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Model of a fluid at small and large length scales and the hydrophobic effect
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We present a statistical field theory to describe large length scale effects induced by solutes in a cold and
otherwise placid liquid. The theory divides space into a cubic grid of cells. The side length of each cell is of
the order of the bulk correlation length of the bulk liquid. Large length scale states of the cells are specified
with an Ising variable. Finer length scale effects are described with a Gaussian field, with mean and variance
affected by both the large length scale field and by the constraints imposed by solutes. In the absence of solutes
and corresponding constraints, integration over the Gaussian field yields an effective lattice-gas Hamiltonian
for the large length scale field. In the presence of solutes, the integration adds additional terms to this Hamil-
tonian. We identify these terms analytically. They can provoke large length scale effects, such as the formation
of interfaces and depletion layers. We apply our theory to compute the reversible work to form a bubble in
liquid water, as a function of the bubble radius. Comparison with molecular simulation results for the same
function indicates that the theory is reasonably accurate. Importantly, simulating the large length scale field
involves binary arithmetic only. It thus provides a computationally convenient scheme to incorporate explicit
solvent dynamics and structure in simulation studies of large molecular assemblies.
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[. INTRODUCTION the effects of strong associative interactions between solutes
and solvent, should be apparent.

We have constructed a tractable model for describing den- The main idea of our approach is to create a statistical
sity fluctuations in a cold liquid at both small and large field theory where the molecular density field is decomposed
length scales. The model allows us to analyze at a microinto two parts. One part varies on large length scales only.
scopic level the effects of solvated surfaces and large moFhe other varies on small length scales. For a cold fluid that
lecular assemblies, perhaps of biophysical relevance. This homogeneous and therefore nearly incompressible, the
paper presents the model and demonstrates its tractability. large length scale field is nearly constant and equal to the

A cold liquid is a fluid that is well below the critical mean density of the bulk liquid. Even for this homogeneous
temperature. Water at ambient conditions is an examplecase, however, small length scale fluctuations are always
When unperturbed, it will have no significant large lengthpresent. To a remarkable extdi;3], the statistics of these
scale fluctuations. It is nearly incompressible. When perfluctuations is Gaussian with a variance determined by the
turbed by a sufficiently extended surface, however, a coldtructure factor of the bulk liquid. Accurate molecular theo-
liquid may exhibit large length scale fluctuations, akin to aries of solvation and liquid structure at small length scales—
phase transition, in the vicinity of the surface. This phenom+the Percus-Yevick equation for hard-sphere flJid®], the
enon occurs when another phase is close to coexistence withean spherical approximatiof6,7], the Pratt-Chandler
the liquid, and when interactions with the surface favors theheory of hydrophobicity{8], and the reference interaction
other phase over the liquid. This coincidence of conditions isite model[9,10—are all consequences of such statistics
pertinent, for instance, to hydrophobic effects. In particular[11]. These Gaussian statistics for small length scale fluctua-
water at ambient conditions lies close to coexistence with itsions are an important element of the weight functiotal
vapor. Further, the demixing of oil and water and the associHamiltoniar) we construct. These fluctuations are coupled,
ated large oil-water surface tension indicates that a large hysf course, to the large length scale density field, and they are
drophobic(i.e., oily) surface favors vapor over liquid water. also constrained by the presence of solutes. Due to the cou-

Indeed, Lum, Chandler, and WeeltsCW) [1] have dem- pling and constraints, the variance of the small length scale
onstrated that oily surfaces extending over 1 nm or more wilfluctuations may differ markedly from that of the homoge-
nucleate a layer of depleted water density and concomitanteous bulk fluid.
large length scale correlations. In contrast, perturbations The Hamiltonian for our model is presented in Sec. Il
from smaller hydrophobic surfaces, less than 1 nm across, dbhe large length scale density field supports possible phase
not nucleate such a drying layer and affect only small lengtfcoexistence and interfaces. As such, we see in that section
scale fluctuations in the liquid. Since hydrophobicity vividly how the coupling between small and large length scale fields
manifests the interplay and competition between small andhay lead to solute-induced interfaces in a cold fluid. Our
large length scale fluctuations in a cold liquid, we have chotreatment of this coupling is inspired by the work of Lum
sen in this paper to focus attention on it. One benefit of ouet al. and Weeks and his coworkelr,12]. They related the
analysis is an understanding of the results of LCW theorycoupling to unbalanced attractive forces that result from lo-
from a perspective that is numerically simpler and physicallycal inhomogeneities in the fluid. Analytical integration over
more transparent than the original LCW development. Genthe small length scale field is possible due to its Gaussian
eralizations of our approach to other phenomena, includingtatistics. The integration yields an effective Hamiltonian
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functional for the large length scale field. In Sec. Ill, we -

describe how this integration may be used to study solvation /j | | e = /¢
This step also lays the foundation for a numerical scheme — —
where the solvent is simulated at the level of the large length — | "= j e /; vapor
scale density field. Such a scheme involves only binary arith- — | "= = | = ’;;:)20
metic and is much more efficient than an atomic level simu- _— e =
lation. In fact, it is sufficiently efficient to make possible the —— f f
study of phenomena like self-assembly of biological struc- — —
tures. el

