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Mode-coupling theory for multiple-point and multiple-time correlation functions
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We present a theoretical framework for higher-order correlation functions involving multiple times and
multiple points in a classical, many-body system. Such higher-order correlation functions have attracted much
interest recently in the context of various forms of multidimensional spectroscopy, and have found an intrigu-
ing application as proposed measures of dynamical heterogeneities in structural glasses. The theoretical for-
malism is based upon projection operator techniques that are used to isolate the slow time evolution of
dynamical variables by expanding the slowly evolving component of arbitrary variables in an infinite, “mul-
tilinear” basis composed of the products of slow variables of the system. Using the formalism, a formally exact
mode coupling theory is derived for multiple-point and multiple-time correlation functions. The resulting
expressions for higher-order correlation functions are made tractable by applying a rigorous perturbation
scheme, called thbl-ordering method, which is exact for systems with finite correlation lengths in the ther-
modynamic limit. The theory is contrasted with standard mode coupling theories in which the noise or fluc-
tuating force appearing in the generalized Langevin equation is assumed to be Gaussian, and it is demonstrated
that the non-Gaussian nature of the fluctuating forces leads to important contributions to higher-order correla-
tion functions. Finally, the higher-order correlation functions are evaluated analytically for an ideal gas system
for which it is shown that the mode coupling theory is exact.
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[. INTRODUCTION distribution of heterogeneous environments but also the ex-
plicit reorganization times that are present in the system,
In a glassy system where structural frustration preventsince the individual measurements are not statistically aver-
relaxation to equilibrium, dynamical properties often demon-aged. A somewhat different experimental approach is based
strate complicated time dependenicd. For instance, in  on multidimensional nuclear magnetic resonaicg18 and
dense colloidal systems, at a given time some regions of theonresonant nonlinear Raman spectrosddgy-21. The re-
complex fluid are essentially static and crystalline, while thesponse function in these experiments can be related to
dynamics in other regions exhibit behavior that is associatetiigher-order correlation functions using response theory
with fluids. In these systems, structural rearrangement occuf22,23.
through relatively rapid, collective, stringlike motiofi,3]. Given the interest in multiple-time and multiple-point cor-
Furthermore, at later times, a region of the fluid that previ-relation functions, the need for a theory that accurately pre-
ously appeared crystalline may exhibit fluidlike properties.dicts these quantities is clear. Surprisingly, there has been
Such heterogeneous behavior is characteristic for structuratlatively little work along these lines and the literature is not
glasses and supercooled complex fluids-9]. To describe nearly as extensive as it for ordinary, two-time, two-point
this behavior, it is natural to examine how the local densitycorrelation functions such as the dynamic structure factor.
of the liquid is correlated over various spatial domainsAlthough there have been several recent microscopic theo-
[10,11], o—when one is more interested in the differentries for the off-resonant fifth-order response function for
time scales of slow global changes of structure and the localimple liquids[24,25, little work has been done on con-
decay of correlations—multiple time correlation functions structing microscopic theories for general higher-order cor-
[12]. Both types of higher-order correlation functions haverelation functions since the kinetic theories of de Schepper
recently been proposed and used as measures for charactend Ernsf26], who attempted to extract the nonanalytic den-
izing “dynamical heterogeneities” in structural glasses. sity contributions to the Burnett coefficients in hard-sphere
A number of experimental probes for examining detailedliquids.
dynamical features taking place on various length and time A common approach to describing the dynamical proper-
scales in glassy systems have emerged over the last feties of liquids and complex fluids at long times is based on
years. These new approaches have the potential to providbe generalized Langevin equatifi2i7]. The basic utility of
extremely useful information on how collective motions of the generalized Langevin equation depends on the assump-
the system are correlated to specific statistical features of th#@n that the long-time behavior of an arbitrary dynamical
dynamics such as the distribution of time scales of fluctuavariable of the system can be written in terms of the dynam-
tions, the length scale and size distribution of solidlike clus-ics of a specific set of slow modes. This slow behavior can
ters, and cage structural relaxation rates. One approach e isolated by extracting the projection of the dynamical
probe the nature of dynamical heterogeneities is based orariable onto the slow modes, which effectively form a basis
single-molecule spectroscopy techniqyé8-16 in which  set for the long-time behavior of the system. This approach
the environment of a one molecule is tracked over a periodhas been successfully applied to describe relaxation and
of time. The technique allows the information of not only the simple time correlation functions in a wide variety of con-
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densed phase systems. In the context of simple liquid sys- B(t)={B(t) Hy=LB(t)
tems, it was initially assumed that only the linear densities of ’ '

cor!served variables of the system comp_osed th_e set of SIO\\/\‘fhere{,} denotes the Poisson bracket afids the Liouville
variables of the systef28-30. However, it was discovered operator for the system. The evolution equation can be

