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Lattice model of adsorption in disordered porous materials: Mean-field density functional theory
and Monte Carlo simulations
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We present mean-field density functional theory calculations and Monte Carlo simulations for a lattice
model of a fluid confined in a disordered porous material. The model is obtained by a coarse graining of an
off-lattice model of adsorption of simple molecules in silica xerogels. In some of our calculations a model of
a porous glass is also considered. The lattice models exhibit behavior that is qualitatively similar to that of their
off-lattice counterparts but the computations required are much more tractable and this makes it feasible to
investigate the effects of porous material microstructure at longer length scales. We focus on exploring in detail
the behavior in the adsorption/desorption hysteresis region for these models. In agreement with recent results
for a model that uses a random distribution of solid sites on the Idtdemlik et al, Phys. Rev. Lett87,
055701(2001)] we show that the disorder of the solid matrix induces multiple metastable states within the
hysteresis region, which are evident in both the mean-field theory calculations and the Monte Carlo simula-
tions. These multiple metastable states can be connected by scanning curves that are very similar to those seen
in experimental studies of adsorption hysteresis. The results from mean-field theory predict that while there is
hysteresis in the adsorption/desorption isotherms it is not possible to locate a condition of phase equilibrium
that satisfies thermodynamic consistency. A wider significance of these results is discussed.
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I. INTRODUCTION strateg12,13. A lattice model in combination with a mean-
field theory has been also applied to study hysteresis in
There has been significant progress in developing molecwarrow poreg14].

lar models of disordered materidls—8]. Recent simulation Disordered porous materials have also been studied using
studies on these models show that a fluid adsorbed in a digattice models. For instance, a lattice-gas model of a fluid
ordered porous medium experiences a number of effect§onfined in a model of disordered porous material using
such as confinement, wetting, disorder, etc. that are strongip€@n-field predictions and the replica symmetric Ornstein-
coupled with each othd6—8]. The main drawback of these Z£€nike (RSO2 formalism [15]. Other examples are pro-
models of disordered porous materials is their relative comYided by the work of MacFarlanett al.[16], who considered

putational complexity. This becomes a crucial issue for prob_equilibrium phase transitions of a fluid confined in a model

lems where we are interested in studying a broad array Jporous medium constructed in a simulation of spinodal de-

. composition, by Salazaet al. [17] who considered a lattice
morphologies and parameters of a system. Moreover, phasmé)odel of adsorption in an aerogel, and by Stauffer and Pan-

transitions n the§e systems may |_nvoIve very large lengt.rbey[18], who considered binary fluid demixing transitions in
scales, and it is important to consider a system of a sufﬁé

ciently large size. Again, in the case of detailed continuous In .this paper we focus on developing a lattice model of a

models we quickly reach the limit on how large systems Weyisordered porous material that would incorporate a struc-
can consider due to the computational restrictions. This hagra| and energetical heterogeneity of real materials. The lat-
been a motivation to look for more efficient models andtice Hamiltonian used in this work is the same as that for-
methods, which, at the same time, would preserve the physnylated by Kierlik et al. [15] in their work on the RSOZ
ics associated with the disorder. From this standpoint, latticgheories. The difference between our model and theirs lies in
models offer two major advantagés: they are very efficient a more realistic description of the porous material micro-
from computational point of view(i) they allow a relatively  structure. Our model is a coarse graining of an off-lattice
simple theoretical treatment. model of silica xerogeld4,5,7]. It has a complex three-
Lattice models have been applied to various problems inlimensional interconnected pore space that spans the system
adsorption on surfaces and in porous materials and we casver periodic boundaries. This makes this model a good
mention here only a sample of the many studies in the literamatch for studying various effects associated with confine-
ture. Wetting, prewetting and layering transitions on planament that are strongly coupled and occur on a large scale.
solid surfaces have been studied using the mean-field theoBor this model we can formulate a mean-field density func-
[9,10] and Monte Carlo simulatiofiL1]. Recently mean-field tional theory, which permits to study a broad array of system
lattice-gas models have been used to study the phase behawonditions in a computationally effective way.
ior of fluids confined between chemically corrugated sub- One of the original goals of this work was to systemati-
cally explore the phase behavior of a fluid confined in a
disordered morphology. The motivation for this study came
* Author to whom correspondence should be addressed. from our previous wor27], where we established a link

