PHYSICAL REVIEW E, VOLUME 65, 011303
Randomly driven granular fluids: Collisional statistics and short scale structure
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We present a molecular-dynamics and kinetic theory study of granular material, modeled by inelastic hard
disks, fluidized by a random driving force. The focus is on collisional averages and short-distance correlations
in the nonequilibrium steady state, in order to analyze in a quantitative manner the breakdown of molecular
chaos, i.e., factorization of the two-particle distribution functitf)(x, ,x,)=xf®(x;)fM(x,) in a product
of single-particle ones, whesg={r;,v;} with i =1,2 andy represents the position correlation. We have found
that molecular chaos is only violated in a small region of the two-particle phase spage}, where there is
a predominance of grazing collisions. The size of this singular region grows with increasing inelasticity. The
existence of particle- and noise-induced recollisions magnifies the departure from mean-field behavior. The
implications of this breakdown in several physical quantities are explored.
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[. INTRODUCTION perature fields that extend much beyond the mean free path.
In fact, the corresponding structure functid() diverge as
The interesting phenomena observed in recent experit/k? as the wave-numbek—0, a behavior caused by the
ments with mono- and multi-layers of granular material onrandom external force, which does not conserve momentum
vibrating plateg1—4] show the need to develop kinetic theo- whereas the collisions between particles do. These long-
ries for rapid granular flows with mechanisms for energyrange correlations are of algebraic form,1/r®~2, which
input, different from those in shear flows or flows through corresponds to Inin two dimensions = 2). The existence
vertical pipes. In the present paper, the fluidization is driverpf such extremely long-range spatial correlations is one ex-
by a random external force, which gives frequent kicks toample of the many nontrivial properties of nonequilibrium
each particle in between collisions. Such a driving mechastationary states in generfd3,14.
nism has recently been studied by many autfiesl1]. The Differences in the stationary states between fluids with
basic physical interest is the understanding of the nonequissipative and conservative interactions also manifest them-
librium stationary state@NESS that exist in the presence of Selves in the kinetic properties of the fluid, such as the ve-
this random force. The advantage of this fluidization mechalocity distribution function, which deviates from a Maxwell-
nism, besides its potential physical realizations, lies in thdan, in particular, in the high-energy tail of the distribution.
fact that the NESS s linearly stable against spatial inhomo!n Ref. [9], the existence of an overpopulated high-energy
geneities. tail f~exg—Cv¥?], whereC is a constant that depends on
In Ref.[10], to which we will refer to as paper I, we have the inelasticity, has been obtained from kinetic theory. A
studied the large-scale structure and presented a hydrodgimilar behavior has been observed experimentally at high-
namic description of randomly driven granular fluids, mod-vibrational acceleration$3,4]. This observation indicates
eled as systems of smooth inelastic hard sph@HS). The  that certain features of the experiment might be reproduced
IHS model accounts for two essential features of granulaby modeling the input of energy into the horizontal motion of
matter: hard-core exclusion and dissipative collisiphg]. the beads by a random external force, although other energy
The dynamics is described by a constant coefficiendf  injection mechanisms that could be relevant to recover the
normal restitution. In collisions, a fraction of the relative large-velocity tail have been put forwakd5]. In similar ex-
kinetic energy is lost, which is proportional to the inelasticity perimentd 2], with a vertically vibrating plate covered with a
e=1-a? The stochastic external force compensates thisnonolayer of steel balls with a packing fraction around 50%,
energy loss, and drives the IHS fluid into a NESS. This stathe velocity distribution of the horizontal velocities has been
tionary state, though homogeneous and stable against spatiakasured, and again, overpopulated non-Gaussian high-
fluctuations on large space and time scalat least for energy tails have been observed. In the present paper, we will
weakly inelastic sphergswas shown to exhibit long-range investigate the kinetic properties and short-scale correlations
spatial correlations in density, velocity, and granular tem-that characterize the stationary state. More specifically, we
will compare molecular-dynamicéMD) simulations of in-
elastically colliding disks with analytic predictions based on
*Unite Mixte de Recherche UMR 8627 du CNRS. the assumption of molecular chaos.
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The Boltzmann equation for dilute gases of particles thatations have shown that the assumption of molecular chaos is
interact via short-ranged repulsive interactions is based oalso violated in undriven granular fluids in their late stages of
the assumption aholecular chaosalso called the Stosszahl- evolution, the so-called nonlinear clustering regime. For in-
ansatz or mean-field approximation. It assumes that the vestance, the measured distribution of impact parameters is not
locities of colliding particles just before collisions are uncor- uniform, as expected on the basis of molecular chaos, but
related, i.e., their pair-distribution function factorizes, Piased toward grazing collisio26-28. -
FO(x1,%,) =F(x1, ) (xo,1), where x;=1r;,v,} denotes As shown below, in the driven IHS fluid there is an im-

L . -~ ) . portant additional reason for the breakdown of molecular
the position and velocity of particle Enskog’s extension of

the Boltzmann equation to a dense svstem of hard s herchaos, namely, the strong increase in collision frequency at
Z quat Y PNer&Fhall relative velocities between two isolated particles,

[16], referred to as Enskog-Boltzmann equation, is alsocaused by the so-called noise- induced re-collisions. This

based on the fundamental assumption of the absence of Vg rection to the collision frequency, that is important at all
locity correlations. Here, the assumption of molecular Chao%iensities, is also neglected in the molecular chaos assump-
postulates that f@(x,,%,,t)=xf(xy,)f(x,,t) for ap- tion.

proaching particles ;- r1,<0) just beforecollision (r, The main goal of this paper is to quantify, analyze, and
=o0+0), where y is assumed to be the radial pair- interpret the effects of the breakdown of molecular chaos in
distribution function at contagj(r,=oc+0) in local equi- the NESS of inelastic hard spheres that are subject to a ran-
librium. It implies theadditional assumption that spatial cor- dom external force between collisions. We will focus in par-
relations between colliding patrticles just before collision areticular on velocity-velocity correlations and position-velocity
independent of their velocities, i.e., the absence of positioneorrelations between particles almost in contact, i.e., the
velocity correlations. The Enskog factor enhances the col- short-scale structure.

lision frequency at higher densities. For dilute gases, the as- Section Il presents the analytic results, based on the
sumption of molecular chaos seems to be justified. RecentlfEnskog-Boltzmann equation, which has been modified to ac-
Lutsko [17] and Soto and Mare-sch@ll8] derived for a count for the external energy input. In Sec. Ill, we present
freely evolving inelastic hard disk fluid a relation betweenmolecular-dynamics results for several quantities that char-
pre- and post-collision radial distribution function at contact,acterize the collision processes and related short-scale struc-
as a function of the angled=cos (v,,-r1,), between the ture of the NESS, and make a comparison with predictions

relative velocityv,, of the colliding particles, and their rela- based on molecular chaos.
tive position at contaat,,, and they confirmed their results
by MD simulations. Their observations made it clear that Il. KINETIC THEORY FOR THE NESS
further arguments are needed to clarify the meaning ojthe
factor in Enskog’s formulation of the molecular chaos as-
sumption. This will be done in Sec. Il A. The Enskog-Boltzmann equation for the single-particle
The breakdown of molecular chaos at higher densities iristribution f(v;,t) in a spatially homogeneous randomly
classical fluids with conservative forces has been extensivelyriven fluid of inelastic hard spheres of diametereads in
investigated in the 1960s and 19708)]. This breakdown is d=2 or 3 dimension$9]
caused by sequences of correlated binary collisions, the so-
called ring collisions[20]. They lead to long-time tails in
velocity and stress autocorrelation functidi24,22, and to
long-range spatial correlations in NE$S3]. The quantita-
tive effects of velocity correlations on transport coefficients
at liquid densities are also significant. For instance,
molecular-dynamics simulations on elastic hard-sphere sys-

A. Molecular chaos and Enskog approximation

af(vy )= nXad—lf dvzf do® (Vyy &) (Vyy @)

x{izf(v;* DT 0 —TF(vy,DF(vy,0)
a

tems at liquid densitieg23] have shown that the long- time gg J\2,
tails increase the measured self-diffusion coefficigrtypi- T vy f(vy,t), (1)

cally by 15 to 20 % with respect to the prediction of the
Enskog theoryDg=Dg/x, whereDg is the Boltzmann value  \yherev,,=v,—v, andn the number density. The Heaviside

of the self-diffusion coefficient. . function @ (x) restricts theo integration to the hemisphere
A well-known example of short-scale structure in granular - A, ) )
Vi >0, whereo is the unit vector along the line of cen-

fluids are the position-velocity correlations leading to the o ) .
phenomenon of inelastic collap§a4,25, which is adiver- ters of the colliding spheres at contact, pointing from particle

genceof the collision frequencys in a finite time. The col- 2 to 1. In the sequed=a/|a| denotes a unit vector. The gain
lapse singularity implies that an infinite number of collisionsterm of the collision integral describes thestituting colli-
occurs within a finite-time interval in a subset @fearly  sions that convert the precollision velocitiegt ,v3* ) into
touching particles, ordered in linear arrays. The phenomeno(vy,V,), while the loss term describes tlaérect collisions,
is, however, an artifact of the assumption that the coefficienand contains the precollision velocities;(v,) leading to
of restitution « is independent of the impact velocities, postcollision velocities\(; ,v3). The postcollision and resti-
whereas on physical grounds(v,,)—1 (elastic limi), as tuting velocities have been defined[i20]. The y factor will
the relative velocity 1, vanishes. Molecular-dynamics simu- be discussed below.
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As derived in[9_], the Fokker-PIar_lck term ac_counts for the f(z)(vl o, 0) :X%(Vl)f(vz)- (6)
external energy input, and describes diffusion in velocity
space with a diffusivity proportional to the rate of energy what is the meaning of thg factor, used in formulating the
input &2 per unit mass. Heré, is the strength of the random molecular chaosypothesis? This hypothesis fdilute gases
driving force, which is assumed to be Gaussian white noiseoncerns the absence of correlationspiecollision veloci-
[9,10]. ties, and inprecollisionpositions (¢=1). In dense fluidon

