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Two-point microrheology and the electrostatic analogy
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The recent experiments of Crockeret al. @Phys. Rev. Lett.85, 888 ~2000!# suggest that microrheological
measurements obtained from the correlated fluctuations of widely-separated probe particles determine the
rheological properties of soft, complex materials more accurately than do the more traditional particle auto-
correlations. This presents an interesting problem in viscoelastic dynamics. We develop an important, simpli-
fing analogy between the present viscoelastic problem and classical electrostatics. Using this analogy and direct
calculation we analyze both the one- and two-particle correlations in a viscoelastic medium in order to explain
this observation.
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I. INTRODUCTION

The utility of microrheology in probing the structure o
soft materials has been recognized for some time@1#. This
experimental technique uses the position correlations of t
mally fluctuating, rigid probe particles embedded in a s
medium to measure the response of those particles to
external force@2#. From that response function one can d
termine the rheological properties of the material. In addit
to this passive form of measurement, the response func
can also be obtained directly by applying an external force
the probe beads. Such active versions of the experiment
been performed using magnetic particles@4#. It may be
pointed out that sedimentation experiments used to mea
the viscosity of fluids can be thought of as the ze
frequency limit of the active form of microrheology exper
ments.

The fundamental assumption underlying the data red
tion in these measurements is the relation between the
sponse function of a bead~rigid, spherical particle! to an
externally applied force and the rheological properties of
medium in which that bead is embedded. The form of
single-sphere~of radiusa) response functiona (1,1)(v) that
is commonly used is the generalized Stokes-Einstein rela
~GSER!, which has the form

a i j
(1,1)5

1

6paG~v!
d i j , ~1!

whereG(v) is the complex shear modulus of the mediu
The superscript points out that we are considering the p
tion response of a sphere to a force applied to that s
sphere. The subscripted indices are the usual vectorial i
ces.

This response function owes its name to the fact that,
a Newtonian, viscous fluid whereG(v)52 ivh, a (1,1) re-
duces to the Stokes mobility of a sphere of radiusa. A mi-
crorheological experiment in such a one-component New
ian medium consists of measuring the positi
autocorrelations of a sphere diffusing in the Newtonian flu
These correlations are controlled by the sphere’s diffusiv
which is obtained from the Stokes mobility via the Einste
relation. Thus, the measured position autocorrelations of
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sphere allow one to calculate, using the response funct
Eq. ~1!, the fluid’s viscosity. This viscosity encodes all th
rheology of the Newtonian fluid.

We have already examined the validity of the generali
tion of the GSER to a viscoelastic medium in previous pa
@5,6# and have found that in many experimental syste
there is a significant frequency range over which Eq.~1! is a
good approximation to the single-sphere response funct
At frequencies where the single-particle response func
deviates significantly from Eq.~1!, the breakdown of the
GSER can be attributed to one of two sources:~i! inertial
effects at high frequencies, or~ii ! the effective decoupling of
network and fluid dynamics at very low frequencies. W
have found that inertial effects typically become significa
at such high frequencies that we may safely ignore th
here. Moreover, in this paper, we will incorporate the appe
ance of nonshear modes by giving our course-grained m
of a viscoelastic medium a complex, frequency-depend
bulk modulus in addition to its frequency-dependent, co
plex shear modulus.

Nevertheless, there still remain fundamental questions
garding the interpretation of microrheological data. In th
paper we address one such question: Given that the pres
of the probe sphere can locally perturb the microstructu
and, therefore, the rheological properties of the medium, h
can one extract information about the bulk, unperturbed m
dium? In other words, we imagine that each probe spher
surrounded by a pocket of perturbed material with rheolo
cal properties diferent from those of the bulk. For microrh
ology to be a useful experimental probe, it must be poss
to extract the bulk, unperturbed viscoelastic moduli of t
medium from the measured correlation functions. Howev
given that the probe sphere is coupled to the bulk medium
a pocket of material whose rheological properties are mo
fied by the introduction of that particle, one must assume t
the correlations actually measure some convolution of
perturbed and bulk material properties.

The assumption of the presence of such pockets is q
reasonable in many complex liquids. The pocket, for e
ample, may be a result of the equilibrium distribution
polymers near an impenetrable bead in solution; or it may
the result of quenched inhomogenities produced by the
tion of the probe during the formation of the medium. F
©2001 The American Physical Society01-1
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ALEX J. LEVINE AND T. C. LUBENSKY PHYSICAL REVIEW E65 011501
example, in microrheological studies of polymerizedF actin,
monomericG actin is polymerized in a solution already co
taining the probe particles@7#. The proximity of the probe
particle may locally affect the polymerization kinetics a
lead to a positionally dependentF-actin density near the
probe spheres that is independent of equilibrium effects s
as the steric interaction between the actin rods and
probes. We do not consider this situation in detail, but late
this paper we do explore the consequences of polymer de
tion near the surface of the bead in equilibrium. In this e
ample the steric interaction of the polymers with the pro
particle produces regions surrounding the beads with a so
shear modulus than the bulk. Recently, Crockeret al. @8#
have proposed a modification of the standard microrheol
cal technique that can remove the effect of the pertur
pockets by studying the interparticle position correlations
rather distant probe spheres. This claim can be reexpress
terms of the two-particle response function or complian
tensora i j

(n,m) defined by

r i
(n)~v!5a i j

(n,m)~r (m)2r (n),v!F j
(m)~v!, ~2!

wherer (n)(v) is the displacement of thenth sphere andF(m)

is the external force applied to themth sphere. The claim is
that when the spheres~of radiusa) are separated by a dis
tancer, r @a, a i j

(n,m)(r ,v) for nÞm depends upon only the
bulk properties of the material.

In this paper we demonstrate the validity of the Crock
hypothesis by solving the elastic problem of two sphe
embedded in an inhomogeneous elastic medium. We ca
late the mutual response function of these beads,a i j

(1,2) and
show, in the limit mentioned above, that this response fu
tion measures the bulk rheological properties of the med
independently of the rheological properties of the regio
immediately surrounding the two beads.

The remainder of the paper is organized as follows.
Sec. II we identify an analogy between the viscoelastic pr
lem that we posed and the physics of embedded conduc
in an inhomogeneous dielectric. We use this analogy in co
bination with well-known results for the mutual capacitan
of two spheres to elucidate the more complex viscoela
problem. This heuristic analogy guides our approach to
full viscoelastic problem that is studied in Sec. III. We a
proach the full problem in stages by first considering a rh
logically homogeneous material in Sec. III A and then
studying, in Sec. III B a simple model of a rheological
inhomogeneous material consisting of the bulk medium
‘‘pockets’’ of rheologically perturbed material surroundin
each probe sphere as depicted in Fig. 1. We show, in the l
that the radii of these anomalous pockets are small comp
to the separation of the probe spheres, that the interpar
response function can be obtained with a minimum of co
putational effort through the use of a global property of t
stress tensor. Most importantly, the leading term in the in
particle response function is determined solely by the pr
erties of the bulk medium. Following up this result we tu
to the more computationally complex problem of finding t
single-particle response function in this composite mediu
This is accomplished in Sec. III C. This result will be show
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to depend on the rheological properties of both the bulk m
terial and the perturbed material in the pockets. It is intere
ing to note that the combination of the results of Sec. III
and Sec. III C suggest that one can experimentally determ
the material properties of both the bulk and perturbed me
through a combination of single-particle and two-particle m
crorheology experiments.

