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Bayesian analysis of systems with random chemical composition: Renormalization-group
approach to Dirichlet distributions and the statistical theory of dilution
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We investigate the statistical properties of systems with random chemical composition and try to obtain a
theoretical derivation of the self-similar Dirichlet distribution, which is used empirically in molecular biology,
environmental chemistry, and geochemistry. We consider a system made up of many chemical species and
assume that the statistical distribution of the abundance of each chemical species in the system is the result of
a succession of a variable number of random dilution events, which can be described by using the
renormalization-group theory. A Bayesian approach is used for evaluating the probability density of the chemi-
cal composition of the system in terms of the probability densities of the abundances of the different chemical
species. We show that for large cascades of dilution events, the probability density of the composition vector
of the system is given by a self-similar probability density of the Dirichlet type. We also give an alternative
formal derivation for the Dirichlet law based on the maximum entropy approach, by assuming that the average
values of the chemical potentials of different species, expressed in terms of molar fractions, are constant.
Although the maximum entropy approach leads formally to the Dirichlet distribution, it does not clarify the
physical origin of the Dirichlet statistics and has serious limitations. The random theory of dilution provides a
physical picture for the emergence of Dirichlet statistics and makes it possible to investigate its validity range.
We discuss the implications of our theory in molecular biology, geochemistry, and environmental science.
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I. INTRODUCTION

The statistical analysis of various problems of physi
chemistry, and biology involves the consideration of syste
with random chemical compositions. Typical examples
clude statistical studies of the abundances of different che
cal species in geochemistry@1#, the distribution of pollutants
in the environment@2#, or the nucleotide frequencies in ge
nomes@3#. For many systems with random composition, t
statistics of the fluctuations in composition can be satisf
torily described by means of the Dirichlet probability dens
@4#

PN~u ;a!du5@Z~a!#21 )
u51

N

~uu!aa21d S (
v51

N

un21D du,

~1!

where the composition vectoru5(u1 ,...,uN) is expressed by
the mass, volume, or mole fractionsu1 ,...,uN of the differ-
ent species present in the system,a1.0,...,aN.0 are posi-
tive integers and

Z~a!5E ¯E )
u51

N

~un!au21dS (
v51

N

un21D du

5

)
u51

N

G~au!

GS (
u51

N

auD ~2!
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is a partition function. The standard method used in ma
ematical statistics for the generation of the Dirichlet pro
ability density is to express the fractionsu1 ,...,uN in terms
of N random variablesX1 ...,XN , as uu5Xu /Su51

N Xu ,
where each random variableXu is selected from a differen
Gamma ~or x2! probability density. Under these circum
stances, it is easy to show that the vectoru5(u1 ...uN) obeys
a probability law of the type~1!. Unfortunately, this is only a
formal statistical derivation that does not clarify the mean
of the probability density~1!.

Recently, the empirical use of the Dirichlet distributio
has become popular, especially in molecular biology wher
provides a satisfactory description of nucleotide statistics
DNA strands or amino acid statistics in proteins@4#. Other
applications include the description of pollutant distributi
in the environment@2#, its use in material science for de
scribing the chemical composition of disordered systems@5#,
as well as its use in geochemistry@1#. In all of these cases
the Dirichlet distribution is employed merely as an empiric
law, which manages to give a satisfactory description of
observed data. No simple physical explanation for the occ
rence of the Dirichlet law has been given. The purpose
this paper is the presentation of a simple physical expla
tion for the Dirichlet law ~1! for the composition fluctua-
tions. Our main assumption is that the random variations
composition are due to the occurrence of a succession
random number of dilution events. Such a mechanism se
reasonable not only in environmental chemistry a
geochemistry but also in molecular biology, where the p
cess of nucleotide substitution can act as a dilution fac
which tends to destroy the correlations among the differ
©2001 The American Physical Society12-1
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nucleotides in a DNA strand. In our theoretical descriptio
the possible chemical reactions among the various spe
are not taken into account explicitly. Such reactions may
supplementary dilution factors and thus, at least in princip
the reactions may be taken into account by a suitable
scription of the statistics of the dilution process.

