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Nonextensive maximum-entropy-based formalism for data subset selection
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A method for data subset selection, which is based omthg maximum information measure formalism,
is proposed. The method evolves iteratively by selecting, at each iteration, the measure yiem-mb a
distribution capable of making predictions minimizing the Euclidean distance to the available data.
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I. INTRODUCTION value (EV) of a random variable that, for a suitable seth\of
states labeled asm=1,... N, takes the valued;,; n
We have shown in previous efforts on the maximum-=1,... N. The EVs are computed using a generalized dis-
entropy-basedMaxEny [1-3] that, in situations in which a tribution p¥?; n=1,... N. Thus, the data model is ex-

density distribution is to be determined from measurementgressed in terms dfl equations of the form
collected as a function of a variable parametely a subset
of them is normallyrelevantto be employed for constraining N
the corresponding optimization process. This is true, of fo= E pﬁ’zfi,n, i=1,... M, D
course, in the absence of noigandom errors Otherwise, n=1
redundancy does vyield the desired effect of reducing noise. . . . .
In [1,2] a MaxEnt formalism is advanced that selects re|_that, adopting a Dirac’s vectorial notation, are recast as
evant data from an available set. Such methodology, how- o A1y
ever, is marred by the limitation of assuming the selected |f°)=A|p*?), (2
data to be noiseless, in the sense that the resultant distribu- . . .
tion is forced toexactly account for them. Other MaxEnt "WNerelp™) is represented in terms of tiséandard basign)
methods[4—10], which are not affected by this limitation, N=1--- N of R
fail to provide information as to justvhichthe relevant data N N
are. 1/2\ 1/2\ 1/2
This paper aims at achieving the best of both worlds. On p 2>_n§1 mnip 2>_n§1 PnIn). ®)
the one hand, we wish to use all the available data so as to
determine the density distribution. On the other hand, wewnhile the data vectoff®) is represented in terms of the stan-
wish to be in a position to identify a subset of relevant datadard basigi); i=1,... M of RM
The framework we are going to propose for achieving such a
goal is based on the nonextensive informatmpmeasure M M
advanced by Tsalli§11-18. [£o)="2 [i)(i[fo)=> °i). (4
We consider the particular instancg=3. Such a case =1 =1
gives rise to a generalizgal’? distribution, which has been ~ N Mo ,
analyzed in[19]. The physical significance of this distribu- 1h€ OPeratorA:R™—R™ is given by the matrix elements
tion is illustrated in Boghosian’s work20], while some (i|Aln)=f, ,,i=1,... M, n=1,...N. Thus, by defining
mathematical applications are reported[#1,27. Here we  vectors|f,) e RM in such a way thai|f,)=f; , the operator
use thep®2 distribution in order to construct a sound math- A is expressed as
ematical scheme for data subset selection.
The paper is organized as follows. In Sec. Il we introduce N
the notation, together with some considerations on the non- A= E |f){n]|. (5)
extensive maximum information measure distribution for the n=1
case of interest, i.eq= 3. In Sec. lll we discuss the estima-
tion of such a distribution from a given set of measurement
and a(assumed to be knowmelevant subset of them. In Sec.

It is shown in[21] that using this notation the nonextensive
NaxEntq distribution is of the form

IV a selection criterion and an iterative algorithm for deter- _ AT /(1-q). P

. . i=z[1-(1— AT @, =1,...N),
mining such a subset of relevant data is proposed. Some pi=2l 1= (1= a)(j[ATIN)] U )
conclusions are drawn in Sec. V. qeR ©6)

Il. PRELIMINARY CONSIDERATIONS ~ .. 2 . .
where A stands for the adjoint oA, z is a normalization

Consider that we are given th& pieces of data constant, and\) is a vector inR™ whose entries are the
0,13, ... f7, ...fy, each of which is the expectation Lagrange multipliersk;, i=1,... M accounting forM
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given constraints. For the particular valuefve are here The constang, which determinesz), is fixed by normaliza-

considering, i.e.q= 3%, the corresponding distribution can be tion. Here we will adopt the criterion advanced in R&0],

recast in the fornj19,21 and require thaEnzlpﬁQ: 1. Consequently, one easily ob-
tains