Motivated by this realization we study in Sec. III D
more physical model of the probe particle in a soft, comp
medium. We now assume that the rheological properties
the medium vary continuously with the distance from t
probe sphere. Our previous algebraic solution to the two m
terial problem~bulk and perturbed pocket material! now has
to be generalized to an integral technique. As an example
apply this technique to a polymer solution with concentrat
slightly abovec! in order to study the effect of polyme
depletion near the probe sphere. This problem is revelen
recent experiments on DNA solutions@9#. Finally, we sum-
marize these results and conclude in Sec. IV.

II. THE ELECTROSTATIC ANALOGY

To keep our treatment as simple as possible, we will
sume that our viscoelastic medium is characterized by a lo
relation between the stresss i j and the strainui j described by
a local, frequency dependent, but possibly spatially vary
elastic constant tensorKi jkl (x,v). The analysis we presen
here will have to be modified if the local stress-strain relat
does not hold as is argued to be the case in systems o
perimental interest such as actin networks@10#. Under our
assumptions, the equation of force balance in a linear
coelastic medium can be written as

2] j@~Ki jkl ~x,v!]kul #5 f i~x,v!, ~3!

whereul(x,v) is the local displacement variable andf i(x,v)
is a local force density atx. We compare the above expre
sion to the Gauss’s law in an inhomogeneous dielectric m
dium,

2] j@e jk~x,v!]kf~x,v!#54pr~x,v!, ~4!

FIG. 1. Diagram of the simplest inhomogeneous elastic med
consistent with the assumed rotational symmetry of the probl
Each rigid sphere of radiusa is surrounded by a spherical pock

with radius b, b.a of material with elastic constants:l̄,m̄. The
bulk material has elastic constants:l,m. A force F is applied to
sphere 1~on the left!. We seek the resulting displacement of sphe
2 ~on the right!, Dr2. In the following we will assume that the
separation of the two spheres,r is large compared tob; the picture
is not drawn to scale.
1-2
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TWO-POINT MICRORHEOLOGY AND THE . . . PHYSICAL REVIEW E 65 011501
where e jk(x,v) is the local frequency-dependent dielect
constant tensor,r(x,v) is the frequency-dependent char
density, andf(x,v) is the electric potential atx. In Eq. ~4!
we have assumed, as we have done with the elastic con
tensor, that the dielectric tensor is local. We consider
above electromagnetic problem at low enough frequencie
that that we may ignore the transverse electric fields.

Comparing Eqs.~3! and ~4!, we note that the following
correspondence Table~see Table I! may be drawn: The
charge density in Eq.~4! is the scalar analog of the vecto
source,f i(x,v) in Eq. ~3!. Similarly the electric potential
f(x,v) in Eq. ~4! is analogous to vector displacement fie
u(x,v) in Eq. ~3!, and the position-dependent dielectric te
sor,e i j (x,v), has as its analog in Eq.~3! the elastic constan
tensor,Ki jkl (x,v).

Finally, we note that the rigidity of objects embedded
the inhomogeneous viscoelastic medium requires that
displacement fieldu be constant on their surfaces. Therefo
in order to maintain the analogy between the viscoela
problem and the electrostatic problem, we study collecti
of embedded conducting objects so that the electric pote
is constant on their surfaces.

Recall that the goal of our calculation is to determine
compliance tensor introduced in Eq.~2!. This response func
tion relates a set of forces applied to rigid objects embed
in an ~in general inhomogeneous! dielectric to the displace
ments of those objects. In order to discuss this calculatio
terms of the simpler electrostatic problem, we need to c
sider the electrostatic quantity that is analogous to the c
pliance tensor. This quantity is the inverse capacitance te
of a collection of conducting objects embedded in an in
mogeneous dielectric. Since the electrostatic problem
simpler, scalar version of the viscoelastic problem, we be
with an analysis of the that system. Afterward, insigh
drawn from the electrostatic problem should lead to com
mentary results in the elastic problem, which remains
actual problem of interest.

We study a particularly simple realization of the so f
arbitrary inhomogeneous dielectric medium. The sim
model is meant to begin the study of the ‘‘pocket mode
discussed in Sec. I~See Fig. 1! from within the electrostatic
analogy. We consider that the inhomogeneous dielectri
made up of two materials. The bulk material has dielec
constant e i j (x)5d i j e. However, in concentric pocket
around the conducting spheres~of radiusa) there are spheri-
cal shells of material (a,r ,b) with a different dielectric
constant:e i j (x)5d i j ē. Hereafter, we assume that the diele
tric tensor is diagonal and suppress its tensorial indices.

To support the notion that the off-diagonal elements of
compliance tensor,a i j

(n,m) , nÞm, in the elastic problem de

TABLE I. Correspondence between the electrostatics and
coelastics.

Electrostatics Viscoelastics

Potentialf(x) Displacementui(x)
Charge densityr(x) Force densityf i(x)
Dielectric tensore i j (x,v) Elastic tensorKi jkl (x,v)
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pend only on the bulk values of the elastic constants and
on their values in the anomalous shells around the ri
spheres, we will calculate the off-diagonal component of
inverse capacitance tensor,Cnm

21 ,nÞm, for this system of
two spheres and check that it does not depend on the va
of the dielectric constant (ē) near either of the conducting
spheres.

To compute the mutual capacitance of two conduct
spheres one generally employs the method of images t
eratively fix the boundary conditions (f5const) on each
sphere in turn. This procedure leads to a convergent se
for the capacitance tensor of two conducting spheres@11#.
We apply a similar technique. To obtain just the compon
of the two by two inverse capacitance matrix that we seek
will study the problem where one sphere~say n51) has a
unit charge on it and the other sphere~saym52) is charge
neutral. The matrix element in question (C12

21) is then simply
the potential of sphere two. Furthermore, since we intend
show that this component of the inverse capacitance tens
independent of the value of the inner dielectric constantē)
only in the limit that the sphere-sphere separation~L! is large
compared to both the sphere and cavity radii, we may tr
cate the series generated by the method of reflections a
first term. The higher-order reflections will contribute corre
tions to our result that are smaller by factors ofa/L or b/L.
We will return to the issue of higher-order corrections inb/L
due to subdominant terms in the elastic displacement fi
and higher-order reflections.

At the lowest-order reflection we may ignore sphere t
while we discuss the free and polarization charge distribut
on sphere one and its surrounding cavity. That distribution
equivalent to a unit charge at the center of sphere one
two shells of bound, polarization charge. One shell is at
interface of the sphere and the inner dielectric (r 5a) and the
second shell is at the interface of the inner and outer die
tric (r 5b). These two polarization charge densities,s inner
andsouter, respectively, are both spherically symmetric, a
due to the neutrality of the dielectric layer,a,r ,b, we have
the relation

R dV a2s inner1 R dV b2souter50. ~5!