In Sec. IV, we discuss the results of our treatment in vari- = liquid
ous limits. In the absence of any solutes, the effective Hamil- ——~ = |- j/ ,;?5'1
tonian for the large length scale density corresponds to the = é/ ? | p(r)=pr+3p(r)
lattice-gas mode[13]. In the presence of solutes that are —— [~ — e | 2 | 2
small in size and number, only those density fluctuations at — | — ‘ ?/ Lf/ /? s

small length scales are relevant, and our model reduces to th
Gaussian model of Pratt and Chand]8f, and the closely

lated inf tion th h of 1 d K FIG. 1. Sketch of our model of a cold liquid in the presence of
related information theory approach of Hummer and cowor ‘a solute. The solute excludes a volumg from the solventblack

ers[_2]. In the presence Qf Igrge sqlutes, a mean-field apprOX'Fegiom and has a hydrophilic patch of strong associative interac-
mation to our model coincides with the LCW thedt. tions with the solvent; the patch imposes a constraint on the solvent
A numerical application is given in Sec. V. We first show gensity in the volume, (gray area The solvent is divided into
how the parameters in our model may be estimated fromejis of width|; each cell is either filled with liquid ig=1) or
experimentally accessible quantities. We then explicitly treatapor (n,=0). The fieldn; describes density fluctuations on length
the solvation of an ideal hydrophobic sphere in water andcales larger than the lattice spacing. This field supports phase tran-
compare our results with those of an atomistic simulatiorsitions. Density fluctuations on length scales smaller than the lattice
[14]. Finally, in Sec. VI, we discuss implications and pos- spacing are described by the fiefg(r). This field describes mo-
sible extensions of this paper. lecular detail such as the highly oscillatory profiles for the average
density near small solutes. We thus write the densitypés)

=n;p,+ 8p(r;). The field dp(r) is assumed to obey Gaussian sta-
Il. MODEL tistics.

Figure 1 illustrates the essential features of a cold fluid in
the presence of a solute. The solute is of arbitrary size anthe solute. In Fig. 1, this region is,. This effect may be
shape. If it is small, the solvent will wet its surface. In con- treated by constraining the integral pfr) over the volume
trast, if the solute is large with extended hydrophobic surv, to equaln [1]. We do not apply this latter idea in the
faces, solvent density near the solute will be depleted relativeurrent paper, although the methods by which it may be
to the density of the bulk liquig, . This dryinglike phenom- implemented should be clear from our treatment of the
enon occurs because the solvent experiences significant ufermer.
balanced attractive forces near the hydrophobic surface. Since the fluid is assumed to be cold, the regions of gas or
These forces induce depletion. The solute may also haveapor may be clearly distinguished from those of liquid. The
patches of associative interactions. Adjacent to those patchedensity of the vapor is typically orders of magnitude smaller
the molecular density of the solvent will be close to or per-than that of the liquid. In such a situation, it is natural to
haps greater than that of the bulk liquid. divide space into a grid of cells, where each cell contains

In our description of solvation, we make a distinction be-either gas or liquid. We use cubic cells, and take the distance
tween strong forces and weak solvent-solute forces. The reacross each cellto be comparable to the bulk liquid corre-
pulsive nearly hard-core interactions between solute and solation length&. In that case, a binary choice of states within
vent molecules are strong forces. So too are associative cell, either gas or liquid, provides a reasonable coarse-
interactions between solute and solvent. On the other hangdyrained rendering of likely configurations of the fluid. We
dispersion interactions between solute and solvent moleculesan thus define a field; that takes on the value of one if cell
are weak forces. In some cases, electrostatic forces are weakontains liquid and zero if it contains gas. The molecular
forces. Weak interactions are described in our treatment bglensity we associate with this field gp,. This field n; or
an interaction potential acting between the solute and thequivalentlyn;p,, is the large length scale field in our model.
solvent density. In contrast, strong forces are treated accordt may be used together with a second fiéje{r) to describe
ing to the constraints they impose upon the solvent densityhe density on length scales both larger and smaller Ithizn
fluctuations. For example, the effect of a solute repulsiveparticular, for positions within cell i, r;, we write the net
core is mainly to exclude solvent from a volumg, in Fig. density as
1. The effect of these forces may be described as a constraint
permitting only those fluctuations in the solvent density,
p(r), that leavev,, empty of solvent, i.e.p(r)=0 for r
e vey [11]. Similarly, associative interactions may cause
water molecules to be bound within a specific region close td\ll of space is spanned by the setwf i.e., f[dr=3,[dr;.