Y2 =|2)+AT|\), 7

z=——

N K
nzl kgl (n|ATILY(IN)

Zl -
Zl

where|z)=3)_,(n|z)|ny==N_,z|n) is the vectorial repre-
sentation of the normalization constantAs discussed in
[19], if our information consists of independent pieces of =
data then rank§) =M, the operatoAA" has an inverse, and
the unique Lagrange multiplier vectdwhich determines
|pY?)) is obtained from Eq(2) as

nZl kgl (Fallid (1IN, (10)

Z| -
Z| P~

so that, by introducing the vector

N N
\)=(AAT)"1|9)— (AAT) “1A|2). ® l9)=2, [fn)=2, Aln) (1)

On the other hand, if the pieces of data we have gathered ame can write

not independent, then rankf<M, the operatoAA™ has no
inverse, and the vectdi) is not unique. However, as dis-
cussed in[21], one can still use the pseudoinverse of the

operatorAAT in order to obtain an appropriate vector),
without affecting the uniqueness of thpY/?) distribution. ~ Hence,
Proceeding in such a way, however, we are unable to discern K
just which of theM data equations of our model contain Ip2) = 11 S
relevant information. At this point it is necessary to specify P N N
the precise meaning that we would like the term “relevant” «
to be endowed with in the present context. Ay
Definition Given a set oM empirical expectation values +k21 ATIHCIIN). (13
[and theM associated equations of the fofi)], we refer to
a subset_ oK=M o_f these equat_ions as being relevapt, if thef the K pieces of datd? , k=1, . ..K, that we are consid-
K equations provide us with independent constraints that . koo .
L U2 i : ering were to be known without uncertainty, we could use
give rise to ap*?) distribution able to correctly predict the them to straightforwardly determine thi Lagrange multi-
remaining(availablg (M —K) data. liers (I, [\), k=1 k from the corresponding, equa
The scheme outlined above associates to each equation o) (hdr), k=1, ... ponding, equ

the system given in Eq$l) and(2): (i) a particular subindex tions, as explained in Sec. . 'V'°fe°"ef’ §ince we are work-
(1=i=M), (ii) a particular row bélonging to the matrix rep- ing under the hypothesis that the remaining equations of the

o n ) original system(1) are irrelevant, we would be in a position
resentation of the operaté (i.e., a particular component of 15 accurately predict the complete data vector in the fashion
the vectorgf,)), (iii) the corresponding component |6f),

K

> (all(IuIN). (12)

k=1

Z:

Z|l -
Z| -

alli(1dN) nzl In)

k=1

and (iv) a Lagrange multiplier. Nevertheless, M —K of |fo>E|fp>:A|p1/z>
those equations are not really relevant as constraints, one can
regard them as giving rise to components of the veptor lg) K
that have a null value. The central idea of the theoretical "N N k§=:1 lg)(alli{TN)
framework to be advanced here is that of appropriately using
such a fact. We do so by recourse to the construction of an Ko
sparse Lagrange multiplier vector, whose nonzero entries + >0 AATIL)(IN)
identify a subset of relevant data. k=1
9) 1<
lll. ESTIMATING THE LAGRANGE MULTIPLIERS "N N g«l [RCIPRY
FROM NOISY DATA
N K
Let us suppose that we are able to identifyrelevant + 2 2 [Fa(FalLd (TN (14
equations and let us relabel the corresponding subindexes as n=1k=1

l; k=1,... K. Since, by hypothesigi|\)=0 fori#l,, _
Eq. (7), that yields theg=1 distribution, becomes Unfortunately, data are never known without some uncer-
tainty and, therefore, the predictiofP) will match the real
K data|f°) only up to some error. Hence, by determining the
IpY2)=|2)+ Z AT||k><|k|)\>_ (9) Lagrange multipliers using only th€ relevant equations we
k=1 would introduce a bias, as a consequence of trying to repro-
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duce a reduced set of data with precision higher than that of (|g)/N)], i.e., |f')=(|g)/N)+ Py, [|f°)—(|g)/N)]. O
Kk

the remaining available data. We should adopt then an alter-

native criterion in order to determing@|\), k=1, ... K.