Before studying the short-scale structure, we consider theéhe other hand, the precollision position correlatjpis dif-
single- particle distribution functiofi(v) in the NESS. The ferent from 1, but the precollision velocity-velocity and
stationary solution of Eq(1) is determined by the balance position-velocity correlations are still assumed to be absent.
mé5=T, of external heatingngs, and internal loss of energy ~ In the literature, it is common to takeequal to the radial
due to collisionsT . It is characterized by a time-independent distribution function at contact ifocal equilibrium i.e., x
temperatureT =(muv?/d) defined as the average kinetic en- =Xe=edr—o+0), which mainly accounts for precolli-
ergy per particle, and discussed in paper I. As mentioned i§ion hard-core exclusion effects. For hard disks and hard
the introduction, this stationary solution exhibits an over-Spheres, the latter function is approximately given by the
populated high-energy tafl~exg —Cv¥?]. The structure of Verlet-Levesqueg2D) and Carnahan-Starlin@8D) approxi-

the tail distribution is determined by collisions of very ener- mations[31],

getic particles with “thermal” particles, and may be obtained 7
by neglecting the gain term in the Boltzmann equafi®h XE(¢):(1_1_6 ) / (1-¢)* (2D),
In Ref. [9], f(v) has been calculated by solving the
Enskog-Boltzmann Eql) by an expansion in Sonine poly- Ye(d)=(2—$)2(1— $)° (3D), @

nomials. To formulate this result, it is convenient to intro-
duce a rescaled distribution functidifc), defined byf(v) ~ where the packing fraction id dimensions is defined a#
=[103]f(c) with c=Vv/v,, wherevy=+2T/mis the thermal ~ =N(0/2)°Qq/d, andQq=27YT(d/2) is the surface area
velocity andd the dimensionality. This gives of a d-dimensional unit sphere. In this paper, we refer to the
molecular chaos approximation wiph= yg, as theEnskog
approximation
' In principle, different options are open for tiyefactor. As
(2) @ s the dynamic precollision pair-distribution function at
contact, an alternative choice for tlgen the factorized form
where the Maxwelliarp(c)= 7~ ¥?exp(—c?). Note thata, is  could be the dynamic precollision radial distribution function
proportional to the fourth cumulant of the scaling fofic), at contact, defined as an average over the precollision hemi-

1,1 1
~ct- §(d+2)02+ gdd+2)|+- -

2

f(C)Z(p(C)[ 1+a,

ie., sphere,
4 a1 4. 4 2,2 ) 5 7@
azzm <C >_Zd(d+2) :§[<CX>_3<CX> ], X E[Zlﬂd] dvl dVZ d0'®(_V12' O')f (V1’V2!0-)'
(3 8
and vanishes in the elastic limit. An explicit calculation to Another option could be the unconstrained radial distribu-
linear order ina, gives[9] tion, g(r), in the NESS, extrapolated to contact{ o). This
function is further discussed in Sec. Il D.
16(1— a)(1—2a?) For the randomly heated fluid under study here, the dy-
)= > (4)  namics is not purely hard-sphere like. The random force act-
73+56d - 24ad— 1052+ 30(1 - @) @ ing on the particles may be expected to contribute to the

value of the pair- distribution function at contact. This effect
Wil be addressed in the subsequent sections.

Equation(5) with f(v) replaced by the Maxwellian, yields
the collision frequency in the molecular chaos approxi-
mation wna(T)=xwe(T) , and more specifically, in the

In the next section, this prediction will be tested agains
molecular-dynamics simulations.

Consider first the exact expression for the mean coIIisior}
frequency in the homogeneous NESS, defined as or

~ Enskog approximation,
w=n0'd_1f dvlf dvzf do®
we(T)= xewo(T). 9
Vo O .olF@
X(=Viz 0)|Viz o] f(v1, V2, 0), ) Here, the Boltzmann collision frequency for dilute gases is
given by

where f®)(v,,v,,0) is the dynamic or constrained pair-
distribution function with velocities aiming to collide, just wo(T)=Qgnod 1T/7m, (10)
beforecontact withr ;,= o~. Molecular chaosalso referred to

as mean-field theory, requires the complete factorization o&nd the small correction aP(a,) appearing in Eq(2) has
the dynamic precollisional pair function, been neglected.
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Spatial correlation functions in nonequilibrium stationary effects of ring collisions, and present arguments why their
states are quite different from local equilibrium ones, andcontributions are expected to be more important here than for
show long-range correlations due to correlated sequences efastic hard spheres.
ring collisions, also referred to as mode-coupling effects
[13]. In paper I, we have shown the existence of vienyg-

range correlations~1/r~2 in the randomly driven IHS B. Collisional averages
fluid. Theshortrange correlations in the NESS may, in prin-
ciple, be obtained from the ring kinetic equation for Iks®e In hard-sphere systems, there are many properties that

Ref. [29]). However, systematic methods to evaluate colli-involve the pair-distribution function of particles just before
sion integrals and pair-correlation functions at short dis-collision. To study these, it is convenient to introduce the
tances using this ring kinetic theory have not yet been develollisional average( . . . )q for a quantityA in the NESS,
oped. In the section on simulation results, we return to thelefined as

delf def da@(_vlz'&)|V12'&|A(V11V2,0')f(2)(V1,V2,0')

(A(V1,V2,0))con= (11

jdvlj def d‘}@(_Vlz"AT)|V12"AT|?(2)(V1,V2,0')

In the sequel, it is more convenient to work with ainvolve the knowledge of the completé(c). Indeed,

rescaled  pair-distribution  function f®(vy,v,,r;;)  the generic collisional average becomds$g- o™

=[13"f?)(c;,c,,r15). To express the collisional averages = 2™2I'[(1/2)m+ 1], independent of dimensionality, assum-

(11) in rescaled variables, one rep|acg§) by f(Z)!Vi by Ing molecular ChaO@) and repla.Cing(C) by the MaXWG”-

G V12 by g=c,—C,, andA(Vy,Vo, @) by A(vCy,00C;, 0). ian ¢(c) (the contributions coming frora, are quite small
These objects may be conveniently computed in event@nd may be neglected; they have been computefBjn

driven molecular-dynamics algorithms for hard-sphere sysFinally, the pressure-may be expressed as

tems[30]. Collisional averages are defined for particles that

are about to colliddi.e., |r;)=0c+0), and may be calcu- Pmd T) 4o

lated from kinetic theory using the molecular chaos assump- nT 1=2"""(1+a)x¢. (13
tion, possibly supplemented with the Enskog approximation

at higher densities. Different choices fory yield different approximations. For

Collisional averages of great importance are the colli-
sional energy loss per unit timed2)nI’, and the excess
hydrostatic pressurp—nT, resulting from collisional trans-
fer of momentum. With a minor generalization dodimen-
sions, we obtain from Ref32] the exact expression for the

instance, withy= yg, we obtain the Enskog approximation
pe(T) for the pressure of IHS.

In the elastic limitpg(T) at =1 gives the standard equa-
tion of state for elastic hard disks or spheres. Notice that the
pressure for IHS is only definddneticallyas the momentum

pressure in the NESS flux, which leads to Eq(12). A statistical mechanical deri-
p(T) 1+ a ) vation of the equation of state from the partition function or
—1= nodf dclj dczf do free energy for the IHS fluid does not exist.
nT 2d In a similar manner, we obtain the exact expression for

XO(—g- &)|g~ &sz(z)(cl,cz,o) the collisional damping rate

l+a\ow “ 1-a? d ~
= W v—0<|g-0'|>co||. (12) F(T)Z 2d no _1UOTJ dClJ dCzj do
The second equality is obtained by introducing the colli- X 0O(—g-0)|g- 013 (c;,c,,0)
sional averagé€ll) and expressing its denominator in terms R
of the collision frequency given by E¢5). In fact, inserting =yo0T{|g: o|2>co,|: m 53, (14

Eqg. (6) into the first line of Eq.(12) allows one to carry

out the o integration, and the right-hand side becomeswhere y,=(1—a?)/2d is the dimensionless damping con-
proportional to the rescaled velocity averagestant introduced in Refd§9,10. The last equality(14) ex-

fdc, fdc,g?f(c,)f(c)=2 without any further assumption presses the balance between the energy input due to the
about neglecting the term proportionaldg in Eq. (2). This  white noise, and the collisional loss of energy in the NESS,
argument is special for the pressure, as other momentnd determines the temperatdrén the NESS. By special-
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FIG. 1. Kinetic temperaturd/Tg and collision frequencys/ wg where Tg and wg are defined in Eqs(17) and (19), for a packing
fractions ¢=0.05 and¢$=0.2.

