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Bayesian analysis of systems with random chemical composition: Renormalization-group
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We investigate the statistical properties of systems with random chemical composition and try to obtain a
theoretical derivation of the self-similar Dirichlet distribution, which is used empirically in molecular biology,
environmental chemistry, and geochemistry. We consider a system made up of many chemical species and
assume that the statistical distribution of the abundance of each chemical species in the system is the result of
a succession of a variable number of random dilution events, which can be described by using the
renormalization-group theory. A Bayesian approach is used for evaluating the probability density of the chemi-
cal composition of the system in terms of the probability densities of the abundances of the different chemical
species. We show that for large cascades of dilution events, the probability density of the composition vector
of the system is given by a self-similar probability density of the Dirichlet type. We also give an alternative
formal derivation for the Dirichlet law based on the maximum entropy approach, by assuming that the average
values of the chemical potentials of different species, expressed in terms of molar fractions, are constant.
Although the maximum entropy approach leads formally to the Dirichlet distribution, it does not clarify the
physical origin of the Dirichlet statistics and has serious limitations. The random theory of dilution provides a
physical picture for the emergence of Dirichlet statistics and makes it possible to investigate its validity range.
We discuss the implications of our theory in molecular biology, geochemistry, and environmental science.
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I. INTRODUCTION is a partition function. The standard method used in math-

ematical statistics for the generation of the Dirichlet prob-
The statistical analysis of various problems of physicsability density is to express the fractiods,...,fy in terms
chemistry, and biology involves the consideration of systemgf N random variablesX;..., Xy, as 9u:xu/zl’:‘=1xu,

with random chemical compositions. Typical examples in-here each random variabk, is selected from a different
clude statistical studies of the abundances of different chemiggmma (or ¥2) probability density. Under these circum-

cal species in geochemistry], the distribution of pollutants stances, it is easy to show that the veder(0;....60) obeys

in the environmenf2], or the nucleotide frequencies in ge- a probability law of the typél). Unfortunately, this is only a

”0”?9_5[3]- For many systems with rand_o_m composition, theformal statistical derivation that does not clarify the meaning
statistics of the fluctuations in composition can be satisfac-

X . o h . of the probability density(1).
Egj"y described by means of the Dirichlet probability density Recently, the empirical use of the Dirichlet distribution

has become popular, especially in molecular biology where it
N provides a satisfactory description of nucleotide statistics in
S g —1)d0 DNA strands or amino acid statistics in protei. Other
=1 7 ' applications include the description of pollutant distribution
(1)  in the environmen{2], its use in material science for de-
scribing the chemical composition of disordered systEsihs
where the composition vectdt= (6, ,...,6y) is expressed by as well as its use in geochemis{]. In all of these cases,
the mass, volume, or mole fractioms, ...,6y of the differ-  the Dirichlet distribution is employed merely as an empirical
ent species present in the system;>0,...y>0 are posi- law, which manages to give a satisfactory description of the

N
Pu(;a)d6=(Z(a)] " [ <0u>aa16<

tive integers and observed data. No simple physical explanation for the occur-
rence of the Dirichlet law has been given. The purpose of
N N this paper is the presentation of a simple physical explana-
Z(a)=J H (av)au—15< E 0V—1> de tion for the Dirichlet law (1) for the composition fluctua-
a=1 v=1 tions. Our main assumption is that the random variations in

composition are due to the occurrence of a succession of a

ﬁ () random number of dilutiqn evenf[s. Such a mechanism seems
0= u reasonable not only in environmental chemistry and
=——x (2 geochemistry but also in molecular biology, where the pro-
F( E au> cess of nucleotide substitution can act as a dilution factor,
i=1 which tends to destroy the correlations among the different
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or |
supplementary dilution factors and thus, at least in principle, . " N
the reactions may be taken into account by a suitable de- :f f 5( F—> fu)dl:
0 0 u=1
N

nucleotides in a DNA strand. In our theoretical description, N
the possible chemical reactions among the various species Pn(F)dF={ 8| F— E fu
are not taken into account explicitly. Such reactions may be u=1

scription of the statistics of the dilution process.