Thus, at distancesr .b, including the position of sphere two
and its surrounding pocket, the electric field due to t
charge distribution is simply that of a unit charge at the c
ter of the sphere one.

We now consider the potential of sphere two in this ele
tric field. Because the spheres are conductors, the potenti
sphere two is the same as the potential at its center. T
potential is due to the linear superposition of the potentia
a unit charge a distanceL away~at the center of sphere one!
and that of two spherical shells of polarization charge c
tered on sphere two. One shell is at the interface betw
sphere two and the medium with dielectric constantē while
second shell is at the interface between that dielectric m
rial and the bulk dielectric~with dielectric constante). These
surface charge distributions, unlike those of sphere one,

s-
1-3
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ALEX J. LEVINE AND T. C. LUBENSKY PHYSICAL REVIEW E65 011501
not spherically symmetric. However, the surface integrals
the two polarization charge densities over the two surfa
vanish independently of each other. Thus the net effect on
potential at the center of sphere two due to each shel
polarization charge density is zero. The potential at the c
ter of sphere two is then solely due to the distant charge
sphere one; we find that the potential of sphere two is sim
1/(4peL). To lowest order in reflections we have shown th

C12
215

1

4peL
1 . . . , ~6!

where the additional terms~not shown! come from higher-
order reflections. These higher-order reflections will gen
cally depend ona, b, and ē. A more detailed discussion o
this derivation in addition to a discussion of the form of t
higher-order reflections is given in Appendix A.

It is worthwhile at this stage to point out that to the sam
level of approximation~lowest-order reflections! the poten-
tial on sphere one due to a unit charge on sphere one doe
fact, depend on the properties of the inner, dielectric lay
The potential on sphere one given by the diagonal elemen
the inverse capacitance matrix is

C11
215

4pabē

b1aS ē

e
21D 1•••. ~7!

Once again, the additional terms not shown come fr
higher-order reflections.

Based on this simple analysis it seems reasonable to
plore the elastic problem in more detail to determine if t
basic result holds in the actual problem of rheologi
interest.

III. THE VISCOELASTIC PROBLEM

A. The homogeneous medium

We begin the study of the viscoelastic problem by cons
ering the displacement field produced by the displacemen
a rigid spherical particle embedded in a homogeneous, e
tic medium. A sphere of radiusa is displaced bye ẑ. We now
calculate the resulting displacement field.

Local force balance in the medium demands that the
placement field obey the partial differential equation

05m¹2u1~m1l!““•u, ~8!

wherem andl are the two Lame` constants characterizing th
isotropic, elastic medium. Equation~8! is supplemented by
boundary conditions at the surface of the sphere and a
finity

u~ uxu5a!5e ẑ, ~9!

lim
uxu→`

u~x!50. ~10!
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Our solution of this problem is aided by two basic points:~i!
the solution must be azimuthally symmetric, and~ii ! the so-
lution must be linear ine ẑ. With their aid, we immediately
write the most general possible form of the displacem
field

u~x!5(
n

An

r̂ cosu

r n
1(

m
Bm

ẑ

r m
. ~11!

We have chosen these two sets of terms since they cons
the only solution of Eq.~8! that are azimuthally symmetric
As we will see,An and Bn are proportional toe so thatu
satisfies the requirement of linearity ine. We now put our
ansatz, Eq.~11!, into the partial differential equation, Eq.~8!.
Writing the radial (r̂ ) and polar (û) components of that ex
pression separately we find

M~n,z!•S An

Bn
D 50, ~12!

where the 232 matrix M(n,z). depends on the Lame´ con-
stants only through the dimensionless ratio,z5(m1l)/m.
This matrix is given by

S @~11z!~n22!~n11!22# @~11z!n~n11!22n#

~11z!~n22!2n ~11z!n2n2 D .

~13!

A necessary and sufficient condition for Eq.~12! to be satis-
fied for nontrivial values ofAn , Bn is that detM(n,z)50.
There are four such solutions:n522,0,1,3. By finding the
eigenvectors associated with these eigenvalues we may w
the most general solution of Eq.~8! consistent with the two
conditions discussed above,

u~x!5
aC1

r
@g1r̂ cosu1 ẑ#1

a3C2

r 3
@3r̂ cosu2 ẑ#1C3ẑ

1
C4r 2

a2
@g2r̂ cosu2 ẑ#, ~14!

where the constantsCm are determined from boundary con
ditions and the two dimensionless constants

g15
1

324s
, ~15!

g252S 223s

322s D , ~16!

are functions of the Poisson ratio:

s5
1

2

l

m1l
. ~17!

Since the Poisson ratio can vary between21 and 1/2@12#,
1/7,g1,1 and 1/2,g2,2. In the incompressible limit (l
→`)s→1/2, g1→1, andg2→1/2. Since we are consider
1-4
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TWO-POINT MICRORHEOLOGY AND THE . . . PHYSICAL REVIEW E 65 011501
ing complex, frequency-dependent bulk and shear mod
s5s(v) depends on frequency and is in general comple

Examining the solution we see that the first term on
right-hand side~RHS! of Eq. ~14! decays only as 1/r away
from the rigid sphere. The second term is a dipole field. T
third term is simply a constant shift of the entire medium th
is clearly a solution, but cannot contribute to the stress t
sor. The fourth term grows asr 2 as one moves away from th
sphere. In order to satisfy the boundary conditions at infin
for the problem under consideration we must setC35C4
50. The remaining two constants are determined by
boundary conditions at the surface of the rigid sphere.
find

u~x!5
e

2 F3
a

r
~h1r̂ cosu1h2ẑ!2h1

a3

r 3
~3r̂ cosu2 ẑ!G ,

~18!

whereh151/(526s) andh25(324s)/(526s). We note
that in the incompressible limit, the displacement fie
around the displaced sphere takes the form of what would
the perturbation of the velocity field of an incompressib
fluid produced by the same sphere inserted in a uniform fl
in the ẑ direction ~at low Reynolds number!.

Since we wish to calculate the response of the spher
an applied force we need to determine the force applied
the sphere that resulted in the imposed displacement ofẑe.
To do this we calculate the restoring force of the medium
the sphere. The external forceF is the negative of the force
the medium exerts on the sphere. We can calculate the l
force, which by symmetry must point in theẑ direction by
integrating the stress tensor over the surface of the sphe
obtain

Fz52 R a2 dV@s rr cosu2s r u sinu#. ~19!

From this result we obtain the response function@7#

a~v!5
]e

]Fz
5

1

6pam~v! F11
s~v!21/2

2„s~v!21…G . ~20!

We note that in the incompressible limit,s(v)→1/2, we
recover the form of the Stokes mobility of the sphere in
incompressible fluid. The only difference between that res
and Eq.~20! in the incompressible limit is the substitution o
the shear modulus,m(v), for ivh.

