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Ratchet due to broken friction symmetry
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A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its
velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic
potential, the dynamics of which have broken space-time symmetry, the system must be provided with some
internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mecha-
nism of this type, an experimental set(gmdget that converts longitudinal oscillating or fluctuating motion
into a unidirectional rotation has been built and experiments with it have been carried out. In this device, an
asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion. In
experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical
arguments. Despite the setup being three dimensional, the ratchet rotary motion is proved to be described by
one dynamical equation. This kind of motion is a result of the interplay of friction and inertia. We also consider
a case with viscous friction, which is irrelevant to this gadget, but it can be a possible mechanism of rotary
unidirectional motion of some swimming organisms in a liquid.
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[. INTRODUCTION or electrical ratchet models can be useful for better under-
standing the physics of ratchet motion as well as for finding
Inspired by the Smoluchowski-Feynman ratchét-3] new ratchet mechanisms, similarly as it was performed for
and further pioneering studidg—9], a variety of mecha- nonlinear dynamics studies in condensed matter physics,
nisms for molecular motors have been sugges$fdd. All where mechanical devices and electrical circuits have been
these approaches involve rectifying motion of an over-proved fruitful for modeling remarkable properties of nonlin-
damped Brownian particle in a spatially periodic structureear collective excitations in solidg24] (such as Scott’s
due to nonequilibrium oscillations or fluctuations of zero av-model[25], experimentally demonstrating the propagation of
erage, resulting in a biased current, so-called ratchet. Besidespological solitons, or the pendulum model suggested by
this overdamped ratchet motion, Jung, Kissner, anddga  Russellet al. [26] for visual illustration of discrete breath-
[11] have originated the whole class of deterministic ratchetgrg.
for systems with finite inertigsee, e.g., related papg2— The paper is organized as follows. In Sec. Il, we describe
20] and others[3]). The present paper also deals with ang mechanical gadget, explaining intuitively the ratchet
inertia ratchet—here the interplay of friction and inertia re-mechanism of rotations in this device with presentation of a
sults in a unidirectional rotary motion. corresponding general equation of motion. Explicit solutions
The fundamental condition for the rectified transport tOof this equation in two particu|ar cases of dry and viscous
occur is that certain symmetries, associated with spatial offiction that demonstrate a rectified motion are given in Sec.
time reflection, are broken. On the other hand, a similar symy||. Concluding remarks and a brief discussion on different
metry breaking can also be achieved parametrically, when Ezrticular cases of the general equation of motion of the un-
least one of the system parameters depends asymmetricaierdamped oscillator a velocitforce) dependent friction are
on external zero-mean forcing. However, for such a ratchepresented in Sec. IV. Derivation of the equation of motion for

mechanism to occur, the system must possess some interjak mechanical gadget is described in the Appendix.
structure, i.e., it has to be a “machine” its¢f1—-23. In this

paper, we suggest a ratchet mechanism for a system with

internal structure that admits altering intrinsic parameters Ofgl. AN EXPERIMENTAL MODEL EOR RECTIFICATION

the system through a broken symmetry of the dependence o OF ac FORCING

these parameters on its velocity or an external driving force.

One of these parameters can be the friction in a motion of the To demonstrate the rotary ratchet mechanism that appears

system that depends asymmetrically on its velocity or thedue to an asymmetry of the dependence of friction on an ac

driving force. We call this type of rectifying motion, which driving force, we have made the simple experimental setup

occurs due to broken friction symmetry, a velocity- or force-(gadget shown as a photograph in Fig. 1. In experiments,

dependent friction ratchet, respectively. this device shows unambiguously the rotary ratchet motion
To demonstrate the ratchet mechanism that appears due darected clockwise when viewed from above. It consists of

an asymmetry of the dependence of friction on an ac drivingwo massive plate$weights, which are connected by two

force, we have built a simple experimental setup that unamkateral springs, so that their geometric arrangement mimics a

biguously shows rotary ratchet motion. Note that mechanicatight-handed helical structure. It is important that the lateral
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of which is quite difficult. Numerical simulations of these
equations show different sophisticated regimes that crucially
depend on the system parameters. However, the geometry
and the physical parameters of springs in our device can be
fitted in such a waysee the Appendijxthat the dynamics of
plate B are governed byne simpledynamical equation of

the type(A15). The friction term of this equation is of a quite
general form, which in general can have no relevance to our
specific gadget. Thus, the basic equation of our studies in this
paper reads as follows:

FIG. 1. The experimental setup that consists of twpper and .
lowen helically rotating coupled plates. The supporting bottom Q+vy(f)o(Q)IQ=f, D
plate creates friction for the lower plate. A driving oscillating or
fluctuating force is applied to the upper plate, e.g., by hitting "\where the dot stands for differentiation on tirge) is the
slightly from various directions. Colored noise was created by the

sound from a fog horn, acting on a horizontal membrane glued or‘?mgmé1r velocity of the lower platé=f(t) an external force,

top of the upper plate. In all cases of forcing verticafipm above ¥ & friction coefficient that depends on external forcing, and

or below), the helical system was observed to rotate only clockwisethe, functiono () describes th? type of friction. In the deri-
when viewed from above. vation of Eqg.(1), the emphasis was placed on the depen-

dence of its secondfriction) term on the external forcé

springs are very soft to bend, but hard to compress or stre@d/or the velocity). For simplicity, such effects in the dry
(being in fact elastic rods fnctlon Qynamlcs as crossover from stick slip tq steady_ slid-

The upper weight is resting on the lower weight with aind motion [28] and other effectse.g., corrugation or pin-
lower vertical spring in between, while an upper vertical Ning) were not mode!ed. _ _
spring, for which the upper end is fixed, controls the pressure AS €xpected intuitively, for any nonincreasing, but neces-
of the lower plate on a supporting plate. Therefore the vertiSarily decreasing at least in some neighborhood of the point
cal distance between the plates is fixed only by the verticaf =0 in the domain of the function(f), the average velocity
springs, and the lateral springs do not participate in the forcd={¢X(t)) appears to be positive and this means that the
balance. The ends of the lateral springs are attached to th@wer plate rotates clockwise when vied from above, and this
plates rigidly, whereas the vertical springs are allowed todlrect|on of rotation is md_eed observe_d expe_rlmentally_. With
slide freely on the surfaces of the plates when they rotate. Ifis property of the functiony(f), the inequalityJ>0 will
equilibrium, both the vertical springs little pressed, and thisPe proved below for the two cases=1,2, and for some
construction allows us to exclude effectively the role of grav-particular choices of the function(f).
ity in experiments. Indeed, when the gadget is oriented, e.g.,
horizontally, the upper plate will be found in another
(shifted equilibrium position, but still being pressed to the
supporting plate, resulting in a nonzero friction. Therefore,
gravity is not essential for the existence of a ratchet motion Now we can use the symmetry arguments of Flathl.
and both the weights can be considered as masses. Inste@#i?] to conclude that Eq(1) is expected to support a ratchet
the inertia of the upper plate is crucial for the sliding rotationmotion driven by a periodic forcé(t+T)=f(t) under the
of the lower plate on the supporting plate. In a rotationfollowing two conditions: eithefi) f(t+T/2)# —f(t) (bro-
around the vertical axis, the friction of the lower weight de-ken time symmetry and the dissipation function, i.e., the
pends on the current vertical position of the upper weightsecond term in this equation, is a nonlinear function(lof
that friction is larger as the weiglttorce) on the lower ver-  but y(—f)=y(f) and o(—Q)=0(Q); or (i) y(—f)
tical spring is larger, so that when an external oscillating or# y(f) [or o(— Q) # ¢(Q)], but no conditions on the zero
fluctuating force is applied on the upper weight, the frictionaverage forcef(t). The former condition results in the
in a rotation of the lower weight sliding on the supporting ratchet motion discovered by Vidybida and Seriki®8].
plate depends strictly on the force applied to the uppeHere we consider the latter case when the functiéf) is a
weight. The pair of the lateral springslastic rods converts  decreasing function of the fordeat least in some neighbor-
the oscillating or fluctuating vertical force applied on the hood of the pointf =0.
upper weight into a force changing the angle between the The steady-state solution of the dynamical systém
rotating plates. Because the frictional coupling between rogoverned by a periodic forc&(t) with a frequencyw, is a
tations of the plates is larger when the lower vertical springperiodic orbit Q* (¢), 0<¢=wt<2s. For this orbit, we
is contracted than when it is extended, we get a rectificatiogiefine the averaggloba) velocity (“current”) by the inte-
as the lateral springs transfer a vertical motion into a rotatioyra|
in the horizontal plane.