The structure of this paper is the following. In Sec. Il we
formulate the problem of evaluating the probability density
of composition fluctuations by using a Bayesian approach
involving inverse probabilities. In Sec. Ill we use a stochas- _ _ _
tic renormalization-group approach for computing the prob- =P(F)@P2(F)®,....@Pn(F), ()
ability densities of the abundances of the different chemical
species present in the system and derive the Dirichlet probNheI‘e® denotes the additive convolution product. Since the
ability law. In Sec. IV we present an alternative, formal deri-amounts of chemicalg, ...,Fy andF are non-negative ran-
vation of the Dirichlet probability density based on the maxi-dom variables, the characteristic functions of the probability
mum information entropy approach. In Sec. V, we discusglensitiey,(F,), u=1,... N andPy(F) may be expressed
the implications of our approach in molecular biology, envi-as Laplace transforms
ronmental chemistry, and geochemistry.

qu[l [Pu(f)1dfy,... dfy

S)= exp(—sF,)p,(F,)dF,, u=1,... N, (8
Il. BAYESIAN ANALYSIS OF SYSTEMS WITH RANDOM 9u(s) fo n wPu(Fu)dFy ®

CHEMICAL COMPOSITION

We denote by GN(s)=J exp(—sF)Py(F)dF. (9)
0
Pu(Fu)dF, with fo Pu(FudF=1, 3 From Egs.(7)—(9), it follows that
the probability that the(extensive t of a chemical N N
e probability tha extensivé amount of a chemica _ ]
speciesu in a space region of dimensiad is betweenF GN(S)_UHl [9u(s)], PN(F)_EF'S[ ull [gu(s)]J,
andF,+dF,. We also introduce the notation (10

) N where L; & denotes the inverse Laplace transformation
By(F|F)dF  with f f By(F|IF)dF=1, uzl Fu=F, Now we introduce the joint probabilitRy(F,F)dF dF,
(4) that the extensive composition vector of the system is be-
tweenF andF+dF and that the total amount of chemicals is
for the conditional probability that in a space region of di- P&tweerF andF +dF. This probability can be computed by
mension(), the extensive amounts of species 1,...N are  averaging a product of delta functions

betweenF, and F,+dF,, u=1,... N, respectively, pro- N N
vided that the total amount of chemicals is constant and B
equal toF. Here,F=(F4,...Fy) is the extensive composi- Rn(F,F)dFdF= uﬂl [6(Fu—fu)Fu]d F_uzl fu|dF

tion vector of the system. Since the fractioas,...,fy of
different chemicals are given by foc
0

N
I [8(F,—fu)F,]

0u=1

N
0,=Fy uZl Fu: Fu=6,F; u=1,...N, (5
R X8

N N
F—> fu)dFH [Bu(fuldf, . . . dfy.
u=1 u=1

it follows that (11

__ _ _ N
Pn(6)d6=By(F|F)dF=By(F=F ¢lF)F"do. (6) We define the characteristic function

Thus, the evaluation of the probability densi®y(#) of the . N
intensive composition vecta reduces to the evaluation of Bn(x,8)= exp( —sF->, XuFu) Ru(F,F)dFdF,
the conditional probability densitiy(F|F). a=1

The unconditional probabilityPy (F) dF of the total (12
amount of chemicals may be computed by evaluating the
average of a delta function, which is a standard procedure iand take the multiple Laplace transform of E@ql), with
statistical physics. We have respect to~4,...,Fy andF. We come to
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N We assume that the extensibnis small enough so that the
Bn(X,8)= H [gu(s+x))]1, concentrationC,=F,/Q is uniform throughout the region.
u=1 Each dilution event leads to the spreading of a given chemi-
cal initially present in a region of siz8 to a larger region,
characterized by a sizZ@' > (). After a dilution event takes

N place, the amount of chemic&l, is spread out in a larger
RN(F,F)ZEFéEFf’Xl...,EF;XN{ IT [gu(s+ xu)]}. region of sizeQ)’ and thus, the concentration of the species
u=1 becomes smalle€,=F,/Q’'<C,. Out of the amounf,
(13 initially present in the region of siz8, the amount
By using the Bayes methodi6], By (F|F) may be ex- F/=C/Q=F,Q/Q'=bF, with 0<b=0/Q'<1,
pressed as an inverse probability density, which is the ratio (15)

between the joint probability density of the extensive com-
position vector and the total amount of chemicals
Rn(F,F) dFdF, and the probability for the total amount of
chemicalsPy(F) dF:

‘'remains in the region and the difference

AF,=F|—-F,=(1-b)F,, (16)
_ Rn(F,F)dFdF moves away. The ratio between two successive sibes,
By(F|F)dF= Py(F)dF =0/Q’ is a dilution factor between zero and one. A succes-
L L N sion of dilution events may be characterized by two different
Le sLey xy - Ly x i u=1[9u(s+Xu) 1} sets of random parameters: the dilution factdrg, ¢

=1,2..., and theprobabilites\,, q=1,2, ..., that the
various dilution events take place. We consider that for each

(149 dilution eventsq=1,2, ..., theparameterd,,\q are ran-
domly selected from a constant probability density

Le (- 1[9u(9)]}

In conclusion, in this section we have shown that the
probability density of the relative composition vec®may
be evaluated from the probability densities of the abundances
of the different species by using a Bayesian approach involv-
ing inverse probabilities. Equatiofi4) derived in this sec-
tion is used in Sec. Ill for the derivation of the Dirichlet
probability density.

11
@, (b,N)db d\, with f f ® (b,N)dbd=1. (17)
0Jo

We assume that before the occurrence of any dilution
events the concentrations of the species are rather large and
the concentration fluctuations are rather small. Under these
circumstances, the initial probability density for the amount

IIl. RANDOM DILUTION AND RENORMALIZATION- of speciesu, p{”’(F,), is rather narrow with a sharp maxi-

GROUP THEORY mum corresponding to the most probable valué& pf After
) . o . each dilution event, the probability density Bf, becomes
In this section, we analyze the dilution of various compo-fiatter and flatter, the concentration fluctuations increase, and

two different sources of stochasticity. In the first place, ran- The succession of dilution events can be described in
dom sampling concentration fluctuations may emerge, due tRyyms of the joint probabilities

the fact that matter is made up of molecules. A second source

of stochasticity is due to the fact that the size of the region

within which the dilution may take place may be randomly PO FOANPIFP, g=0,1,2... (18
varying in size; this second type of fluctuation may be de-

scribed as multiplicative noise. In our following analysis, we it

assume that the molecular fluctuations may be neglected in

comparison with the contribution of the multiplicative noise.

We also assume that the different components in the system o1 (e

may be diluted in different ways; we shall show that this last > f j VoY FD) AP dF® =1, (19
assumption results in different scaling exponenig =0 Jo Jo

>0,...,ay>0 for the different species in the Dirichlet

probability density(1). W@\ (@ F@y) g\ DdFD is the probability thatg dilu-

In order to apply Eq(14), we need to know the probabil- tion events have occurred and that the dilution factor has a
ity densitiesp,(F,) of the extensive amounts of various value between? and\{?+d\{? and that the amount of
chemicals present in the domain of extensfonin order to  the u species is betweenF(® and F®+dF®:
computep,(F,), we develop a random theory of dilution. the superscript+ means that the dilution process has

011112-3



VLAD, TSUCHIYA, OEFNER, AND ROSS PHYSICAL REVIEW E65 011112
not been terminated afterq steps. The probability of dilution events finishes afteg steps. In terms of these
PO~ \@ F@) d\PdF® has a similar significance with probabilities, we may write down the following evolution
the difference that the minus sign means that the successi@guations:

1 (e (1
)+()\qu) ’Fqu)):)\qu)fo JO JO q)u(bEJQ) ,)\EJQ))\I;EJQ*lH()\EJQ*l) ,FEJQ*l))5(|:LQ)_ bEQ)FEJQ*l))d)\EJQ*l)d ngil)d bEJCI)

(20)
(@=y\ (@ (@ (a) et (@ y\ (@Dyp@-1)+y(q-1) =(q-1)
T ,Fuq)=(1—>\uq)J0 JO fo%(buq AT R
X S(FW—b@FA-)d\ 0 VdFa~ V@, (21)
|
with the initial conditions some calculations, we may express the probability density