izing this equation to the Enskog mean-field approximationsion of these points is postponed untill Sec. Ill. If the Enskog
f(2):XEff, where (|g- [;-| 2)00”=2, we obtain the approxi- factorizationf(2)=)(Eff would be exact, thel=Tg and w

mate result = wg.
A third quantity of interest, the precollisiongl ™) factor,
IMNe(T)=2y5wg(T)T (15  defined in Eq.(8), may also be expressed as a collisional

. ) ) . ] average using Eq11),
and similar relations for different choices gf It is conve-

nient to define aeferencetemperaturel through the rela- x=2wlQgnc® ) (|g- o] Yo (20)

tion Before closing this section, eaveatabout internal con-
Te(Tp) = mgﬁ, (16) si_stgncy is appropriate. To ob_tai_n cqnsistent the_oretical pre-
dictions for the pressurp or dissipation ratd’, it is para-
or more explicitly mount that both factorss and (|g- ™). be calculated
using identical approximations fof(®). For instance, the
63\/; 213 mean-field or molecular chaos approximation for the dissipa-
Te=m 1 (17)  tion rate,I'g(T) =2y,wT, —an expression commonly used
in granular hydrodynamic equations—should necessarily be
combined withwg(T) in Eg. (9). Any improved theoretical
calculation forw without a concomitant correction to the
mean-field result fof|g- o] ™o is inconsistent

2y0Qgxeno?”

Moreover, the definition of ¢ combined with the NESS con-
dition F(T)=m§§ implies the relation’(T)=I"g(Tg), and
consequently,

C. Velocity distributions

(M) TeTe) (Te\* . iy
m=m=(?> (19 We study a variety of collisional averages and corre-
E E sponding probability distributions. By choosi#qc; ,c,, o)
In the sequel, we will also use a reference frequengy = 5(|g|—g) we obtain the probabilitf(g) that two collid-
without any argument to denote ing particles have a relative ;pem?| =g. Fro_m here on, we
only quote results for two dimension&nalytic calculations
we=wg(Tg) = xgQgnod™ T/ mm. (19)  are based on the molecular chaos assumg@din combi-

nation with Eq.(2). Inspection of Eq(11) shows that under
Although we will discuss the simulation results in detail in this assumption, the collisional averages are independent of
the next section, it is of interest already at this point to notghe x factor. Straightforward algebra gives for the con-
that for these systems, as shown in Fig. 1, the ratio of thétrainedg distribution,
kinetic temperature and the reference temperaflif€g, is

only somewhat larger than one for all that it approaches Pr(9)=(8(|C12 = 9))cal

one in the elastic limit §—1), and that it monotonically 2 , 1

increases with decreasing (see Fig. 1 The same figure = \ﬁgze‘ V214 1—6a2(g4—892+ 9);.
shows that the ratiop/wg also approaches one far—1, m

with a steep increase to a value 5.6aas 0. Further discus- (21
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Similarly, we obtain the probability distribution for the cen- ) ) ) 1
ter of mass velocityG=1/2(c, +C,), (9" con=(9can— (1= a%)| 1+ 72,1,
_ 2
Peu(G)=(8(|Cl~G))ci=4Ge **{1+ay(G*~G?)}. ) o 1, 5[ 7
(22) (eDeor= (G cant 7 (90 can=5| 1+ 2022(

It equals the unconstrained equilibrium distribution function 1 1 1
apart from a small term ab(a,). Furthermore, the probabil- (€1 ) eon={(G o= (9% cor=— 11— —az] ,
ity that the precollision speeft;| of one of the colliding 4 4 4

particles {=1,2) has a value is

P(v)=(8(|c1| —v))col

_ \/Ev e 3v%2

1
(€1 -G )cal={C1- Co)cont 5(1— a?)

1
1+ Zaz]. (24)

1 1 Here,c are the postcollision velocities, as defined in paper

(1+vz)|o(502) +0?l 1(§vz> ] I. The sum of the third and fourth equality depends only on
the center-of-mass velocity, i.€G2) . In the elastic limit

(23 a—1, the average energy of a particle that is about to collide

, o , (c®) o= (5/4)(c?), is above the mean energy per particle
whereas the unconstrained distribution-i® exp(~v). In (2} "which equals unity.

evaluating this collisional average, we neglect #hecontri- In the molecular chaos approximation, an average such as
bution, and carry out the constrainedintegration. To cal-  ((c;-¢,)™g")con With {m,n} integers, is in general nonvan-
culate the remaining integrdldc,c,,¢(C,), we change inte- ishing, except in the special case=-1. Then,
gration variables t@ expressed in polar coordinatgg, ¢},  ((C1-C2)"/g)con reduces to an unconstrained average, pro-
and use the relatiofifd¢ exp(—2c,gcos¢)=lo(2c,g). The  portional ((c;-¢;)™), which vanishes for odd values of.
subsequeng integration follows from(6.618.4 in Ref.[33]. Additional information about the relative orientation of the
Using the asymptotic  expressions ly(x)~1;(x) incoming velocities may be obtained from the distribution of
~exp)/\/2mx for the modified Bessel functions of the ze- the angley,,, defined byc, - ¢,=c,C,C08¢s,. A numerical
roth and first order, we obtain the high-energy behaviorcalculation (again neg_lect_mg a, correctiong gives
P(v) ~2\2/7v2exp(=v?). (€osyn ) con=—0.233, which is close to the value0.2, es-

In a similar manner, we obtain the following velocity mo- timated from(c; - C5) coi=(C) coi{ COSY12) con USING the above
ments and correlations, using the molecular chaos assumfgsults.

tion: A very sensitive probe for studying the violation of mo-
lecular chaos is the probability distributid®(b) of impact
1 1 1 — A% o = ai R
2y _ +Z N I i parametgr$— lgx o] =sin 0,. where 6= cos _(g~ o) is the
(9%)car=3| 1 4a2], (GDear=311 2a2]’ angle of incidence. It is defined as the collisional average

o Jd&J d01J dc,8(b—|gx o])|g- 0] O(—g o) ?)(c,,c5,0)
P(b):<5(b_|gx‘7|)>collz

| (25
jd&f dclfdc2|g-c"rl@(—d&)f(z’(cl,oz,a)

and P(b) can be easily computed in a molecular-dynamics In order to analyze molecular chaos breakdown in more
experiment. As long as molecular chaos holds, the distribueetail, we have introduced a collection of momets,, and
tion of b is independent of the functional form dfand we  their dimensionless counterpais,, for n,m={0,1,2 .. },

obtain straightforwardly (see definition beloyy to analyze in detail the possible
breakdown of the molecular chaos factorizati@). These
(d—1)b%2 if 0<b<1 momentsM ,,(T) of the pair distribution at contact are de-
(b) :[ ) (26)  fined as,
0 otherwise,

2 .
which reduces in two dimensions to the uniform distribution, Mym(T)= Q—f dvldvzf do®
d

1 if 0<b<1l X (= Vi 0) T (vy,v,,00T)v],|coso|™,

P(b)=[ (27)

0 otherwise. (28
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which are averages over the precollision hemisphere, where X {|v1,c0860] ™YY con
9=cos (g- o). Let ME (Tg) denote the same quantity Boo(T) = e (o086 HE
evaluated in Enskog’s formulation of theolecular chaos ! coll
Te, ie., evaluated withf®(v,,v,,0|T) replaced by for the B,y,.
xef (V1| Te) T (v, Te), then the reduced moments are defined In the next section MD simulations will show that the
as predicted deviation from a Maxwelliafsee Eq.(2)] in the
(unconstrainepvelocity distribution of a single particle may
Bu(T)=Muym(T/ME (Te), (290  be observed for small inelasticities. Howeviarger devia-
tions are found between the observed constrained probability
whereME (Tp) is evaluated in EqA2). It is proportional to ~ distributions and averages, and the corresponding kinetic

v, wherepg= J2T</m. We prefer to normalize the reduced theory predictions given by Ed24), based on molecular

moments byM Em(TE)v because its analytic form is given _chaos. Consequently, the small corrections resulting figm

explicity. One could also normalize byMEm(T) in Eq. () may be neglected in most cases.
=(Te/T)"ME (Te). The disadvantage d¥15.(T) is that
the computation requires the simulated values of the kinetic

(39

D. Radial distributions

temperatureT. The collisional average& 7, cosd|™ e ex- The static or unconstrained radial distribution function in
pressed in terms of these new moments give the spatially homogeneous IHS fluid is defined as
M (T) f dor f .
n my o netmid 77 N=| — | de,de,f®(c;,cp,ra). 36
<U12|COSH| >CO|| Mll(T) . (30) g( ) Qd 142 ( 1,C2, 0') ( )
We first observe that the average collision frequencyde- |t may be averaged over all directionsrobecause of statis-
fined in Eq.(5), is proportional toM ,4(T), so that tical isotropy. The unconstrained radial distribution function
at contact is defined as the extrapolatiohz g(r—o+0).
Mi(T) o By splitting the & integration into a precollisiong: o< 0)
Bu(T)= ME(To) e (8D and postcollision hemispherg-(a>0), we obtainY as sum
e of two terms,
with wg defined in Eq.(19). This implies that the reduced 1
momentsB,,(T) may all be expressed in collisional aver- Y= E(Y(*)+Y(”). (37)
ages, i.e.,