In general, if we try formally to write the full system of 1 (2n
equations of motion for our system, one obtains a set of three I=(Q*(@))= _f 0* (¢)de. @)
differential equations of the second ord@7], the analysis 27 o

Ill. DIRECTED TRAJECTORIES DUE TO FRICTION
ASYMMETRY
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The attractor of this equation is an asymmetric orbit and the
f velocities(4) can be expressed as a result of integration,

%’\

6y lw 27w
Qf=—f [f(t)+7(t)]dt=j [f(t)+y(t)]dt,
0

(m+6 )w

(

N

(m+6_ ) w

7wl w
Q+=L / [f(t)—y(t)]dt=—J/ [f(t)—y(t)]dt.
4+l ol
(6)
Eliminating from these equations the velociti@s. , in the

case of the harmonic forcing\14), one finds the two equa-
tions for the phase shifta.. ,

2
2f0(cosﬁ++cosﬁ_)=f v(fosing)de, @)
Q 0
T+ ) 2w+ 6, )
0 L *y(foslncp)qu:fﬂ9 y(fosing)de.  (8)
+ Tt o_

FIG. 2. Steady trajectorf)* (¢), ¢=wt (arbitrary unitg, in
the case of dry friction: the upper symmetric curve is input sinu-
soidal forcingf(t) and the lower asymmetric one is output angular - 5,
velocity Q* (wt). The computation has been performed for the ex- f — f
ponential frictiony(f)= vy exp(—f/\) with the driving forcef(t) ( 5y 0
=fy sin(wt), whereyy=1, A\=7, fg=2, andw=1.

Rewriting the last equation in the form

J‘Zﬂ' fﬂ+ 5_

7T+¢5,_ T
one can prove thaf, <&_ . Indeed, sincey(f) is a nonin-

Below we will illustrate the existence of a nonzero currént creasing, but §tr0ngly decrgasing at Ie_ast in some neighbor-

[even if(f(t))=0] in some particular cases of the function hood of the point =0, function, for the integral equalit{g)

¥(f). To do this, we will need to calculate the phase shifts ofto be valid, the difference length of the intervalsr

the nodes of the periodic functidd* (@) with respect to the — ., 7] and[0,5, ] must exceed the difference length of
nodes of the external forae=0,7. These shifts are defined the intervalg 7+ 5_,27] and[ 7,7+ J_], resulting iné,

ydo= yde, 9

by the equations < 6_. Using this inequality in Eqs(6), one finds immedi-
ately thatQ) , >—-Q_>0.
0*(8,)=0 and Q*(w+45_)=0. (3) In a neighborhood of the poirft=0, a continuously de-
creasing functiony(f) can be approximated by a linear de-
For convenience we introduce pendence,

QO =0*0) and Q,.=0%(m). (4) y(f)=vo—7f,  01>0. (10

In the particular case of the harmonic fort&14), with a
Figure 2 illustrates the phasés. and the velocitie€). in  sufficiently low amplitude {,<7y,/7y,;, otherwise the fric-
the case of harmonic driving. tion y occurs to be negative and, therefore, meaningless
In the present paper, we restrict ourselves only to the tw@gs. (6)—(8) are reduced to an explicit form and, therefore,
particular cases of the basic equatidx o(2)=|Q|” with  the attractor of Eq(5) reads
v=1 (dry friction) andv=2 (viscous friction. As regard the

function y= y(f), it is assumed to be nonincreasing, but nec- (1+ v1)(c0Sé, —Ccosp)+ vo( 6. — )
essarily decreasing at least in some neighborhood of the it 5, <e<m+o

point f=0. For some particular cases of this function, the O* (¢)= Oy * *

global velocityJ can be calculated explicitly and the inequal- o | (y1—1)(coss_+cosep)+ yol@—m—35-)
ity J>0 proved rigorously. Below we will consider the cases if 7+ <e<2mw+6,,