p(ri)=nip;+ ép(r;). (1
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While the fieldn; is binary and may be used to describe afactor, fd(r—r")x(r,r";p)exdik- (r—r’)]. The long-wave
liquid-gas phase transition, the fiefb(r) has a very differ-  |ength limit of the structure factor is proportional to the bulk
ent character. It supports neither phase transitions nor intecompressibility. It approaches this limit with a plateau. In
faces, but it does describe small length scale structures, sugfarticular, fork values smaller than some finite wave-vector
as those manifesting the granularity of the solveng., the  k_, the structure factor is essentially constant. The grid spac-
oscillatory profiles of the average liquid density in the vicin-ing we use to define large length scales coincides With
ity of a small solutg¢ It must be possible, therefore, that ~27/k,.
op(r) may take on a variety of values. As indicated in the  To within a physically irrelevant metric factor, the parti-
Introduction, it is a reasonable approximation to adopt thajon function for our model is
simplest possible statistics for this field. Namely, we assume
it is Gaussian and define its variance to be

E=2 | Dp(r)Cl{n},dp(r)]
xLrisr s {nd1=(8p(ri) 8p(r{) ) in,; - 2 {ni}

X —BH N , 6
Here, (- - '>{nk} indicates the ensemble average over density exp(— BH[NG (1)) ©

fluctuations for a given configuration of the fiett. The  where [Dép(r)=[II;Ddp(r;) denotes the functional inte-
dependence upony is significant. Whemn,=1 for all k,  gration over the small length scale field[{n,},8p(r)] is
corresponding to a cold liquid with absolutely no large the Hamiltonian as a functional of both and p(r), and
length scale fluctuationgip(r;) has zero mean, and its vari- 8~ is Boltzmann’s constant time temperatukgT. The
ance reduces to the response function of the bulk fluid,  quantityC[{n,},dp(r)] is a constraint functional. It has unit
, , ) , weight when the fielddp(r), together with{n;}, satisfy
x(riurisp)=p8(ri—r)+pth(Iri=rilip), () whatever constraints are imposed by strong forces, and it is
zero otherwise. Sincg;} and Sp(r) have a greatly different
character, the summation and integration in E).do not
redundantly count configuration space to any significant de-

whereh(|ri—r/[;p;)+ 1 is the radial distribution function of
the uniform fluid at density,. On the other hand, within a
cell that contains vaporm{=0), small length scale fluctua- ee.
tions are very small. Our model employs the approximation” |, oyr model, there are three principal contributions to the

that 5p(ri)=0 whenevem;=0. Therefore, we imagine that ,miitonian, H[{nl,8p(r)]. One is a lattice-gas Hamil-
op(r) is a Gaussian field, with a weight functional being thatiqnian for the large length scale field

of the bulk fluid, but constrained to be zero whenewer
=0. The response function for such a field 14]

, , HU{nd]=—nX ni—eX ninj. )
xLri v {nd 1= x(ririsp) i (i0)
_ " moe . Here, u is the imposed chemical potential, the sum labeled
; E| f dr"f drix(risricip1) with (ij) is over all nearest-neighbor pairs of cells, and the

e Y interaction parameter determines the energetic cost of cre-
Xxg [ric. i s{indIx(r",riip1). (4 ating a vapor-liquid interface. Importantly, the lattice-gas
model supports phase transitions and sustains gas-liquid in-

Here, terfaces.
. B . o A second contribution to the Hamiltonian ensures the
XolTiorpi{nd]=x(ri.rjip) if ni=n;=0, Gaussian weight for the small length scale field. From the
=0, otherwise, (5)  Principle of equipartition, this contribution must be
is the (f;,r{) element of the matriy, . Similarly, the matrix kgT j , 1 . ,
with eIemJentsxgl[ri 11 :{n}] is also nonzero only when o Zj dri | dridp(rixLri.ry {md]op(ry).
n;j=n;=0. In that space, wheng =0, Xg_l is the inverse of )
Xg- These relations project the matrix with elements
x 4 ,rj’ ;{n,}] onto the space of cells for whigh=1. We A third contribution to the Hamiltonian gives the coupling
adopt these relations to define our model of Gaussian stati§etween then; and &p(r) fields arising from unbalanced
tics for Sp(r). forces. According to the arguments provided by Leiral.

With the lattice spacing as large as the bulk correlatiorand Weeks and coworkers for simple flu[ds12], the unbal-
length, the fieldn;p, is nearly incompressible. This means ancing potential acting on; for a simple fluid is well esti-
that in the absence of any strong perturbations on the fluidnated by—2a(sp(r)). Here,ap|2 is the energy density of
the fieldn; is essentially constant. In this case of the unperthe uniform liquid at density,, and the overbar denotes a
turbed(i.e., uniform fluid, density fluctuations are described coarse graining of the density fluctuatiép(r) over a length
almost entirely by the fieldp(r). The compressibility of the scale comparable to the bulk correlation length. Based upon
uniform fluid is contained in the variance fép(r). In this  this estimate, we write the contribution to the Hamiltonian
context, consider the behavior of the bulk liquid structurefrom unbalanced forces as
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for simple fluids with only one energy and length scale

=e. This equality implies that the lattice-gas parameters ¢qm 4 regiono
ex:s
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interaction between the solute and the solvent molecules and
the subscript 0 denotes an ensemble average over the unper-
turbed solvent.