The definitions ofy(™), Y(*) follow from Eq. (36) by adding,
(32)  respectively, factor®(—g- o) and®(g- o) under the inte-
e (v, Ycos| ™ g, gral sign in Eq.(36). The dummy integration variables in
Y(*) represent the postcollision velocitiexy(,c;), corre-
The average(---)gy is defined through Eq(30) with  sponding to the precollision ones(cy).
M () replaced bym Em(TE), and calculated in EqA2). It On the other hand, we have the dynamic precollision cor-
represents the collisional average, evaluated with the Enskaglation (™), defined in Eq(8), and a similar postcollision
factorizationf(®= xgf fand alsotaken at the reference tem- gne, (), defined by replacingd(—g- &) in Eq. (8) by
peratureT. Note that the equality32) consists of two fac- R
tors,w and(- - - .o, Which are measured separately in event
driven MD simulations.
We also observe that the equality(T)=Tg(Tg), ex-
plained above Eq18), implies that

w <vr£2_l|cosa|m_l>coll
Bam(T)=—

0(g- ). They are related by continuity of flux. Because the
incident flux of (c,c,) pairs just before collision is equal to
the scattered flux ofcf c3) pairs just after collision, we have
inside dynamic averages the equality

— (2) O
MaT)  T(T 0(~g0)lgn| 1P(crc, ) derdeydi

ME(Te) I&To

Bad(T) = 33 —0(g%)|g* [fA(ci ¢, o)dci dcs dor,  (38)

Furthermore, we have for the excess presspf§T)  Whereg,=g-o=gcosé. The reflection lawg; = a|g,|, for
=p(T)—nT, inelastic collisions in combination with the continuity of the
flux and Eq.(8) yields at once,
PHATINT @ ([v12£086|)co (+) (=)
B,oy(T)= ex—:_X—E (34) X =(1/a))( . (39
Pe(Te)/nTe @ (|v1£086])co
In principle, Egs.(37) and (20) provide two alternative
and for the dynamic pair correlation at contaét’, routes to compute the precollisional pair correlation at con-
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tact: the first one, denoted by{™~), may be implemented der
numerically as a static or unconstrained average, namely, by(c;-c,)(r)= J Q—f de,dc,f@(cy,cp,r o) (cy- ) g(r).
extrapolation to contact of the pair-correlation function for d
pairs aiming to collide. The second one, denotedyby’, (42)
may be computed as a dynamic collisional average, calcu-
lated fromf(®)(c,c,,0) at contact. It is important to stress The correlation functionsG,,(r) above are very long
that the dynamicy( is calculated as a time average overranged, decaying similar to? ¢ for large distances. In the
the subset of colliding pairs at contacand the statio’ ") as first part of this section, we have introduced the static corre-
a time average oveall pairs, satisfying the relationg- o lations,Y, Y(*), and the dynamic oneg{™’. In Eq.(A8) and
<0 and extrapolated to—o+0, i.e., calculated from (A9) we have done the same for the dynamic counter parts
f()(c,,c,,r), where the limit is taken after all integrations (C1-Co)ayn and(cl-ch}f,;g of the static correlatioc, - c,)(r
have been performed. This may lead to different results, be-- &), introduced in Eq(41).
cause the integrand contains the the functiéh that turns In the next section, the short-range behavior of these func-
out to be singular near= o andv;, small(see discussion in tions will be studied by MD simulations.
Sec. Il O.

Physically, it is also clear why the averages in the NESS
need not be the same. For instance, the reldB8may not Il. SIMULATION RESULTS FOR THE NESS
hold for the limiting ¢ — o) values,Y(™) andY(*), because
non-mean-field effectén particular, the “rotation-induced”
recollisions discussed at the start of Sec. I, or noise-induce
recollisions, see belowmay result in differences between
the two methods to evaluatg ™) and Y(*). The reason is

that the validity of Eq.(38), expressing flux continuity for system have been reported elsewHa@. We will work in

the limiting values (—o+0), is questionable in the pres- S ; o
ence of the external random force. When the kicking fre_the limit in which the kicking frequency of the external ran-

. o L dom force is much larger than the collision frequency. This is
quency is much larger than the collision frequerfsiyuation RS . )
considered heje a pair of particles may indeed be put in the limit in which the Fokker-Planck term in E¢L) models

contact under the action of the random force only. We willthe random energy input through the random kicks. The ex-

et bt st e b a7 T 5 Wl b e a5 e
Y() in the next section on MD simulations. 9 '

In paper I, we have studied the long-range spatial corre9nly one important difference with respect to the simulations

lation functionsG,,(r) of the density fieldn(r,t) and the carried out in[10]. There, the random rotation proposed in

flow field u(r,t) in the NESS. These functions are closely [36] was implemented 'to avoid inelastic collapse at h|gh In-
. elasticities ¢<<0.5). This procedure amounts to rotating the
related to Eq(36), i.e.,

relative velocityg by a small random angle after each colli-
sion. Consider the completely inelastic situaties O for the
sake of the argument. After each collision, the vegdies

> exactly at the border of the precollisional hemispheyeof
=0), so that if the aforementioned random angle has equi-
probable positive and negative values, the rotation procedure
S(r)+(g(r)—1) (400 Wil lead to a recollision with probability 1/2. This leads to a
spurious increase of the number of collisions by a factor
S5-01/2"=2 (the recollision may itself induce a recollision
) , with probability 1/2 etc. so that the frequency of collision
and, in the notation of paper |, effectively doubles Whene is small but nonvanishing, this
effect is still present but weaker. This is clearly an artificial
violation of molecular chaos that has been discarded in the

To investigate the short-scale structure characterizing the
ESS and the validity of molecular chaos, we will present in
is section MD simulation results, and compare these with

our theoretical predictions whenever possible. The details of
the simulations of the randomly driven inelastic hard disk

1
Gnn(r): )

n

<2 5(ri—r)[; é(rj)—n

S|k

1 present paper: fore<<0.5, we have also implemented the
Guu(r)= E<,EJ VieVjori=ra(ry) rotation procedure, but if a small rotation leads to a recolli-
sion, a new angle is drawn until the pair separates. In this
=Gy(r)+(d=1)G.(r) way, we reduce an important source of correlati¢the ef-
4 v2 fect is dramatic on all the low-order momeis,,, not only
Yo 2 on the collision frequency; in particular, the moments with
==-—0(r)+ r){Cq-Co)(r), 41 e ’ .
2n (N +vog(rier-€)(r) “1 n<1 that correspond to collisional averages of negative

powers ofg, are strongly biased toward bigger values if the

“rotation-induced recollisions” are presentAfter applying
where(---) is an average over the-particle nonequilib- this rule, we are then left only with correlations induced by
rium steady state and the static velocity correlationthe hard sphere dynamics plus the ones induced by the noise
(€1-¢y)(r), is defined as itself (see below.
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FIG. 2. Fourth cumulant as a function of the coefficient of res-
titution. Comparison is made between the two-dimensional version F|G. 3. Pair-distribution functiong(r) versus distance between
of Eqg. (4) and MD resultgcircles obtained for a system of 10201 the particles at a packing fractiap=0.2. The arrow indicates the
inelastic disks, measured at several densite® Sec. Ill A value at contact for an elastic hard di@HD) fluid (from Verlet
and Levesqué31l)).
A. Cumulants ) o
densities. Similar results as those displayed in Fig. 2 have

First, we focus on the single-particle velocity distribution heen observed for the 3D version of the present mpHE|
functionf averaged over all particles, which deviates from a

Maxwellian distribution due to the inelasticity of the colli-
sions. In the previous section, we presented predictions for . ined
these deviations, assuming molecular chaos. The resultinr% d'?laelx(tj,is\{cvr(iabStriiiepjnrcet?our:ts( rf)oratzg isrt]at'grgéu‘ljgrcoi?;tg”e
expression given by Eg4) for the fourth cumulang, of the trapolated values at conta%.’tY(’*) v Eiere (r), i eo-
distribution as well as the prediction for its overpopulated PC e . o »9

. . . . . . sentially the density-density correlation function, whose long
tail are in perfect agreement with three-dimensidida) di- ) L

) . range behavior was studied in REL0].

rect simulation monte carldDSMC) results over the whole Figure 3 shows the measured valuesggf) for short
region of inelasticitie$34]. As DSMC itself invokes molecu- distances and packing fractiah=0.2, at different inelastici-

lar chaos, this observation merely justifies the approximag .« At small inelasticities¢~=0.9), g(r) resembles the ra-

tions made in the analytic calculation. Information about thedial distribution function for elastic hard disk&€HD). At

validity of molecular chaos may only be obtained from apigher inelasticities, deviations start to appear: the first and
comparison with molecular- dynamics simulations, and Figsecond maximum in the measurg@r) are enhanced with

2 shows this comparison for the fourth cumulagtas a  regpect to their EHD values at the same density. Moreover,
function of the coefficient of restitutionr in 2D. The simu- the functional Shape also deviates from the Corresponding
lation results are in agreement with Eg) for small inelas-  pair distribution of EHD at an appropriately choskigher
ticity, but start to deviate significantly from the theoretical density; e.g., if this density is chosen such that the value of
prediction atx=0.6. These deviations, together with the per-the second maximum of the pair distribution of EHD coin-
fect agreement between the theoretical prediction and DSMGides with the simulation result for IHD, the observed value
results, provide direct evidence for the breakdown of mo-at contact would still be underestimated by the EHD pair
lecular chaos fore=0.6. The theoretical resu(d) is inde-  distribution.