ﬂ?at this basis sett\_/v?s i?suff[i_cie[rﬁ%] t_o delzsctr_ibe the cclmg_- solved formally asB(t) =exp(£t)B(0), where here and be-
plex, nonexponential relaxation of simple time correlation B(t) is taken to denot@(T'(t)).

of simple correlations{33,34 led to the development of (called “microscopic”) time scaler,,, whereas correlation

mode-coupling” theories. The seminal work of Kawasaki functions of the slowly varying part decay on a longer time

[35], who proposed that the linear Langevin equation be reécalerh. Hence, at long timets 7., the decay of an arbi-

placed by a nonlinear version in which the fluctuating force , . . .
obey Gaussian statistics, sparked the later development Sérrary correlation function can be described by the decay of its

kinetic mode-coupling theory models of dense liquigs— ow component. In what follows, we postulate that the
40]. At roughly the same time, Ronf&1] used the frame- slowly varying part of an arbitrary dynamical variable is an

work of the Kawasaki mode-counling theorv to formulate aanalytic function of a set of slow variables of the system. In

theory of higher-order correlatiopn f?mction)é in which thethiS sense, the slow variables form a basis set in which to
Y 9 . . ; .~ represent the long-time behavior of the system.

multilinear slow variables forming the basis set for long-time

evolution in the system obey Gaussian statistics. Althou To identify slow variables in such a system, one considers
) ySt y cm g'?all the conserved quantities, which can be taken together in
Ronis’s theory contains a number of assumptions, it is the

: . o . . one column vectorA, with componentsA?. When these

assumption of Gaussian statistics, which leads to clear 'ncorh'uantities are extensive, they can be expressed as a sum over

sistencies in the predictions for higher-order correlationContributions from the ir;dividual particles

functions. Unfortunately, the Gaussian assumption is funda- '

mental in Kawasaki's formulation of mode-coupling theory, N

and is difficult to generalize. _ .
The purpose of this paper is to provide a solid theoretical A 121 31, @

framework to calculate multiple-point and multiple-time cor-

relation functions. It is based on the mode-coupling theorywhich leads to the identification of the densities as the local

obtained by a projection operator formaligd2,43 as de-  version ofA,

veloped by Oppenheim and co-workédst—47. By careful

consideration of how to consistently identify fast and slow

behavior in time correlation functions, we derive expressions A(r;H) =2 a(t)o(r—r(1)), 2

for multiple-point and multiple-time correlation functions in !

terms of simple time correlation functions. Since the basis . ]

set for the slow modes is infinite, an infinite number of termsWith Fourier components

arise in the expressions for the higher-order correlation func-

tions. It is demonstrated that if the system has a finite corre-

lation length, the infinite series can be truncated by applying

the so-calledN-ordering perturbation expansion method,

which is exact in the thermodynamic limit. The use of this  Eqor the case of a simple fluid of point particles, the
perturbation scheme circumvents the need to assume that thgiensive slow variables are the number density, momentum
basis set obeys Gaussian statistics. Based on this method, t@@nsity, angular momentum density and the energy density,
leading-order expressions and first mode-coupling correcyng in Eq.(2), one would use the microscopic expressions
tions for higher-order correlation functions are presented. Fitgr those guantities. For point particles, the angular momen-
nally, it is shown how the formalism applies for an ideal gasym density can be expressed in terms of the momentum
system, for which it is demonstrated that the theory yie"jﬁjensity and need not be includedAn

the exact result for simple, multiple-point, and multiple-time  1he small wave-vector componerds, of the densities

Adt) =2 (e, )
J

correlation functions. correspond to large length scale fluctuations, and these are
expected to evolve slowly since their time derivatives are
Il. TWO-TIME CORRELATIONS proportional tolk|. On the other hand, large wave vectors

with magnitudes beyond some cutoff valkecorrespond to
small length-scale fluctuations and have large time deriva-

Consider a classical system composedigfoint particles  tives provided the system is not too dense. Thus, one can
in which the momentum and position of partidleare de- identify the slow variables to be composed of the Fourier
noted byp; andr;, respectively. Given the Hamiltoniakd, a  transform of densities of conserved variables whose wave-
function B(I') of the phase point’=(rq,...,/'n,P1s---:PN) vector argumentg; are restricted and have magnitudes less
evolves according to thank,.