For simplicity, we will consider the solvation of an ideal
hydrophobic solute in water—a particle that excludes water
but has no other interactions with the

and| are sufficient to determine both the surface tension a”@olvent. Ahard sphere is an example of an ideal hydrophobic

the energy density of the liquid. For more complex fluids
including water, the effects of orientational degrees of free

'solute. It excludes solvent from a volume,= (4/3)7R3,

where the radiuR is the distance of closest approach be-

dom may introduce multiple microscopic length scales, anGyeen water and solute. The partition function of the system

as a resulte’ could differ from e. This possibility was ig-

nored in Ref[1], but will be examined in Sec. VI.

By combining all three contributions, we arrive at our

final result for the Hamiltonian of our model. It is

i—1
I op()1=Hind1— ' S [ dr,op(r) 2
i,J(nni) p||
+|(BTTZ drif dr/
1]
X Sp(ri)x[ri.r] :{nt16p(r])
+H nom{{nk}]x (10)

where

> > fdrinrj’

Huond (1= 5
n e
ner k 2 i,k(nni) j,I(nnj)

X ix[ri i :{nd1¢+kgT Inydety,
(11)

and

/nj_l
d=Be

NER (12
|

in the presence of such a solute is equal to the partition
function of the unperturbed solvent, but with the constraint
that no solvent exists inside the excluded volume. In other
words, the constraint functional for this case is

Clind,op(n)1= II olnipi+dp(r)].

I EVex

(14)

Accordingly, the partition function in the presence of an ideal
hydrophobic solute is

Es=> | Il Dapm)[

{n;} i
xexp(— BH[{ny}, 6p(r)]).

For an ideal hydrophobic solute, the ratio of partition
functionsEs/= equals the probability of observing no sol-
vent molecules inside the volume,,. Equivalently, it cor-
responds to the probability of observing a cavity of volume
Vey INSide the solvent; it is also equal to the probability that a
solute may be inserted into the solvent without creating any
overlap with the solvent molecules. The excess chemical po-
tential of an ideal solute could be obtained by imposing an
alternative constraint,

f dr P(ri)}-
lEvey

[T olnipi+8p(ry)]

I Evex

(15

Cl{nhop(r)]=6 (16)

Here, the quantity deg is the determinant of the matrix with \Were our treatment completely consistent with the particu-

elements x[r;,r{;{n}]. The last term in Eg.(10),

late nature of matter, the two constraints, as given by Egs.

H ool {Ni}], provides a normalization constant for the func- (14) and (16), would be equivalent. But in fact, Gaussian

forces, so that the constraint function@[{n},dp(r)] is

simply unity, the effective Hamiltonian for thg field should
be exactly the lattice-gas Hamiltonian, E@). The last term
in Eq. (10) ensures that the integration ovép(r) for this

case will indeed yield this result.

Ill. THEORY OF SOLVATION

The excess chemical potential of a solitg is given by
[15]

—_

BAu=—In %SE —In(exp(— BUsg))g-

13

Here, E is the partition function for the unperturbed solvent

with this nature of matter, and the two constraint functionals
will yield somewhat different results.

To evaluate the partition function E¢L5), it is conve-
nient to rewrite the constraint functional with the Fourier
representation of delta functions. Namely,

== fH Dap(roffi[ Dy,

{ni}

XeXP( = BHI{n}, dp(r)]

+i2

[ EVey

dri ¢(ri)[nip,+ 5P(ri)]> . (17

and Eg is the partition function for the system in the pres- Functional integration over botldp(r) and (r) is now

ence of a(fixed) solute. The energWg is the energy of

straightforward, yielding
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- nilpwi+ fillpio;+ f;1n;
5522 exp(— BH[{n}D), (18) HENG 1= H [{nd ]+ kaT 2 iLpwwitfillpw;+filn;
() i,j(occ) 2(7,,6x
where the effective HamiltoniaH[{n,}] is +kgTIn27o, ;
KaT EHL[{nk}]+HS[Uex;{nk}]- (23
HI{n1=HL{nd]+ == 2 f drf dr/
2 77 Jieve Jrlcvg Here, the sum over,j(occ) is over cells andj that are
1 . , occupied by the solutey; is the volume occupied by the
><[nipldl_f(ri):l)(in [ri vrj ;{nk}][njpl+f(rj)] solute in celli, and
+kgT Inydetyin, (19
O-Uex:f drf dr’x(r,r";p)). (24
with Vex Vex

I In the one-basis set approximation fgfr; ,r]-’ {ng1, em-

N / k™ e ployed to arrive at Eq(23), the effect of the constraint func-
fr)=pe EJ: J' dr]k(nEnj) pil® xiriorpne]. (20 tional as given by Eq(14) reduces to that of the constraint
functional as given by Eq16).