The structure of this paper is the following. In Sec. II w
formulate the problem of evaluating the probability dens
of composition fluctuations by using a Bayesian appro
involving inverse probabilities. In Sec. III we use a stoch
tic renormalization-group approach for computing the pro
ability densities of the abundances of the different chem
species present in the system and derive the Dirichlet p
ability law. In Sec. IV we present an alternative, formal de
vation of the Dirichlet probability density based on the ma
mum information entropy approach. In Sec. V, we discu
the implications of our approach in molecular biology, en
ronmental chemistry, and geochemistry.

II. BAYESIAN ANALYSIS OF SYSTEMS WITH RANDOM
CHEMICAL COMPOSITION

We denote by

p̃u~Fu!dFu with E
0

`

p̃u~Fu!dFu51, ~3!

the probability that the~extensive! amount of a chemica
speciesu in a space region of dimensionV is betweenFu
andFu1dFu . We also introduce the notation

BN~FuF !dF with E ¯E BN~FuF !dF51, (
u51

N

Fu5F,

~4!

for the conditional probability that in a space region of d
mensionV, the extensive amounts of speciesu51,...,N are
betweenFu and Fu1dFu , u51, . . . ,N, respectively, pro-
vided that the total amount of chemicals is constant a
equal toF. Here,F5(F1 ,...FN) is the extensive composi
tion vector of the system. Since the fractionsu1 ,...,uN of
different chemicals are given by

uu5FuY (
u51

N

Fu ; Fu5uuF; u51, . . . ,N, ~5!

it follows that

PN~u!du5BN~FuF !dF5BN~F5FuuF !FNdu. ~6!

Thus, the evaluation of the probability densityPN(u) of the
intensive composition vectoru reduces to the evaluation o
the conditional probability densityBN(FuF).

The unconditional probabilityPN (F) dF of the total
amount of chemicals may be computed by evaluating
average of a delta function, which is a standard procedur
statistical physics. We have
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PN~F !dF5K dS F2 (
u51

N

f uD dFL
5E

0

`

¯E
0

`

dS F2 (
u51

N

f uD dF

3 )
u51

N

@ p̃u~ f u!#d f1 ,...,d fN

5 p̃~F ! ^ p̃2~F ! ^ ,...,^ p̃N~F !, ~7!

where^ denotes the additive convolution product. Since t
amounts of chemicalsF1 ...,FN andF are non-negative ran
dom variables, the characteristic functions of the probabi
densitiesp̃u(Fu), u51, . . . ,N andPN(F) may be expressed
as Laplace transforms

gu~s!5E
0

`

exp~2sFu! p̃u~Fu!dFu , u51, . . . ,N, ~8!

GN~s!5E
0

`

exp~2sF!PN~F !dF. ~9!

From Eqs.~7!–~9!, it follows that

GN~s!5 )
u51

N

@gu~s!#, PN~F !5LF,s
21H )

u51

N

@gu~s!#J ,

~10!

whereLF,s
21 denotes the inverse Laplace transformation

Now we introduce the joint probabilityRN(F,F)dF dF,
that the extensive composition vector of the system is
tweenF andF1dF and that the total amount of chemicals
betweenF andF1dF. This probability can be computed b
averaging a product of delta functions

RN~F,F !dF dF5K )
u51

N

@d~Fu2 f u!Fu#dS F2 (
u51

N

f uD dFL
5E

0

`

¯E
0

`

)
u51

N

@d~Fu2 f u!Fu#

3d SF2(
u51

N

fuDdF)
u51

N

@p̃u~fu!#dfu, . . . ,d fN.

~11!