Pu(F,) by an expansion of the Lippmann-Schwinger type

1
v FR) =2 (FY) fo ®y(by A db”

22 o ©  TENG (0 3 (04O gy (O
pu(Fu):Pu (Fuw o o(l_)\u )q)u(bu Ay )dbu d)\u
\Pﬁo)i()\ﬁo)v':ﬁo)) - 1(1 111
+2 f f dbf,q)d)\fﬁ)---f f db{”d\{Y
=(1- A(O))p(())(':to))f P (b (0) )\(O))db(o) g=1Jo Jo 0Jo
)\(q 1),___’)\(0)
(23) X(1=\{P) — o, oD py
The probability densit$,(F,) of the total amount of species =
u after the occurrence of a rando[n number of dilution events X b<q)—ub(1)) H [(I)u(bfj"") ,)\EW>)]. (25)
may be expressed in terms %%~ (A(Y ,F(@). we have ueeeBy fw=0
“ 1 . . . .
~ _ (@ (@) (Q We notice that the Lippmann-Schwinger seri@$) has a
Pu(Fu) q; jo Pt T Fadh T 29 self-similar structure that makes it possible to derive a sto-

chastic renormalization-group equatipn] for p,(F,). By
Equations(20)—(24) may be solved step by step. After using a summation labegj’ =q—1, EQ.(25) leads to

111 111 Fu
Pu(Fu)=p”(Fu) fo fo(1—xt°>><1>u<b<u°>.x<u°)>dbf,°>dx<u°>+ fo fodbudwbu(bu,xu)— “”(b )
u

111 111 ,
xj J (1-AND (b A )dbPdr (@ + ffdb d\ @ ( bu,)\u) E db{@d\ (9"
oJo qu—l oJo
R I Fu
f f db@dA (1A ))>—<1 xpy” W H [®,(b("™ A)]. (26)
b b oMb

By comparing Eqs(25)—(26), we notice that the probability bigger than one may be grouped together in an integral ex-
densityp,(F,) is self similar: its self-similar properties are pression that contains a scaled form of the probability den-
expressed by the fact that in E(6), the terms of order sity P, . By using this property, from Eq$25)—(26) we may
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derive a self-similar integral equation foy,(F,), The occurrence of logarithmic oscillations is a known is-
sue in renormalization-group theof8]. In most cases, they
are assumed to be artifacts generated by the discrete nature
of the renormalization-group equations and special limits are
L \ - considered in order to get rid of them. In a few cases, how-
Un, u ever, the logarithmic oscillations are real and may be ob-
* fo fo db“d)“’q)”(bu’)‘U)b_u|°“(13_u - @7 served experimentallf9,10]. In the case of our random di-
lution theory, the logarithmic oscillations are not compatible
Equation(27) is a renormalization-group equation, which with the Dirichlet probability densityl) and for this reason,
expresses the self-similar features of the cascade of dilutiowe prefer to eliminate them from the evolution equations.
events that generate the probability deng@tyF,). We no-  Since the solution of our renormalization-group E2j7) is a
tice that in Eq.(27) the integral term inp,(F,) has the probability density we cannot just neglect the oscillatory
structure of a multiplicative convolution product, which sug-terms from the solution, because such a crude approach
gests that the equation may be solved by using the Mellinvould result in a violation of the normalization condition for
transform. The solution of the equation is made up of thethe probability densityp,(F,). Instead, we consider the
sum of analytic and a nonanalytic components. The nonanghysical and mathematical circumstances under which the
lytic part of the solution, which has the dominant contribu-logarithmic oscillations vanish. For our model, the logarith-
tion for smallF,, has the following structure: mic oscillations are generated by the dilution fadtpwhich
changes discretely from dilution event to dilution event. The
_ W ©) - o1 a(p) logarithmic oscillati_ong vanish for processes involving_very
Pu(Fu)~ (Fy) 0 1A" + 21 (Fo) " ALTINF], large numbers of dilution events and for which the variation
- (28) of the dilution factor from event to event is very small. In
order to identify this type of process, we compute the prob-

where a=ay is the unique real root of a secular transcen-ability xq thatq dilution events takes place. We have
dental equation