B. The inhomogeneous medium: The results
for distant particles

Having solved the single-sphere problem, we are in a
sition to extend the analysis to the two-sphere response f
tion in a spatially inhomogeneous elastic medium. As in
analogous electrostatic problem, we approach this prob
via the method of reflections. To compute the response fu
tion to lowest order, we simply need to calculate the d
placement field at the location of the second sphere due
force applied to the first sphere. Once again, we model
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inhomogeneous elastic medium by the simple, anomal
pocket discussed in our study of the analogous electros
problem. We assume that the spheres are surrounded
spherical pocket of material~of radiusb) with elastic prop-
erties characterized by the Lame´ coefficients,l̄,m̄ ~see Fig.
1!. The bulk material, far from the rigid spheres has Lam´
constants:l,m.

Using Eq.~14! we write down solutions to the force ba
ance equations that apply in the inner, anomalous region,
the outer bulk material, respectively,

ui~x!5
aC1

i

r
@ ḡ1r̂ cosu1 ẑ#1

a3C2
i

r 3
@3r̂ cosu2 ẑ#1C3

i ẑ

1
C4

i r 2

a2
@ ḡ2r̂ cosu2 ẑ#, ~21!

uo~x!5
bC1

o

r
@g1r̂ cosu1 ẑ#1

b3C2
o

r 3
@3r̂ cosu2 ẑ#.

~22!

In the above equation,ḡ1,2 are identical to theg ’s defined in
Eqs. ~15!–~16! with the Poisson ratio equal to that of th
inner material. Using the boundary condition at infinity, E
~10!, we have setC3,4

o 50. We are left with six remaining
constants that are determined by two boundary condition
the surface of the sphere@see Eq.~9!# and four boundary
conditions at the interface of the two different elastic med
uxu5b. These four conditions enforce the continuity of th
displacement field:ui(uxu5b)5uo(uxu5b) and stress tensor
s r j

i (uxu5b)5s r j
o (uxu5b), j 5r ,u at that interface. These

conditions are sufficient to determine the six remaining c
stants.

Recall that we wish to show that the long-range part
the interparticle response function measures the bulk m
rial properties of the medium independently of the loc
modification of the material’s elastic properties by the rig
spheres. In order to do this we first concentrate on the pa
the displacement fielduo(x) that varies as 1/r . We will inde-
pendently solve for the coefficient of this term. Such a so
tion allows a good approximation to the displacement field
the far-field regime and will test the ideas discovered via
electrostatic analogy.

To calculate the coefficientsC1
o,i we employ a global con-

straint on the stress tensor: the integral of the flux of
stress tensors i j dSj over any closed surface~with local out-
ward normal parallel todSj ) enclosing the rigid sphere
which applies a forceF to the elastic medium, must be equ
and opposite to that applied force. The integral of the str
tensor over such a surface is2F. Thus we may write this
condition, for a particular spherical surface of radiusr, with
r .a in the following form:

Fz52 R r 2 dV s rz
i ,o , ~23!
1-5
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where choice of the appropriate form of the stress tensor,s rz
i

or s rz
o , is determined by magnitude ofr, i.e., whether the

surface of integration is contained in the inner region or
the bulk material. In the above equation we have taken
force on the sphere to be in theẑ direction and the integral is
over all solid angles. Counting powers ofr in the stress ten-
sor and noting thats;“u, we find that only the part of the
stress tensor coming from the term inu proportional toC1

o

can contribute to the result. This term, which depends on
radial distance from the sphere as 1/r 2 is the only one that
will lead to anr-independent result on the RHS of Eq.~23!.
Since the left-hand side~LHS! of this equation is clearlyr
independent, the other contributions to the stress tensor c
ing from Cn , n.1 must all vanish under the angular int
gration.

From the global stress constraint@Eq. ~23!# and our solu-
tion for the displacement field we determine the coeffici
C1

o to be

C1
o5

F

8pam Fl13m

l12mG . ~24!

The analogous coefficient in the inner region,C1
i , is given

by the same expression, however, the Lame´ coefficients take
the values of the inner region:m̄,l̄. We may use the abov
result to eliminate one variable from the set of six that m
be determined to completely solve the present elastic p
lem. Before we continue this program, however, it is use
to calculate the far-field part of the viscoelastic, interparti
response function. We have already seen, from the elec
static analogy, that only the dominant long-range part of
sphere-sphere interaction is expected to be free of the in
ence of the anomalous pockets. We seek, therefore, to d
onstrate, in a manner analogous to the problem of the inv
capacitance of two conducting spheres in an inhomogene
dielectric, that the interparticle response function is indep
dent of the rheological properties of the local pockets s
rounding the particles in the viscoelastic problem.

To do this we again use the lowest-order term in the se
solution of the two-sphere problem that is generated by
method of reflections. This lowest-order term simply giv
the displacement of sphere 2 in response to an applied f
on sphere 1 as the value of the displacement field at
location of sphere 2 due to the displacement of sphere
where that displacement field is calculated without regard
the boundary conditions on sphere 2 or its surrounding s
of perturbed material. Thus the solution of the far-field p
of the single-sphere problem is precisely the result that
need. The corrections to this result coming from higher-or
reflections will be smaller than the previously calculated p
by a nonzero power ofb/r , wherer is the separation vecto
between the two spheres. These corrections are discuss
Appendix A. Ignoring higher-order corrections coming fro
both higher-order reflections and the dipolar part of the f
field u, we find

a i j
(21)5a uu~r ! r̂ i r̂ j1a'~r !~d i j 2 r̂ i r̂ j !, ~25!
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where the response along the line of centers is given by

a uu~r !5
1

4prm~v!
, ~26!

and the response perpendicular to the line of centers is

a'~r !5
1

8prm~v! Fl~v!13m~v!

l~v!12m~v!G . ~27!

We have explicitly written the frequency dependence of
Laméto emphasize the applicability of this calculation to t
complete viscoelastic problem. We note, however, that
neglecting inertial terms~which has been justified previousl
in the single-sphere case at frequencies of experimenta
terest@6#!, we are here imposing a more stringent requi
ment. The above result assumes that two spheres are
enough and that there is no significant phase shift betw
the oscillation of the two spheres at the probing frequencyn,
i.e., ur u!c/n, wherec is the speed of sound in the medium
Even for soft materials with relatively high compressibilit
it is possible to have the necessary separation of len
scales,b!r !c/n for Eqs. ~25!–~27! to hold at all experi-
mentally accessible frequencies.

Finally, it is interesting to observe that in the incompres
ible limit l(v)→`, the ratio of the response along the lin
of centers to that perpendicular to the line of centers is2:1.
The experimental determination of the deviation of this ra
from 2:1 measures the compressibility of the material at
frequency of observation.

C. Single-particle response in the composite medium

It is interesting to compare the above results for the int
particle response function in the composite~two shell! me-
dium with the single-particle response in the same mediu
From the electrostatic analogy we expect to find that
single-particle response function depends on the elastic p
erties of both types of materials making up the compos
medium. Below we will show this to be the case. That c
culation also demonstrates that the comparision of the sin
particle response to the two-particle response functions
lows one to determine the material properties of bo
materials making up the composite medium. This res
shows, at least within the simplified pocket model of t
inhomogeneous medium, that measurements of the p
particle autocorrelations combined with two-point measu
ments of distant particles completely characterize the b
material and perturbation zone surrounding the probe. I
later section we will revisit this result and show that even
a more physical model, in which the material properties
the medium vary continuously with distance from the prob
it is still possible to extract information about the perturb
region~as well as the bulk properties! from a combination of
one- and two-point correlation measurements.

