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Model of a fluid at small and large length scales and the hydrophobic effect

Pieter Rein ten Wolde, Sean X. Sun, and David Chandler
Department of Chemistry, University of California, Berkeley, California 94720

~Received 26 June 2001; published 5 December 2001!

We present a statistical field theory to describe large length scale effects induced by solutes in a cold and
otherwise placid liquid. The theory divides space into a cubic grid of cells. The side length of each cell is of
the order of the bulk correlation length of the bulk liquid. Large length scale states of the cells are specified
with an Ising variable. Finer length scale effects are described with a Gaussian field, with mean and variance
affected by both the large length scale field and by the constraints imposed by solutes. In the absence of solutes
and corresponding constraints, integration over the Gaussian field yields an effective lattice-gas Hamiltonian
for the large length scale field. In the presence of solutes, the integration adds additional terms to this Hamil-
tonian. We identify these terms analytically. They can provoke large length scale effects, such as the formation
of interfaces and depletion layers. We apply our theory to compute the reversible work to form a bubble in
liquid water, as a function of the bubble radius. Comparison with molecular simulation results for the same
function indicates that the theory is reasonably accurate. Importantly, simulating the large length scale field
involves binary arithmetic only. It thus provides a computationally convenient scheme to incorporate explicit
solvent dynamics and structure in simulation studies of large molecular assemblies.

DOI: 10.1103/PhysRevE.65.011201 PACS number~s!: 61.20.Gy, 68.08.2p, 82.70.Uv, 87.15.Aa
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I. INTRODUCTION

We have constructed a tractable model for describing d
sity fluctuations in a cold liquid at both small and larg
length scales. The model allows us to analyze at a mic
scopic level the effects of solvated surfaces and large
lecular assemblies, perhaps of biophysical relevance.
paper presents the model and demonstrates its tractabili

A cold liquid is a fluid that is well below the critica
temperature. Water at ambient conditions is an exam
When unperturbed, it will have no significant large leng
scale fluctuations. It is nearly incompressible. When p
turbed by a sufficiently extended surface, however, a c
liquid may exhibit large length scale fluctuations, akin to
phase transition, in the vicinity of the surface. This pheno
enon occurs when another phase is close to coexistence
the liquid, and when interactions with the surface favors
other phase over the liquid. This coincidence of condition
pertinent, for instance, to hydrophobic effects. In particu
water at ambient conditions lies close to coexistence with
vapor. Further, the demixing of oil and water and the ass
ated large oil-water surface tension indicates that a large
drophobic~i.e., oily! surface favors vapor over liquid wate

Indeed, Lum, Chandler, and Weeks~LCW! @1# have dem-
onstrated that oily surfaces extending over 1 nm or more
nucleate a layer of depleted water density and concomi
large length scale correlations. In contrast, perturbati
from smaller hydrophobic surfaces, less than 1 nm across
not nucleate such a drying layer and affect only small len
scale fluctuations in the liquid. Since hydrophobicity vivid
manifests the interplay and competition between small
large length scale fluctuations in a cold liquid, we have c
sen in this paper to focus attention on it. One benefit of
analysis is an understanding of the results of LCW the
from a perspective that is numerically simpler and physica
more transparent than the original LCW development. G
eralizations of our approach to other phenomena, includ
1063-651X/2001/65~1!/011201~9!/$20.00 65 0112
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the effects of strong associative interactions between sol
and solvent, should be apparent.

The main idea of our approach is to create a statist
field theory where the molecular density field is decompo
into two parts. One part varies on large length scales o
The other varies on small length scales. For a cold fluid t
is homogeneous and therefore nearly incompressible,
large length scale field is nearly constant and equal to
mean density of the bulk liquid. Even for this homogeneo
case, however, small length scale fluctuations are alw
present. To a remarkable extent@2,3#, the statistics of these
fluctuations is Gaussian with a variance determined by
structure factor of the bulk liquid. Accurate molecular the
ries of solvation and liquid structure at small length scales
the Percus-Yevick equation for hard-sphere fluids@4,5#, the
mean spherical approximation@6,7#, the Pratt-Chandler
theory of hydrophobicity@8#, and the reference interactio
site model @9,10#—are all consequences of such statist
@11#. These Gaussian statistics for small length scale fluc
tions are an important element of the weight functional~or
Hamiltonian! we construct. These fluctuations are couple
of course, to the large length scale density field, and they
also constrained by the presence of solutes. Due to the
pling and constraints, the variance of the small length sc
fluctuations may differ markedly from that of the homog
neous bulk fluid.

The Hamiltonian for our model is presented in Sec.
The large length scale density field supports possible ph
coexistence and interfaces. As such, we see in that sec
how the coupling between small and large length scale fie
may lead to solute-induced interfaces in a cold fluid. O
treatment of this coupling is inspired by the work of Lu
et al. and Weeks and his coworkers@1,12#. They related the
coupling to unbalanced attractive forces that result from
cal inhomogeneities in the fluid. Analytical integration ov
the small length scale field is possible due to its Gauss
statistics. The integration yields an effective Hamiltoni
©2001 The American Physical Society01-1
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TEN WOLDE, SUN, AND CHANDLER PHYSICAL REVIEW E65 011201
functional for the large length scale field. In Sec. III, w
describe how this integration may be used to study solvat
This step also lays the foundation for a numerical sche
where the solvent is simulated at the level of the large len
scale density field. Such a scheme involves only binary ar
metic and is much more efficient than an atomic level sim
lation. In fact, it is sufficiently efficient to make possible th
study of phenomena like self-assembly of biological str
tures.