A. The system and slow variables
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B. Generalized Langevin equation (6) Kzo=(Q3Q,) and the *” product now includes a sum
The distinction between fast and slow behavior can bé@Ver all hydrodynamic indices and wave vectors in the sum-
made more precise on the level of correlation functions, folmation indices(a and &). To make sure the contributions
lowing the projection operator method as used by Oppenffom the same component in a sum overare not over-
heim and co-worker§44—417. counted, one has to_ divide by the number of ways the indices
To isolate the slow part of a correlation function, one €an be rearranged ia.
assumes it to be an analytic function of the slow variables 1he Projection terms in Eq(S) force the setQ, to be
A,. The nonlinear dependence of the time correlation funcOrthogonal in mode order so th4Q,Qp) =0 _unless|a|
tions on the slow variables can be incorporated within the=|Bl. This property will be not only convenient but very
framework of projection techniques by employing a basis ofmportant in the subsequent analysis. By assumption, the
nonlinear functions of\., the so-called multilinear basis. ~ ong-time behavior of an arbitrary variab@can be isolated
Using the ensemble average-) as an inner product, we PY the projection operator,
define a projection operatd?,; that projects onto the devia- -
ti_onsAkEAk—<Ak> of the slow variables from their equilib- PC=> PJC=(CQ§>K;§Q&, (7)
rium value as j=0

PIX=(XA)* K 1+ Ay, (4)  where we have used the convention that repeated Greek in-
dices imply a *%” product and a summation over mode or-
where der. This notation will be used throughout this article unless
I stated otherwise.
Ki=(AAL) Applying operator identity

denotes the normalization. The-™ product in Eq. (4) in- t
cludes a sum over components of the column veaierthe eM=gATBI_ f erMt=BeATBITg .
hydrodynamic indices-as well as over wave vectoks For a 0
translationally invariant system, all wave vectors in an aver- . . . .
age must add to zero, so only whierequals the sum of wave to the evolution equation, one easily obtains
vectors inX will there be a contribution in Eq4). .

Using only the linear projectiof?; will not give a proper eft=eltp+elilp + f LI pLefip dr,  (8)
mode-coupling theory since the long-time dependence of dy- 0
namical variables due to multilinear orders of the densities is
not extracted by the projection operafd6—49. It is there- ~WhereP, =1—"7Pand L, =P, L. We apply this operator to
fore convenient to define an orthogonal, multilinear basis a®,, and write outP to get

Qo=1, Qa1 =(QuQ})K 17 QE(D) + b(1)

Qi=A}-PoAR=AL, to L
Jrfoe“t (QpLe™PLQ)K 42 Qpd 7
QEPq,qEAA z,qu_ ( 7:0+ ;El)Aakliqu y

t
:foMaﬁ(T)Qﬁ(t_T)dT—’_ balt), 9

A% Al A% 5) which is the generalized Langevin equation, where
ky—k'" Ky k,’

M op()=[28(7)(QuQ5) —(ba( D ¢5) 1Ky, (10
wherek’ ==k, and the projection operatof are de- p [28(7){QuQp) = {Pal ) 931K

fined as and the fluctuating force,(t) is defined by

PX= 3 (XQi)* K1 Q. (®) bu(D)=€C11L, Q =ef11P,Q, . (11

In this notation, a Greek index denotes a set of wave vectors Ynder the assumption tha? projects out all the slow
and hydrodynamic indices, arjd| denotes the number, or Pe€havior, the matrbM ,4(7) is *fast” in the time variabler

mode order of hydrodynamic indices in a set For simplic-  In the sense that, for a microscopic time scajg much

ity of notation, the full notation will often be writte,, ~ Smaller then the hydrodynamic time scatg of the slow