pendent of the density. A&, represents only a small correc- It seems worthwhile to compare these results with exist-
tion in Eq.(2), one needs a large number of collisions and aing experiments on granular fluids in which the pair distri-
large number of particles to reach sufficient statistical accubutiong(r) has been measured. In the experiment of Raf.
racy. So, high densities, for which one may use linked liston a vertically vibrated thin granular layeg(r) has been
[30], are well suited. The data in Fig. 2 are typically obtainedmeasured atp=0.46. In the fluidized“gaslike”) phase, it

at high- packing fractions¢=0.63 ata=0.92 and 0.7, and follows the equilibrium result for elastic hard disks almost
¢=0.55 ata=0.6) andN=10201 particles. At low densi- identically. This result may be compared to our simulations
ties and weaker inelasticitiest& 0.6) we are unable to col- for a randomly driven fluid of inelastic disks at=0.9, cor-

lect enough statistics to measure the small correction, repreéesponding to the value for stainless steel balls used in the
sented bya,. Simulations at higher inelasticities did not experiment. It would be of interest to measure experimen-
show any density dependence @f in the range 0.Z2¢  tally how g(r) in the fluidized phase depends on the inelas-
=0.6, suggesting that the cumulant express®n obtained ticity, and see if a behavior similar to that of Fig. 3 is ob-
from the Enskog-Boltzmann equation also applies at liquidserved. It is also interesting to note that the pair-correlation

B. Radial distribution function
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FIG. 4. (a) Static or unconstrained pair-distribution functions at contagt(™),Y(*) as extrapolated from the corresponding pair-
distribution functiong(r — o) at ¢=0.05, compared with the dynamic correlatipi) at contact. The straight line corresponds to the EHD
prediction (yg=1.084).(b) Ratio of dynamic to static correlatiop{)/Y(™), to be compared with 1, and the static ravib’/Y{"), to be
compared with the dynamic ratig' /(Y= a.

function g(r) in a non-Brownian suspension of spherical (38), is no longer satisfied for the extrapolat¥ts; some
particles, fluidized between two vertical parallel plates,pairs are put in precollision configuration under the action of
shows an enhanced value at contact as {&4]. the random force, which leads ¥ )>aY(*). The break-

In Fig. 4a), we show the value at contadt, obtained by  down of Y(7)=aY(*) signals the inelasticity beyond which
extrapolation fromg(r) at ¢=0.05, together with the ex- noise-induced correlations become relevant. It is furthermore
trapolated values for approaching and receding paifs) possible to consider situations where the recollisions domi-
andY("), respectively. For=0.8, no significant deviations nate the dynamics, e.g., at small by allowing rotation-
are found from the Verlet-Levesque valyg=1.084 for induced recollisions. In this extreme limit, we expe€t’
elastic hard disks at the same density. More surprising is the: Y(*), the pairs being put in pre- or post-collision configu-
value of g(r=0) at large inelasticities, reaching a value ration essentially at random. In the same limit, the population
around 40 fora—0. This property, combined with the ob- of colliding pairs with smallg and small co# is enhanced,
servation that the first and second maximumgifr) are leading to a more pronounced discrepancy between dynamic
shifted to smaller values, and are largéup to 20% at small  and static averagdse., a much smaller rati¥ )/ x(~) than
@) than the corresponding hard disks values, may be intelebserved in Fig. ®)].
preted as a tendency to cluster, i.e., to stay in continuously
rearranging configurations with large-density inhomogene- C. Equation of state. Molecular chaos breakdown
ities. We return to this point in Sec. Ill G.

Figure 4 also shows the dynamic correlatiog!™)
= xeBoo, measured as a collisional average. Figutb) 4

i )y wi i

compares the static ratig’ /Y 7 with _the d_ynam|c ON€, " sional damping in Eq(14) and pressure in Eq12) on the

XM =a, and also shows the rathd )/ x(). The plots o .
lear] howi that the dynamic and static correlatiofid) inelasticity? If molecular chaos holds, the latter quantities
¢ eda\r(%/t)s giff Fy ~05. the diff | depend, according to Eg), (13),(9), and(15), on the pre-

an are difterent. Forr=<0.5, the differences are large, . jjisional pair function at contack( ™), where the particles

and fora=0.6, both functions are about equal. For the Case e aimin ; ; : ;
; ; ; g to collide. This function differs from the extrapo-
of a freely evolving IHS fluid, Soto and Masehal[18] have  |5i0q staticy() at high inelasticitiegsee Fig. 4. Consider

recently observed a S'”_“'ar behavior, e_md eXP's’*‘”ed It st the collision frequency in the molecular chaos approxi-
terms of the effect of the increase of grazing collisions on the .0 — ywo(T) above Eq(9), with y= () the dy-
effective (7). In the randomly driven IHD fluid the same | . ’corn;celatior? ie -

effects are present. All correlationg!{™),Y(*) are large, es-
pecially at smalla. This is caused by the divergence of omdT) X7 vo T
f)(c,,c;,0) at smallg and small co®, which corresponds = AVE
to grazing collisions and will be further discussed in the next
section. As a result of noise-induced recollisions, collisions
with smallg and small co® are oversampled; consequently, where we have used Eq®) and(35). This is an extremely

a dynamical average involving negative powersgafosé  poor approximation, as can be seen from Fig. 1, which shows
such asy(™) is expected to be larger than its static counter-that the measured value/wg approaches 5.6 aa—0,

part Y(7). This feature may be observed in Figh# More-  whereasB,, is essentially divergent. Next, we replagé™)
over, in the absence of recollisions, we would expétt)  in Eq. (43) by its static counterpart(~), shown in Fig. 4.
=aY(") as a result of plain hard-sphere dynamics. HoweverThis yields wg{ T)/ wg=Yvo/xve. Its limiting value

in the heated system, the flux continuity, as expressed in Edor «— 0 is about a factor three too large when compared to

To what extent does the extrapolated static radial distribu-
tion function, Y=g(r— o) describe the nontrivial depen-
dence in the NESS of collision frequency in E§), colli-

(43
WE Xe UVE
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FIG. 5. Pressure versus coefficient of restitution at a packing o
fraction ¢=0.05. The simulations resuligirect or throughB.,) ]
are compared with molecular chaos predictidi®), where x is FIG. 6. Reduced momenk,, for n=1,2,3 as a function of the
either the stand(_) in Eq (37), or the dynam|(>((_) in Eq (8)’ or restitution coefficient a¢:02 andN=5041. A similar behavior is
the Enskog approximatioge in Eq. (7), corresponding t®,,=1.  observed at lower densities.

] o makes the smal,, singularity integrable, giving &nite cor-
w/wg. We conclude that all mean-field approximations for o tion to the Enskog collision frequency, also éor-0 (see
the collision frequency, including the Enskog apprOX|mat|onFig_ 1). The contributions of the smalj,— singularity in

wg(T)/ wg= T/ Tg, break down fora<0.6. . (T) andT(T) are essentially suppressed by extra factors of
Figure 5 shows the pressure of the IHD fluid, compare g of".

with th? molecular chaos predic.tion _given by E10), taking This possibility has been analyzed systematically by mea-
for x either the Enskog approximation: in Eq. (7), or the suring the behavior of the momeris,(T), which are use-

: ) or yO) imai : et
simulated Y/, or x* . The Enskog approximation, ac- ¢, y,0]s to investigate the breakdown of the molecular chaos

counting for the short-range geometric exclusion effects 'rbssumption We have made and/orm small in order to
the precollision state, gives a reasonable descriptign(®)  4p51y7e the nature of the singularitiesfid) near small rela-

i iy (=) ia (=) . . . - . .
for all «, while both the static/® > and the dynamigy tive velocities and near grazing collisions, as displayed in

give an _extreme_ly poor descrip;ion_except WO'S'_ Fig. 7. All deviations of these quantities from unity give a
Consistent with this conclusion is the good estimate for,

. . X gquantitative measure for the violation of the molecular chaos
the temperaturd ¢ in the NESS, obtained by balancing the

R ; ) assumption. In the elastic limit, we have carefully checked
energy dissipation rateg(Te) in Eq. (16) with the energy ¢, 5 |arge number of cases that the reduced momepis
input from the random force, as shown in Fig. 1. Moreover

- - 3 tend to one. Figure 6 shows the values of different moments
the collisional energy los$'(T)/I'e(T) =(Te/T)™ in EG. g (T) and one can clearly see how the deviations from the
(18), is in agreement with MD simulations over the whale

. e 0 : T elastic limit rapidly decrease asincreases ton=3, after
m_terval within 30%. All other mean-ﬂe_ld approximations \ynich they start to increase slowly. For largevalues, the
with wg replaced byw,,(T) or wg,(T) give very poor re-

moments are reasonably close to unity, but statistical inaccu-

_ 2 e .

sults forI'(T) =m¢&g. _ _ racy precludes any definite conclusion about the lardpe-
How can these paradoxical results be reconciled? Let ugayior.

compare the individual definitions of!~),w,p, and T, Further evidence for the above scenario is shown in Fig.

which all contain factors|g- o]"f*)(c;,c;,0) Wwith n 7 \where we display two sequences of momeBts,. To

=0,1,2,3. To find a possible explanation of these paradoxicadraw some further conclusions from Figs. 6 and 7, we note

assumption (6) only breaks down at very small reIativAe Ve{(28), contain apart fromf(®, respectively, the factors
locities g, and more precisely, at very small,gg-o  g"|cosd|",|cosd",g". The reduced momenBy; andB;, con-

=g cosé, which is the component gf parallel to the line of  tain again very large contributions from the divergence of
centers of the colliding particleghysical arguments for this () near vanishingg,=g cosé. Figure 7 suggests that the
scenario will be offered in Sec. Ill F where we discuss thepresence of equal powers gf and co9 in B,, simulta-
noise-induced recollisionsOn the basis of this scenario, the neously suppresses the large contributions from the singu-
singularity inf(®) at smallg makes the dynamic correlation larities atg=0 and co9=0.