In Sec. IV, we discuss the results of our treatment in va
ous limits. In the absence of any solutes, the effective Ham
tonian for the large length scale density corresponds to
lattice-gas model@13#. In the presence of solutes that a
small in size and number, only those density fluctuations
small length scales are relevant, and our model reduces t
Gaussian model of Pratt and Chandler@8#, and the closely
related information theory approach of Hummer and cowo
ers@2#. In the presence of large solutes, a mean-field appr
mation to our model coincides with the LCW theory@1#.

A numerical application is given in Sec. V. We first sho
how the parameters in our model may be estimated fr
experimentally accessible quantities. We then explicitly tr
the solvation of an ideal hydrophobic sphere in water a
compare our results with those of an atomistic simulat
@14#. Finally, in Sec. VI, we discuss implications and po
sible extensions of this paper.

II. MODEL

Figure 1 illustrates the essential features of a cold fluid
the presence of a solute. The solute is of arbitrary size
shape. If it is small, the solvent will wet its surface. In co
trast, if the solute is large with extended hydrophobic s
faces, solvent density near the solute will be depleted rela
to the density of the bulk liquidr l . This dryinglike phenom-
enon occurs because the solvent experiences significan
balanced attractive forces near the hydrophobic surfa
These forces induce depletion. The solute may also h
patches of associative interactions. Adjacent to those patc
the molecular density of the solvent will be close to or p
haps greater than that of the bulk liquid.

In our description of solvation, we make a distinction b
tween strong forces and weak solvent-solute forces. The
pulsive nearly hard-core interactions between solute and
vent molecules are strong forces. So too are associa
interactions between solute and solvent. On the other h
dispersion interactions between solute and solvent molec
are weak forces. In some cases, electrostatic forces are
forces. Weak interactions are described in our treatmen
an interaction potential acting between the solute and
solvent density. In contrast, strong forces are treated acc
ing to the constraints they impose upon the solvent den
fluctuations. For example, the effect of a solute repuls
core is mainly to exclude solvent from a volumevex in Fig.
1. The effect of these forces may be described as a const
permitting only those fluctuations in the solvent dens
r(r ), that leavevex empty of solvent, i.e.,r(r )50 for r
Pvex @11#. Similarly, associative interactions may causen
water molecules to be bound within a specific region close
01120
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the solute. In Fig. 1, this region isvb . This effect may be
treated by constraining the integral ofr(r ) over the volume
vb to equaln @1#. We do not apply this latter idea in th
current paper, although the methods by which it may
implemented should be clear from our treatment of
former.

Since the fluid is assumed to be cold, the regions of ga
vapor may be clearly distinguished from those of liquid. T
density of the vapor is typically orders of magnitude smal
than that of the liquid. In such a situation, it is natural
divide space into a grid of cells, where each cell conta
either gas or liquid. We use cubic cells, and take the dista
across each celll to be comparable to the bulk liquid corre
lation lengthj. In that case, a binary choice of states with
a cell, either gas or liquid, provides a reasonable coa
grained rendering of likely configurations of the fluid. W
can thus define a fieldni that takes on the value of one if ce
i contains liquid and zero if it contains gas. The molecu
density we associate with this field isnir l . This field ni or
equivalentlynir l , is the large length scale field in our mode
It may be used together with a second fielddr(r ) to describe
the density on length scales both larger and smaller thanl. In
particular, for positionsr within cell i, r i , we write the net
density as

r~r i !5nir l1dr~r i !. ~1!

All of space is spanned by the set ofr i , i.e., *dr[( i*dr i .

FIG. 1. Sketch of our model of a cold liquid in the presence
a solute. The solute excludes a volumevex from the solvent~black
region! and has a hydrophilic patch of strong associative inter
tions with the solvent; the patch imposes a constraint on the sol
density in the volumevb ~gray area!. The solvent is divided into
cells of width l; each cell is either filled with liquid (ni51) or
vapor (ni50). The fieldni describes density fluctuations on leng
scales larger than the lattice spacing. This field supports phase
sitions. Density fluctuations on length scales smaller than the la
spacing are described by the fielddr(r ). This field describes mo-
lecular detail such as the highly oscillatory profiles for the avera
density near small solutes. We thus write the density asr(r i)
5nir l1dr(r i). The fielddr(r ) is assumed to obey Gaussian st
tistics.
1-2
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MODEL OF A FLUID AT SMALL AND LARGE LENGTH . . . PHYSICAL REVIEW E 65 011201
While the fieldni is binary and may be used to describe
liquid-gas phase transition, the fielddr(r ) has a very differ-
ent character. It supports neither phase transitions nor in
faces, but it does describe small length scale structures,
as those manifesting the granularity of the solvent~e.g., the
oscillatory profiles of the average liquid density in the vici
ity of a small solute!. It must be possible, therefore, th
dr(r ) may take on a variety of values. As indicated in t
Introduction, it is a reasonable approximation to adopt
simplest possible statistics for this field. Namely, we assu
it is Gaussian and define its variance to be

x@r i ,r j8 ;$nk%#5^dr~r i !dr~r j8!&$nk% . ~2!