The termHd vy;{N,}] contains all the effects of the in-
teraction between the solute and the ideal hydrophobic sol-
cellsk that are nearest neighbors to del vent. It increases with increasing solute sizey;if 1 for the

cellsi that are occupied by the solute. The interaction term

The evaluation ofH[{n,}] requires the calculation of solely arises from the constraint that is imposed on the al-

various integrals and matrix inverses. These quantities can tigwed density fluctuations of the solvent. This idea, that sol-

conveniently estimated to a good approximation by eprOIt'vation of a hydrophobic species is equivalent to the effect of

ing the f_act that the lattice §pacing_is on the order of the t.)uufmposing a constraint on the solvent density, is an important
correlation length. In particular, since the bulk correlatlonfeature of our model. Interestingly, the excess chemical po-

function, x(ri,r{;pp) Yanishes quickly for[r—r'| larger o piial of the solute may be obtained by averaging this inter-
than that lengthx[r;,rj ;{n.}] as given by Eq(4), may be  5.tion free energy as follows:
approximated by

Here, xi» has elements[r;,r{;{n}] for r; andr{ both

within the excluded volume, and a sum ovgnnj) is over

i
—

=1
xLrior{{nd1=x(ri risp), for ni=n;=1 BAn(ve) =—In—
=0, otherwise. (21
, , > exp(— BH[{n])
Furthermore, the relatively large size of the cells allows us to {n;
restrict the sum in Eq(20) to thei=j term, and to take the =—In
integral over all space, rather than over one cell. As such, we > exp(—BH[{nd])
arrive at a much simplified form foi(r;), and therefore, {n}

=—In{exp(— BHd vex; {N} )L » (25
fizf dr f(r)=nvie' x2S (ne—1). (22
I €Evex |3 k(nni)

i where (...)_ indicates the ensemble average with the

HamiltonianH [{n} 1=H[{n}]—Hd vex;{ni}]-
. . i . The simple formula forH[{n,}], Eq. (23), and similar
E'fi;e' \,/(vhllsc hth?s '?gltgteerg]?:) C&Z]p:gzzg)ggg ?Lnt(r:]t(iaor?n:/fg m fprmulas fc_)r more ge_neral cases, may be of enormous prac-
2 5 - ] o tical benefit for studying self assembly. Such studies usually
=pBx(0)/p", where x(0) is the long-wave length limit of require large system sizes. In those cases, the treatment of
the Fourier transform of the structure factor. Note thaB solvent is a primary Computationa| bottleneck. This is be-
zero, when cell is not liquid, i.e., whem;=0. cause large solutes are solvated by a huge number of solvent
Finally, with x(r;,ri;p;) provided as input into the molecules, and an atomistic treatment involves a correspond-
theory, we must choose a set of basis functions that span thegly large number of coordinates and momenta. The for-
space of the excluded manifold. This allows us to performmula forH[{n,}], however, lays the foundation for a scheme
the inversion ofyx;.[r;,r{ ;{n}] in the representation pre- in which only the solutes are treated explicitly at the atomic
scribed by that basis. We use the approximation of a onéevel; the solutes may be moved by a continuous Monte
basis function spanning the excluded volume and to tak€arlo or molecular-dynamics scheme. The solvent, on the
Xinl i At 1=x(ri.r{ ;py) for all cellsi inside the ex- other hand, is simulated in terms of the large length scale
cluded volumd 16]. We then arrive at our principal result  density fieldn; . That field may be propagated by a dynamic
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Monte Carlo procedure, manipulating only binary numbersnotational differences, E@28) is the solvation energy result
More details of this scheme will be discussed in a forthcom-given by LCW theory, Eq(9) of Ref. [1].

ing publication[17]. The LCW formula for the mean large length scale field,
(n;), may also be understood from our model. In particular,
IV. LIMITING RESULTS AND COMPARISONS WITH in Eqg. (10), let us replace in the second term the fléMr,)
OTHER THEORIES with its meandp(r;)). With this replacement, the first two

terms in Eq.(10) give the mean molecular field; acting on
Consider first the case wherg=1 for all i. This case is n;

physically pertinent for solutes small in size and in number

because the concomitantly small valuewqf, leads to rela-

tively small free energetic costs for having=1 for all cells bj=—pu— Z
i, even for the cells that are occupied by the solute. Specifi- (nny)
cally, when the solutes occupy relatively small volumes, the

amount thaH g ve,;{ny}] will decrease by changing; from =—p—€ E [(n)+{Sp(ri))p], (29

1 to 0 will not compensate the corresponding increase in 1(nny)

H [{n}]. With n;=1 for all i, H [n] andH ,o;,{{n;}] be- ) ) o

come constants and thus irrelevant. The response functighere the approximate equality follows principally from ap-

x[ri.r] ;{n] reduces to the response function of the uni-Proximatinge” with €. For the coarse graining indicated by

form fluid x(r,r’;p;). Further, the coupling term in EL0) the olver.bar, we usk as the coarse-graining length. Other

becomes identically zero. As such, the Hamiltonian for thecontributions to the mean molecular field come from the qua-
model reduces to that of the Gaussian model of Pratt anfratic term indp(r) and fromHyq,. These, however, are