An equitable one would be to fix these figures as the value

yielding a (predicted data vector{fP) such that one mini-
mizes the distance to the observed ve¢t8f e RM. In order

According to this proposition, the Lagrange multiplier
vector|\) must be determined through the requirement that

%)= (|g)/N)+ Py [11)—(|g)/N)]. Let |AT) be the re-
sidual vector|f°) —|fP). Thus,

to discuss how this can be achieved, let us introduce the

operatorF: RX—RM, as given by

K
F=2 lay ) (I, (19
=

where

=3, [1(l0 - loXald. (19

Thus, we can expreg$P) in the convenient fashion

lg)

117)= "3 +1o) a7

with
o) =Fn).
Notice that the componehg)/N of |fP) given in Eq.(17) is

(18)

the prediction that one would obtain on the basis of no data,

i.e., from a constant, uniform distributiop’*=1/N; n
=1,... N. The other componerithe vector|v) given in

Eq.(18)] belongs to a subspadg =rangef), which is gen-

erated by vector$a|k>, k=1, ... K. The proposition below

shows that the vectdifP) of the form(17) that approaches
|f°) in the closest possible way is that obtained by letting th

vector [v) to be the orthogonal projection of|f°)
—(|g)/N)] onto V.

Proposition 1 The unique vectorfP)=(|g)/N)+|v),
with |g) given in Eq.(11) and|v) e Vi, which minimizes
the distance|||f°) —|fP)|| is obtained as|fP)=(|g)/N)
+By 11— (19)/N)].

Proof. Let |[f') be (g)/N)+|v'), where|v') is an arbi-
trary vector inVy, and let us write it agf’)=(|g)/N)
+o")= Py [ = (|g)/N)+Py [~ (|g)/N)]. If we
calculate the squared distan¢gf®) —|f’)||?, since |f°)
—(|g)/N) =Py [£°)— (Ig)/N)] € Vic (whereVy denotes the
orthogonal complement ofc) we have

HW%WW%WW—%ﬁmeJﬂJ%)
-9
- ﬁ%ﬁ%—%ﬁ—w»z

Hence [[|f)—[f")[| is minimized if [v’)=Py[|f°)

e

lg)

|f°>=|fp>+|Af>=W+IE|A)+|Af>, (19

so that, in order for|fP) to be (]g)/N)+I5Vk[|f°>

—(|lg)/N)], we should require thaf?vklAf>=0 i.e., |Af)
should be orthogonal to every vecttar,k), k=1,... K.We
are thus led to the following equations:

(a [T)=(a [FI\); k=1,...K, (20)
with
ﬁ%=ﬁ%—$?- (21)

The left-hand side of Eq20) happens to give the compo-
nents of vectofF '[°) e R¥, whereas on the right-hand side
we find the components of a vecté'F|\)eRX. Thus,
these equations can be recast in the form
FTFoy=FTF[N). (22)
Since the operatof 'F=21_ ;3K 1[1)(ay |y )14/ has an
inverse,|\) is readily obtained as
IN)=(FTF)~*FTFo). (23

The predicted vectdifP) minimizing the distance to the ob-
served vectotf®) is thereby given by

l9)

5 o |9 .
|fp>:W+ka|fo>E

WJrl“:(li*l“:)*1|:T|f°>. (24)

So far we have assumed that the information indicating just
which the relevant data aré.e., the subindexes,; k
=1,... K) is somehow accessible to us. This is far from
being a realistic hypothesis, since, in practice, such an infor-
mation is normally not available.