In order to solve for the single-particle response functio
we must continue along the lines of the previous section
solve for the complete deformation field in the two-shell m
dium surrounding a particle. As above we put a forceF
1-6
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5Fẑ on the particle and determine the deformation fie
From the value of that field at the surface of the probe sph
(ur u5a) we calculate the displacement of the probe and t
the response function in question. Returning to Eqs.~21! and
~22! we note that there are now only four undetermined
efficients: From Eq.~24! we already knowC1

o , C1
i in terms

of the applied forceF. We now continue with the simple bu
tedious task of matching boundary conditions at the interf
of the two elastic media and at the surface of the spher
discussed in the previous section.

At the surface of the sphere we find that

C1
i 2C2

i 1C3
i 2C4

i 5e, ~28!

ḡ1C1
i 13C2

i 1ḡ2C4
i 50, ~29!

wheree is the displacement of the sphere in theẑ direction.
The above set of equations actually contributes only one
lation among the remaining four unknown coefficients sin
Eq. ~28! only exchanges one of these unknowns for the,
yet, undetermined sphere displacement. It is this quan
however, that we need to determine the response functio

From the continuity of the displacement fieldu at the
interface of the two elastic media (r 5b) we find two more
relations,

C1
o2C2

o5bC1
i 2b3C2

i 1C3
i 2b22C4

i , ~30!

g1C1
o13C2

o5bḡ1C1
i 13b3C2

i 1b22ḡ2C4
i , ~31!

whereb5b/a.
For the remaining relation needed to specify all four u

determined coefficients, we require the continuity of o
component of the stress tensor across the interface of the
media (r 5b). We choose to considers ru5m@]uur /r
1] ruu2uu /r #. This yields the condition

m@C1
o~12g1!26C2

o#5m̄@b~12ḡ1!C1
i 126b3C2

i

1b22~22ḡ2!C4
i #. ~32!

We now have four equations to determine the unknown
efficients:C2,3,4

i ,C2
o and another equation to eliminate one

these four coefficients in favor of the quantity that we seek
the displacement of the sphere,e. The response function fo
the single sphere in the two-shell medium is then given

e

F
5a i j

(1,1)5
1

6pma
Z~ ḡ1 ,ḡ2 ,b!d i j . ~33!

The response function has been written as the product o
single-particle response in an incompressible bulk mate
with shear modulusm and a correction factorZ(ḡ1 ,ḡ2 ,b),
which depends on the ratio of the radius of the anomal
pocket to the radius of the sphere,b5b/a, and all of the
elastic constants. The correction factor in terms of the c
stantsg1,2 @defined in Eqs.~15! and ~16!# is given by
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Z~ ḡ1 ,ḡ2 ,b!5
z1

z2
, ~34!

where

z156b5~ ḡ11ḡ2! p̄k~k21!1~ ḡ113! p̄k~ḡ22222ḡ2k!

12b6ḡ2~k21!@p~g113!2k p̄~ ḡ113!#

1b@~g113!~ ḡ222!p2~315ḡ21g1~31ḡ2!#pk

1 p̄k@924ḡ22ḡ116~ ḡ11ḡ2!k#1b3~g 2̄23!k

3$~2p~ ḡ111! p̄@11ḡ1~4k23!#%, ~35!

and

z254$ḡ2@112b5~k21!22k#%, ~36!

with k5m/m̄ and

p5
l13m

l12m
; ~37!

there is a corresponding termp̄ that applies to the material o
the inner region.

It may be checked that the above expression@Eqs.~33!–
~36!#, reduces to the simpler result for the single-partic
response function in a homogeneous medium, Eq.~20!, when
the elastic properties of the two shells are equated. As
pected the full result is a complicated function of both t
elastic constants of the inner, perturbed shell of the mate
and the range of the perturbation:b.

Both because of the complexity of the above result a
because many applications of the these techniques app
systems that are essentially incompressible~polymeric solu-
tions and melts fall into this category! it is worthwhile to also
record a simplier version of the response function that
tains when both the perturbed and the bulk material may
considered to be incompressible. In that limit we find that
correction factor takes the form

4b6k82110b3k829b5k8k12kk913b~21k23k2!

2@k922b5k8#
,

~38!

wherek85k21 andk95312k.
We end this section of the paper by noting that the ab

calculations not only give the complete result for the sing
particle response function in the two material composite m
dium but they also determine the next-to-leading order c
rections for the interparticle response function of two sphe
in the same composite medium. We discuss this point furt
in Appendix A. Here we record the coefficient of the dipol
term in the displacement field. Based on arguments prese
in Appendix A, it can be shown that this dipolar term giv
the next-to-leading order correction in the two-particle
sponse function for distant particles. The dipolar coefficie
of the displacement field in the bulk medium (C2

o) has been
1-7
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completely determined already in the course of our solut
of the single-particle response function presented above.
have found that in the case where both media are inc
pressible it takes the form

C2
o52

F

8pbm

~12k!~312b5!15b2k

3~312k!16b5~12k!
. ~39!

As expected on more general grounds, this next-to-lead
order correction depends on all the elastic constants and
ratio of pocket radius to the sphere radius.

D. Differential shell method

A more physical model of the anomalous region surrou
ing the probe particle allows for the rheological properties
the medium to varycontinuouslywith distance from the
probe. In order to perform quantitive fits to the singl
particle response function measured in a complex fluid
microrheology, it is necessary to fit the data to a continu
model of the anomalous zone. As we will see, this fit requi
a theoretical model of the variation of the complex materia
rheological behavior as a function of distance from t
sphere. In this section, we first present a general set of e
tions describing the variation of the four displacement-fi
coefficients with distance for a given functional form of th
variation of the shear modulus with distance from the pro
m5m(ur u). As an illustration of this method we then app
our procedure to the case of a polymer solution at conc
trations nearc!, the overlap concentration.

Having solved the two-shell model above, we can n
generalize this technique to many shells. To compute
displacement field in the continuous variation limit, we d
vide the material into spherical shells of infinitesmal thic
nessDr , centered on the probe particle. Within each sph
cal shell we may take the Lame` coefficients to be constan
Now we can determine a relation between the set of displa
ment field coefficients in thenth shell ($Ci

n%,i 51, . . . ,4) to
those of thenn11 shell ($Ci

n11%,i 51, . . . ,4) byusing the
same set of boundary conditions at the interface of the
shells as have been applied above~see Fig. 2!. Taking the
thickness of the shells to zero we determine derivatives
the displacement field coefficients with respect tor. These
linear differential equations can be integrated to give
variation of the displacement field coefficients, and there
determine the form of the stain field. The single-particle
sponse function follows naturally. For the two-particle r
sponse function, we assume that there still exists the la
separation of length scales between the distance separ
the two probe particles and the distance over which ther
an appreciable variation of the elastic constants~the size of
the anomalous zone!. The two-particle response function
which does not depend on properties of the anomalous z
therefore, still applies. Below we derive the differential equ
tions for the displacement field coefficients for the ca
where the material is everywhere incompressible@l(r )5`
for all r #.