1063-651X/2001/64)/0112028)/$20.00 65011202-1 ©2001 The American Physical Society



L. SARKISOV AND P. A. MONSON PHYSICAL REVIEW E65 011202

between confined fluid phase diagrams and the corresponc

ing adsorption behavior for a model of silica xerogel. The

lattice model approach to this problem would provide a more

extensive and fundamental understanding of this link for a

variety of systems and conditions. However, in work done in

collaboration with our colleagues at Juss[d9] it became /
evident that the picture of the confined fluid behavior might FHHHH
be more complex than originally supposed. In that widr],
mean-field density functional theory was applied to the origi-
nal model of Kierliket al.[15] in which a random distribu-
tion of sites on the lattice is used to model the solid. An [
important feature was the discovery of a large multiplicity of
solutions of the mean-field equations in the hysteresis regior
of the adsorption/desorption isotherms. The existence o
these solutions, which represent local minima of the grand
potential, makes it possible to model the scanning behaviol
seen in the hysteresis region of adsorption/desorption iso
therms for materials, such as vycor glasg2@]. Moreover,

the theory predicts that hysteresis may occur with or without
an equilibrium capillary condensation phase transition. In the
present work we show that these important conclusions are
sustained when a more realistic description of the porous
microstructure is used. The results provide a further indica- FIG. 1. A schematic representation of the coarse graining used
tion that the problem of hysteresis in disordered porous maln development of the lattice model.

terials may be understood entirely within the context of a

stati_stical_ mechanics in the grand canon_ical ensem_ble_z Withattice vapor-liquid system. Spinodal decomposition of a bi-
out |nvok|ng_ transport con_cepts or an arbitrary descrlpt!on Ofnary alloy system(or a vapor-liquid system for lattice-gas
the connectivity of the void space in the porous material. odels since these systems are isomorphic for lajticas

been a proven method to generate accurate model structures
of porous glassel21]. This approach has been implemented
for both lattice[16] and off-lattice systemf22,6] and sche-

The lattice model we consider is based on a particulatenatically works as follows. A system of a fixed composition
model of a silica xerogel used in previous wofKs5,7]. The  in a canonical ensemble is equilibrated at a high supercritical
porous material is treated as a matrix of spherical particles itemperaturéso it has a uniform densityThen it is cooled to
a configuration from a hard sphere system. Our lattice moded subcritical temperature, where it undergoes spinodal de-
is a coarse grained version of this system using an fcc latticeomposition. It was noticed that the structures the system
for the discretization. The coarse graining is illustrated for agoes through during this process toward a complete separa-
two-dimensional square lattice in Fig. 1. After the coarsetion indeed resemble those seen for experimental glassy
graining the system consists of lattice agglomerates of apstructures. Depending on a desired microstructure, the sys-
proximately spherical shape. The size of the fcc lattice gridtem is quenched at some point during the decomposition, one
was chosen to keep the ratio of the cluster size to a singlef the phases is then removed and the remaining phase serves
lattice site size roughly equal to the analogous ratio for theas an adsorbent matrix. In this work we allowed an equimo-
off-lattice model(a matrix particle size to a fluid particle lar binary alloy system witiT/T. ,=0.204 to spinodally de-
size). This ratio is about 7. Overall, for a system with 32 compose until a desired surface area was obtained. We define
matrix agglomerate&he system size considered in our simu- the surface area as a fraction of liquid sites in contact with
lation studies of the off-lattice modelve use an fcc lattice the gas phase and it was set to 0.385 for the system of inter-
with 22 unit cells on each side so that there are 42 592 sitegst. The decomposition process was modeled via canonical
with 13 713 matrix sites. The solid volume fraction is lower Monte Carlo approach and the low temperature of the system
for the lattice model than for the off-lattice model, 0.322 vsensured that the separated phases were essentially pure. Then
0.386. In order to analyze possible system size effects, wthe system was quenched and one phase was removed. The
also considered a 500-cluster system, obtained in the sanodtained quenched configuration served as a model of porous
fashion as the 32 cluster system. This larger system consistefiass for our adsorption calculations. In Fig. 2 we show com-
of 629 856 sitegwith 54 unit cells on each sifle214 401 of  puter graphics visualizations for the two morphologies con-
them matrix site, giving a solid volume fraction of 0.34. sidered in this paper together and for the case of a random