As a consequence, for the proposed method to be of prac-
tical interest, we need to tackle the problem of appropriately
selecting the subindexdg; k=1, ... K. We propose here
that the selection be made by recourse to an iterative process.
The corresponding procedure, as well as its pertinent foun-
dations, constitutes the subject of the next section.

IV. SELECTING RELEVANT DATA

We propose here a “greedy” algorithm for selecting the
above-mentioned subset of relevant equations. The concomi-
tant selection is not static, but evolves iteratively. At each
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iteration, thekth one, say, an approximation to the predictedand, since fork=n—1, PV

PHYSICAL REVIEW E65 011113

Jan)=

|, it follows that,

vector |f?) is constructed that improves upon the previousfor k<n, () =0. Moreover the property ¢ )

one by choosing a new vectf, ) and, consequently, en-

larging the dimension of the subspadg= rangeFk). Here

the subscripk indicates that at iteratiokth the operatof
defined in Eq.(15) is constructed out ok vectors|a,j>, j

=1, ... k. Starting with an initial subspadé, spanned by a
single vector] a|1> we build a sequence of subspadgsby

considerinngH:VkeB|a|k+1>. As already discussed, given
Vi1, we wish the component) of the predicted vector to
be the orthogonal projection ¢f°) onto the subspacé,. ;,

so as to minimize the distance between such vectors. No
sincevk+1=vk@|a,k+l>, by fixing V| in the previous itera-
tion (the kth ong we aim at selecting the vect¢a|k+l>

such a way that the distandff°) —|fP)||2 is minimized.

According to the discussion of the preceding section

this entails to look for the vectoda|k+l> such that

[|[F0) = Frp1(Fly 1 Fien) "L, 1[TO)|? is minimal, which at
first sight seems to demand a computationally expensive

fort. However, the computational burden can be enormousl

reduced by making use of(i) the fact that
Frr1(FleaFien) TR [f =Py [T9), and(ii) introduc-
ing an auxiliary representation for the operat-cexyk+1 The

following propositions are in order.

Proposition 2 The vectord ), k=1, ... K defined as

[y =] ) =Py, [e), (25

are either zero or mutually orthogonal.
Proof. The proof stems from the fact that, fde<n,

Py, , Pv 1=ka7 Thus, fork=n, one has

(¥ ¢n>:<a|k|a|n>_<a|k||5vn,1|01|n>_<01|k|'E’vk,1|a|n>

+(a | ﬁ’vk_f’vn_lIaln>

=(ay e )=(e [Py, e ) (26)
K K K
| )
kz [0 (¥l 9) = 2 |||1,Dk>||2<l/jk 2
« | ) «
E1|||wk>||22 |
< | ) <
AR

= ngl c (I )+Py,

e_y |¢k> k= 1,.

(d gt Py

=(¢nln) (Where(y,| i) indicates the complex conjugate
of (| ) allows one to extend the relatidm,|,)=0 to
all k#n. For n=k we have ()=l
—(ay/Py,_ e so that, since fofa; ) € Vj_y it holds that
Py, la=lay), every|ay) e V,_, gives rise to a vector
|4y of zero norm. Otherwise,y| ) = S nl|| )| |2, Which
expresses the orthogonality conditian.

Corollary 1. The dlmenS|on of the subspaBespanned by
the vectors|a,> ...M, is equal to the number of
vectors given in Eq(25) such that || 44)||?#0.

W, Proof. The proof is of an obvious character, since

|| 4)]|?=0 implies P\,k|a|k+1 |, , ), which implies
Vie1=Vi® |y, )=V. Thus,S=V, whereK is the num-
ber of nonzero vectorgyy). OJ

The above corollary suggests the convenience of reorder-
ing the vectord ) by settingk+ 1=Kk if |||¢4)||?=0. The
next proposition emphasizes the fact that the reordered fam-
. K, provides a representation for the or-

ogonal prOJector operator on®

Proposition 3 Let S=V be spanned b¥ linearly inde-
pendent vector$a|k>, k=1, ... K. The orthogonal projec-

tion operator ontd/¢ can be expressed as

K
= gl ) (i (27)

where|4) = . K.
Proof. The proof is achieved by showing the following:

(a) gl ) (dnlg)y=19), V|g)eVi.