with dry and viscous friction separately. (11

A. Dry friction where the phases. satisfy the two equations

In the case of dry friction ¢=1) we haves(Q)=|Q] CoSS, +cosd_=myylfy, S6_—08.,=my,. (12
and the general equatidi) takes the form
) A straightforward calculation gives the glob@verage ve-
Q+sgn Q) y(f)="1. (5 locity,
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J=(fo/2w)(1+ y5)(coss, —Coss_) 0.15
+(y1fg/mw)(sind, +sins_)>0. (13 S
G
Let us consider now another case of interest, when the
v(f) has only one discontinuity dt=0, being the step func- 0.05
tion
=1 7" ror=0 % 30 40 50
= . 14
"O=1, i <o a4 '
Then the attractor of Ed5) is given by FIG. 3. Rotational velocity)(t) (arbitrary unit$ in the case of
dry friction with rational friction dependence(f)= yq(z,—f)/(f
(cosé, —cose)+ vy, (e—954) —2,) and the driving forcd (t) = f sin(wt), computed numerically
if 0<g<s, for yo=1, z,=—-2,=1, f;=1/2, andw=1.
(cosé, —cose)+ vy, (64— @) B. Viscous friction
o fo if S,<o=w In the particular case of viscous frictiom€ 2), the basic
=—X ; ; ;
(¢) ® —(c0SS_+cose)+y (m+5 — o) equation(l) is reduced to the equation for an underdamped

_ particle moving in a viscous liquid,
if wT<osw+6_

—(cos6_+c0se)+y_ (¢o—m—5_) Q+ y(HQ=H. (20)

it 7+ <e=2m, Although the viscous friction is not the case of relevance to
(15 our gadget, nevertheless overdamped equations of the type
. i . (20) are ubiquitous in mechanochemistry and biology
where_ the phase shifts. defined by Eqs(3) satisfy the [3—10. As already mentioned, for some systems the friction
equations term in Eq.(20) is assumed to depend nonlinearly on the
_ velocity [29], resulting in a unidirectional motion. Here we
€080, +C08o- =m(y +7-)/2fo, (16 imposey to depend on the forcing and it is intuitively obvi-
17) ous that this can lead to a ratchet effect. To confirm this
statement analytically, we study the properties of a steady
solution of Eq.(20).
First we consider the overdamped case, when the first
Q. =*[fo(1—c086-)+ - 8- . (18) (inertial) term in Eq.(20) is ignored and the forcé(t) has
another origin, not related to the gadget described above.
Therefore, in the case of the friction asymmetry, e.g., wher! NiS case may be of biological relevance, describing a rotary
y.<7y_, we have a nonzero currer(global velocity motion of some bacter|[':?30.,3]] or complex filament§32] in
Iy. v )=—3(y_,y.)>0 that vanishes in the limit, a liquid, the surface friction of which can depend on the

— y_. This velocity is given by direction of the driving forcd (t).
Let us represent an oscillating or fluctuating force
J=[fo(coS8, —coSS_)+(y_6% —y,6%°)]2w. (19)  f(1), O=t<eo, with (f())=0, as the sum of its positive
and negative partsf(t)=f,(t)—f_(t) where f.(t)=0.

In a general case, any decreasing functigii) can be Then for any decreasing functioy(f), we immediately find
represented as a limit of the sums of step functions of thérom Eq. (20), in the limit Q—0, the following chain of
type (14). Using such an expansion, one can extend the proahequalities:
of positivity of the current) for any nonincreasing, but de-
creasing at least at one point, functig(f). I=(F (O (O] —(F (O F(O])>(F(D)/¥(0))

Since the case of the friction coefficiep{f) defined in -~
the Appendix by the rational functiofA13) seems to be the —(f-(1)/¥(0))=0, (21)

most realistic one for our gadget, but it cannot be treateghecayse due tof (t))=0, it follows that(f , (t)}=(f_(t)).
analytically, it is interesting to find numerically the steady  |nyyitively, in the underdamped case of E0), the phase
solution to Eq.(5). As shown in Fig. 3, after starting numeri- 4 5 steady orbit will be delayed in comparison with the
cal simulations, the solutiof)(t) approaches the attractor phase of a periodic forcin(t), similarly to the plot shown
Q* very fast. in Fig. 2. This can be confirmed again for the case of the step

This figure clearly demonstrates that pldepractically  fynction (14). Indeed, in a general case, one can represent a
never steps backwards, like the recent molecular motogieady solution of Eq20) in the following form:

model[21], and this behavior is indeed observed visually in
experiments with our gadget. Q*[ (1) ]=Q AL (1) +BL(1), (22

v (ml2—= 6, )=y _(mwl2—5_).