Matching the displacement field at the interfaceur u5r n
we find two equations. The first coming from matching t
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radial components of the field is

2a

r n
DC11

2a3

r n
3

DC21DC32
1

2 S r n

a D 2

DC450, ~40!

whereDCi5Ci
n112Ci

n . Taking the limit of thin shells, i.e.,

DCi5Dr
dCi

dr U
r 5r n

5DrĊ i , ~41!

we arrive at the differential equation

2a

r
Ċ11

2a3

r 3
Ċ21Ċ32

1

2 S r

aD 2

Ċ450. ~42!

Using a similar procedure to match theuu parts of the dis-
placement field we find the differential equation

Ċ352
a

r
Ċ11S a

r D 3

Ċ21S r

aD 2

Ċ4 . ~43!

The remaining two equations come from matching thes rr
ands ru components of the stress tensor. We recall from S
III C @see the discussion following Eqs.~28! and~29!#, how-
ever, that only one more equation is needed to determine
coefficients since we already know the functional form
C1,

C15
F

8pam~v!
, ~44!

from the same global property of the stress tensor applie
the two-particle problem. We again choose to enforce
continuity of s r u , which, in the thin shell limit, yields

FIG. 2. Differential shell method: Using stress and displacem
continuity at the interface of thenth and (n11)th shells we deter-
mine the coefficients of displacement fieldun11 in terms of the
coefficients of the displacement fieldun. Later, taking the thickness
of the shells to zero:Dr 5r n112r n→0 we arrive at a set of differ-
ential equations governing the variation of the displacement fi
coefficients—theC’s.
1-8



es

re
tio
it

r-

d

he
th
d
th
n

s

t

-
e
g

i

n

-

c-
the
the

, by

in

n-
en-
to
f a

of
hen
h a
robe
so-

n-
a

n
id
n-

elf-

la-
ion
he

TWO-POINT MICRORHEOLOGY AND THE . . . PHYSICAL REVIEW E 65 011501
6
a3

r 4
Ċ22

3

2

r

a2
Ċ41

ṁ

m F6
a3

r 4
C22

3

2

r

a2
C4G50. ~45!

We now find two differential equations for the variabl
C2 and C4 by eliminating C3 in Eq. ~40! using Eq.~42!.
Furthermore we use our solution forC1 to write the set of
differential equations in the following form@after undimen-
sionalizing#:

B28~x!1
x5

6
B48~x!52

x2

3

d

dx S m0

m~x! D , ~46!

B28~x!2
x5

4
B48~x!52

d

dx S ln
m

m0
D FB2~x!2

x5

4
B4~x!G ,

~47!

wherex5r /a, •8 indicates a derivative with respect tox, m0
is a modulus scale,x5r /a, and

Bi5
8pam0Ci

F
, ~48!

whereF is the magnitude of the force applied to the sphe
We find it simpler, once again, to study the response func
by fixing a known force on the sphere and computing
displacemente.

Equations~46! and ~47! can be integrated from the su
face of the probe sphere,x51. Having a set of two first-
order differential equations we require two boundary con
tions to determine a unique solution.

There are two boundary conditions coming from t
specification of the displacement field at the surface of
sphere. In general, this vectorial equation specifies two in
pendent relations, however, since the magnitude of
sphere’s displacement is, as yet, unknown, we obtain o
one boundary condition for Eqs.~46! and ~47!,

B2~1!1
1

6
B4~1!52

m0

3m~x51!
. ~49!

The second equation

m0

m~x51!
2B2~1!1B3~1!2B4~1!58pm0a

e

F
, ~50!

coming from the boundary condition at the sphere expres
the magnitude of the sphere’s displacemente, in terms of the
B amplitudes. We still need another boundary condition
specify a unique solution of Eqs.~46! and ~47!. The second
boundary condition is thatB4, the coefficient of the quadrati
cally growing term in the general solution of the displac
ment field with azimuthal symmetry, must vanish in the lar
r limit. Thus

lim
x→`

B4~x!50. ~51!

Similarly, we know that there should be no constant term
the displacement at large distances from the sphere
limx→`B3(x)50. This boundary condition in combinatio
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with Eq. ~43! allows the determination ofB3 at the surface of
the sphere in terms of an integral over the~uniquely deter-
mined! functionsB2 andB4,

B3~1!52E
1

`H 2
1

z

d

dzS m0

m~z! D1
1

z3
B28~z!1z2B48~z!J dz.

~52!

The solution is effected by choosingB4(x51) @using Eq.
~49! to determineB2(x51)# and then integrating the differ
ential equations fromx51 to infinity. B4(x51) is chosen so
that this function goes to zero at largex. Given this solution
for B2 andB4 one can integrate Eq.~52! to determineB3(1).
Finally, with the full set of initial values ofB2 , B3, andB4
one can evaluate the response function using Eq.~50!.

We further organize this calculation by defining the effe
tive shear modulus of the medium to be that value of
shear modulus needed to write the response function in
form that it would have taken in an incompressible,homo-
geneousmaterial. In other words, we definemeff by

e

F
5a5

1

6pameff
. ~53!

Here the vectorial indicies have been suppressed since
rotational symmetry,a i j

(1,1);d i j for an isolated sphere. With
this definition we write the effective response function
terms of the initial values ofB2 , B3, andB4 and the modulus
scale as

meff

m0
5

4

3 F m0

m~1!
2B2~1!1B3~1!2B4~1!G21

. ~54!

We note that in the homogeneous medium:B35B450 and
m0 /m(1)51. In addition, we find thatB2521/3 so that
meff5m0 as required for consistency.

As an example of the differential shell method we co
sider the case of a semidilute polymer solution—see App
dix B. To apply the methods of one-point microrheology
this case, one would measure the fluctuating position o
probe particle in the liquid~due to Brownian diffusion! and
compute from the position autocorrelations the diffusivity
that probe. Using the Stokes-Einstein relation one could t
extract a measurement of the viscosity. However, suc
measurement should be an underestimate since the p
sphere produces a spherical pocket of polymer-depleted
lution surrounding it~see Appendix B for details!. The local
polymer concentration will approach its bulk value esse
tially exponentially with distance from the sphere with
‘‘healing length’’ controlled by the polymer correlatio
length in the solution. This polymer-depleted shell of flu
has a lower viscosity than that of the bulk. We take a co
tinuous polymer concentration profile suggested by s
consistent calculations@13–15# and numerically integrate the
differential equations for the case that the polymer corre
tion length is 30% of the sphere radius and the bulk solut
viscosity is four times the value of that of the solvent. T
variation of the coefficientsB1 , . . . ,B4 with distance from
the probe sphere are shown in Fig. 3.
1-9
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Using Eq. ~54! we find that indeed the single-partic
measurements suggest that the viscosity is smaller tha
bulk value. For this particular case the effect is small—
viscosity measurement coming from one-point microrhe
ogy is about 73% of the actual bulk value. If the depleti
zone were larger compared to the sphere radius, the effe
the anomalously small value of the solution viscosity in t
depletion zone would be more significant.