We define the characteristic function

GN~x,s!5E
0

`

expS 2sF2 (
u51

N

xuFuDRN~F,F !dF dF,

~12!

and take the multiple Laplace transform of Eq.~11!, with
respect toF1 ,...,FN andF. We come to
2-2



at
m
ls
f

h

c
ol

t

o
ea
n

e
ur
io
ly
e
e

d
e
te

as

t

-
s

.

e
.
mi-

r
ies

,
es-
nt

ach

ion
and

ese
nt

i-

and

in

s a
f

as

BAYESIAN ANALYSIS OF SYSTEMS WITH RANDOM . . . PHYSICAL REVIEW E65 011112
GN~x,s!5 )
u51

N

@gu~s1xu!#,

RN~F,F !5LF,s
21LF1 ,x1

21 ...,LFN,xN

21 H )
u51

N

@gu~s1xu!#J .

~13!

By using the Bayes method,@6#, BN (FuF) may be ex-
pressed as an inverse probability density, which is the r
between the joint probability density of the extensive co
position vector and the total amount of chemica
RN(F,F) dF dF, and the probability for the total amount o
chemicalsPN(F) dF:

BN~FuF !dF5
RN~F,F !dF dF

PN~F !dF

5
LF,s

21LFN ,xN

21 ...LF1 ,x1

21 $)u51
N @gu~s1xu!#%

LF,s
21$)u51

N @gu~s!#%
dF.

~14!

In conclusion, in this section we have shown that t
probability density of the relative composition vectoru may
be evaluated from the probability densities of the abundan
of the different species by using a Bayesian approach inv
ing inverse probabilities. Equation~14! derived in this sec-
tion is used in Sec. III for the derivation of the Dirichle
probability density.

III. RANDOM DILUTION AND RENORMALIZATION-
GROUP THEORY

In this section, we analyze the dilution of various comp
nents in a complex system. We notice that there are at l
two different sources of stochasticity. In the first place, ra
dom sampling concentration fluctuations may emerge, du
the fact that matter is made up of molecules. A second so
of stochasticity is due to the fact that the size of the reg
within which the dilution may take place may be random
varying in size; this second type of fluctuation may be d
scribed as multiplicative noise. In our following analysis, w
assume that the molecular fluctuations may be neglecte
comparison with the contribution of the multiplicative nois
We also assume that the different components in the sys
may be diluted in different ways; we shall show that this l
assumption results in different scaling exponentsa1
.0, . . . ,aN.0 for the different species in the Dirichle
probability density~1!.

In order to apply Eq.~14!, we need to know the probabil
ity densities p̃u(Fu) of the extensive amounts of variou
chemicals present in the domain of extensionV. In order to
computep̃u(Fu), we develop a random theory of dilution
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We assume that the extensionV is small enough so that th
concentrationCu5Fu /V is uniform throughout the region
Each dilution event leads to the spreading of a given che
cal initially present in a region of sizeV to a larger region,
characterized by a sizeV8.V. After a dilution event takes
place, the amount of chemicalFu is spread out in a large
region of sizeV8 and thus, the concentration of the spec
becomes smallerCu85Fu /V8,Cu . Out of the amountFu

initially present in the region of sizeV, the amount

Fu85Cu8V5FuV/V85bFu with 0,b5V/V8,1,
~15!

remains in the region and the difference

DFu5Fu82Fu5~12b!Fu , ~16!

moves away. The ratio between two successive sizesb
5V/V8 is a dilution factor between zero and one. A succ
sion of dilution events may be characterized by two differe
sets of random parameters: the dilution factorsbq , q
51,2 . . . , and theprobabilities lq , q51,2, . . . , that the
various dilution events take place. We consider that for e
dilution eventsq51,2, . . . , theparametersbq ,lq are ran-
domly selected from a constant probability density

Fu~b,l!db dl, with E
0

1E
0

1

Fu~b,l! db dl51. ~17!

We assume that before the occurrence of any dilut
events the concentrations of the species are rather large
the concentration fluctuations are rather small. Under th
circumstances, the initial probability density for the amou
of speciesu, pu

(0)(Fu), is rather narrow with a sharp max
mum corresponding to the most probable value ofFu . After
each dilution event, the probability density ofFu becomes
flatter and flatter, the concentration fluctuations increase,
the typical values ofFu become smaller and smaller.