X )=Bgoxe (shown in Fig. 6 very much larger thang, We conclude that the numerical results, displayed in Figs.
essentially divergent as— 0. In calculating the collisional 6 and 7, give support to the previous scenario, showing that
frequency from Eq(5), the extra factog, in the integrand molecular chaos breaks down only in a very small portion of
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FIG. 7. Reduced momenB,,, andB,,, as a function ofx at ¢=0.2 andN=5041.

the phase space, aroung=g- o=gcosé=0. The size of (c?) :1+§b_31 (42
this “pocket” in phase space increases as decreases. Vell™2 " 4 by’

Therefore, only those collisional quantities that contain low

powers ofg and cos (such asy!~) and ) will be very  here

sensitive to this breakdown as the inelasticity increases,

while physical quantities involving higher powers gfand

_ 2
cos#, such as the temperature, pressure, or energy dissipa- _Man(T) :(T_E " 45)
tion will be well approximated by their molecular chaos "OME(T) \T nm

nm
counterparts.

The reduced moments have been measured independently
(see Figs. 6 and)7and used to calculate the expressiohy

In the previous section, we have considered the pair- disand (45). The results have been plotted in Fig. 8 as dashed
tribution functionf(®)(c,,c,, o) in the precollision state, and and dashed-dotted lines, which agree very well with the di-
have examined how molecular chaos is broken down, antect measurements of these quantities as collisional averages,
which physical quantities are most sensitive to it. Now weshown in Fig. 8, respectively, as squares and circles. In de-
will analyze the effect of the breakdown of molecular chaosriving Eq. (44) and(45), we have again used that the velocity
on collisional statistics.

We show in Fig. 8 different velocity collisional averages 1.25
at =0.05. In the simulations, these quantities are obtained
by averaging over successive collision events in the stead)
state. We first observe that the simulation results in Fig. 8
approach fora—1 the analytic results for elastic spheres,

D. Velocity correlations at contact

calculated in Eq(24). At small inelasticities, the simulation 754 0
data follow the trends of the theoretical prediction with sys-

tematic deviations depending on the quantity considered. Fo

instance, the behavior of the center- of-mass Moti®A) . 0.5 =~ LR

is close to the analytical prediction of E@®4) in the whole O-—0<t>y,

O - 0<C,C>

range of« values. This indicates that the center of mass L DA<, >

. . . . . 025 F ~ V--V<C>,,
velocity G is not correlated with the relative velocigy Con- s Kb
sequently,f®(c,,c,, o) in the collisional averagéll) fac- N T

torizes, and we may expect the contributions in numerator o | S —-= (243 D,/b, )4
and denominator in Eq11) coming fromG integrations to
cancel. Consistent with this behavior, we observe that the -
two curves in Fig. 8,(c3)s, (labeled by circles and 0% 0.2 04 06 08 ]
(€1 Cy)con (labeled by squargsare symmetric around 1/2. In o

Egs. (A4) and (A5) of the Appendix, these quantities have

been expressed in reduced moments

FIG. 8. Values of different collisional averages obtained in MD
simulations, as a function of at $=0.05(see Sec. Il B for defi-
nitions). For «<0.5, the random rotation introduced to avoid in-
1 3bg . . i R
(C1 CYeol=5— 7, elastic collapse has a maximum deviation angle of 2.5°. The sym-
2 4by bols by, are defined in Eq45).
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FIG. 9. Distribution of{c,- c,)(r) as a function of the distance o

between the particles at=0.05. FIG. 10. Mean-velocity-velocity correlation function at contact,

as extrapolated fronfc, - c,)(r) (previous figurg compared with
the dynamic analog&; - Cy)qyn and(cy - )Yy, , defined in Eq(AB)

variablesG andg are statistically uncorrelated. The presentan d(A9).

results strongly support this assumption.

The correlation(c; - C,) con={COSY12)con» also plotted in 1 b
Fig. 8, cannot be expressed B moments. However, the <C1,C2>(—):_(1_ﬂ)_
approximate relation already employed to show that n2 Poo
(COSYn ) con={C1°Co)con/{C?)con in Sec. 11 C, holds for the
simulation data over the whole range of inelasticities. As therigure 10 compares the extrapolatiofc, - ¢,) (r — o)
system becomes more inelastic, the typical “temperature” of(circleg of the static correlation with its dynamic analogs
colliding particles(defined as the collisional average?).o1)  (46) and(47). The numerical data for both correlations agree
decreases and even becomes lower that the unconstraing@|l for «=0.8, but for «<0.5, the dynamic correlation
average/c®) that defines the temperature. On the other handgsolid ling) is substantially larger than the static one. This is
as already noted belo24), (c?)c,=5/4>1 in the elastic consistent with the difference betwegfi™ and Y(™) ob-
limit. This decrease ofc®) is directly related to the in-  served in Fig. 4. For comparison, the dynamic precollision
crease of the smag) portion of phase space where molecular correlation (dashed lingis also shown. It should be noted
chaos is violated. At smaly, most of the collisions occur that the divergence df®) at smallg and small co® implies
between particles with small and even vanishing relative vein particular thatBys>B,o>B,,, so that Eq.(46) predicts
locities. An extreme example is the inelastic collapse, menthat the dynamic correlation at contdey - C,) gy Should in-
tioned in the Introduction. crease atr—0 and saturate close to 1/2. By the same argu-

The correlation functiofic; - ¢;/9) o) for the freely evolv-  ments;, its precollision part in Eq47) approaches the same
ing IHD fluid has been simulated by Soto and Mare-schaljimit. This can be observed in Fig. 10.
and was shown to be small, but nonvanishiiag]. The velocity correlation(c; - )¢ in Eq. (44) involves

We have also investigated-v correlations by measuring the reduced moments;; andby;. Consistent with the sce-
the expectation value dfc,-c;)(r) for two particles sepa- nario, developed in Sec. Il C, the divergence of
rated by a diStanCE, as defined in Eq(42) The results are f(z)(C11C2|(r) nearg:O and co¥=0 is |arge|y Suppressed
shown in Figs. 9 and 10. The plot shows an intermediatgn these higher moments, which remain finite for0,
range ofr values with an exponentially decaying correlation. where b,;~4b,,. Consequentlyc;- c,)co does not ap-

It is again of interest to compare the extrapolation of theproach the value 1/2 as— 0, but a value close to 0.3, as can
static correlation(c, - C;)(r—o) with its dynamic counter pe deduced from Fig. 8.

part(c; - C,)qyn calculated at collision. The results, derived in

Eqgs.(A8) and(A9) of the Appendix, read for hard disks

(47)

E. Grazing collisions

The data in Fig. 8 for(ci-Coeon, {CO2)cons
(€1 ) g 1 1_@ Ll b2, 46 (N1=b?) .o, and(b)y clearly illustrate that the violation
1 -2/dyn 3 boo 4 bgg of molecular chaos strongly increases with increasing inelas-
ticity. Consider first the average

The first term on the right-hand sid®HS) represents the (D) o= fldbbp(b).
0

> (48)
precollision part,
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FIG. 11. Distribution of the impact parameterfor different «

values forg=0.05. FIG. 12. Distribution of the relative orientation of the velocities

at collision (cosj;,=¢;-C,) at a packing fraction of 5%.