11
BulFo)=pO(Fo) fo fo(l—xum(bu,xu)dbudxu

1 %)
1r1 Xq:f f \I}J()\SZI),F&Q)) d)\BQ)dFE]q)
I(a):j f Ab™¢® (b,N)db d\=1, (29 0Jo
0Jo

* 111 171
- (@) (D) (@ .. (0) ) (0)
a,={,*io, are the complex roots of the same equation, fo dFy fo jodb“ dhy fo fodb“ dr
)

Al is a constant, and”)[InF,] are periodic functions of
InF, with periods 27/c0,. From Eq.(29), it follows that
[(0)=(\)<1 anddl(a)/da>0 and thus, there is a single
real root a= «q, which is non-negativer,=0. Since Eqg.
(29) has real coefficients, the complex roots, if they exist,

-1 0
NIV Fi

X(l—)\<Q)) u p(O)( )
T p@ b T e @ plY

q

must occur in conjugated pai,={,*ic,. It is easy to ngo [®u(bl” A)]=(1-(A)(A% (32
show that
171 where
Rel(ap=§pii0'p)=f f Nexd Z,In(1/b)]
0Jo 101
Ny = AP y(by,Ay)dbydhy, 33
X[coso In (1/b) D (b,A)dbdv=1 (ho) Jo Jo uPulbu o) dbydhy 33
= flJl)\ ex aoIn (1/b)]® (b,\)db d\ is the average probability of occurrence of a dilution event.
oJo According to Eq(33), the average number of dilution events
(30) "
and since cds,In(1/b)]<1, it turns out that the real parts of (qu= Zo Axq= (1= (\y)), (34
complex roots fulfill the inequality =
Rea,={,>ay. (31 tends to infinity(q,)—c, as the average probability of oc-

currence of a dilution event tends to unify,)— 1. In this
From Egs.(28) and (31) it follows that, if {,>«,, the real limit, N, is not random anymore. Far,— 1, we should also
root ag dominates the asymptotic behavior pf(F,) as consider thab,— 1 because otherwise thg-dependent fac-
F,—0 and in this limit the logarithmic oscillations may be tors in Eq.(25 may lead to the violation of the normaliza-
neglected. However, if at least one complex ragt = ¢« tion condition forp,(F,). A straightforward analysis shows
*io,« has a real part equal to the real roat=¢,« then  that the limit
the logarithmic oscillations may influence the statistics of the
dilution process. N—1, b—1 (35
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leads to an indetermination. We should supplement this limivalues ofy close to the most probable values of the initial
with a constraint, which preserves the scaling features of thamount of species. As x increases, the incomplete gamma
renormalization-group Eq27). In order to determine this function y(a,x) tends fast towards a threshold value given
constraint, we consider values ®f,, andb, close to unity by the corresponding complete gamma functidi{a)

= [5x3 "t exp(—x)dx If the initial most probable valug (P

is large enough, then the integral in E43) may be approxi-
(36)  mated by replacing the incomplete gamma function by the

In this case, the probability densis®,(b,\) may be ap- corresponding complete gamma function, resulting in
proximated by

AN=1l—ge,, by=1—¢€y,, with g, ,e,, close to 0.

gu(s)~s™“w([Fy] ") OT (1+ ), (45)
P (b N)=N—1+e,)d(b—1+ey, (37)
where
and the secular E429) may be solved analytically. We have
ap=[In(1= &) V[IN(1=eu)], (38) ([Fy]®) = f [Ful ®p(Fy) dF,,  (46)
0
a,={,*io,=[In(1-g,)]/[In(1-&y)] . . o .
) is a negative moment of the initial amount of species
*i2mpllin(1-ew], p=12,... . (B9 y evaluated in terms of the initial probability density

(0)
We require that in the limif35), the fractal exponenty, pUI\EF”)' h Il inf i ¢ tina th
given by Eq.(38), which expresses the scaling properties of dc_)'z{v Wel avi ab'll'? o(rjma |_(:n neé:ﬁ:ssarBy or corppu 'Eg €
the renormalization-group equation, remains constant. Thi%fsn ! 'Oné pr104a llity densitySy(F|F). By inserting Eq.
condition leads to the following constraint: ) into Eq. (14), we come to