Q,, Qs, efc., forQ, when|a|=1,2,3,.... Furthermore, non- Vvarnables,

hatted and hatted Greek indices will always have the same

mode order, i.e.]a|=|&|, but represent different sets of B :fx DBYtS( A +O(refm). (12
wave vectors and/or hydrodynamic indices. Finally, in Eq. ($o(7)B) 0 ($o(VB)AA()+Olrn/m). (12
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It then follows that the main contribution in the integral in k, the first term in Eq(10), called theEuler term, is of order
Eq. (9) comes from smalt, and we can approximate E(@) k, whereas the second, dissipativeterm, is O(|k|?). On

by one that is local in time, the basis of these arguments, one might think that the dissi-
. o pative term inM ,5(2) can be neglected in the hydrodynamic
Qu(1)=M Q1)+ ¢, (1), (13 limit. However, examining the form of the densities, it is
) o easy to see that in fact the Euler term is imaginary and can
where the instantaneous matrix is given by only give rise to oscillatory behavidrlt is therefore clear
. that the dissipative term must be included in order to obtain
Ma;;:f M 44(t)dt. (14)  solutions to Eq(13), which are well behaved in the long-
0 time limit.

It will become clear in Sec. Il E that the assumption of a

fast decaying memory kernel in E€@) is not in contradic- C. N ordering
tion with the slow memory kernel that occurs limear Since two-time correlation functions at a particular mode
mode-coupling equations like those used in the study of therder are given by specific blocks of the inverse of an
glass transitior}36]. infinite-dimensional matrix, even the calculation of simple
Defining the time correlation functions of the basis set totime correlation functions requires an infinite number of
be multilinear modes. Thus, the results of the previous section

. 1 are formally exact, but not very useful.

Gap()=(Qu(HQ K, (15 The evaluation of the time correlation functions is greatly

_ _ _ _ facilitated by applying cumulant expansion brordering
and using Eq(9), one obtains the simple expression for thetechniques. Thé\-ordering scheme was first introduced by

time correlation function, Machta and Oppenheif#4] as an extension of van Ka-
. mpen’s inverse system size expansi@h expansioh [50]
Gaﬂ(t):j M oo(7)G 55t~ 7)dT, (16) and developed furthgr in Re{f46]. Itis essent!al in ob.taining_
the correct Stokes-Einstein law for a Brownian particle using

mode-coupling techniqudg7].
where we have used the fact thap,(t)Q%)=0 by con- In the N-ordering approach, one assigns to each cumulant
struction. of an average appearing in the equations an ordé&t @he
In the instantaneous approximatifeorresponding to Eq. number of particles The starting point is to consider cumu-

(12)], Eq. (13) yields Gag(t)ZMmsGag(t), which can be lants, which we denote by({:--)).” For a product of linear

integrated to obtain densities, the cumulant expansion consists of all possible
- ways of combining the densities into groups, i.€A)
Gupt)=[eM],p. 17 ={A)), (AB)=((AB))+((A)){((B)), and so on. The as-

signment ofN orders is based on the observation that each
If we do not wish to make the instantaneous approximationcumulant containing n linear densities is of order
it is easiest to look at the Laplace transform of the timeN(¢/a)3"~ 1), wherea is the average distance between par-

correlation function ticles [44]. Hence, the requirements for the expansion
method to be meaningful are that the system should have a
Gaﬁ(z)EJwGQB(t)e*Z‘dt. Linite_[_O(NO)] correlation Igngthg, and that the integrated
ensities should be extensive. For an extension to nonexten-
sive quantities like tagged particle densities, see Réfl.
Since the time convolution in Eq16) is a simple product in For instance, the cumulant of a linear-linear correlation
Laplace space, we have function of the number densify, , defined a&{_ e, can

be formally written as

Gup(2=(Qu(DQ K =[21-M(2)],2, (18
P ’ ((NNED) = (NNE) = (NYNE ) B

where thea element of the inverse is meant, aNt, 5(z)

=[(QuQ5) (b2 $3)IK . =[(N)+(N(N—1)e* ("712)](1— 5,,)
Note that one is frequently interested in just the part of ) )
G,4(t) that involves the linear variables, corresponding to (NS =(N)*160-

such readily observable physical quantities as the time cor-
relation functions of the linear density, momentum, and enfor k=0, the cumulant expansion ¢N.N}) is given by
ergy. These are given b§,(t), the|a|=|B|=1 sub-block  ((N—(N))?), which, in the grand canonical ensemble, is of
of the infinite-dimensional matrig ,4(t). order(N). For k#0, the expression is proportional i as

In the hydrodynamic limit in which the magnitude of the
wave vectorsk is small, the wave vector can be used to
perturbatively order various contributionsitb,5(z). Noting 1The Euler term can give rise to Gaussian relaxation if one has an
that each time derivative in E¢LO) brings down a factor of infinite number of slow modes, see Sec. V.
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well, because particles beyond the correlation lergthill vector. Hence, in position space, the multiple-point correla-
not contribute to the average of éip (r{—r,)], so that tion functions involve at least three spatial, taro relative
position coordinates, justifying the name multiple-point cor-
relation functions.