K
(b) gl [ (dnlg*)=0, V|g*)eVi.

(@) follows from the fact that everyg)e Vi can be ex-
pressed as a linear combination of #déinearly independent
vectors|ay, ), k=1,... K, i.e., |g>=2,'f:1c|n|a|n>. Hence,

)

n

k[ |12+ 2 ¢ Py Py o)

K

l|6¥|n>):r§1 ci e )=19). (28)
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On the other hand, for alg") e Vi it is true that(« [g*)
=0, k=1,...K and hence ={_|v)(¥lg*)
=S alvid(an—Py, @, |g")[[[4][?=0, which proves
(b). O

We are ready now to establish a theorem that allows fOEko’rres

PHYSICAL REVIEW E65 011113

independent. Hence, the operafdiE constructed out of, say

K, selected vectorf:‘a,k>, k=1, ... K does have an inverse,
which allows for the computation of the Lagrange multiplier
vectors|\) e R¥, as in Eq.(23). Moreover, since each index

I, k=1,... K represents an equation of the syst€i
ponding to a relevant piece of data, by selecting a sub-

the fast implementation of the proposed selection criterion. set of vectorda, ), k=1 K we are able to identify the
K ) LR |

Theorem 1The vectol a|k>, that at iteratiork minimizes
the norm of the residual vectpAf), is the one yielding the

largest value of the functionats, i=1, ... M given by
~ o b (el AT
e =|(f)1P=5 = = . b>0.
1 ~
<ai|ai>_§l (Yl ) |?
(29)

Proof. According to Proposition 1, at iteratidathe residue
|Af) of minimum norm should verifyAf)=[f%)— Py, [f°),
so that |||~Af>|~|2=|||7°)||2—<~f°|l5vk|~f°>, and, sincePy,
=Py, o,

ADIZ=[TF)12= (FoIPy,_,[F) = [(hlTO)% (30

The term(f°|Py, _[f°) is fixed in the preceding iteration.

Therefore, it follows from Eq(30) that, at iteratiornk, the
norm of the residu¢Af) is minimized by the function,)

for which | (¥ /T°)|? takes its largest value. Now, by using

Eq. (25),
iy T P
gl I?
(o [TO— Py FO)?
T o
so that we can further write
oyt l_ MelSDE
I = 3 1l ?
(32
and the proof is completed. O

subset of relevant datkfk, k=1, ... K that it was our goal
to detect.

Sketch of the algorithm

Let us start by recalling that the vectHr") is obtained
from the data vectoff°) through Eq.(21) and the vectors
|a;), i=1,... M, as given in Eq.(16). Beginning with
|Af)=[f°) and the inner product&y;[T°), i=1,... M, the
procedure evolves as follows.

(l) |n|t|a”y set k=1, |ai)=|ai>, di=<ai|ai>, i
=1,... M, and |, equal to the indexi for which g
=|(a;[T°)|?/d; adopts the largest value asanges from 1 to
M. Assign|¢)=|a,), q=d, , and|||Af)[[>=][[AT)[|*~e .

(i) Fori=1, ... M compute the following:
)l en)
|ai>:|ai>_—ly
q
bi=(a[f°),
|2
g g el
q
if |bj|=0, e=0 otherwise e;=|b;|?/d;.

(iii ) Increasek to k+1 and sel equal to the index for
which g, takes the largest value asranges from 1 taM.
Assign|y)=[a,), a=d,, and|[[AD)I[2=][[aD)][2~ e,

(iv) Repeat stepsii), and (iii). The algorithm is to be
stopped when some convergence criterion is reached, e.g.,
when

|[Af][?< &%, (33

where 6 is a square norm of the data error.