In addition to the above model we have also made soméistribution of sites on the lattice.
calculations for an fcc lattice model of a porous glass with a The Hamiltonian we have used is that one formulated by
solid volume fraction equal to 0.5 and a side length equal tdierlik et al. [15]. In their work they considered a random
60 unit cells (864000 available sites in the systenthis  distribution of matrix sites, but the form of the Hamiltonian
system was constructed by spinodal decomposition of theemains the same for all matrix morphologies. We have

/

Il. MODEL
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ARSI =0 if it is not. Similarly »;=0 if site i is occupied by a
e 24 Q:: 2 .J:\“‘:&Q matrix particle andyp; =1 if it is not. The primed summations
&5 P e S ML Gt enote the restriction to pairs of sites that are nearest neigh-

bors. For all considered morphologies we used solid-fluid
interaction parametek#= wqy;/wq,=1.25.

5 % P 3o lIl. MEAN-FIELD DENSITY FUNCTIONAL THEORY
& e :"t‘:" *3.4.% ':" ‘ The density functional treatment presented here is similar
¢ é‘t:.’.“ . ’.J:a"‘ ;._ ‘» to the one used in previous work going back to that of de
}.i: s'.: 'S “"“i ~’;.;b‘.‘ : Oliveira and Griffiths[9] and Ebnef10] for adsorption on
¢t f,\ o -" 3,,_. b 3 planar solid surfaces. We express the current state of a site as

& :f;o;: {‘ff) g.,y',*""{' an average occupancy at this site plus a fluctuation about the

‘o‘t} ‘: Rt average. We have
v :

Ti7i=pit+ Opi=pit (77— pi). (3.9)

After neglecting terms beyond linear in the fluctuation we
can write

TiT NN =~ PPt PiTiN T P TN (3.2

This allows us to rewrite Eq2.1) as

Hmf:_HO_Ei ak/l Ej:’ [@11p)+ wor(1= )],
(3.3

where the primed sum ovgrdenotes a sum over the sites
that are nearest neighbors of the sitnd

Ho:_wn;j, pipj - (3.4

We can write the grand partition function of the system as

Ez% exq—mHmf—uN)]:eﬁ“o% H e,
(3.5

where{r} denotes the set of values offor all lattice sites.
Here it is important to notice that the last product in Eq.
(3.5, which goes over all sites, becomes equivalent to the
one that goes only over sites that are not occupied by matrix,
since for sites occupied by matrix=0 and the correspond-
ing term in the product is unity. From now on we will restrict
the sums and products to sites unoccupied by the solid. Then
we have

FIG. 2. Computer graphics visualizations of lattice models, from BHo 7iXi — aBHg TiXi — aBHo X
top to bottom: a random model, a model of a silica xerogel, and a € % H er=e H % er=e H [1+en].
model of porous glass. Solid sites are shown in black. (3.6

, ) The quantityX; is given by
H:*wngj TiTj77i7]j*w01i2<j [Tiﬂi(lfﬂj)
X;= ' i+ wor(1— )]+ . 3.
+ 7]].(1_ 7], (2.1) i=B 2 [wllpj wo1( 771)] M (3.7
where 7;=1 if site i is occupied by a fluid particle ang The grand potential is given by
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1 T T T T T T T T T I T T T T T T
0=-3 BHo+ >, In(1+eX)|, (3.9 1
I
where the sum ovadris restricted to sites unoccupied by the
matrix. The local density at sittmay be determined from 0.8

the partial derivative of the grand potential with respect to
the intrinsic chemical potentigP3]

%c 0.6
(3.9 ’

Pi=—

oQ ) B 1
Ap=vi)) 1, [1+e X

where() is the grand potential of the system and 0.4
I . o° b
Ui:_w012,, (1_77]') (3.10 0.2 I RS T e [
J “o 02 04 06 08 1
is the external field on site Equation(3.9) also satisfies the
necessary condition for the minimum value of the grand po- p/(1=n)

tential, i.e., FIG. 3. TemperatureT/T, ) vs density(p/(1— 7)) phase dia-

IBQ grams for the lattice model of a fluid confined in a xerogel material
(_ =0 (3.11 with wg;/w4,=1.25 calculated via the mean-field theoffjlled
Ip; TV circles and compared with that of a bulk fluigine).