As M ,45(2) is O(1) if @ and B8 have all wave vectors
matched, and of lower order otherwise, the leadvgrder

The N ordering of various quantities has been discusse@ontributions toG,4(t) can be obtained by expanding Eq.
extensively elsewheri@4,46,47, so here we just state a few (18) in the wave-vector-diagonal componentMf, 5(2), de-
properties of the procedure that enable us to estiNabe  noted byMgﬁ:Maa’(Z) Sq5. Here primed Greek indices
ders of relevant quantities. _ ~ will always have the same set of wave vectors as their

One important basic property of averages invoM@gis  unprimed variant, but not necessarily the same hydrody-
that when one has an average of the fof@,(t)BQ1),  namic indices. Defining the off-diagonal part a9 4(2)

whereB can be a product d, again, it can be factored into — «5(2) =M 40 (2) 841 5, We get from Eq(18),
a term of ordemN?,

3
(N(N—1)exp{ik-(r1—r2)]>r>CN(N—1)%ZO(N).

. Gup(2)=[21-MU(2)-M°(2)]
(Qu(HBQF")~(Qu-1(DBXQI(DQF") ik (19) .

! =[{z2-MU@H1-CDM (D)} .5
along with terms involving lower powers &, provided that N o) ra—1 A
thetime-dependertorrelation length is not extensive. Hence =[1=G(2IM*(2)],5.Gp p(2), (22)
the leadingN-order term in the cumulant expansion can be
found by equating any wave vectiy from the seta with k.
In Eq. (19), —1 denotes the set with k; anda; removed,
and “~” means that the expression is correct up to higher
orders ofN and only for the case vyhere appropriate WaVe . o1 therefore expand E@2) as
vectors have been equated. The importance of correction
terms to the leading-order factorization of time-dependent
correlation functions is discussed in greater detail in the fol-

where we have defined the diagonal in the wave vector as

Guw (2)=[21-MU2)] ;.. (23

Gup(2)=Goar(2) 80 gt Gaar (MY, 5,(2)G i (2)

lowing section. We can reduce such an expression further by A o A 0 A

equating wave vectors iB with those in the set— 1. An T Caa (DM (2)Gyy (DM, (D) 5(2)
important point, established in Ref46], is that equating +oen (24)
wave vectors within the set does not increase thé order

due to the subtraction terms in their definition E§). Thus Note that when a term is of lower order© this does not

the orthogonalization procedure used to construct the multimean it can be neglected in the thermodynamic limit. The
linear basis plays an important role in the propkeordering leading N order is found from equating wave vectors,
of correlation functions of multilinear densities. _ whereas the next order M often comes with an unrestricted
Using the ordering scheme, one obtaikdg,=O(N/), summation over wave vectors. M denotes the number of
wherej is the number of matched sets of wave vectorain (slow) wave vectors in the system, these correction terms are

and a, and hence th&l ordering of its inverse is O(M/N). The number of wave vectongl grows with the
. system size. Therefore, such mode-coupling corrections sur-
K, i=O(N"lal), (200 vive in the thermodynamic limit.

The magnitude of the order parameMy/N~k ¢ is de-
irrespective of the matching of wave vectors. In Ré#], it {armined by two length scales. The first length scalk;
was shown that corresponds to the smallest length scale for which the evo-
0(1) it |a|=|g] lution of the 'densities_in the basis set is_ slow. The other
' length scalet is determined by the correlation length of the
O(NIel=IEly it |a|<|Al, possibly time-dependent correlation function under consider-
o ation. Both length scales change dramatically with density in
with the sameN ordering holding fortM ;. A similar result  dense liquids due to the emergence of slowly evolving short-
can be obtained foG,4(t), wavelength collective modd§1] and the cooperative move-
ment of particles in the fluid2,52]. Under these circum-
O(1) if |a|=|8, stances, the mode-coupling expansion in powerMoN is
Gap(t) = O(Nl“=I8ly if |a|<|B]. @1 hot well defined and can only be interpreted as a formal
series. On the other hand, for systems of low to moderate
density, one can anticipate that time-dependent correlations
are short ranged on all time scales and thats small. For
We define a multiple-point correlation function to be any such systemsVI/N can be treated as a perturbation param-
G,p(t) for which |af or || is greater than 1. The multiple- eter[46]. Nonetheless, it should be emphasized that the pro-
point correlations functions therefore contain several factorgection operator formalism presented here relies on a clear
of the linear densities\,, and involve more than one wave separation of time scales between the slow variables and all