IV. SUMMARY

In this paper we have studied the single-particle and tw
particle response functions in an inhomogeneous viscoela
medium. These response functions must be known in o
to use microrheological measurements as a probe of the
terial properties of soft materials. We restricted our analy
to the type of inhomogeneity that is caused by the introd
tion of the probe particles themselves. We have assumed
the rheological anomally in the material relaxes to the unp
turbed bulk value as some function of radial distance fr
the probe particles. To make a model system that has
simplest possible inhomogeneity of this form we have c
sidered not only the‘‘pocket model’’~consisting of a spheri-
cal cavity surrounding each probe particle with perturb
viscoelastic properties!, but also a more physical model i
which the material’s rheological properties vary continuou
with distance from the probe sphere. We have also sho
that the combination of one-point techniques~which measure
a combination of the properties of the unperturbed, bulk m
terial and the rheological anomalous material immediat
surrounding the probe sphere! and two-point techniques
~which measures the bulk rheological properties! allows the
experimentalist to probe details of the probe-particle med
interaction.

FIG. 3. The variation of the dimensionless displacement fi
coefficients computed numerically. The characteristic length s
for the variation of the polymer concentration~thus the solution
viscosity! is 0.30 in the dimensionless unitsr /a. The inset shows
the variation of the fluid viscosity with distance from the sphere
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APPENDIX A: CORRECTIONS FOR CLOSER PARTICLES:
HIGHER-ORDER REFLECTIONS AND SUBDOMINANT

TERMS IN THE STRAIN FIELD

There are two classes of corrections to the result of S
III B for the interparticle response function of two dista
spheres. These corrections produce terms that are highe
der ina/R whereR is the~large! separation of the two probe
spheres. In general, these corrections depend on all the
tic constants of the composite medium. It is, therefore, i
portant to at least estimate the relative importance of th
terms in order to determine how distant two probe partic
must be in order for their correlated fluctuations to be go
erned primarily by the bulk elastic constants.

The two classes of corrections are due to either subdo
nant terms in the displacement field of sphere one at the l
of the zeroth-order reflection~in which we ignore the role of
second sphere in determining its subsequent displacemen! or
corrections to the displacement field that result from high
order reflections~iteratively correcting the boundary cond
tions of u at the surface of each sphere and pocket!. In this
section we determine which of these effects first prese
deviations to the far-field results presented earlier. We h
already seen that subdominant corrections in the far-fielu
are of a dipolar form, decaying with distance asR23. These
corrections also depend on the properties of the inner po
ets. We now look at the corrections coming from high
order reflections.

Because the full elastic problem in the composite medi
is quite complex, once again it is helpful return to the ele
trostatic analogy for guidance. As before, we replace
rigid particle of radiusa and its surrounding spherical pock
~of radiusb) of anomalous material by its electrostatic an
log: a conducting sphere of radiusa surrounded by a region
of radiusb with dielectric coefficientē. To simplify the for-
mulas we set the bulk dielectric constant to unity. We co
sider first the potential at sphere two to lowest order. At t
iteratation we may still replace~the charged! sphere one and
its surrounding dielectric pocket by a point chargeQ at the
origin of that sphere. First we calculate the potential at
second~uncharged! sphere and then we determine the co
rection to that potential coming from higher-order refle
tions. See Fig. 4 for a diagram of the electrostatic probl
under consideration.

Using the azimuthal symmetry of the problem we c
write the general form for the electrostatic potentialfouter in
the bulk material (r .b) by

fouter~r !5
Q

4p (
l 50

` r ,
l

r .
l

Pl ~cosu!

1
1

4pe (
l 50

`

D l r 2(l 11)Pl ~cosu!, ~A1!
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where r , , r . are the minimum, maximum ofr and R re-
spectively. The functionsPl (x) are the the standard Leg
endre polynomials. The first term represents the potential
to the point charge atr5 ẑR ~we take the origin of the coor
dinate system to be at the center of the sphere! and the sec-
ond term gives the corrections to that potential field in
bulk due to polarization charges induced at the interface
the two dielectric media and on the conducting sphere. Th
corrections are given in terms of the yet unspecified coe
cients D l . We can similarly write the expression for th
potential in the pocket (a,r ,b),

f inner~r !5 (
l 50

`

@El r l 1F l r 2(l 11)#Pl ~cosu!, ~A2!

in terms of two sets of unknown coefficients,El andF l .
We are trying to find the potential of the conductin

sphere two (ur u5a). Since the sphere is an equipotent
surface, we find from Eq.~A2! that El 5F l 50 for all l
Þ0. Furthermore, if we definef0 to be the as yet unknown
potential of the sphere, we find that

E01
F0

a
5f0. ~A3!

We now note that there are no free charges in the sys
other than the distant chargeQ, so the surface integral of th
electric displacement field over a sphere of radiusr, b,r
,R must vanish. This condition forcesD050. From that
result and the continuity of the radial component of the el
tric displacement vector at the interface of the two dielec
media (r 5b) we determine thatF050 as well. Finally, from
the continuity of tangential components of the electric fie
at the same interface,“(f inner2fouter)ur 5b3 r̂ 50, we find
that the remaining coefficient of interest,E0, is given by:
E05Q/(4pR) so from Eq.~A3! we arrive at the result

f05
Q

4peR
. ~A4!

This rather remarkable conclusion is that the presence of
anomalous dielectric pocket does not effect the result of
zeroth-order reflection at all. We can physically understa
this result along the lines presented in the text. We also n

FIG. 4. Schematic diagram of the simpler electrostatic prob
designed to test the importance of first-order reflections upon
elastic response function. The first sphere, that is charged, ca
replaced by a simple point charge to this order in the reflections.
focus on the response~potential! of the second sphere that sits in i

pocket of material with dielectricē. The bulk material has dielectric
constante51.
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that the argument presented there can be extended to a
bitrary number of such dielectric shells; this suggests that
effect of any radially symmetric dielectric coefficient varia
tion on the potential of the central conducting sphere alw
vanishes at the level of the zeroth reflection.

Next, we consider the first correction to the potential
sphere two coming from higher-order reflections. Since th
is no free charge on either sphere two, or its surround
dielectric, we know that the integral of the normal comp
nent of the electric displacement field over a surface j
inside the dielectric shell~and just outside the surface o
sphere two! vanishes,

R
r 5a1

Drr
2 dV50→ R

r 5a1
Err

2 dV50. ~A5!

The vanishing of the same integral of the normal compon
of the electric field follows from the fact that the dielectr
constant in the material outside sphere two is assumed t
spherically symmetric. This assumption is clearly valid in t
somewhat artifical two-shell model of the composite m
dium, but it should remain valid in a more physical model
which the dielectric constants vary continuously with d
tance from the probe particles, at least as long as the
particles are farther apart that a ‘‘healing length’’ over whi
the material recovers it bulk properties away from the pro
particles.