for all i. Our' eXpressions may be shown tp be equwalent_ toused for equilibration of the system and the other half for
those used in earlier work on the mean-field approximation

for inhomogeneous lattice fluid®,10,12,13 The form of averaging. Some tests with much longer runs indicated that

Eq. (3.9 shows that for a lattice d¥l sites we have a system runs of this length Were.suff|C|e.nt to obtain reproducible re-
) . . . .. sults for the states considered in this work. However, longer
of M nonlinear equations. In this work we use a simple it-

. ) L . runs would be needed to make quantitative studies in the
eration procedure starting from an initial density for each - : . L
site near critical region. In calculating adsorption isotherms we
} . . gtarted from a state of low activity and carried out a sequence
Here, so far, we have derived expressions for a gran

canonical ensemble. It is also possible to perform these ca] .-f simulations for progressively increasing activity using the

. . : o inal configuration at each state as the initial configuration
culations in the canonical ensemble. A similar approach hafs

: or the next state. Desorption isotherms were calculated by
been recently employed by several gro{ip4,25. Now, in- starting at a high activity state and carrying out a sequence of
stead ofT and u, we keep constart andp. The problem is 9 9 ying q

R . simulations for progressively decreasing activity, again using
then_to_ minimize the free-e_ner_gy functiorfad[ p;]) under a the final configuration at each state as the initial configura-
restriction of constant density, i.&;p;=Mp. One can show

. . . ) ion for the nex .
that it leads to a double iteration: we first solve a system oFO or the next state
equations for the fluid density identical to those for the grand

canonical ensemblE.9), and then adjust chemical potential V. RESULTS
Mp We begin this chapter by presenting confined fluid phase
n+t+l1_ n
p = p KT (3.12 behavior calculations for the xerogel model. For all the cal-
2 Pi culations we consider a case with solid-fluid interaction pa-
' rameter «a=1.25. This is somewhat close to the;/ess
to accommodate constant density condition. Hereorre- = 1.1435 parameter used for the off-lattice cgSg Since,

sponds to the outer iteration loop. Then we repeat the fluidh€re are no long range interactions in the lattice model, this
density iteration procedure. As has been shown for planaparameter was taken to be slightly higher to imitate a stron-
substrates, this approach can be used to reveal addition@®" field arising from the range of the solid-fluid interaction

metastable states, forming multiple van der Waals-like loopd? the off-lattice model. In Fig. 3 we show a phase diagram
[24]. calculated via the mean-field theory approéfited circles

and bulk coexistence curvéne). This phase diagram calcu-
IV. MONTE CARLO SIMULATIONS Iajion is based on the assumption t_hat in the hysteresis region
either a fluid state on the adsorption or a fluid state on the
We have carried out Monte Carlo simulations of thedesorption branch of an isotherm corresponds to a state of
model described in Sec. Il using the Metropolis meth@8]  global grand potential minimum. In this case the phase dia-
in the grand canonical ensemble. Our Monte Carlo simulagram calculation procedure is straightforward and is based
tions were generally carried out over 5000 moves per latticen search for the following condition in the hysteresis
site for sites unoccupied by solid, one half of which wereregion:
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FIG. 4. Adsorption/desorption isotherms of dengitys activity
\ at different temperature&T/w4,;=1.9,2.1,2.25,2.35,2.4%is0- A Y
therms from left to right, respectivelyfor the lattice model of a ) o _ o
fluid confined in a xerogel materia{32 solid clusters with FIG. 5. Adsorption/desorption isotherms of dengitys activity
xerogel materia(32 solid clusterswith different strengths of solid-
_ (5.1) fluid interaction @= wq,/w,,=1.25,1.75,2.25,2.%clockwise start-
K= B ' ing from upper left isothermncalculated via the mean-field theory.
Ql:QZI (52)

show adsorption isotherms calculated for various tempera-

where the subscripts denote the two phases in equilibriunfures ate=1.25.In Fig. 5 we show the influence of increas-
An advantage of the mean-field approach is that it allows u#d @ on the shape of an isotherm®t =2.2. The isotherms