Explicitly, the velocities at the force nodé$) become

011110-4



RATCHET DUE TO BROKEN FRICTION SYMMETRY

where the functioné\..(t) andB.(t) are defined by

t
A:(t)=eXﬁ{ - f y(7)d7
te

B.(t)= jtiexp{ - j:y(f’)dT'

with t, =0 andt_ = n/w. Using the periodicity of the orbit
(22), we find the velocitie<) .. [see their definitior(4)],

f(7)dr, (23

Q.=(a:Bz+p)(1-a,a), (24)
wherea.. are given as follows:
ar=A(t.+7lw), +=Bi(ti:t+7wlw). (25

In the particular case of the harmonic forcitdyl4) and
the step friction(14), a direct calculation yields

A(t)=exd —y«(t—t.)],

f
B.(t)= —5——[7- SiN(wt) —w cog wt) £ A (1)],
ot yL
(26)
and, thereforgsee the definition§25)], one obtains
1+ax
a.=exp—my:lw), Bzzifowm- 27
Using the expressiof27), we get
0. =+ fow
T (@YD)
1t+a.)(y2—72)
X w2+y§+( SARAIESA ) (29

l-a,a_

Some limiting cases of Eq$28) can be considered. In par-

ticular, wheny_—o, but v, is finite, we have

Q fow(l+a+)>0
o w2+7+ ,

O_—0. (29

Also, O, =Q_=fyw/(w?+y?) if y,=y_=1v. Next, using
Egs.(22), (26), and(27), the integral(2) can be calculated,
resulting in the expression

Iy, y-)==3y-,v+)
fo [ w? [ 1 1

T 27 1—a+a,\w2+ 'yi_ w’+ 7y

[(1—a+)(1+a—) (It+tay)(1-a-)
X +
Y+ Y-

Y+ Y-

+2 -
w’+ yi w’+ 72_

] . (30)
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If v.<y_, the first term in Eq(30) is positive, but the
second one can be either positive or negative. Since the func-
tion y/(w?+ y?) has a maximum ay=w, we obtain

Y+ Y- o v L
w2+yi w2+yg 0+ w? 2w

(31)

Using this inequality, we derive the positivity of the averaged
velocity,

fo o
J>J(7+=0,y,=w)=acoth5>0. (32

Note, in the particular cas¢, =0 andy_>0, the expres-
sion (30) is simplified toJ=(Q, +Q _)/4, and furthermore,
if y_—o, we obtainJ— f/2w.

IV. CONCLUDING REMARKS

Thus, we have suggested a ratchet mechanism that ap-
pears due to an asymmetry of the dependence of the dissipa-
tion function of the system on its velocity or external forcing.
This mechanism appears to be described by the standard un-
derdamped equation of motion for a particle moving in a
periodic potentiall (x), with x=x(t) being a coordinate of
the particle, generalized to include some additional dynami-
cal properties such as nonlinear friction, dependence on ex-
ternal forcing, etc. and written in the forlnompare with Eqg.

(]

X+U'(x)+G(x,f)/x=f. (33
Here the friction term is given in a generalized form, through
the dissipative functiors(t). Besides a dependence on the
velocity x(t), which in general may be nonlinef29], the
function G in Eq. (33) is imposed to depend also on an
external oscillating or fluctuating forcEt) with zero aver-
age[(f(t))=0]. Equation(33) can be considered as a more
generalized version of the gadget model, when the surface
corrugation of the supporting plate is modeled by a spatially
periodic potential.