This average remains at a plateau value 1/2der0.5 , <05 molecular chaos is strongly violated, and that the
Wh'd:j_'s d:atermlmedl by tﬁe un_lfotrm d('js_t”bUt',@(b) F({:O”eli tha\éiolation is weaker in the small inelasticity regime. The av-
sponding to molecular chaos in two dimensions. Reca ragel1—b2. supports the same conclusions.
the value 1/2 holds regardless of the functional form of the 'Ighé data fgrz?:lll-cgp 1 and(cosyz) e in Fig. 8 are con-

. . . . . . co co "
veI(|3C|ty| d'StEbUt'OE furllc(:jtlonf. It IS thus afgood_probe (fjor sistent with the predominance of grazing collisions at large
mo eclu ar chaos Lea own. '\ﬂ."rﬁo"erﬁ robm Itlf dtren VI‘(’emeIasticities. They show the average relative angle between
can also estimate the way in which such a breakdown takeg,q | cities of the incoming particles, which has a strang

place. Specifically, as the inelasticity increases the aVerag(ﬁ’ependence and no plateau value near the elastic limit. Near

value increases by about 50%, which indicates a strong blagzl, the particles are on average on approaching trajecto-

toward grazing collisions. To illustrate this, we model the ;¢ With (COSY12) cor= — 0.25 and th15)eqi= 105°. Asa de-

normalized distribution of impact parameters as a un'formcreases{cos¢12>m" increases linearly to a value 0.50, while

: i . . {12 con approaches 60°, at=0. This corresponds to colli-

sicl)onJ;.z‘IF')r?i(slyieblgi’svtvhh;;e\/grg gt;)e ff(it/'g(nlgfp?r?vzk']?gh (i:ron”-I sions of more or less parallel-moving pairs of particles,
) . ; coll ’ where faster particles overtake slower ones.

plles, accord|'ng to Fig. 8, that at= 0',0'0'1’ .and 0.3, respec- Figures 12 and 13 show the distribution of relative orien-

tively, a fraction of 50, 35, ah5 % isgrazing at¢=0.05. " (atigng of incoming velocities. The distribution of angles be-

This qualitative picture is supported in a more quantitativetWeen the incomina particle shows moderate devia-
manner in Fig. 11, which shows the measulréth), which is gp /2

strongly peaked near grazing collisiorts=1). At small in-
elasticity, all impact parameters are equally probable as ex:
pected on the basis of molecular chaos, and consistent witl 1.5
Fig. 8. Only for«=<0.5 deviations become significant: upon
decreasing the coefficient of restitution, collisions with a
larger impact parameter occur more frequently, implying an
increase of the frequency of grazing collisions. The behavior 1 L
of P(b) is then fully consistent with the divergenceféf at
small cos, discussed in Sec. Il C.

To avoid inelastic collapse for<0.5, the postcollision
velocities of colliding pairs are rotated over a small random
angle as described in Refg36,10, with the important re-
striction mentioned at the beginning of Sec. lll. Alternative
algorithms to avoid inelastic collapse are described in Ref.
[37]. For a>0.5, no such rotation was applied. To check if
the deviations of the impact parameter fo< 0.5 are due to 0
this applied rotation, we have also performed simulations h
where even fore>0.5 a random rotation was applied. Re-
gardless of the applied random rotation, we foufid FIG. 13. Distribution of relative velocities;-c, of colliding
close to 1/2 fora=0.5. Both Figs. 8 and 11 show that for inelastic disks at=0.05.

background and a “half” delta peak &t=1, i.e.,P(b)=1

P(c,.c,)
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TABLE I. Frequency of recollision events as a function of the importance afll densities, because it does not require the
inelasticity (see text for the definition ok, andR;). The packing  mediation of a third particle. Indeed, at a low-packing frac-
fraction is $=0.2 and the system contaift=5000 disks. tion of 1% and in the completely inelastic case=0, the
frequency of Ry-like events is still 34%, whileR,-like

“« Ro R events have dropped to 5%. Moreover, we have verified that
0 52% 18% inclusion of rotation-induced recollisions modifies most of
0.4 14% 15% the collisional quantities we have analyzed, increasing their
0.6 4% 15% deviations with respect to the molecular chaos prediction.
0.95 0.15% 7% At present, more quantitative theories or estimates of the
1.0 0% 6.7% effect of both types of recollisions and other ring collisions

on the short-range behavior of the pair-distribution function
f()(x,,x,) are lacking. A natural way to incorporate the
tions from what is expected for an elastic system in the rangfioise-induced recollisions into a kinetic theory description
0.5=a<1. As an analytic expression for elastic disks is notwould be to include them into an effective two-particle scat-
available, deviations are compared with the simulation retering operator, which transforms an asymptotic precollision
sults for elastic hard diskén the absence of a random ex- state of two independent particles into an asymptotic post-
ternal forcg. At @=0.5, the frequency of collisions of collision state, without involving intermediate two-particle
parallel-moving particles is strongly increased, a trend that igcattering states, as in the present case. This may lead to an
enhanced upon increasing the inelasticity. Finally, the probinstantaneous Boltzmann collision tefmithout memory ef-
ability distribution P(c; - c,) is shown in Fig. 13. When the fects, provided the mean free time and the time between
inelasticity increases, this distribution becomes more peakeghindom kicks are very well-separatédilute gases Such a
around the origin, as the colliding particles on average movelescription would suppress the recollions of tyRg, and
more slowly relative to each other. In the mean time, themake the violation of molecular chaos less severe, say com-

typical angley,, decreases, which causes this peak to shift tqarable to the freely evolving IHD fluid.
positive values.

G. Cold dense inhomogeneities

F. Particle- and noise-induced recollisions In Ref. [10], we have shown by analyzing the Fourier

The mechanism for the breakdown of molecular chaos ilmodes of the granular hydrodynamic equations, which are
classical fluids with conservative interactions are sequenceslid for small inelasticitie$say«>0.7), that the NESS in a
of correlated ring collisions, as discussed in the introductionrandomly driven IHS fluid is linearly stable against spatial
The most simple ring collisions are the recollisiofis2)  inhomogeneities. Consequently, when observed over suffi-
(1-3) (1-2) and cyclic collisions(1-2)(2-3)(3-1) or permuta-  ciently long times, the NESS should be spatially homoge-
tions thereof 20]. neous. However, it was also shown that the NESS exhibits

There is strong evidence that the effects of ring collisionsstrong fluctuations, resulting in long-range spatial correla-
are considerably enhanced in fluids with dissipative interactions in density, flow field, and granular temperature. The
tions, such as granular flows, whestativekinetic energy is  observation of density inhomogeneities for large inelastici-
lost in binary collisions. As a result, the postcollision veloci- ties has already been reported by Peng and {8jtarhese
ties{vy ,v3} will be on average more parallel than the pre-density inhomogeneities, as shown by the snapshot of the
collision ones{vy,v,} [24], i.e., the trajectories are less di- density in Fig. 14, are not quasistatic, as in the freely evolv-
verging than in the elastic case, and there is a much largéng case[38,36,39,24 but seem to behave as dynamic as-
{r3,v3} phase space, in which particle three will knock, say,semblies of particles that dissolve and reassemble again.
particle one back to recollide with particle two. Also, for a uniform shear flow, dynamical density inhomo-

This increase of phase space is confirmed by gatheringeneities have been reportpdd]. The existence of density
recollision statistics. We have counted the fraction of recolinhomogeneities was already suggested by the static pair-
lisions as a function ofr, as shown in Table I. The column distribution functionsg(r), which showed an enhancement
labeledR, (recollisions between two partners mediated by aof the first few maxima as compared to their elastic values
third particle shows that at a packing fractiaf=0.2 in the ~ (see Fig. 3
elastic case4¢=1) only a fraction of 6.7% of all collisions In Fig. 8, we show that the mean ener@f)co,l, of par-
is a recollision. This frequency gradually increases to abouticles aiming to collide, is above the meafg?)=1, for
15% ata=0.4. small inelasticity. It decreases from its elastic valye%/4

In the randomly driven IHS fluid, there is the additional with decreasingr, then crosses the mean value va(eé)
effect of noise-induced recollisions that do not require the=1 at «=0.2, and further decreases to approximately
intervention of other particles. This type of recollisiétie-  0.7%c?) at @=0.
noted Ry) occurs with high probability when the relative It is interesting to observe that in the strong dissipation
velocity after collision is so small that it may be simply range, the mean kinetic energy or granular temperature of
reversed by a random kick. Ax=0.6, the frequency of particles that are about to collide lewer than the average
noise-induced recollisions is about 4%, and it increases ttemperature. We combine this observation with Figa) 3
52% ata=0 (see columnR, in Table ). The effect is of and 3b) of Peng and Oht&8], which show that essentially
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a packing fractionp=0.05 density inhomogeneities may oc-
cur for «<0.2. This is indeed confirmed by the snapshots in
Figs. 14. In Fig. 15, we illustrate the existence of cold inho-
mogeneous dense regions fe= 0.2 and¢=0.2. The par-
ticles with a less(more than median kinetic energy are
shown on the leftright). The formation of inhomogeneities
is more clear for the colder particles. The temporal evolution
of these regions show that they dissolve after some time,
_.." rryioe while inhomogeneous regions appear. The formation of “liv-
"Q"é”z} ing” inhomogeneous regions may be understood using the
'3“’*'.{?;;‘"‘-,,‘-,’ hydrodynamic picture put forward ifl10], where it was
o shown that the structure factor behavesSgk)~k ™2, im-
plying density correlationgncreasingwith distance as Imj
in two dimensions. These long range spatial correlations in-
duce a slowing down of the dynamics, as in critical phenom-
ena. This, in turn, implies the slow decay of density pertur-
bations, which could lead to visible density inhomogeneities
as the kicking frequency is reducéd this respect, see Refs.
FIG. 14. To illustrate the slow reorganization of density inho- [6]). We may also expect that upon decreasing the forcing
mogeneities, four consecutive snapshots of the system are shownfagéquency, the dynamics should be closer to its “free cool-
a=0.1, $=0.2, andN=>5000 (the full simulation box is dis- ing” counterpart so that well-defined clusters are then likely
played. The time interval between two consecutive snapshots corig appear.
responds to 50 collisions per particle. More details about the predominance of cold particles,
among those involved in collisions, may be seen in Fig. 16,
all collisions occur inside “cold” regions of high densities. which shows the constrained probability distributiBic),
This last observation applies even more so to undriven IHSlefined in Sec. Il C and obtained from MD-simulations at
fluids [38,41]. We expect that, also in the randomly driven different inelasticities. Fow=0.5, the distribution has sig-
IHS fluid, the majority of collisions takes place inside cold nificantly shifted to smaller impact velocities. For the com-
high-density regions. pletely inelastic case, collision events involving “immobile”
If the predominance ofold particles in strongly inelastic particles are more than twice as frequent as for the elastic
collisions, {c?).<(c?) is indeed a signal for the appear- case. The second moment of the distribution displayed in
ance of density inhomogeneities, then Fig. 8 suggests that &ig. 16 decreases when increasing the inelasticity. In fact, all
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FIG. 15. Snapshot of a typical instantaneous configuration of the system @12, ¢=0.2, andN=5000. To illustrate the existence of
cold dense inhomogeneities, on the lgfght) the particles with a lesénore than median kinetic-energy* are shown at real scalée.,
the cutoff&* is chosen such that there are exactly half of the particles on each)gtagiyths on thex andy axes are expressed in units
of the simulation box length.

