectric pocket takes the formi,

approximate the three charge distributions in the ld&djenit =ap(a/b,?)b3. The dipole moment induced on sphere one

as foIIc_)ws: From the sheII_ of bound polarization charge at thq)y the dipole moment on sphere two then has a magnitude of
outer interface surrounding sphere two=b) we get an

effective dipole moment of o b3

5 Plzap(a/b,e)b3><EPnet. (A14)
a
J

2+e+2(e—1)

1+2

3Q

Pouer= — E(:_ 1)b3 32. (A10) In the above equation the first term in the product is the

a polarizibility of sphere one and the second term is the elec-

b tric field at sphere one due to the polarization of sphere two.
So the shift in the potential of sphere two due to the next-

From the shell of bound polarization charge on the innerrder reflection must take the form

interface of the dielectric shelr&a) we get the effective

dipole moment ay(a/b,e)b®  b®Qa’(alb,e)
Agr=P; ? R2 = :;7 . (A1)
3Q 3 .
Pi”"er_ﬁa 1= z. (ALD Based on the electrostatic analog to the viscoelastic re-

2+e+2(e—1)

3
5) sponse function, we see that the next-to-leading order term in
the approximate solution for the potential of sphere two de-
— . . cays as the seventh power of the sphere-sphere separation.
Note for e>1, the dipole moment of the outer shell points The detailed calculation of the polarization sphere two serves

away from the first sphere and the dipole moment of theto confirm that all these higher-order terms necessarily in-

Isnhno?/:/ssthhﬂlt I;a?:rlltftatrhﬂl(faiL;?sthr?erc()eUttehredr:E?Eﬁ(g::?rgfet?]tészhtl\?vvoIve all the properties of the anomalous pockets. The prin-
: N . P ! ) ! . (9pal point of this section remains that we can conclude that
effective dipoles is reduced by their partial cancellation. Fi-

nally we include the effect of the polarization of the Conduct_the subdominant term in the displacement field in the elastic

: R . roblem, which decays only @& 3, give the next-to-leadin
Ing sphere_ two. Th|s_ is simply given by the standard anSWe(F;rder correction for t%e int?a/rparticlge response function. ’
from the first reflection term for two spheres. The surface
charge distribution of the conducting sphere produces the

same field as a pair of point charges of equal and opposite APPENDIX B: THE VISCOSITY OF SEMI-DILUTE
magnitude within the sphere: a charge-eQa/R displaced POLYMER SOLUTIONS NEAR THE PROBE

from the center of sphere two towards the center of sphere |y the semidilute regime the polymer volume fractign

one by a distance af?/R and the opposite chardt® ensure  jies in the rangep* < ¢<1, where* is the volume frac-
the charge neutrality of sphere tvat center of sphere two. tjon at which the individual coils overlap. Here we may ap-
This charge distribution at large distances, produces anothgjroximate the relaxational dynamics of a single chain as the
dipolar field with dipole momentP gpe.&= —Qa’/R?z. reptation of a string of blobs with mean radius equal to the
The potential in the vicinity of sphere one produced bypolymer correlation lengtl and thus composed of
the dipoles induced in the neighborhood of sphere two is 53
thus the sum of three dipole potentials, each centered at the _ E
origin of sphere two. Since the electric potential and, hence g—(/> '
the electric field, is linear in the dipole moments we can ,
approximate the net electric field at sphere one as the field ghonomers, where” is the Kuhn length. A polymer oN
a single dipole located at the center of sphere two having gnonomers consists di/g blobs, and its reptation time is
net dipole moment of

(B1)

N 3
5) ’ (B2

Trep™ Tzimm(9)
Pnet: Pinner+ F’outer‘l' Psphere (A12) rep zimm 9
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where 75,m~ £2/D (&) whereD (&)~ 1/¢, the diffusion con-  impenetreble obstruction. If we assume that the correlation
stant of a sphere of diametéiis the Zimm relaxation time of length in the solution is much smaller than the radius of
a blob. In the semidilute regime, scales with polymer vol- curvature of the probe sphere, we may approximate the poly-
ume fraction as mer concentration profile surrounding the sphere by that of
the profile near a flat, hard wall. This problem has been stud-
E=/¢%", (B3) ied using self-consistent methods with ground state domi-

nance 14,16). The solution for the concentration profile near

which implies a wall atx=0 is

g~¢ (B4) y
The reptation time thus scales with volume fraction as c(x)=Cotant? E) B7)
/. . . .
Trep™ ¢ (BS) wherec, is the bulk polymer concentration. The correlation

length obtained from this calculation is known not to scale
correctly with polymer concentration; we supplement the
above solution with the correct scaling form from EB3).

We also point out that if is comparable to the sphere radius,

To find the contribution ofr, to the viscosity, we note that
7P~ GoTrep, Where Go~kgT/ £~ (kgT/a%) ¢?* is the pla-
teau modulus of the semidilute solution. Thus

_ 15/4 (B6) the detailed form of Eq(B7) must be quantitively inexact.
7p=10¢™"", - : e ;

The qualitive results of this analyis still hold. In particular,
where 7, is a viscosity. even for a sphere size that is comparable to the correlation

Finally, in order to discuss the variation of the effective length, we expect that the recovery of the bulk viscosity
solution viscosity near the surface of the probe sphere weccurs over the length scateas one moves away from the
need to understand the polymer concentration profile near asphere.
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