Following the symmetry arguments formulated recently
by Flachet al.[12], one can classify the following four par-
ticular types of Eq(33), with

G(x,f)=y(f)o(x), o(x)=0, (34)
and y being a force-dependent friction coefficient, each of
which admits ratchet dynamics:

(i) The friction coefficient is a symmetric function with
respect to an external force, i.@(— f)=y(f), including the
usual case, when this coefficient does not depend on the
force at all. Also, the dissipation is assumed to be viscous,
i.e., o(x)=x?. The rectification in this case occurs either due
to broken spatia[ U(—x)#U(x)] or time (e.g., harmonic
mixing) symmetry[3,12).

(i) The periodic potential is abserjtU(x)=0] and
v(—f)=vy(f), or v does not depend oh The rectification
occurs due to nonlinearity of the functian(x) (e.g., if &
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:)-(24_).(4) and broken time Symmetr&e.g” due to harmonic swim |n the direCtion.Of their |0ng axis, fOIIOWIﬂg an irregu-
mixing in the forcef) as shown by Vidybida and Serikov lar helical track. Their means of locomotion are not known,
[29]. and they have no flagglla, ellther external or internal. As far
(i) The periodic potential is absefit)(x)=0], the func- &S One can see by_ light microscopy, they do not change
. . . . . .. shape. Under certain growth conditions, long asymmetric
tion ‘T,(X) does nc_>t necessa_rlly result in a nonllnear friction cells appear, but these just roll rigidly around an axis parallel
term in the equation of motio83), and the time symmetry 4 their |ong axis, the direction of locomotid81]. An ion
is not broken. The rectification occurs, as shown in this pas, pine mechanism has been proposed for other ba¢@s]a
per, due to broken symmetry of the force-dependent frictionyt it has been ruled out fdBynechococcugd4]. Based on
i.e., wheny(—f)# y(f). this knowledge, a so-called self-propulsive mechanism of cy-
(iv) The overdamped limit of the cas#i ), when the first  anobacterial swimming has been suggested and correspond-
(inertia) term in Eq.(33) is omitted, can be adopted as a ing theories have been developed in a number of wsks,
particular case. Here the rectification also occurs due to brae.g., Refs.[31,35,3§). According to these theories, the
ken symmetry of the force- or velocity-dependent friction, swimming is a result of surface tangential or normal waves,
i.e., wheny(—f)# y(f) or o(—x) # o(x), respectively. or their combination, that travel along the outer cell mem-

The present paper focuses on the case of force-dependé?fta”e- The typ_e of surfac_e oscnlat_lons_ and the qllrecnon of
friction, which can exist in both underdamped and over-Wave prop.agatlon.determme the dlrectlpn of motion for cy-
damped limits. In order to support the idea of the ratchet as §nobacteria. For instance, for tangential surface waves, a
result of broken friction symmetry, we have constructed arsPherical organism swims in the same direction as the sur-
experimental device—a mechanical diode that changes tH@C€ wave. However, it is not clear yet why the direction of
friction coefficient, while an external force is applying to the Wave propagation occurs in one direction, but not in the
system. The simplest solution of this problem seemed to corther one. Some kind ahternal dynamical asymmetry can
vert the force applied normally to a sliding weight. To makeP€ involved to explain a unidirectional moti¢@2]. On the
the asymmetry, which could drive a unidirectional rotation ofther hand, a surface asymmetry of bacteria seems to play an
the sliding plate, we used a helical asymmetry being a basigssent!al role in rectlflcatlon of their rqtary or Imear. motion.
feature of biomolecular structure. However, the full systemin Particular, helical tracks observed in these motions con-
of corresponding exact equations of motion for such a sysfirm this point of view. Note that the helical asymmetry is
tem is too sophisticated: three coupled nonlinear dynamicdfPiquitous in biology and it can be a source of a broken
equations have been derived previough7]. This set of symmgtry_ in t.he depenQenqe of su_rfa}ce friction of bacteria
equations appears to be very difficult for analytical analysi®n their d!recpon of motion, i.e., the|r' linear or rotary \{eloc—
and numerical simulations do not clarify the physics of theirly- Combination of self-propulsion with the asymmetric de-
evolution. Different regimes, including regular and chaoticpe”d_ence of the friction on mterna_l or external forcing or the
behavior, reversals of directed motion, and others were foun}€loCity seems to a reasonable idea for further studies of
numerically, and this is not a surprise because even thBacterial swimming that can provide an insight into the phys-
ratchet dynamics of one underdamped equation of motion df$ Of microbiological motility.
the type(33) are not yet fully understood as shown by recent
studies[11,17,19. Therefore, there was a technical problem ACKNOWLEDGMENTS
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sentative of motors that never step backwdi2i§. The es-
sence of this device is that its dynamics can be described by
the simple equatiol), which can easily be treated analyti-
cally. Therefore the basic equation of moti¢h) with the
force-dependent friction coefficient of the rational type given Using the intuitive arguments of Sec. Il, here we derive
below by Eq.(A13) is of a realistic type because it results in the equation of motioril) for the experimental model, the
the solution shown in Fig. 3 confirmed with experiments onphotograph of which is shown in Fig. 1. For notations used
the gadget. in this derivation, a schematic figurgig. 4) is presented.