The succession of dilution events can be described
terms of the joint probabilities

Cu
~q!6~lu

~q! ,Fu
~q!!dlu

~q!dFu
~q! , q50,1,2, . . . ~18!

with

(
q50

` E
0

1E
0

`

Cu
2~lu

~q! ,Fu
~q!!dlu

~q!dFu
~q!51. ~19!

Cu
(q)1(lu

(q) ,Fu
(q)) dlu

(q)dFu
(q) is the probability thatq dilu-

tion events have occurred and that the dilution factor ha
value betweenlu

(q) and lu
(q)1dlu

(q) and that the amount o
the u species is betweenFu

(q) and Fu
(q)1dFa

(q) :
the superscript1 means that the dilution process h
2-3
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not been terminated afterq steps. The probability
Cu

(q)2(lu
(q) ,Fu

(q)) dlu
(q)dFu

(q) has a similar significance with
the difference that the minus sign means that the succes
s
n

r

e

01111
ion

of dilution events finishes afterq steps. In terms of these
probabilities, we may write down the following evolutio
equations:
Cu
~q!1~lu

~q! ,Fu
~q!!5lu

~q!E
0

1E
0

`E
0

1

Fu~bu
~q! ,lu

~q!!Cu
~q21!1~lu

~q21! ,Fu
~q21!!d~Fu

~q!2bu
~q!Fu

~q21!!dlu
~q21!dFu

~q21!dbu
~q! ,

~20!

Cu
~q!2~lu

~q! ,Fu
~q!!5(12lu

~q!)E
0

1E
0

`E
0

1

Fu~bu
~q! ,lu

~q!!Cu
~q21!1~lu

~q21! ,Fu
~q21!!

3d~Fu
~q!2bu

~q!Fu
~q21!!dlu

~q21!dFu
~q21!dbu

~q! , ~21!
sity

to-
with the initial conditions

Cu
~0!1~lu

~0! ,Fu
~0!!5lu

~0!pu
~0!~Fu

~0!!E
0

1

Fu~bu
~0! ,lu

~0!! dbu
~0! ,

~22!

Cu
~0!2~lu

~0! ,Fu
~0!!

5~12lu
~0!!pu

~0!~Fu
~0!!E

0

1

Fu~bu
~0! ,lu

~0!!dbu
~0! .

~23!

The probability densityp̃u(Fu) of the total amount of specie
u after the occurrence of a random number of dilution eve
may be expressed in terms ofCu

(q)2(lu
(q) ,Fu

(q)). We have

p̃u~Fu!5 (
q51

` E
0

1

Ca
~q!2~lu

~q! ,Fu!dlu
~q! . ~24!

Equations~20!–~24! may be solved step by step. Afte
ts

some calculations, we may express the probability den
p̃u(Fu) by an expansion of the Lippmann-Schwinger type

p̃u~Fu!5Pu
~0!~Fu!E

0

1E
0

1

~12lu
~0!!Fu~bu

~0! ,lu
~0!!dbu

~0!dlu
~0!

1 (
q51

` E
0

1E
0

1

dbu
~q!dlu

~q!
¯E

0

1E
0

1

dbu
~0!dlu

~0!

3~12lu
~q!!

lu
~q21! ,...,lu

~0!

bu
~q! ,...,bu

~1! pu
~0!

3S Fu

bu
~q! ,...,bu

~1!D )
w50

q

@Fu~bu
~w! ,lu

~w!!#. ~25!