Here,^•••&$nk% indicates the ensemble average over den

fluctuations for a given configuration of the fieldnk . The
dependence uponnk is significant. Whennk51 for all k,
corresponding to a cold liquid with absolutely no lar
length scale fluctuations,dr(r i) has zero mean, and its var
ance reduces to the response function of the bulk fluid,

x~r i ,r j8 ;r l !5r ld~r i2r j8!1r l
2h~ ur i2r j8u;r l !, ~3!

whereh(ur i2r j8u;r l)11 is the radial distribution function o
the uniform fluid at densityr l . On the other hand, within a
cell that contains vapor (ni50), small length scale fluctua
tions are very small. Our model employs the approximat
that dr(r i)50 wheneverni50. Therefore, we imagine tha
dr(r ) is a Gaussian field, with a weight functional being th
of the bulk fluid, but constrained to be zero wheneverni
50. The response function for such a field is@11#

x@r i ,r j8 ;$nk%#5x~r i ,r j8 ;r l !

2(
k

(
l
E dr k9E dr l-x~r i ,r k9 ;r l !

3xg
21@r k9 ,r l- ;$nk%#x~r l- ,r j8 ;r l !. ~4!

Here,

xg@r i ,r j8 ;$nk%#5x~r i ,r j8 ;r l ! if ni5nj50,

50, otherwise, ~5!

is the (r i ,r j8) element of the matrixxg . Similarly, the matrix
with elementsxg

21@r i ,r j8 ;$nk%# is also nonzero only when
ni5nj50. In that space, whereni50, xg

21 is the inverse of
xg . These relations project the matrix with elemen
x21@r i ,r j8 ;$nk%# onto the space of cells for whichni51. We
adopt these relations to define our model of Gaussian st
tics for dr(r ).

With the lattice spacing as large as the bulk correlat
length, the fieldnir l is nearly incompressible. This mean
that in the absence of any strong perturbations on the fl
the fieldni is essentially constant. In this case of the unp
turbed~i.e., uniform! fluid, density fluctuations are describe
almost entirely by the fielddr(r ). The compressibility of the
uniform fluid is contained in the variance fordr(r ). In this
context, consider the behavior of the bulk liquid structu
01120
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factor,*d(r2r 8)x(r ,r 8;r l)exp@ik•(r2r 8)#. The long-wave
length limit of the structure factor is proportional to the bu
compressibility. It approaches this limit with a plateau.
particular, fork values smaller than some finite wave-vect
kc , the structure factor is essentially constant. The grid sp
ing we use to define large length scales coincides witl
;2p/kc .

To within a physically irrelevant metric factor, the part
tion function for our model is

J5(
$ni %

E Ddr~r !C@$nk%,dr~r !#

3exp~2bH@$nk%,dr~r !# !, ~6!

where *Ddr(r )5*P iDdr(r i) denotes the functional inte
gration over the small length scale field,H@$nk%,dr(r )# is
the Hamiltonian as a functional of bothni and dr(r ), and
b21 is Boltzmann’s constant time temperaturekBT. The
quantityC@$nk%,dr(r )# is a constraint functional. It has un
weight when the fielddr(r ), together with $ni%, satisfy
whatever constraints are imposed by strong forces, and
zero otherwise. Since$ni% anddr(r ) have a greatly different
character, the summation and integration in Eq.~6! do not
redundantly count configuration space to any significant
gree.

In our model, there are three principal contributions to t
Hamiltonian, H@$nk%,dr(r )#. One is a lattice-gas Hamil
tonian for the large length scale field,

HL@$nk%#52m(
i

ni2e(
^ i , j &

ninj . ~7!

Here,m is the imposed chemical potential, the sum labe
with ^ i j & is over all nearest-neighbor pairs of cells, and t
interaction parametere determines the energetic cost of cr
ating a vapor-liquid interface. Importantly, the lattice-g
model supports phase transitions and sustains gas-liquid
terfaces.

A second contribution to the Hamiltonian ensures t
Gaussian weight for the small length scale field. From
principle of equipartition, this contribution must be

kBT

2
(
i , j

E dr iE dr j8dr~r i !x
21@r i ,r j8 ;$nk%#dr~r j8!.

~8!