In should be mentioned that our gadget demonstrates thidere the upper and the lower plates are denoted #vigimd
rotary ratchet motion, usindry friction. However, this idea B, respectively. Next, the lateral springs and the lower and
can be extended to systems wiiscousfriction and this the upper vertical springs are numbered with 1, 2, 3, and 4,
type of ratchet can play an essential role in rectification ofrespectively. The positive direction of a rotation of pl&tés
bacterial swimming[30]. Thus, strains of the cyanobacte- shown by the arrow.
rium Synechococcuare known[31] to swim in seawater at Let Ry be the radius of the helical backbone of the setup,
speeds of up 25um/s, demonstrating very high efficiency of andM, and Mg be masses of plates and B, respectively.

a unidirectional motion. They are rod-shaped organisms witlThe equilibrium state of the system is given by the dimen-
about 1 um in diameter and 2um long. Synechococcus sionless(measured in units oRy) vertical distanceh be-

APPENDIX: EQUATIONS OF MOTION FOR THE
EXPERIMENTAL MODEL
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FIG. 4. Schematic picture of the setup: the two lateral springﬁ

(acting as elastic rodldl and 2 are shown with thick solid lines.

tween plateA andB and the anglep< /2 that determines
the relative equilibrium orientation of the plates. Under dif-
ferent motions of plated andB, the lengtH of springs 1 and
2, given by

I=Vh?+2(1—cos¢),

(A1)

PHYSICAL REVIEW 55 011110

where the dissipation functio@ for the lower plate depends

on the angular velocityy and the response fordds , acting
from the side of the supporting plate. Next, the response
force T, can be excluded from the equations of mot{@&®)

and (A3) and, as a result, we obtain one tangential equation
for the angle variableg, and g :

aMA0A+bMBQB+G(05,NB)/RSQBZFt/RO (A4)

The equation of motion that describes the vertical dynam-

ics of plateA driven by the normal forc&,(t) reads
MaZ+ 7aMaz+ KV’ (2)=F, /Ry, (A5)

wherez is the displacement of plat® from its vertical equi-
ibrium position given by springs 3 and @nd weightA if
the gadget is placed verticallyThe (dimensionlessfunction
V(z), with a minimum atz= 0, describes the strain energy of
the vertical springs. The string parameters and K stand
for the friction and the stiffness, respectively. The solution of
Eq. (A5) uniquely determines the variahit) as a function
of the normal force=(t).

The last equation of motion results from the constraint
imposed on plated andB by the stiff lateral springgacting
in fact as rodp leading to a geometric relation between the

practically does not change and, therefore, they create a comariables 65, 6z, and z. Since the length of the lateral
straint in the system. The supporting plate in the séag®  springs in our setup is practically unchangéacause they
Figs. 1 and 2generates a sliding friction for a rotary motion are too hard to compress or strgsgproximately, one finds
of plate B. This friction depends on the normal responsethe dependence=z(6,— 6g),

force Ng directed upwards and created by the supporting
plate. In its turn, this response depends on how spring 3 is
pressedor stretcheyl and this dependence is governed by an

z=1\2cogp— O+ 0g)—2 cos¢p+h?>—h.  (AB)

external normal force=,(t), acting from plateA through
spring 3 as well as through the lateral springs, acting as

constraint. Any tangential forcing that exceeds the friction of

rest, results in a rotation of plaig&

For our analysis it is sufficient to use the linear approxima-
tjon of Eq. (A6),

z=h"1(6,— 6g)sin¢. (A7)