Chandler [8,11], namely, H[{n.},8p(r)]—Hglp(r)] small outside the crossover regime, either because they ap-
where T ’ " " pear in the logarithm or because they arise from unlikely

configurations, where one neighboring cell is filled while an-
keT other is empty. With the molecular field in E@9), the LCW
HG[ép(r)]sz drf dr' Sp(r)x X(r,r":p)ép(r"), self-consistent equation fofn;) is obtained. Specifically,
(26) since both{n;) and (8p(r;))/p, vary slowly in space, they
may be expanded farclose toj about(n;) and{p(r;))/p;,
with  Sp(r)=p(r)—p;, and the response function respectively. Truncating the expansion(of) at the square
x Yr,r'";p)) being the response function of the uniform gradient order, and the expansion faip(r;))/p, at lowest
fluid. Similarly, applying Eq.(25), we obtain the excess order, Eq.(29) gives Eq.(5) of Ref.[1]. Thus, the principal
chemical potential for the ideal hydrophobic solute: results of LCW may be understood as a mean-field approxi-
BAu(ve) = — In{exp(— BHvey; {1} 1) = BHveyx;{1}].  mation to the model we have presented herein.
But, if n;=1 for all i, thenf;=0 for all i, and so

€<ni>+f,f dfi<5p(r)>/P||3}

2 2 V. APPLICATION TO HYDROPHOBIC SOLVATION: FREE
BAp(ve) =pived2o, +Iny2mo, . (27) ENERGY TO HYDRATE A SPHERICAL BUBBLE
For excluded volumes not unphysically small, this formula A. Parameters
for the excess chemical potential is the solvation energy re- To apply our model, experimentally accessible quantities
sult of Hummer and Pratt and their coworkg2s18]. We see  such as the structure factor and the surface tension of the
that it is the result of Gaussian statistics in the one-basis sablvent must be known. For the structure factor, we use the
approximation. data of Narten and Levy for wat¢i9]. For the energy pa-

In contrast to setting; =1 for alli, the treatment of LCW rametere, we consider its connection to the experimental
[1] assumes that; can be replaced byn;), where(n;) isan  vapor-liquid surface tension of watey, Namely, since the
estimate of the mean value of. In that case, Eq25) gives  liquid is cold, we use the low-temperature relation,

BAp(ved =HL[{{n)}H = HL{1}]+ BHvex:{(Ni)}] y:i (30
>
=H[{(n)}]—HLI{1}] 2l
N/ 2 Since the lattice spacinigshould be on the order of the bulk
+kBTi j(2 ) (m)ng)proivil2o,,, correlation length¢, we have chosefi~|=4.2 A.We have

verified that the results, such as those given below, do not
+kgTIn270o, , (28)  depend strongly on the precise value of the lattice spacing by
varying it betweenl=35 A and I=5.0 A. With y
where the second approximate equality follows from the firste=70 mN/m, this yieldse=6.02 kgT.
after neglecting; andf; in comparison withv;p; andvjpy, For a rough estimate of the energy parametemwe con-
respectively. Except in the crossover regime, this is usually aider its approximate connection with the energy density of
reasonable approximation, because,/8~10 2. Within  the fluid, —ap|2. In particular,
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e’ (\E 30.0 . I . . -

2 2p71%" S P BAw/ATR ]

B [3<HL>/47'l:R2

wherez==6 is the coordination number of the lattice of the ‘7{ [ B<H >/4nR° |
cubic lattice-gas model. We arrive at this approximation by %f 20.0 s
noting that a lattice-gas model with interaction energy pa- < 3 -
rametere’ will have an energy densitye’/213. This estimate Nﬁ 15.0 o -
is strictly correct for a model with a single length and energy X L .
scale. We will see shortly that' obtained by applying Eg. = 100 \ ] i
(31) to water differs substantially from the as obtained by S | \ FaY i
applying Eq.(30) to water. This difference is evidence of the % 50l FAEN . |
fact that the microscopic nature of water is characterized by § : Nt \\ PP -
more than one length scale and perhaps by more than one F ; - S ]
energy scale. It is also evidence of the fact that B{) B XS I S - —
provides no better than a rough estimate:afNevertheless, R (nm)

it is worth evaluating that estimate, as it provides a value for
this parameter that will be seen to be within 50% of the FIG. 2. The excess chemical potential per unit area of a hard
empirically correct value. sphere in water as a function of its size; the hard sphere excludes
To apply Eq.(31), the energy density parametarwas  water from a spherical volume of radiis The dotted line indicates
derived from the internal enerdy, which was obtained in the average potential energy from the bare lattice-gas model as
the following way given byH [n] in Eq. (23) and the dashed line gives the average
potential energy of the solute-solvent interaction as giverl gyn|]
298 in Eq. (23). It is seen that the lattice artifacts in the two-energy
U(298 K)NAHvap(B’?S K)+f deT, (32 contributions tend to cancel each other. The horizontal line lies at
373 the value of the surface tensignof the vapor-liquid interface of

where AH,,, is the heat of vaporization ang, is the heat —“&©"

capacity. With AHq=~40.7 kJ/mol, ¢,=75.3 J/K/mol, the solute; the trial moves are accepted with a probability