A third contribution to the Hamiltonian gives the couplin
between theni and dr(r ) fields arising from unbalanced
forces. According to the arguments provided by Lumet al.
and Weeks and coworkers for simple fluids@1,12#, the unbal-
ancing potential acting onni for a simple fluid is well esti-
mated by22a^dr(r )&. Here,ar l

2 is the energy density o
the uniform liquid at densityr l , and the overbar denotes
coarse graining of the density fluctuationdr(r ) over a length
scale comparable to the bulk correlation length. Based u
this estimate, we write the contribution to the Hamiltoni
from unbalanced forces as
1-3
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TEN WOLDE, SUN, AND CHANDLER PHYSICAL REVIEW E65 011201
2e8 (
i , j (nni )

E dr i dr~r i !
nj21

r l l
3

, ~9!

for simple fluids with only one energy and length scalee8
5e. This equality implies that the lattice-gas parametere
and l are sufficient to determine both the surface tension
the energy density of the liquid. For more complex fluid
including water, the effects of orientational degrees of fr
dom may introduce multiple microscopic length scales, a
as a result,e8 could differ from e. This possibility was ig-
nored in Ref.@1#, but will be examined in Sec. VI.

By combining all three contributions, we arrive at o
final result for the Hamiltonian of our model. It is

H@$nk%,dr~r !#5HL@$nk%#2e8 (
i , j (nni )

E dr i dr~r i !
nj21

r l l
3

1
kBT

2 (
i , j

E dr iE dr j8

3dr~r i !x
21@r i ,r j8 ;$nk%#dr~r j8!

1Hnorm@$nk%#, ~10!

where

Hnorm@$nk%#5
kBT

2 (
i ,k(nni )

(
j ,l (nnj )

E dr iE dr j8

3fkx@r i ,r j8 ;$nk%#f l1kBT lnAdetx,

~11!

and

f j5be8
nj21

r l l
3

. ~12!

Here, the quantity detx is the determinant of the matrix with
elements x@r i ,r j8 ;$nk%#. The last term in Eq. ~10!,
Hnorm@$nk%#, provides a normalization constant for the fun
tional integration overdr(r ). When there are no stron
forces, so that the constraint functionalC@$nk%,dr(r )# is
simply unity, the effective Hamiltonian for theni field should
be exactly the lattice-gas Hamiltonian, Eq.~7!. The last term
in Eq. ~10! ensures that the integration overdr(r ) for this
case will indeed yield this result.

III. THEORY OF SOLVATION

The excess chemical potential of a soluteDm is given by
@15#

bDm52 ln
JS

J
52 ln^exp~2bUS!&0 . ~13!

Here,J is the partition function for the unperturbed solve
and JS is the partition function for the system in the pre
ence of a~fixed! solute. The energyUS is the energy of
01120
d
,
-
d

interaction between the solute and the solvent molecules
the subscript 0 denotes an ensemble average over the u
turbed solvent.

For simplicity, we will consider the solvation of an idea
hydrophobic solute in water—a particle that excludes wa
from a regionvex, but has no other interactions with th
solvent. A hard sphere is an example of an ideal hydropho
solute. It excludes solvent from a volumevex5(4/3)pR3,
where the radiusR is the distance of closest approach b
tween water and solute. The partition function of the syst
in the presence of such a solute is equal to the parti
function of the unperturbed solvent, but with the constra
that no solvent exists inside the excluded volume. In ot
words, the constraint functional for this case is

C@$nk%,dr~r !#5 )
r iPvex

d@nir l1dr~r i !#. ~14!

Accordingly, the partition function in the presence of an ide
hydrophobic solute is

JS5(
$ni %

E )
i

Ddr~r i !H )
r iPvex

d@nir l1dr~r i !#J
3exp~2bH@$nk%,dr~r !# !. ~15!

For an ideal hydrophobic solute, the ratio of partitio
functionsJS /J equals the probability of observing no so
vent molecules inside the volumevex. Equivalently, it cor-
responds to the probability of observing a cavity of volum
vex inside the solvent; it is also equal to the probability tha
solute may be inserted into the solvent without creating a
overlap with the solvent molecules. The excess chemical
tential of an ideal solute could be obtained by imposing
alternative constraint,

C@$nk%,dr~r !#5dF E
rPvex

dr r~r i !G . ~16!

Were our treatment completely consistent with the parti
late nature of matter, the two constraints, as given by E
~14! and ~16!, would be equivalent. But in fact, Gaussia
statistics for the fielddr(r ) cannot be completely consisten
with this nature of matter, and the two constraint function
will yield somewhat different results.

To evaluate the partition function Eq.~15!, it is conve-
nient to rewrite the constraint functional with the Fouri
representation of delta functions. Namely,

JS5(
$ni %

E )
i

Ddr~r i !E )
i

Dc~r i !

3expS 2bH@$nk%,dr~r !#

1 i(
i
E

r iPvex

dr i c~r i !@nir l1dr~r i !# D . ~17!

Functional integration over bothdr(r ) and c(r ) is now
straightforward, yielding
1-4
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MODEL OF A FLUID AT SMALL AND LARGE LENGTH . . . PHYSICAL REVIEW E 65 011201
JS5(
$ni %

exp~2bH@$nk%#!, ~18!

where the effective HamiltonianH@$nk%# is

H@$nk%#5HL@$nk%#1
kBT

2 (
i , j

E
r iPvex

dr iE
r j8Pvex

dr j8

3@nir l1 f ~r i !#x in
21@r i ,r j8 ;$nk%#@njr l1 f ~r j8!#

1kBT lnAdetxin, ~19!

with

f ~r i ![be8(
j
E dr j8 (

k(nnj )

nk21

r l l
3

x@r i ,r j8 ;$nk%#. ~20!