N
agy=ay=In\,/Inb, constant as\,—1, b,—1, L B B
s ’ ’ ) ’ (40 EFécFll,xlv“"ﬁFNl,xN Hl [(s+x,) "]
0=
where we have taken into account that different scaling ex- Bu(F|F)= L7 s Su]
ponents exist for different chemical species and, for simplic- F.s
ity, we dropped the superscript O. N (F )%t
We apply the limit(35) with the constraint(40) to the el e S]] | ———
renormalization-group Eqg(27). We come to a differential B u=1| T(ay)
equation inp,(F,), - Fluau—1
(0 J ~
ayp” (F)+ FuzePu(Fu) = (e = DBu(Fu). (41 [ a,
u u
The normalized solution of Ed41) is N
N2 a| [T (Fy«
(0) _
~ a,—1 “ pU (y) u u=1
Pu(Fu)=ay(F ) ady. (42 = s O F- 2 Ful,
Fu y 1_[ F=ucu u
I'(ay)
From Eq.(42), we may compute the characteristic functions u=1 ’
0u(s), u=1,..N of the probability densitieg,(F,), u (47)
=1,...N. We obtain
0 (y) from which, by using the transformation of variabl&$, we
u

gu(s)=a,s” aufw - y y(ay,sy)dy, (43) may compute the probability densiBy(6) of the chemical
o y=# composition of the system, expressed in terms of the inten-
sive vectorf=(64,...,60y). By combining Eqs(5), (6), and
where (47), we obtain the Dirichlet law1) and the expressio(®)
« for the partition functionZ(«).
y(a,x):f x2 lexp—x)dx, x=0, a>0, (44) In this section, we have derived a system of stochastic
0 evolution equations for the probability densities of the abun-
_ ) ) ) dances of the different species present in the system. We
is the incomplete gamma function. In our computations, wenaye shown that these evolution equations have a self-similar
have assumed that the initial probability densit#3(y) are  structure that makes it possible to evaluate their solution by
rather narrow with very sharp maxima corresponding to theysing the renormalization-group theory. We have shown that
most probable values fojp). It follows that in Eq.(43), the  the self-similar structure of the evolution equations leads to
main contribution to the integral in Eq43) comes from the Dirichlet distribution.
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IV. MAXIMUM INFORMATION ENTROPY APPROACH N
TO DIRICHLET DISTRIBUTIONS Row=[(N— 1)!z(a)]—1j f AP o TT (6%t
u=1

In the particular case where the chemical mixture may be
assumed to be an ideal solution, an alternative derivation of
Egs. (1)—(2) may be given by using the maximum entropy
approach. For an ideal solution, the chemical potential
ny(8y) is a linear function of the logarithm of the molar (54
(moleculay fraction 6, of the species in the mixture

N

N
sl > 6,-1

u=1

u)au—l

M IN= 1)'Z(a) H

where the partition functioZ(ea) is given by
wo(0)=pud+ksTING,, u=1,...N. (48

We consider the Kullback information meastieformation Z(a)=[(N— 1)!]71f j AR(6) Hl (O
gain a=
N
priory 1 [ Pn(0) s > eu—l) de, (55)
K[ Pn(0); Py (0)]—f fPN(o)ln —_Plli’lnor(a)}do! =

(49 and the scaling exponents,, u=1, ... N are the solutions

where P 6) is a suitable prior probability density of the Of the equations
intensive composition vecta. We search for an extremum

of the information gaing[ Py(6); PR ™(6)] with respect to (o) =2 u=1,...N. (56
the probability densityPy(6), which is compatible with the
following constraints:(i) The normalization condition for ] ] ) o
Pn(6) In particular, if the prior probability is constant,
AR )= AR independent of#, (57)
J f Pn(O)dO= (50

we have
(i) The average values of the chemical potentials of the dif- N 1
f t i tant :
erent species are constan Aﬁ”or:{f f 5( 21 Hu—l)do “(N—1)! (58

0=

.. %4 kgT In 6,)Py(6) dO=constant,
() f j (pyt ks uPn(6) and Eqgs(53) and(55) reduce to the Dirichlet Eqg1)—(2).