. . _ 3 r_
this yieldsa=566 ksT A’ and thuse’=15.2 kgT. Thus, proportional to expf BAH), where AH is the change in

. A .
Eq.(3D) estimates thaé” is nearly three times Iarg_er t.h&n H[{n,}] due to the move. In order to obtain accurate statis-
As such, it indicates that the unbalancing potential is strongiCS for all solute sizes, we have used umbrella sampling

enough to induce a vapor layer near the surface of a Iargf-zz]

hydrophobl_c object. . : Figure 2 shows the excess chemical potential of a hard
For the imposed chemical-potentjalwe use sphere as a function &, whereR is the radius of the spheri-
(33) cal excluding volume. The results do exhibit some lattice
artifacts. These artifacts, however, are surprisingly small
where 00— — 3€ is the chemical potential at coexistence, 9iven the fact that the cells are quite large. The broken lines
and AP is the difference between the pressure at ambienf? Fig- 2 reveal why the lattice artifacts are small. These
conditions and the pressure at coexistence. WAR curves show the contribution to the- solvation free energy
—1.0x10° Pa, the chemical-potential changedige=5.50  from the energy of the solvent, as given by[{n,}], and
X104 kgT. Note thatA x is very small. Water at ambient from the energy of the “solute-solvent” interaction, as given

conditions is indeed close to coexistence with its vapor.  BY Helvex:{nit] in Eq. (23). Clearly, the discrete nature of
our separation of length scales is manifest in the strong en-

ergy changes at intervals of length comparable to the grid
spacing. This behavior is not surprising, as the large length
To test whether the theory successfully addresses densitcale fieldn; is effectively very cold €=6.02 kgT). The
fluctuations at all length scales, a good benchmark is thémportant point to note is that the lattice artifacts in the re-
excess chemical potential of an ideal solvophobic solute in 8pective free-energy contributions tend to properly cancel
solvent as a function of its siZd.,20,21. Here, we present each other.
results for the solvation of a hard sphefiee., spherical In Fig. 3, we compare the results of our model with the
bubble in water. predictions of the Gaussian model E@7) and with the
The excess chemical-potentidlw of a hard sphere that results of a molecular simulation of a hard sphere in ex-
excludes solvent from a region of volumeg,, is given by  tended simple point chang&PC/B water[14]. It is seen
Eq. (25. We may obtain the excess chemical potential as ahat for small solute sizes, the agreement between the results
function of ve, by sampling the size distribution of a of the fluid models and the SPC/E-simulation results is very
“breathing” hard sphere with the Hamiltoniat[{n,}] good. The agreement is expected, since for small solutes, the
shown in Eq.(23). Specifically, in a Monte Carlo trajectory large length scale density field remains close to its value in
for the large length scale field, each trial move consistedhe unperturbed fluid witin;)~1, as can be seen from the
either of an attempt to flip a spin or to change the radius ofadial density profiles in Fig. 4. In this regime, our model

M= Meoext A= pheoext API,

B. Results
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FIG. 3. Comparison of the results of the present model with the FIG. 5. Excess chemical potential per unit area for a hard sphere
predictions of the Gaussian model EQ7) and the results of a in water at ambient conditionsolid line). Here, the energy density
molecular simulation of a cavity in SPC/E wafé@#]. The horizon-  a and the interaction parametet are increased by 50% with re-
tal line lies at the value of the surface tensipof the vapor-liquid  spect to the results shown in Fig. 3. The dashed line denotes the
interface of water. results of the theory developed by Lum, Chandler, and Wggks

The molecular simulation results for a cavity in SPC/E water are
reduces to the Gaussian model, E2p). Computer simula- indicated by the circlef14].
tions have shown that at small length scales, density fluctua-, . . . :
tions in water obey Gaussian statistje3. Thus, a Gaussian Sion around the uniform fluid. In order to describe drying, a
model, and hence the present model, successfully predict tHc%“d mod_el h_as to support .S”Ch a microscopic manifestation
excess chemical potential of small apolar species in water, O @ gas-liquid phasg transition. .

For solutes witlR>4 A, the predictions of the Gaussian . One of the attractive featurgs O.f the present mod_el is that
theory diverge from those of the full theory. The divergenceIt lays bare the relative contrlputlons to the _sol\{atlon free
is due to drying, as revealed in Fig. 4. The large length scal nergy. I_n the crossover regime, the c_ontrlbutlon_to the
field (n;) approaches a vaporlike value in the core of the amiltonian fror_n the un,balanqng potential, is very impor=
larger solutes. Gaussian models cannot describe this dryinltgm' When we increase’ by fifty percent from that esti-

or depletion, because they are based upon a density expa Tated by .Eq(Sl.)' the results of the mo.del agree very WPT"
with the simulation results over the entire range over which

5 . . . . . there is simulation data. In particular, compare Figs. 3 and 5.