We now study the polarization charge induced on the
electric interfaces surrouding sphere two. It is clear that
can replace the dielectric shell around sphere two with t
spherical surfaces of bound, polarization charge density~at
r 5a and r 5b). Our solution of the electrostatic problem
defined in Fig. 4 shows that the bound polarization charge
the outer surface of the pocket surrounding sphere two~at the
order of lowest reflections! is given by

souter~u!5Q (
l 51

`
bl 21

Rl 11 S 2l 11

G l 1l 11D F12 ē

ē
GPl ~cosu!.

~A6!

In the above equation, we have defined

G l 5 ē

l 1~ l 11!S a

bD 2l 11

12S a

bD 2l 11 . ~A7!

It is clear in the above result that if there is no dielect
discontinutiy at the edge of the pocket (ē51) this polariza-
tion charge density vanishes.

We now compute the bound charge at the interface
tween the conducting sphere~two! and the inner dielectric.
To distinguish the bound polarization charge from that fr
charge on the conductor, we need to calculate the differe
in charge density atr 5a between the general case and t
particular case of no anomalous dielectric; i.e., we determ
s̃(u)5s inner(u)2s inner(u)u ē51 to be

e
be
e
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s̃~u!5Q (
l 51

`

~2l 11!
al 21

Rl 11
J l Pl ~cosu!, ~A8!

whereJ l is given by

J l 5H 12
2l 11

11l ~ ē11!2~12 ē !~ l 11!S a

bD 2l 11J .

~A9!

Since we are interested in understanding the next
leading order correction to the result presented in this pa
for the mutual response function of distant spheres, we m
approximate the three charge distributions in the largeR limit
as follows: From the shell of bound polarization charge at
outer interface surrounding sphere two (r 5b) we get an
effective dipole moment of

Pouter52
3Q

R2
~ ē21!b3

112S a

bD 3

21 ē12~ ē21!S a

bD 3ẑ. ~A10!

From the shell of bound polarization charge on the in
interface of the dielectric shell (r 5a) we get the effective
dipole moment

Pinner5
3Q

R2
a3H 12

3

21 ē12~ ē21!S a

bD 3J ẑ. ~A11!

Note for ē.1, the dipole moment of the outer shell poin
away from the first sphere and the dipole moment of
inner shell is antiparallel to the outer dipole moment. T
shows that, back at the first sphere, the net effect of these
effective dipoles is reduced by their partial cancellation.
nally we include the effect of the polarization of the condu
ing sphere two. This is simply given by the standard ans
from the first reflection term for two spheres. The surfa
charge distribution of the conducting sphere produces
same field as a pair of point charges of equal and oppo
magnitude within the sphere: a charge of2Qa/R displaced
from the center of sphere two towards the center of sph
one by a distance ofa2/R and the opposite charge~to ensure
the charge neutrality of sphere two! at center of sphere two
This charge distribution at large distances, produces ano
dipolar field with dipole moment:Psphere52Qa3/R2ẑ.

The potential in the vicinity of sphere one produced
the dipoles induced in the neighborhood of sphere two
thus the sum of three dipole potentials, each centered a
origin of sphere two. Since the electric potential and, he
the electric field, is linear in the dipole moments we c
approximate the net electric field at sphere one as the fiel
a single dipole located at the center of sphere two havin
net dipole moment of

Pnet5Pinner1Pouter1Psphere. ~A12!
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Collecting our previous results we find that the net dipole
given by

Pnet52 ẑ
Qb3

R2 Fr31
ē21

21 ē12~ ē21!r3
~12r3!~112r3!G ,

~A13!

wherer5a/b. The most significant point coming from th
calculation is that we have confirmed that the polarizibil
of the combination of the conducting sphere and dielec
shell does, in fact, depend on properties of that dielec
shell. Without performing any further detailed calculation
we may assume that the polarizibility of the conducti
sphere plus dielectric pocket takes the form:ap

5ap(a/b,ē)b3. The dipole moment induced on sphere o
by the dipole moment on sphere two then has a magnitud

P15ap~a/b,ē !b33
b3

R5
Pnet. ~A14!

In the above equation the first term in the product is
polarizibility of sphere one and the second term is the el
tric field at sphere one due to the polarization of sphere t
So the shift in the potential of sphere two due to the ne
order reflection must take the form

Df2.P1

ap~a/b,ē !b3

R2
5

b6Qap
2~a/b,ē !

R7
. ~A15!

Based on the electrostatic analog to the viscoelastic
sponse function, we see that the next-to-leading order term
the approximate solution for the potential of sphere two
cays as the seventh power of the sphere-sphere separa
The detailed calculation of the polarization sphere two ser
to confirm that all these higher-order terms necessarily
volve all the properties of the anomalous pockets. The p
cipal point of this section remains that we can conclude t
the subdominant term in the displacement field in the ela
problem, which decays only asR23, give the next-to-leading
order correction for the interparticle response function.

APPENDIX B: THE VISCOSITY OF SEMI-DILUTE
POLYMER SOLUTIONS NEAR THE PROBE

In the semidilute regime the polymer volume fractionf
lies in the range:f!!f!1, wheref! is the volume frac-
tion at which the individual coils overlap. Here we may a
proximate the relaxational dynamics of a single chain as
reptation of a string of blobs with mean radius equal to
polymer correlation lengthj and thus composed of

g5S j

l
D 5/3

, ~B1!

monomers, wherel is the Kuhn length. A polymer ofN
monomers consists ofN/g blobs, and its reptation time is

t rep5tZimm~g!S N

g D 3

, ~B2!
1-12
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wheretZimm;j2/D(j) whereD(j);1/j, the diffusion con-
stant of a sphere of diameterj is the Zimm relaxation time of
a blob. In the semidilute regime,j scales with polymer vol-
ume fraction as

j5l f23/4, ~B3!

which implies

g;f25/4. ~B4!

The reptation time thus scales with volume fraction as

t rep;f3/2. ~B5!

To find the contribution oft rep to the viscosity, we note tha
hP;G0t rep, whereG0;kBT/j3;(kBT/a3)f9/4 is the pla-
teau modulus of the semidilute solution. Thus

hP5h0f15/4, ~B6!

whereh0 is a viscosity.
Finally, in order to discuss the variation of the effecti

solution viscosity near the surface of the probe sphere
need to understand the polymer concentration profile nea
.C
.

,

io

idt
.
et

01150
e
an

impenetreble obstruction. If we assume that the correla
length in the solution is much smaller than the radius
curvature of the probe sphere, we may approximate the p
mer concentration profile surrounding the sphere by tha
the profile near a flat, hard wall. This problem has been st
ied using self-consistent methods with ground state do
nance@14,16#. The solution for the concentration profile ne
a wall atx50 is

c~x!5c0 tanh2S x

j D , ~B7!

wherec0 is the bulk polymer concentration. The correlatio
length obtained from this calculation is known not to sca
correctly with polymer concentration; we supplement t
above solution with the correct scaling form from Eq.~B3!.
We also point out that ifj is comparable to the sphere radiu
the detailed form of Eq.~B7! must be quantitively inexact
The qualitive results of this analyis still hold. In particula
even for a sphere size that is comparable to the correla
length, we expect that the recovery of the bulk viscos
occurs over the length scalej as one moves away from th
sphere.
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