Here, xin has elementsx@r i ,r j8 ;$nk%# for r i and r j8 both
within the excluded volume, and a sum overk(nnj ) is over
cells k that are nearest neighbors to cellj.

The evaluation ofH@$nk%# requires the calculation o
various integrals and matrix inverses. These quantities ca
conveniently estimated to a good approximation by expl
ing the fact that the lattice spacing is on the order of the b
correlation length. In particular, since the bulk correlati
function, x(r i ,r j8 ;r l) vanishes quickly forur2r 8u larger
than that length,x@r i ,r j8 ;$nk%# as given by Eq.~4!, may be
approximated by

x@r i ,r j8 ;$nk%#5x~r i ,r j8 ;r l !, for ni5nj51

50, otherwise. ~21!

Furthermore, the relatively large size of the cells allows us
restrict the sum in Eq.~20! to the i 5 j term, and to take the
integral over all space, rather than over one cell. As such,
arrive at a much simplified form forf (r i), and therefore,

f i[E
r iPvex

dr i f ~r i !5niv ie8k
r l

l 3 (
k(nni )

~nk21!. ~22!

Here, k is the isothermal compressibility of the uniform
fluid, which is related to the response function viak
5bx̂(0)/r l

2 , where x̂(0) is the long-wave length limit of
the Fourier transform of the structure factor. Note thatf i is
zero, when celli is not liquid, i.e., whenni50.

Finally, with x(r i ,r j8 ;r l) provided as input into the
theory, we must choose a set of basis functions that span
space of the excluded manifold. This allows us to perfo
the inversion ofx in@r i ,r j8 ;$nk%# in the representation pre
scribed by that basis. We use the approximation of a o
basis function spanning the excluded volume and to t
x in@r i ,r j8 ;$nk%#5x(r i ,r j8 ;r l) for all cells i inside the ex-
cluded volume@16#. We then arrive at our principal result
01120
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H@$nk%#5HL@$nk%#1kBT (
i , j (occ)

ni@r lv i1 f i #@r lv j1 f j #nj

2svex

1kBT lnA2psvex
;

[HL@$nk%#1HS@vex;$nk%#. ~23!

Here, the sum overi , j (occ) is over cellsi and j that are
occupied by the solute;v i is the volume occupied by the
solute in celli, and

svex
5E

vex

drE
vex

dr 8x~r ,r 8;r l !. ~24!

In the one-basis set approximation forx@r i ,r j8 ;$nk%#, em-
ployed to arrive at Eq.~23!, the effect of the constraint func
tional as given by Eq.~14! reduces to that of the constrain
functional as given by Eq.~16!.

The termHS@vex;$nk%# contains all the effects of the in
teraction between the solute and the ideal hydrophobic
vent. It increases with increasing solute size, ifni51 for the
cells i that are occupied by the solute. The interaction te
solely arises from the constraint that is imposed on the
lowed density fluctuations of the solvent. This idea, that s
vation of a hydrophobic species is equivalent to the effec
imposing a constraint on the solvent density, is an import
feature of our model. Interestingly, the excess chemical
tential of the solute may be obtained by averaging this in
action free energy as follows:

bDm~vex!52 ln
JS

J

52 ln

(
$ni %

exp~2bH@$nk%#!

(
$ni %

exp~2bHL@$nk%#!

52 ln^exp~2bHS@vex;$nk%#&L , ~25!

where ^ . . . &L indicates the ensemble average with t
HamiltonianHL@$nk%#5H@$nk%#2HS@vex;$nk%#.

The simple formula forH@$nk%#, Eq. ~23!, and similar
formulas for more general cases, may be of enormous p
tical benefit for studying self assembly. Such studies usu
require large system sizes. In those cases, the treatme
solvent is a primary computational bottleneck. This is b
cause large solutes are solvated by a huge number of so
molecules, and an atomistic treatment involves a correspo
ingly large number of coordinates and momenta. The f
mula forH@$nk%#, however, lays the foundation for a schem
in which only the solutes are treated explicitly at the atom
level; the solutes may be moved by a continuous Mo
Carlo or molecular-dynamics scheme. The solvent, on
other hand, is simulated in terms of the large length sc
density fieldni . That field may be propagated by a dynam
1-5



rs
m

e

ci
th

ti
ni

th
an

n
m
s
te

la
r

s

rs

ly

lt

ld,
ar,

p-
y
er
ua-

ap-
ely
n-

oxi-

ies
the
the

tal

k

not
by

of

TEN WOLDE, SUN, AND CHANDLER PHYSICAL REVIEW E65 011201
Monte Carlo procedure, manipulating only binary numbe
More details of this scheme will be discussed in a forthco
ing publication@17#.