' ' ' Evidently, orientational degrees of freedom result in an un-
0.14nm | balancing potential that is larger than that estimated for
8:“735 nm simple fluids. With the simple fluid estimate of the unbalanc-
1.0
1.5

onm ing potential, the LCW theory1] overestimates the excess
2 nm chemical potential in the crossover regime. It appears that a
somewhat larger unbalancing potential would correct this de-
ficiency in LCW theory as it does in the current model.
It is often assumed that the excess chemical potential of
| e ,." ! _ an apolar species in water is proportional to its exposed sur-
e ’ Y, face area. Our results, as well as those of the LCW theory,
0.5~ ’ s N - emphasize that this is a reasonable assumption in the drying
; ; regime. As the solvent is near phase coexistence, the differ-
" s ; ] ence in chemical potential between vapor and liquid is small,
and the work done to insert a solute predominantly arises
0 05 1.0 1.5 2.0 25 from the work to create a vapor-liquid interface. For small
r (nm) solutes, however, the excess chemical potential does not
scale in this way. To a better approximation, in this regime, it

FIG. 4. Slowly varying densityn(r)) for hard spheres of dif- is a linear function ob ., as can be seen from Figs. 3 and 5.
ferent size, as a function of wherer is the distance to the center of

1
N
R

(r)

<ni>
\
\
~
\

the solute. This radial profile was obtained by averaginm con- VI. DISCUSSION
centric shells of radius and widthAr=0.1 A. It is seen that the o
small solutes are in the wetting regim@(r))~(n(r)),~1.0, We have developed a model for a cold liquid that captures

whereas the larger solutes are in the drying regime, for whicthe effects of density fluctuations at both small and large
{n(r)) approaches a vaporlike value in the core of the solute. ~ length scales. This development is important, because many
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phenomena in liquids involve the interplay of density fluc-this collective effect, as could be done most straightfor-
tuations in the two regimes. One example is capillary conwardly with an explicit solvent model. While atomistic sol-
densation, another is hydrophobicity. Here, we have focusedent models are highly limited for this purpose, the coarse-
on the solvation of a hydrophobic species. Its nature is vergrained model we have developed here should prove very

different at small and large length scales. At small lengthuseful[17]. ) ) ) o
scales, solvation is dominated by entropic effects. In this The effects of weak interactions have been ignored in this

regime, the solvent may still wet the surface of the soluteP@per. Except for the movement of interfaces, which may be
even when the solute is highly hydropholi520]. In con- affgcted by small forces, weak interactions are not e_xp_ected
trast, at large length scales, solvation is dominated by enel0 induce large structural effects. Nevertheless, their inclu-

getic effects. In this regime, large hydrophobic objects ma)ﬁifOn W”IL be impo_rtant for qlf)antitative slt_uﬂiej.t;rhe inclusio_n
: ; s . weak interactions may be accomplished by augmenting
induce a drying transition in the solvent. Further, in the Sma"%q. (6). Along with the constraint factor associated with the

length scale regime, the excess chemical potential Scal‘?‘nard core of the solute, the presence of a weak attractive
with the volume of the solute, whereas in the large length ' P

scale regime, the excess chemical potential scales with ﬂ%oge;(;?ilﬁfé;? f ;Cetgv;’z;?}s‘}g:e ?rr;? ‘jfl:vtﬁzt’a\é":: ;r;;r%gtrj_ce
exposed area of the solute. The crossover behavior of th Bldr #(r) . y

solvation free energy from the wetting to the drying regime”hed C;Ut Sﬁbsecﬁﬁim fto tE(f)ETmtlrbetSIt:m!ﬁ[Iyr petirfc;]rmrid n |
would seem to be of significance to the self assembly o € presence of this factor. Electrostatic interactions may aiso

biological structure$17,23. In biological systems, the size e incorporated, but with somewhat greater complexity. In

of most hydrophobic species is such that individual specie is case, liquid celléwith n;=1), must also possess a local

are in the wetting regime, while assemblies of such specieBOIarization or dipole fi_eldni_. This vector field is Gaussian
' to a reasonable approximatif24] and therefore may also be

3\5 all? g‘tfrgcr{ig]r? rbeegtilr\?eee.nwgcgr ?r?e/lllonhl))/«;rr]g;ﬁ gb?creslgg\éieelgi_ntegrated out. These extensions of the current model are left
When several of these species come together, however, watS future work.
may induce a strong attraction between them.

The crossover behavior of the solvation free energy also
implies that the strength of the interactions between the hy- This work has been supported in its initial stages by the
drophobic species, depends on the configuration of these spilational Science FoundatiofGrant Nos. 9508336 and
cies. The change in the interactions manifests a collectiv®€078458 and in its final stages by the Director, Office of

effect in the solvent, and is therefore not simply pair decom-Science, Office of Basic Energy Sciences, of the U.S. De-
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