011303-16



RANDOMLY DRIVEN GRANULAR FLUIDS: . .. PHYSICAL REVIEW E 65011303

0.75

Plc))

05 r

0 05 1 2 15 28
ef<e,>"
FIG. 16. Velocity distribution of the colliding particles gt=0.05 andN=5041:(a) Original distribution;(b) scaled velocity distribu-
tions as a function of the rescaled velooitis/T(a) for different values ofx.

functional forms with simulation data at differeatcan es- velocity of a pair is below a certain cutdf7], also induces
sentially be collapsed onto a single universal cUihe elas- very important violations of molecular cha¢guantified by

tic one by plotting VT () P(c|a) as a function ot/ \T(«), By, for instance, unless the cutoff is chosen unphysically
whereT (@) =(c?). is the mean temperature of a particle at high.

collision. The collapse plot is shown in Fig. (b§. This data Sequences of ring collision processes, which lead to the
collapse confirms the concept of cold dense regions dominabreakdown of molecular chaos in classical fluids with con-
ing the energy dissipation. This could point to a possiblyservative interactions, are strongly enhanced in fluids with
relevant two fluid picture of a “hot” dilute background gas dissipative interactions, such as rapid granular flows. We
coexisting with continuously rearranging configurations ofhave analyzed how molecular chaos is broken, i.e., essen-

“cold” dense regions. tially only through pairs of colliding particles at very small
relative velocities. This means that molecular chaos is vio-
IV. CONCLUSION lated only in a small portion of phase space, implying that

only certain physical properties will be sensitive to this vio-

We have performed extensive MD simulations to studylation. This explains why quantities such as the collision fre-
the kinetic properties and short-range correlations in the norguency, or the pair-distribution function at contact are very
equilibrium steady state of a randomly driven fluid of inelas-sensitive to the inelasticity parameters, while others such as
tic hard disks, as a model for fluidized granular material. Tthe pressure or the energy dissipation rate are well approxi_
MD results have been compared with kinetic theory predicmated by their Enskog prediction. Disentangling the effects
tions derived from the Enskog-Boltzmann equation, properlyof hard disk and noise-induced correlations remains an inter-
modified with a Fokker-Planck diffusion tergf(d/dv)? to esting point to explore. The studies performed in a freely
account for the applied random driving forfe]. evolving IHS fluid also shows the predominance of grazing

It appears that the kinetic theory predictions, based omollisions at long times. The fact that we have observed an
molecular chaos, are essentially in agreement with the MRinalogous behavior for this homogeneous steady state indi-
results for small inelasticities o(=0.5) at ¢=0.05. For cates that the mechanism of breakdown of molecular chaos
larger inelasticities, the deviations from the molecular chaosn granular fluids through grazing collisions is generic for
predictions start to become manifest: the radial distributiorthis type of fluids.
function at contact differs strongly from its local equilibrium  The extra feature of noise-induced recollisions, which do
form; there is a predominance of grazing collisions. Whemot require mediation of a third particle, will further enhance
increasing¢, the effects of the inelastic collisions become the violation of the molecular chaos assumption. A natural
relevant at smaller inelasticities; e.g.,#a 0.2 and$=0.5,  way to develop a kinetic theory for randomly driven fluids,
we observe already significant deviations to=0.7. thereby presumably restoring the validity of the molecular

To avoid inelastic collapse of the system at lewy we  chaos assumption in the dilute gas case, could be to include
have implemented a modified rotation procedig®e the be- the noise-induced recollisions in an effective two-particle
ginning of Sec. Il). In its original version, this procedure scattering operator. It would be of interest to study its prop-
induces dramatic violations of molecular chaos. It could thererties, either analytically or by simulating a two-patrticle in-
be argued that the important deviations of low-order-reduceelastic collision in the presence of external noise. An addi-
momentsB,,,, are also spurious consequences of the abovéonal theoretical complication here is the validity of the
rotation procedure. However, we checked that circumventing@oltzmann Eq(1) with Fokker-Planck diffusion term due to
the collapse by applying elastic collisions when the relativethe fact that there are two limits involved when dealing with
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hard spheres in combination with external white noise. The . i E oL ((d+n+1)/2)T((m+2)/2)
actual properties of the effective collision operator depend on  (g"|cos6|™) ¢y =2 T(d+m+1)/2)
the order in which both limits are taken. In the simulations, (A2)

one always takes the hard sphere limit first, while the white

noise is approximated by discrete kicks that are applied t1any physical quantities of interest may be expressed in

the particles at discrete times. _ _ terms of reduced momeni, ,, as already illustrated in Sec.
In Ref. [10], we have calculated the equal-“me Spatla|||c for X(_),w’p' andT. Ana'ogous relations hold for the

correlations of the fluctuations in the hydrodynamic densities/g|ocity moments (d™eon, Which are proportional to

in the NESS. Here, we have focused on the dynamic propy . ' This yields

erties of these enhanced fluctuations, in particular of the dy- '

namic inhomogeneities observed in the density field. The o Vet © (gWeo( T\™
collisional velocity moments, introduced in Sec. Il and mea- Bhi11=— X0 = — —E T—) . (A3)
sured in MD simulations, reveal that the dense regions con- e (Videot PE (9M)can' 'E

sist mostly of particles colder than average. This is clearly

shown in the velocity distributioP(v|a) of particles that ~Where the denominator has been calculated in(Eg).
are about to collide. Velocity correlations between nearby particles may also

The MD simulations have been carried out in the limit in D€ €xpressed in the reduced momesy§(T). First, consider
which the time interval between the external random kicks ighe constrained averages;-c;)coi, defined in Eq.(24).
much shorter than thmeanfree time between collisions. In  They contain{G?)cq, which equals d/4 from the MD simu-
this limit, regions with density larger than average are nofations, in agreement with Eq24) (see Fig. 8 of Sec. I)l
seen to survive for a long time. Rather, they form, dissolve,The center of mass velocit® is consequently uncorrelated
and reappear elsewhere. The spatial correlations analyzed Wth the relative velocity, and independent of the inelasticity.
[10] show long-range correlations, which imply also a slow- Substitution 0k G?)=d/4 in Eq. (24) yields
down in the temporal decay of density perturbations. There-

fore, we expect than the decrease of the kicking frequency (c1-) :9_ E< 2 :9_d+_1 T_E B_31 (Ad)
will be accompanied by the appearance of apparent clusters. 1 @leol= 7 ™ 29 el = T | T By
This fact, together with the shape modification of the veloc-
ity distribution P(v| ) (see Fig. 1Hsuggests the picture of a 5 d 1 , d d+1/Tg\Bs
two-fluid model, in which a “hotter” more dilute back- (CDeor=7+ 7(9)car=7+ 7~ ?) 5. A
ground gas coexists with continuously rearranging configu- 1
rations of “cold” dense clusters. This point remains open for gimilarly we find
subsequent investigation; for example, it would be interest-
ing to analyze separately the collisional statistics in the dense 1
and dilute regions to assess the role of density fluctuations. (c;- 02/g>co”=(GZ/g)co|,— Z<g>°°”
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APPENDIX: REDUCED MOMENTS B,,(T)

In the body of the paper, we have considered the colli-
sional averagesg"|cosdl")ey and the momentdl, (T)  Note that the last two averages are vanishing in the elastic
andB,, (T). We first list the Enskog values of these quan-.5ge.
tities, which have have been calculated from its definitions, |, the body of the paper we have considered the extrapo-

given below Eq(28): i.e., lation of the static correlation(c,-c,)(r— o). Here, we
calculate its dynamic analogg; - C,)qyn, Obtained by inter-
changing limits and replacin§(®(c;,c,,r) under the inte-
F((d+n)/2)1“((m+1)/2), (A1)  gral sign in Eq.(41) by its value at contact?)(cy,c,,a).

M E T — Un 2n/2
n Te) =vexe \/;F((d+ m)/2) We proceed in the same fashion as in E@9—(39), and
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split the numerator in Eq(42) in.a pre- and postcollision <01-02)8;3=<01-Czlg cos8] ™Y eon/(|g 0S8 "L con
part, as done in Sec. Il D. One finds after a lengthy calcula-
tion, =9[ 1— (T_E)%)J (A9)
4 T /Boo
_d 1 TE BZO n l—a TE Bzz A8 0o
<Cl. C2>dyn_4 T BOO 4 T BOO' ( )

In Sec. lll, these quantities are compared with MD simula-
Here, the first term on the RHS is its precollision part, i.e., tions.
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