IV. LIMITING RESULTS AND COMPARISONS WITH
OTHER THEORIES

Consider first the case whereni51 for all i. This case is
physically pertinent for solutes small in size and in numb
because the concomitantly small value ofvex leads to rela-
tively small free energetic costs for havingni51 for all cells
i, even for the cells that are occupied by the solute. Spe
cally, when the solutes occupy relatively small volumes,
amount thatHS@vex;$nk%# will decrease by changingni from
1 to 0 will not compensate the corresponding increase
HL@$nk%#. With ni51 for all i, HL@n# and Hnorm@$ni%# be-
come constants and thus irrelevant. The response func
x@r i ,r j8 ;$nk%# reduces to the response function of the u
form fluid x(r ,r 8;r l). Further, the coupling term in Eq.~10!
becomes identically zero. As such, the Hamiltonian for
model reduces to that of the Gaussian model of Pratt
Chandler @8,11#, namely, H@$ni%,dr(r )#→HG@dr(r )#,
where

HG@dr~r !#5
kBT

2 E drE dr 8dr~r !x21~r ,r 8;r l !dr~r 8!,

~26!

with dr(r )5r(r )2r l , and the response functio
x21(r ,r 8;r l) being the response function of the unifor
fluid. Similarly, applying Eq.~25!, we obtain the exces
chemical potential for the ideal hydrophobic solu
bDm(vex) 5 2 ln^exp(2bHS@vex ; $1%#&L 5 bHS@vex ; $1%#.
But, if ni51 for all i, then f i50 for all i, and so

bDm~vex!.r l
2vex

2 /2svex
1 lnA2psvex

. ~27!

For excluded volumes not unphysically small, this formu
for the excess chemical potential is the solvation energy
sult of Hummer and Pratt and their coworkers@2,18#. We see
that it is the result of Gaussian statistics in the one-basis
approximation.

In contrast to settingni51 for all i, the treatment of LCW
@1# assumes thatni can be replaced bŷni&, where^ni& is an
estimate of the mean value ofni . In that case, Eq.~25! gives

bDm~vex!.HL@$^nk&%#2HL@$1%#1bHS@vex;$^nk&%#

.HL@$^nk&%#2HL@$1%#

1kBT (
i , j (occ)

^ni&^nj&r l
2v iv j /2svex

1kBT lnA2psvex
, ~28!

where the second approximate equality follows from the fi
after neglectingf i and f j in comparison withv ir l andv jr l ,
respectively. Except in the crossover regime, this is usual
reasonable approximation, becausekr l /b;1022. Within
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notational differences, Eq.~28! is the solvation energy resu
given by LCW theory, Eq.~9! of Ref. @1#.

The LCW formula for the mean large length scale fie
^ni&, may also be understood from our model. In particul
in Eq. ~10!, let us replace in the second term the fielddr(r i)
with its mean,̂ dr(r i)&. With this replacement, the first two
terms in Eq.~10! give the mean molecular fieldf j acting on
nj

f j52m2 (
i (nnj )

Fe^ni&1e8E dr i^dr~r !&/r l l
3G

.2m2e (
i (nnj )

@^ni&1^dr~r i !&/r l #, ~29!

where the approximate equality follows principally from a
proximatinge8 with e. For the coarse graining indicated b
the over bar, we usel as the coarse-graining length. Oth
contributions to the mean molecular field come from the q
dratic term indr(r ) and fromHnorm. These, however, are
small outside the crossover regime, either because they
pear in the logarithm or because they arise from unlik
configurations, where one neighboring cell is filled while a
other is empty. With the molecular field in Eq.~29!, the LCW
self-consistent equation for̂nj& is obtained. Specifically,
since both^ni& and ^dr(r i)&/r l vary slowly in space, they
may be expanded fori close toj about^nj& and^dr(r j )&/r l ,
respectively. Truncating the expansion of^ni& at the square
gradient order, and the expansion for^dr(r i)&/r l at lowest
order, Eq.~29! gives Eq.~5! of Ref. @1#. Thus, the principal
results of LCW may be understood as a mean-field appr
mation to the model we have presented herein.

V. APPLICATION TO HYDROPHOBIC SOLVATION: FREE
ENERGY TO HYDRATE A SPHERICAL BUBBLE

A. Parameters

To apply our model, experimentally accessible quantit
such as the structure factor and the surface tension of
solvent must be known. For the structure factor, we use
data of Narten and Levy for water@19#. For the energy pa-
rametere, we consider its connection to the experimen
vapor-liquid surface tension of water,g. Namely, since the
liquid is cold, we use the low-temperature relation,

g5
e

2l 2
. ~30!

Since the lattice spacingl should be on the order of the bul
correlation length,j, we have chosenj' l 54.2 Å. We have
verified that the results, such as those given below, do
depend strongly on the precise value of the lattice spacing
varying it between l 53.5 Å and l 55.0 Å. With g
570 mN/m, this yieldse56.02 kBT.