We notice that the Lippmann-Schwinger series~25! has a
self-similar structure that makes it possible to derive a s
chastic renormalization-group equation@7# for p̃u(Fu). By
using a summation labelq85q21, Eq. ~25! leads to
p̃u~Fu!5pu
~0!~Fu!E

0

1E
0

1

~12lu
~0!!Fu~bu

~0! ,lu
~0!!dbu

~0!dlu
~0!1E

0

1E
0

1

dbudluFu~bu ,lu!
lu

bu
pu

~0!S Fu

bu
D

3E
0

1E
0

1

~12lu
~0!!Fu~bu

~0! ,lu
~0!!dbu

~0!dlu
~0!1E

0

1E
0

1

dbudluFu~bu ,lu!
lu

bu
(

q851

` E
0

1E
0

1

dbu
~q8!dlu

~q8!
¯

3E
0

1E
0

1

dbu
~0!dlu

~0!~12lu
~q8!!

lu
~q821! ,...,lu

~0!

bu
~q8! ,...,bu

~1!
3pu

~0!S Fu

bu
~q8! ,...,bu

~1!bu
~1!D )

w50

q

@Fu~bu
~w! ,lu

~w!!#. ~26!
ex-
en-
By comparing Eqs.~25!–~26!, we notice that the probability
density p̃u(Fu) is self similar: its self-similar properties ar
expressed by the fact that in Eq.~26!, the terms of order
bigger than one may be grouped together in an integral
pression that contains a scaled form of the probability d
sity p̃u . By using this property, from Eqs.~25!–~26! we may
2-4
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derive a self-similar integral equation forp̃u(Fu),

p̃u~Fu!5pu
~0!~Fu!E

0

1E
0

1

~12lu!Fu~bu ,lu!dbudlu

1E
0

1E
0

1

dbudluFu~bu ,lu!
lu

bu
p̃uS Fu

bu
D . ~27!

Equation~27! is a renormalization-group equation, whic
expresses the self-similar features of the cascade of dilu
events that generate the probability densityp̃u(Fu). We no-
tice that in Eq.~27! the integral term inp̃u(Fu) has the
structure of a multiplicative convolution product, which su
gests that the equation may be solved by using the Me
transform. The solution of the equation is made up of
sum of analytic and a nonanalytic components. The nona
lytic part of the solution, which has the dominant contrib
tion for smallFu , has the following structure:

p̃u~Fu!;~Fu!a021Au
~0!1 (

r51

`

~Fu!zr21Au
~r!@ ln Fu#,

~28!

wherea5a0 is the unique real root of a secular transce
dental equation

I ~a!5E
0

1E
0

1

lb2aFu~b,l!db dl51, ~29!

ar5zr6 isr are the complex roots of the same equatio
Au

(0) is a constant, andAu
(r)@ ln Fu# are periodic functions of

ln Fu with periods 2p/sr . From Eq. ~29!, it follows that
I (0)5^l&<1 anddI(a)/da.0 and thus, there is a singl
real root a5a0 , which is non-negativea0>0. Since Eq.
~29! has real coefficients, the complex roots, if they ex
must occur in conjugated pairsar5zr6 isr . It is easy to
show that

ReI ~ar5zr6 isr!5E
0

1E
0

1

l exp@zr ln~1/b!#

3@coss ln ~1/b!#Fu~b,l!db dl51

5E
0

1E
0

1

l exp@a0 ln ~1/b!#Fu~b,l!db dl

~30!

and since cos@sr ln(1/b)#<1, it turns out that the real parts o
complex roots fulfill the inequality

Rear5zr>a0 . ~31!

From Eqs.~28! and ~31! it follows that, if zr.a0 , the real
root a0 dominates the asymptotic behavior ofp̃u(Fu) as
Fu→0 and in this limit the logarithmic oscillations may b
neglected. However, if at least one complex rootar* 5zr*
6 isr* has a real part equal to the real root,a05jr* then
the logarithmic oscillations may influence the statistics of
dilution process.
01111
n

in
e
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-
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The occurrence of logarithmic oscillations is a known
sue in renormalization-group theory@8#. In most cases, they
are assumed to be artifacts generated by the discrete n
of the renormalization-group equations and special limits
considered in order to get rid of them. In a few cases, ho
ever, the logarithmic oscillations are real and may be
served experimentally@9,10#. In the case of our random di
lution theory, the logarithmic oscillations are not compatib
with the Dirichlet probability density~1! and for this reason,
we prefer to eliminate them from the evolution equation
Since the solution of our renormalization-group Eq.~27! is a
probability density we cannot just neglect the oscillato
terms from the solution, because such a crude appro
would result in a violation of the normalization condition fo
the probability densityp̃u(Fu). Instead, we consider th
physical and mathematical circumstances under which
logarithmic oscillations vanish. For our model, the logarit
mic oscillations are generated by the dilution factorb, which
changes discretely from dilution event to dilution event. T
logarithmic oscillations vanish for processes involving ve
large numbers of dilution events and for which the variati
of the dilution factor from event to event is very small.
order to identify this type of process, we compute the pro
ability xq that q dilution events takes place. We have