The maximum entropy derivation of Eq&l)—(2) intro-
u=1,...N. (5)  duced in this section is much simpler than the
. ...__renormalization-group approach based on the random theory
We  must also implement the conservatlgnrgr conditiony¢ ilution. Unfortunately, the maximum entropy approach is
2y-10,=1, by requiring that bottPy(6) and Py™(6) in- 15 more illuminating than the standard statistical derivation

clude a delta function of Egs.(1)—(2) starting from the beta distribution, and does
N not clarify the physical origins of the Dirichlet statistics.

_ _ There is no simple physical justification for the assumption

PO)=An(O) 5( uzl bu ) that the average values of the chemical potentials of the vari-

ous chemical species are constant.

N
PR 9)= AR 0) 5( ugl 0~ 1) : (52) V. DISCUSSION

Although more complicated than the maximum informa-
tion entropy approach, the random theory of dilution pro-
vides a simple physical explanation for the emergence of
Dirichlet statistics, which is the result of a cascade of large
numbers of successive dilution events that lead to broad dis-
tributions for the amounts of the different chemicals present
Py(O)=[(N-1)1Z(a)]" 1APr|0r( 9)1_[ (6,) @t in'the system. From. thg point of view of statist!cal physics,

a=1 this cascade of dilution events may be viewed as a
renormalization-group transformation. The renormalization-

By carrying out the computations, we get the following ex-
pressions for the probability densify(6#) of the composi-
tion vector and for the extremal valug,,, of the informa-
tion gain:

s EN: 0 —1) (53) group approach provides an explanation for the self-similar
= ' features of the Dirichlet law, expressed by the scaling expo-
nentsaq,...ay attached to the different species present in
and the system. The cascades of dilution events tend to increase
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the contributions of small concentrations and the probabilitythere are deviations from the Dirichlet statistics. Such size
densitiesp,(F,) have a self-similar scaling behavior kg effects have been already observed in molecular biology. Al-
~0. For long cascades, this scaling behavior is not only valithough in most cases the nucleotide statistics corresponding
asF,~0 but also for relatively larg&,,. In the limit of an  to a limited DNA strand may be described by the Dirichlet
infinite number of dilution events, the self-similar scaling law, the description fails for large sets of dd®11]. For
behavior controls completely the concentration fluctuationssych large systems, the nucleotide statistics may still be de-
resulting in Dirichlet statistics. scribed by a linear combination of Dirichlet distributions.
The random theory of dilution makes it possible to ana-According to our theory, each Dirichlet function from the
lyze the limitations of Dirichlet statistics. It is reasonable to jinear combination corresponds to a subregion of the system,
assume that the Dirichlet must provide a satisfactory data fifyhich is small enough so that the homogeneity holds.
whenever long cascades of dilution events are likely to oc- |n this paper, we have aimed at a simple derivation of the
cur. Long times necessary for the development evolutionarpirichlet law, which is applicable both to geochemistry, en-
transformations in molecular biology or in geology may jus-vironmental chemistry, as well as molecular biology. In order
tify the use of Dirichlet distribution in nucleotide statistics or to achieve this, we have described the dilution process in
in geochemistry. Concerning the applications in environmenterms of continuous random variables. For a deeper under-
tal science, we expect that the Dirichlet distribution may bestanding of the DNA and protein composition statistics in
applied for describing the distribution of pollutants in the molecular biology, further research must focus on describing

limit of large times. For the Dirichlet statistics to hold, it is the dilution process in terms of discrete random variables.
necessary that a long enough time interval has elapsed since

the release of the pollutant, so that a large number of dilution
events have taken place.

In our derivation of the Dirichlet law, we considered a
limited region of extension), which is assumed to be ho- This research has been supported in part by the National
mogeneous. For large systems, it is likely that the homogeScience Foundation, NIH Grant No. HG00205 and by the
neity assumption does not hold, and thus, we expect thddepartment of Energy, BES/Engineering Research Program.
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