One of the equations of motion can be derived for the Using Eq.(A7), the variabled,(t) can be eliminated in

angular variable®,(t) and 6g(t), instantaneous deviations
of platesA and B from their equilibria. We denote the mo-
ments of inertia byaM,R3 andbMgR3, with a andb being
(dimensionlessgeometric form factors for plates and B,

respectively. Since the lateral springs are soft to bend, th

interaction of A and B through these springs in the vertical

direction can be ignored. This technical point essentially
S X . - e
simplifies the full system of dynamical equations, which in

general take a very complicated fofd7]. Therefore in this
setup, one can account for only a tangential response Tqrce

that appears due to the constraint created by the lateral

springs. In general, except for the fortg, an external tan-

Eqg. (A4), leading to the equation,

Q+G(Q,Ng)/MR2Q = — uz (A8)
fith respect to the angular velocify= 6z of plate B. Here
M=aM,+bMg andu=ahM,/M sin¢ are system param-
ters. The tangential forde, appears to be not involved into
the ratchet mechanism and, therefore, it is omitted in Eq.
(A8). Without loss of generality, we assume that the dissipa-
tiPn functionG in Eq. (A8) can be factorized as

G(Q,Ng)=MgR3I'(Ng)o(Q), (A9)

gential forceF; may be applied, so that the tangential equa-

tion of motion for plateA is

aMpRy0,=T,+F,. (A2)

The second equation that governs the friction dynamics o(t:a

plate B can be written in the form

bMgRo0s+ G(8s,Ng)/Rofg=—T;, (A3)

whereT is the friction coefficient being a function of only
the variablez and o (2) is a function of the angular velocity

) depending on the type of friction. In the particular case of
our gadget, we deal with dry friction and, therefore, here one
n puto(Q)=|Q|.

As mentioned above, the resporldg depends on how
spring 3 is stretched or compressed, i.e., on the displacement
z of plate A from its equilibrium. More precisely, the depen-
denceNg=Ng(2) is given by

011110-7
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KR()V,(Z_Z]_) if z< Z1 ®© if <7,
(A10)

Ne=— 0 if z>2z4, I'(z)=TXx{ (z1—2)(z—2,) if 2,<2<24

0 it 7=z,

wherez, is the distance, by which spring 3 is pressed down (A13)

to get equilibrium due to the strain of spring 4 and weight

The next step is to determine the dependence of the coef-
ficientI" on Ng. It is reasonable to assume this dependencevherez, is a critical valug(friction at resj, below which the
to be of the exponential type. Then, according to &j.0), friction becomes infinite.

we have In the particular case of a sinusoidal foreg(t) with a
_ _ . frequencyw, the steady-state solutidtrajectory or attractor
I'(Ng)=TyexpNg/A)=Tgexd —V'(z—z;)/\], of Eq. (A5) is also a sinusoidal function with the amplitude

(A11)  Zo being proportional to the force amplitudtg, [38]. Next,
_ we denote the right-hand side of E&8) by f(t), so that in
where A=A/KR, is a dimensionless characteristic vertical this particular case,
displacement of platé. In the case, when springs 3 and 4

. — 2 . . - e
?c)re harmonid V(z) =z7/2], the function(A11l) is simplified F(t)=fo sinwt), (AL14)

I'(z)=Toexp(—2z/\), (A12)  with fo=uzyw?, becomes an external force for pl&eThen

Eqg. (A8) can be rewritten in the form of Eql),
where the factor witlz,; has been absorbed inkg, resulting a- (A8) aD)

in the exponential behavior against thelisplacemen{37].

However, the dependen¢&12) does not account for surface O+ y(f)o(Q)/IQ =T, (A15)
corrugation, friction of rest, the disappearance of friction

when the displacemert of plate A up exceeds a certain . . o S )
critical length, and other more sophisticated friction phenomWhere the dimensionless friction coefficientis normalized
ena[28]. Consequently, thedependence should be modified Y 7(0)=o=I'oMg/M. Particularly, for exponential be-

and, therefore, it is more realistically to use in our gadget davior (A12), we havey(f)=yqexp(—f/\) with A = pw?\

rational function as follows: = uw’AIKR,.
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