to calculate the grand potential directly and this is why we@re very similar to those seen experimentally for adsorption
thought this approach would be such a great tool for quickn Silica xerogelg28]. N o
qualitative phase behavior calculations. A more detailed Ve have conducted a search for additional local minima
analysis shows, however, that the states on the adsorptidH the grand potential in the hysteresis region using two ap-
and desorption branches of a hysteresis loop are not the onRfoaches. First we have done constant average density calcu-
states possible in the system, and, moreover, they do nditions at various values of the average density in the hyster-
necessarily correspond to the global grand potential mini€SiS region. We have also calculated scanning curves for
mum for a given chemical potentifl9]. Thermodynamic Seéquences of increasing or decreasing the chemical potentials
consistency requires, that we should be also able to calculaarting from several states on the hysteresis loop. In Fig. 6

the grand potential density by integrating the Gibbs adsorpWe Present results for our model xerogel system. The upper
tion equation left graph shows an adsorption isotherm for the xerogel sys-

tem atT*=2.5 (lineg. The upper right graph shows the
dQ=—Mp;du (5.3 expanded hysteresis region from the upper left grdiples

and closed circles In the lower right graph we also show
starting from a point where grand potential is known. Asdata from constant density calculations. The lower left graph
long as the integration path involves only equilibrium statesshows again the adsorption isotherm expanded in hysteresis
and does not pass through phase transitions, the calculateegion for T*=2.5 (T/T,,=0.8333) along with scanning
grand potential is expected to be identical to that calculatedurves. In both cases we see that there are many solutions of
directly. This idea can be tested directly in the mean-fieldthe mean-field equations in the hysteresis region. The mul-
theory[19]. This test applied to the systems considered hergiple solutions of the mean-field equations for these systems
shows that the discrepancy between the thermodynamicorrespond to multiple local minima of the grand potential.
properties begins as soon as we enter the hysteresis regioihe occurrence of these local minima is associated with the

Another way to show this is to focus on the identification complexity of the potential energy landscape in these disor-

of additional metastable states in the system and to search fdered systemg19].
a true locus of grand potential minima. Before exploring this  This picture is further confirmed by calculations for a sys-
subject in more detail it is useful to present several exampletem with an fcc arrangement of matrix particles where we
of adsorption isotherms of the xerogel model. In Fig. 4 weobserved only a small limited number of additional meta-
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FIG. 6. Adsorption/desorption isotherm of densitws activity
N\ at kT/w,,=2.5 for the lattice model of a fluid confined in a 0.2 U L L
xerogel material32 solid clusterswith wgy;/w1;=1.25 calculated 0.07 0.08 0.09
via the mean-field theory. Upper left graph shows the isotherm A

(lines). Upper right graph shows the expanded hysteresis region i 7 gxpanded hysteresis region of an adsorption/desorption
(lines and filled circlep Lower graphs_ sr_low additional metas_table isotherm and scanning curves of dengitys activity A atkT/wy,
states from constant density calculatigright) and from scanning = 2.5 (the upper graphandk T/ w,;=2.55 (the lower graphfor the
curves(left). lattice model of a fluid confined in a xerogel materi&b0 solid
clusters with wg;/w,;=1.25 calculated via the mean-field theory.