For a rough estimate of the energy parametere8, we con-
sider its approximate connection with the energy density
the fluid, 2ar l

2 . In particular,
1-6
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a.
ze8

2r l
2l 3

, ~31!

wherez56 is the coordination number of the lattice of th
cubic lattice-gas model. We arrive at this approximation
noting that a lattice-gas model with interaction energy
rametere8 will have an energy densityze8/2l 3. This estimate
is strictly correct for a model with a single length and ener
scale. We will see shortly thate8 obtained by applying Eq
~31! to water differs substantially from thee as obtained by
applying Eq.~30! to water. This difference is evidence of th
fact that the microscopic nature of water is characterized
more than one length scale and perhaps by more than
energy scale. It is also evidence of the fact that Eq.~31!
provides no better than a rough estimate ofe8. Nevertheless,
it is worth evaluating that estimate, as it provides a value
this parameter that will be seen to be within 50% of t
empirically correct value.

To apply Eq.~31!, the energy density parametera was
derived from the internal energyU, which was obtained in
the following way

U~298 K!'DHvap~373 K!1E
373

298

cpdT, ~32!

whereDHvap is the heat of vaporization andcp is the heat
capacity. With DHvap5240.7 kJ/mol, cp575.3 J/K/mol,
this yieldsa5566 kBT Å 3, and thus,e8.15.2 kBT. Thus,
Eq. ~31! estimates thate8 is nearly three times larger thane.
As such, it indicates that the unbalancing potential is stro
enough to induce a vapor layer near the surface of a la
hydrophobic object.

For the imposed chemical-potentialm we use

m5mcoex1Dm'mcoex1DPl3, ~33!

wheremcoex523e is the chemical potential at coexistenc
and DP is the difference between the pressure at amb
conditions and the pressure at coexistence. WithDP
51.03105 Pa, the chemical-potential change isDm55.50
31024 kBT. Note thatDm is very small. Water at ambien
conditions is indeed close to coexistence with its vapor.

B. Results

To test whether the theory successfully addresses de
fluctuations at all length scales, a good benchmark is
excess chemical potential of an ideal solvophobic solute
solvent as a function of its size@1,20,21#. Here, we presen
results for the solvation of a hard sphere~i.e., spherical
bubble! in water.

The excess chemical-potentialDm of a hard sphere tha
excludes solvent from a region of volumevex, is given by
Eq. ~25!. We may obtain the excess chemical potential a
function of vex by sampling the size distribution of
‘‘breathing’’ hard sphere with the HamiltonianH@$nk%#
shown in Eq.~23!. Specifically, in a Monte Carlo trajector
for the large length scale field, each trial move consis
either of an attempt to flip a spin or to change the radius
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the solute; the trial moves are accepted with a probab
proportional to exp(2bDH), where DH is the change in
H@$nk%# due to the move. In order to obtain accurate sta
tics for all solute sizes, we have used umbrella sampl
@22#.

Figure 2 shows the excess chemical potential of a h
sphere as a function ofR, whereR is the radius of the spheri
cal excluding volume. The results do exhibit some latt
artifacts. These artifacts, however, are surprisingly sm
given the fact that the cells are quite large. The broken li
in Fig. 2 reveal why the lattice artifacts are small. The
curves show the contribution to the solvation free ene
from the energy of the solvent, as given byHL@$nk%#, and
from the energy of the ‘‘solute-solvent’’ interaction, as give
by HS@vex;$nk%# in Eq. ~23!. Clearly, the discrete nature o
our separation of length scales is manifest in the strong
ergy changes at intervals of length comparable to the g
spacing. This behavior is not surprising, as the large len
scale fieldni is effectively very cold (e56.02 kBT). The
important point to note is that the lattice artifacts in the
spective free-energy contributions tend to properly can
each other.

In Fig. 3, we compare the results of our model with t
predictions of the Gaussian model Eq.~27! and with the
results of a molecular simulation of a hard sphere in
tended simple point change~SPC/E! water @14#. It is seen
that for small solute sizes, the agreement between the re
of the fluid models and the SPC/E-simulation results is v
good. The agreement is expected, since for small solutes
large length scale density field remains close to its value
the unperturbed fluid witĥni&'1, as can be seen from th
radial density profiles in Fig. 4. In this regime, our mod

FIG. 2. The excess chemical potential per unit area of a h
sphere in water as a function of its size; the hard sphere exclu
water from a spherical volume of radiusR. The dotted line indicates
the average potential energy from the bare lattice-gas mode
given byHL@n# in Eq. ~23! and the dashed line gives the avera
potential energy of the solute-solvent interaction as given byHS@n#
in Eq. ~23!. It is seen that the lattice artifacts in the two-ener
contributions tend to cancel each other. The horizontal line lie
the value of the surface tensiong of the vapor-liquid interface of
water.
1-7
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TEN WOLDE, SUN, AND CHANDLER PHYSICAL REVIEW E65 011201
reduces to the Gaussian model, Eq.~26!. Computer simula-
tions have shown that at small length scales, density fluc
tions in water obey Gaussian statistics@2#. Thus, a Gaussian
model, and hence the present model, successfully predic
excess chemical potential of small apolar species in wat

For solutes withR.4 Å, the predictions of the Gaussia
theory diverge from those of the full theory. The divergen
is due to drying, as revealed in Fig. 4. The large length sc
field ^ni& approaches a vaporlike value in the core of t
larger solutes. Gaussian models cannot describe this dr
or depletion, because they are based upon a density ex

FIG. 3. Comparison of the results of the present model with
predictions of the Gaussian model Eq.~27! and the results of a
molecular simulation of a cavity in SPC/E water@14#. The horizon-
tal line lies at the value of the surface tensiong of the vapor-liquid
interface of water.