Let us assume that the given convergence criterion is
reached at iteratioK. At such stage the above algorithm has
selecteK indexedl, k=1, ... K, and we are in a position
to compute the inverse of operatefF (by simply evaluat-
ing the inverse of its matrix representatid,|F F|l,)
=(a | ), n=1,...K, k=1,...K). Hence, the
Lagrange multiplier vector minimizing the distance to the

Theorem 1 guarantees that the recursive selection of ve@vailable data is given by

tors |a|k> using the criterion(29) provides us, at theth
iteration, with(i) the vector a;,) that minimizes the norm of

IN)=(FTF)~tFT[fo), (34)

the residual error, andi) the Lagrange multiplier vector that and the correspondin|g31’2> distribution by Eq.(13).

approximates the available d4f&) e R™ in the least square
sense. Indeed, since every vedter) exhibiting a linear de-

Finally we would like to stress that, according to the pro-
posed scheme, the entire set of pieces of tfee RM can

pendence on the the previously selected ones yields values bé “encoded” into a vector of smaller dimension, namely,
b; andd; equal to O(cf. Eq.(29)], according to the restriction the Lagrange multiplier vectdi ) e R¥. The reconstruction,
b;>0 all the selected vectors are guaranteed to be linearlinterpolation, and extrapolation of the data are achieved via

011113-5



L. REBOLLO-NEIRA AND A. PLASTINO

“predictions” of the |p/?) distribution. Indeed, the predicted
values for the observed data are given by

%) =Alp).

On the other hand, i, is a random variable representing a

(35

physical quantity that is not contained in our original data
space, then the prediction of such a variable is to be com-

puted as

1/2

N
X= ngl pY2x... (36)

V. NUMERICAL SIMULATION

We illustrate in this section the approach advanced in the
present communication with a well-known example that

PHYSICAL REVIEW E65 011113

0.035

Pn
0.03

0.025

0.02

0.015

0.01

0.005

FIG. 1. Exact distribution(solid line), as given by Eq(39),
versus results that we obtain for five different realizations of the

Observed datédotted curvep

deals with a highly unstable inverse problem, even for very

small perturbations of the data.
The space®R N andR ™ are chosen to be of dimension 50

and 100, respectively. The matrix elements of the operator
are given by the exponential decays

(i|Alny="f; ;=exp(—nx), x=0.01,

i=1,...,100, n=1,...,50. (37)

The “true” data are generated as follows:

50
fi=> Pofin, i=1,...,100 (38)
n=1

with f; , as in Eq.(37) andp, given by

o ,
|

50
> ex
n=1
The “observed” data are simulated by distorting each data
with a 0.1% gaussian error.
In Fig. 1, the solid line represents the exact distribupgn
given in Eq.(39). The dotted curve corresponds to the solu-

tion p that one obtains from five different realizations of

[In(n)—In(7)]?
-
[In(n)—1In(7)]?
ST

Pn= ..,b0.

(39

1 69 2 35
1 68 2 19
1 70 2 27
1 69 2 24
1 69 2 30

Notice that the selection of tweonsecutivepoints (1 and 2
is effected in all cases.

The convergence criterio33) is seen to yield stability of
the approach against different realizations of data.

VI. CONCLUSIONS

A method for data subset selection, which is based on the
g=3 nonextensive maximum information measure formal-
ism, has been advanced.

The method proceeds iteratively by selecting, at each step,
a measure endowed with information not contained in the
previously selected measures. The selection is made optimal
in the following sense: at each iteration the selected data
gives rise to ag=3 distribution that effects predictions that
minimize the Euclidean distance to all the available data.

Information relative to the question concerning justich
the relevant data are, is to be stored as a set of indexes
(integer numbeps Information on the data themselves is
stored as parameters of the modkhgrange multipliers

the observed data. In each of them our algorithm selects fouput of this information one can reconstruct, interpolate, and

relevant data points<|k, k=1, ...,4 corresponding to the
indexesl,, k=1, ... ,4, adisted below

extrapolate the original data viacg=3 nonextensive maxi-
mum information measure distribution.
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