stable states, that included states associated with layering and

interparticle bridging. Due to a relatively weak solid-fluid mean field theory we have performed additional calculations
interaction, these states were observed only at very low teMysing grand canonical Monte Carlo simulations. In each case
peratures and belonged to a metastable part of the adsorptigRe system was equilibrated at each point the system was run
branch. The transitions we observed for the ordered matrixor yp to 5000 moves per lattice site at each activity. Results
are akin to wetting and prewetting transitions studied byare shown in Fig. 8. The upper graph corresponds to the
Dobbs and Yeomans for two neighboring sphd@3. 32-cluster xerogel system @t =1.8 (T/T.,=0.735). The
Unlike for some of the random matrix systeff9], in |ower graph corresponds to the 500-cluster xerogel system at
Fig. 6 the metastable states appear not to fill the entire hysr« —1 g Both graphs show additional metastable states cal-
teresis region. However, further calculations revealed thagated in scanning sequences. It is less clear for the smaller
this was partly related to the system size. In Fig. 7, the uppegystem, but again this seems to be a system size effect only.
graph shows an adsorption isotherm expanded in the hysteror a 500-cluster system we see clear scanning behavior.
esis region for a larger system size at the same temperature Finally, we present mean-field theofWMFT) calculations
and also additional states obtained from scanning curvesor a lattice model of a porous glagss]. In Fig. 9, the graph
There are two important features of this graph. The desorpshows an isotherm for a glass system with solid volume frac-
tion branch of the hysteresis loop appears to be continuouson equal to 0.50¢=1.25 atT*=2.35 (T/T.,=0.783) and
and the scanning curves span most of the hysteresis regioseveral scanning curves initiated on adsorption. Again, there
The lower graph of Fig. 7 shows another example of thiss a clear evidence of additional metastable states. This ob-
behavior afT* =2.55 (T/T.,=0.85). With a larger system servation suggests the generality of the picture emerging
we have a larger sample of the disorder and we should thusom these calculations and the earlier ofieg]. The multi-
expect a larger number of solutions to the mean-field equaplicity of metastable states is determined by porous media
tions. disorder and is an intrinsic feature of all disordered mor-
So far, our discussion of the hysteresis region has inphologies. The trend we have observed for the confined fluid
volved only mean-field calculations. In order to confirm thatbehavior with the increasing system size leads us to specu-
these additional metastable states are not an artifact of tHate that a system of a macroscopic size would induce an
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ol N FIG. 9. Expanded hysteresis region of an adsorption/desorption
’ isotherm and scanning curves of dengitys activity X atkT/wq4
=2.35 for the lattice model of a fluid confined in a porous glass
i i with wg1/w11=1.25 calculated via the mean-field thegliyes and
closed circles
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a simple theoretical treatment. The thermodynamic proper-
FIG. 8. Expanded hysteresis region of an adsorption/desorptiofies have been studied by the mean-field density functional
isotherm and scanning curves of dengitys activity N atkT/wq; theory and Monte Carlo simulation. The behavior of the
= 1.8 for the lattice model of a fluid confined in a xerogel material ., ~4ais in the hysteresis region is very interesting and is in
(32 solid clusters - upper graph; 500 solid clusters - lower gralohqualitative agreement with experimental results for adsorp-
with wg;/wq,=1.25 calculated via grand canonical Monte Carlo ;. . .
simulations. tion isotherms of simple gases in xerogels and porous glasses
[20] including the observation of scanning curves. Moreover,
it confirms the picture emerging from a recent study of a
infinite number of metastable states within the hysteresis reyodel with a random distribution of the solid sites on the
gion. We have found that this effect also occurs after averigtice [19].
aging over several realizations of the solid matrix disorder Tpe present results indicate that for the lattice models of
[30]. Once these multiple states are identified it is possible tQerogels and porous glasses considered here in both the MFT
search for a grand potential minimum. Our preliminary 3nq Monte Carlo simulations the hysteresis behavior is not
analysis shows that the systems described here exhibit n@ssociated with a simple van der Waals-like metastability
sharp transition similar to the vapor-liquid transition in bulk accompanying a first order vapor-liquid transitigag].
fluid. At the same time the necessity to uniquely identify \whether or not this suggestion applies to the off-lattice ver-
phases in coexistence is no longer obvious. Given the larggons of these mode[§,6,31—33 remains to be seen. How-
number of states with closely spaced grand potentials, a sygyer, given the similarities of the calculated phase diagrams
tem may never actually reach the states of phase coexistenggy the [attice and off-lattice models of the silica xerogel it is
although they correspond to the thermodynamic equilibriumqyite plausible that it does. The question of whether there is
a true phase transition in these systems is thus more subtle
than envisaged by recent theoreti¢8l] and simulation
VI. CONCLUSIONS studies[5,32,33.
Finally, we want to make reference to a recent simulation
We have presented some results for lattice models of disstudy[34] of an off-lattice model where we showed that the
ordered porous materials focusing primarily on a model dehysteresis obtained in grand canonical Monte Carlo simula-
veloped by a coarse graining of an off-lattice model of ations could be reproduced by a molecular dynamics algo-
silica xerogel. The model has several key features, specifiithm in which adsorption and desorption occur via diffusive
cally it incorporates a three-dimensional complexity of realmass transfer. These calculations together with this and our
porous structures, it is computationally efficient and it allowsother recent work19] indicate that we can learn a great deal
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