xq5E
0

1E
0

`

Cu
2~lu

~q! ,Fu
~q!! dlu

~q!dFu
~q!

5E
0

`

dFu
~q!E

0

1E
0

1

dbu
~q!dlu

~q!
¯E

0

1E
0

1

dbu
~0!dlu

~0!

3~12lu
~q!!

lu
~q21! ,..,lu

~0!

bu
~q! ,...,bu

~1! pu
~0!S Fu

~q!

bu
~q! ,...,bu

~1!D
3 )

w50

q

@Fu~bu
~w! ,lu

~w!!#5~12^lu&!^lu&
q, ~32!

where

^lu&5E
0

1E
0

1

luFu~bu ,lu!dbudlu , ~33!

is the average probability of occurrence of a dilution eve
According to Eq.~33!, the average number of dilution even

^qu&5 (
q50

`

qxq51/~12^lu&!, ~34!

tends to infinity,^qu&→`, as the average probability of oc
currence of a dilution event tends to unity^lu&→1. In this
limit, lu is not random anymore. Forlu→1, we should also
consider thatbu→1 because otherwise thebu-dependent fac-
tors in Eq.~25! may lead to the violation of the normaliza
tion condition forp̃u(Fu). A straightforward analysis show
that the limit

lu→1, bu→1 ~35!
2-5
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leads to an indetermination. We should supplement this li
with a constraint, which preserves the scaling features of
renormalization-group Eq.~27!. In order to determine this
constraint, we consider values oflu , andbu close to unity

lu512«ul , bu512«ub , with «ul ,«ub close to 0.

~36!

In this case, the probability densityFu(b,l) may be ap-
proximated by

Fu~b,l!5d~l211«ul!d~b211«ub!, ~37!

and the secular Eq.~29! may be solved analytically. We hav

a05@ ln~12«ul!#/@ ln~12«ub!#, ~38!

ar5zr6 isr5@ ln~12«ul!#/@ ln~12«ub!#

6 i2pr/@ ln~12«ub!#, r51,2, . . . . ~39!

We require that in the limit~35!, the fractal exponenta0
given by Eq.~38!, which expresses the scaling properties
the renormalization-group equation, remains constant. T
condition leads to the following constraint:

a0u5au5 ln lu / ln bu constant aslu→1, bu→1,
~40!

where we have taken into account that different scaling
ponents exist for different chemical species and, for simp
ity, we dropped the superscript 0.

We apply the limit ~35! with the constraint~40! to the
renormalization-group Eq.~27!. We come to a differentia
equation inp̃u(Fu),

aupu
~0!~Fu!1Fu

]

]Fu
p̃u~Fu!5~au21!p̃u~Fu!. ~41!

The normalized solution of Eq.~41! is

p̃u~Fu!5au~Fu!au21E
Fu

` pu
~0!~y!

yau
dy. ~42!

From Eq.~42!, we may compute the characteristic functio
gu(s), u51,...,N of the probability densitiesp̃u(Fu), u
51,...,N. We obtain

gu~s!5aus2auE
0

` pu
~0!~y!

yaa
g~au ,sy!dy, ~43!

where

y~a,x!5E
0

x

xa21 exp~2x!dx, x>0, a.0, ~44!

is the incomplete gamma function. In our computations,
have assumed that the initial probability densitiespu

(0)(y) are
rather narrow with very sharp maxima corresponding to
most probable values ofFu