FIG. 4. Slowly varying densitŷn(r )& for hard spheres of dif-
ferent size, as a function ofr, wherer is the distance to the center o
the solute. This radial profile was obtained by averagingni in con-
centric shells of radiusr and widthDr 50.1 Å. It is seen that the
small solutes are in the wetting regimên(r )&'^n(r )&o'1.0,
whereas the larger solutes are in the drying regime, for wh
^n(r )& approaches a vaporlike value in the core of the solute.
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sion around the uniform fluid. In order to describe drying
fluid model has to support such a microscopic manifesta
of a gas-liquid phase transition.

One of the attractive features of the present model is
it lays bare the relative contributions to the solvation fr
energy. In the crossover regime, the contribution to
Hamiltonian from the unbalancing potential, is very impo
tant. When we increasee8 by fifty percent from that esti-
mated by Eq.~31!, the results of the model agree very we
with the simulation results over the entire range over wh
there is simulation data. In particular, compare Figs. 3 an
Evidently, orientational degrees of freedom result in an u
balancing potential that is larger than that estimated
simple fluids. With the simple fluid estimate of the unbalan
ing potential, the LCW theory@1# overestimates the exces
chemical potential in the crossover regime. It appears th
somewhat larger unbalancing potential would correct this
ficiency in LCW theory as it does in the current model.

It is often assumed that the excess chemical potentia
an apolar species in water is proportional to its exposed
face area. Our results, as well as those of the LCW the
emphasize that this is a reasonable assumption in the dr
regime. As the solvent is near phase coexistence, the di
ence in chemical potential between vapor and liquid is sm
and the work done to insert a solute predominantly ari
from the work to create a vapor-liquid interface. For sm
solutes, however, the excess chemical potential does
scale in this way. To a better approximation, in this regime
is a linear function ofvex, as can be seen from Figs. 3 and

VI. DISCUSSION

We have developed a model for a cold liquid that captu
the effects of density fluctuations at both small and la
length scales. This development is important, because m

e

h

FIG. 5. Excess chemical potential per unit area for a hard sph
in water at ambient conditions~solid line!. Here, the energy density
a and the interaction parametere8 are increased by 50% with re
spect to the results shown in Fig. 3. The dashed line denotes
results of the theory developed by Lum, Chandler, and Weeks@1#.
The molecular simulation results for a cavity in SPC/E water
indicated by the circles@14#.
1-8
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phenomena in liquids involve the interplay of density flu
tuations in the two regimes. One example is capillary c
densation, another is hydrophobicity. Here, we have focu
on the solvation of a hydrophobic species. Its nature is v
different at small and large length scales. At small len
scales, solvation is dominated by entropic effects. In t
regime, the solvent may still wet the surface of the solu
even when the solute is highly hydrophobic@1,20#. In con-
trast, at large length scales, solvation is dominated by e
getic effects. In this regime, large hydrophobic objects m
induce a drying transition in the solvent. Further, in the sm
length scale regime, the excess chemical potential sc
with the volume of the solute, whereas in the large len
scale regime, the excess chemical potential scales with
exposed area of the solute. The crossover behavior of
solvation free energy from the wetting to the drying regim
would seem to be of significance to the self assembly
biological structures@17,23#. In biological systems, the siz
of most hydrophobic species is such that individual spec
are in the wetting regime, while assemblies of such spe
are in the drying regime. Water may only induce a relativ
weak attraction between two small hydrophobic spec
When several of these species come together, however, w
may induce a strong attraction between them.

The crossover behavior of the solvation free energy a
implies that the strength of the interactions between the
drophobic species, depends on the configuration of these
cies. The change in the interactions manifests a collec
effect in the solvent, and is therefore not simply pair deco
posable. Correct simulations of self assembly should cap
s

em
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this collective effect, as could be done most straightf
wardly with an explicit solvent model. While atomistic so
vent models are highly limited for this purpose, the coar
grained model we have developed here should prove v
useful @17#.

The effects of weak interactions have been ignored in
paper. Except for the movement of interfaces, which may
affected by small forces, weak interactions are not expec
to induce large structural effects. Nevertheless, their inc
sion will be important for quantitative studies. The inclusio
of weak interactions may be accomplished by augmen
Eq. ~6!. Along with the constraint factor associated with th
hard core of the solute, the presence of a weak attrac
potential,f(r ), between solute and solvent, will introduc
the additional factor exp@2b*dr f(r )#. All the analysis car-
ried out subsequent to Eq.~6! may be similarly performed in
the presence of this factor. Electrostatic interactions may a
be incorporated, but with somewhat greater complexity.
this case, liquid cells~with ni51), must also possess a loc
polarization or dipole fieldmi . This vector field is Gaussian
to a reasonable approximation@24# and therefore may also b
integrated out. These extensions of the current model are
to future work.
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