(p) . It follows that in Eq.~43!, the
main contribution to the integral in Eq.~43! comes from
01111
it
e

f
is

-
-

e

e

values ofy close to the most probable values of the init
amount of speciesu. As x increases, the incomplete gamm
function g(a,x) tends fast towards a threshold value giv
by the corresponding complete gamma functionG(a)
5*0

`xa21 exp(2x)dx. If the initial most probable valueFu
(p)

is large enough, then the integral in Eq.~43! may be approxi-
mated by replacing the incomplete gamma function by
corresponding complete gamma function, resulting in

gu~s!;s2au^@Fu#2au&~0!G~11au!, ~45!

where

^@Fu#au&~0!5E
0

`

@Fu#2aupu
~0!~Fu! dFu , ~46!

is a negative moment of the initial amount of spec
u, evaluated in terms of the initial probability densi
pu

(0)(Fu).
Now we have all information necessary for computing t

conditional probability densityBN(FuF). By inserting Eq.
~45! into Eq. ~14!, we come to

BN~FuF !5

LF,s
21LF1 ,x1

21 ,...,LFN ,xN

21 H )
u51

N

@~s1xu!2au#J
LF,s

21@s2(uau#

5

LF,s
21H e2s(uFu)

u51

N F ~Fu!au21

G~au!
G J

F(uau21

GS (
u

auD

5

GS (
u

auD
)
u51

N

G~au!

)
u51

N

~Fu!au21

F(uau21 dS F2(
u

FuD ,

~47!

from which, by using the transformation of variables~5!, we
may compute the probability densityPN(u) of the chemical
composition of the system, expressed in terms of the int
sive vectoru5(u1 ,...,uN). By combining Eqs.~5!, ~6!, and
~47!, we obtain the Dirichlet law~1! and the expression~2!
for the partition functionZ(a).

In this section, we have derived a system of stocha
evolution equations for the probability densities of the abu
dances of the different species present in the system.
have shown that these evolution equations have a self-sim
structure that makes it possible to evaluate their solution
using the renormalization-group theory. We have shown t
the self-similar structure of the evolution equations leads
the Dirichlet distribution.
2-6
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IV. MAXIMUM INFORMATION ENTROPY APPROACH
TO DIRICHLET DISTRIBUTIONS

In the particular case where the chemical mixture may
assumed to be an ideal solution, an alternative derivatio
Eqs. ~1!–~2! may be given by using the maximum entrop
approach. For an ideal solution, the chemical poten
mu(uu) is a linear function of the logarithm of the mola
~molecular! fraction uu of the speciesu in the mixture

mu~uu!5mu
01kBT ln uu , u51, . . . ,N. ~48!

We consider the Kullback information measure~information
gain!

K@PN~u!;PN
Prior~u!#5E ¯E PN~u!lnF PN~u!

PN
Prior~u!Gdu,

~49!

wherePN
Prior(u) is a suitable prior probability density of th

intensive composition vectoru. We search for an extremum
of the information gainK@PN(u);PN

Prior(u)# with respect to
the probability densityPN(u), which is compatible with the
following constraints:~i! The normalization condition for
PN(u)

E ¯E PN~u!du51, ~50!

~ii ! The average values of the chemical potentials of the
ferent species are constant

^mu&5E ¯E ~mu
01kBT ln uu!PN~u! du5constant,

u51, . . . ,N. ~51!

We must also implement the conservation condit
(u51

N uu51, by requiring that bothPN(u) and PN
Prior(u) in-

clude a delta function

PN~u!5AN~u!dS (
u51

N

uu21D ,

PN
Prior~u!5AN

Prior~u!dS (
u51

N

uu21D . ~52!

By carrying out the computations, we get the following e
pressions for the probability densityPN(u) of the composi-
tion vector and for the extremal valueKextr. of the informa-
tion gain:

PN~u!5@~N21!!Z~a!#21AN
Prior~u!)

u51

N

~uu!au21

3dS (
v51

N

uu21D , ~53!

and
01111
e
of

l

f-

-

Kextr.5@~N21!!Z~a!#21E ¯E AN
Prior~u!)

u51

N

~uu!au21

3dS (
u51

N

uu21D lnF 1

~N21!!Z~a! )
u51

N

~uu!au21Gdu,

~54!

where the partition functionZ(a) is given by

Z~a!5@~N21!! #21E ¯E AN
Prior~u!)

u51

N

~uN!au21

3dS (
u51

N

uu21D du, ~55!

and the scaling exponentsau , u51, . . . ,N are the solutions
of the equations

^mu&5mu
01kBT

]

]au
ln Z~a!, u51, . . . ,N. ~56!

In particular, if the prior probability is constant,

AN
Prior~u!5AN

Prior independent ofu, ~57!

we have

AN
Prior5F E ¯E dS (

u51

N

uu21D duG21

5~N21!! ~58!

and Eqs.~53! and ~55! reduce to the Dirichlet Eqs.~1!–~2!.
The maximum entropy derivation of Eqs.~1!–~2! intro-

duced in this section is much simpler than t
renormalization-group approach based on the random th
of dilution. Unfortunately, the maximum entropy approach
no more illuminating than the standard statistical derivat
of Eqs.~1!–~2! starting from the beta distribution, and doe
not clarify the physical origins of the Dirichlet statistic
There is no simple physical justification for the assumpt
that the average values of the chemical potentials of the v
ous chemical species are constant.

V. DISCUSSION

Although more complicated than the maximum inform
tion entropy approach, the random theory of dilution pr
vides a simple physical explanation for the emergence
Dirichlet statistics, which is the result of a cascade of la
numbers of successive dilution events that lead to broad
tributions for the amounts of the different chemicals pres
in the system. From the point of view of statistical physic
this cascade of dilution events may be viewed as
renormalization-group transformation. The renormalizatio
group approach provides an explanation for the self-sim
features of the Dirichlet law, expressed by the scaling ex
nentsa1 ,...aN attached to the different species present
the system. The cascades of dilution events tend to incre
2-7
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the contributions of small concentrations and the probab
densitiesp̃u(Fu) have a self-similar scaling behavior asFu
;0. For long cascades, this scaling behavior is not only v
asFu;0 but also for relatively largeFu . In the limit of an
infinite number of dilution events, the self-similar scalin
behavior controls completely the concentration fluctuatio
resulting in Dirichlet statistics.

The random theory of dilution makes it possible to an
lyze the limitations of Dirichlet statistics. It is reasonable
assume that the Dirichlet must provide a satisfactory dat
whenever long cascades of dilution events are likely to
cur. Long times necessary for the development evolution
transformations in molecular biology or in geology may ju
tify the use of Dirichlet distribution in nucleotide statistics
in geochemistry. Concerning the applications in environm
tal science, we expect that the Dirichlet distribution may
applied for describing the distribution of pollutants in th
limit of large times. For the Dirichlet statistics to hold, it
necessary that a long enough time interval has elapsed s
the release of the pollutant, so that a large number of dilu
events have taken place.

In our derivation of the Dirichlet law, we considered
limited region of extensionV, which is assumed to be ho
mogeneous. For large systems, it is likely that the homo
neity assumption does not hold, and thus, we expect
n

na
ry

n
e,

ta
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e
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there are deviations from the Dirichlet statistics. Such s
effects have been already observed in molecular biology.
though in most cases the nucleotide statistics correspon
to a limited DNA strand may be described by the Dirich
law, the description fails for large sets of data@3,11#. For
such large systems, the nucleotide statistics may still be
scribed by a linear combination of Dirichlet distribution
According to our theory, each Dirichlet function from th
linear combination corresponds to a subregion of the syst
which is small enough so that the homogeneity holds.

In this paper, we have aimed at a simple derivation of
Dirichlet law, which is applicable both to geochemistry, e
vironmental chemistry, as well as molecular biology. In ord
to achieve this, we have described the dilution process
terms of continuous random variables. For a deeper un
standing of the DNA and protein composition statistics
molecular biology, further research must focus on describ
the dilution process in terms of discrete random variable
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