Maﬁ(t):‘

D. Multiple-point correlations
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other dynamical properties in the system. For hydrodynamic G.s=G
densities(of small k), this separation between microscopic
and “hydrodynamic” time scales is evident, whereas physi-
cal arguments must be invoked for other systems to establish

the necessary separation of time scales.

In Eq. (24), note the appearance é‘w, defined in Eq.
(23). Although this is diagonal in the wave vector, itnst
the diagonal part of5,4, as the terms following the first
term in Eq.(24) give contributions fore and 8 diagonal. As
was shown in Ref[46], in the thermodynamic limit, the
diagonal part ofG,,z, denoted byG,, , can be factored as

(29

Gua (=2

[T GI%(t), 8¢ }
j ] 1P

wherea; anda,, are hydrodynamic indices from anda’,

PHYSICAL REVIEW BE5 011106

(a)
’ﬁ’G,B',B

0 R(a)pg0 (a,8)
+GoaM Y Gy MS, , Cls

waOar gt GaarM®

Gaﬁy)+

+G, BB

(a) (a,d)
MO, BEIME, BLIMS,

This expression resembles that f8y,,. in Eq. (24) with B
=a’ andG,, replaced b)f;(y”;';“). Furthermore, the defini-

tion of (NB(;;) also resembles the definition &, , but
now with restrictions on all wave-vector sets. In fact the
wave-vector restrictions can be relaxed in the thermody-
namic limit since the restrictions remove only one term out
of the sum over intermediate wave vectors. Relatively speak-
ing, the difference between the series with restricted and un-
restricted sums is of ord€d(1/N), so the restriction on the
intermediate wave vectors is negligible in the thermody-

andk; andk'J are the respective wave vectors. The summahamic limit, and we can write

tion is over all permutations of the indices ina’. This

factorization is obtained also by cumulant expansion under

_G(ar---)

(a,..
G BB’

BB’

the assumption that there is a finite time-dependent correla-

tion length.
Thus, if we were able to express Eg4) in terms ofG

instead ofG ., we could combine that with E¢25) to get

an expression for any multiple-point function in terms of in

the two-point correlation function&,; and verticesM? ;.

whereG(C;3 is the full correlation function that is diagonal
in the wave vector and in which the set of wave vectorgin
differ from those in sets i, . . . .

Thus Eq.(24), which has a nonphysicab, can be re-
placed by the expansion

Equation(24) can be reexpressed in this desired form by the

foIIowmg resummation of terms: We writ€ ,;= G,/ 0,/
+Gaﬁ, and use the Dyson form of EqR4),

- 0 A
Gaﬁ’:Gaa’(sa’B—'_Ga‘yM yB’GB'B’
for the off-diagonal part to get

_ (@)
Goap=Guaar Bargt GoyM 5 Gt

where the superscrigie) means thafB is restricted to not
have the same wave-vector setaslterating this equation
yields

(a)
Gﬁ "B

Gyt

GQ,B Gaa/ﬁa [3+Gaa’M 18!

+GaarM?, ,G<”‘>|v|

B’

EGaa’éa’ﬁ_’_Gaa’M G‘SB’

where by definition Gy
hand side of Eq(24), with « replaced bys and the restric-

has the same form as the right-

(@)
Gp=Guar Bur gt Gaw M2, Gyt

0 (a) (a,0)
+GaarMa,5G55,M5, G

B"TB'B

GMS, GleIMO

(@6.7) ..
+G oM, GioMS, G, Glyrg '+,

(26)

Y'B’

which involves the full correlation functio®,,, which is

diagonal in the wave vector. In this expression none of the

intermediate wave-vector sets are allowed to be equal.
Using EQ.(26), we can write to leading\ order,

G1A2)=G11(2)* M 15(2)* G, 2), (27)

where, from Eq(25), the diagonalG,,(t) is given by

22
(Chl a’.q k= qq(t)(éqqr-f—&k 9.9

~Git 4(1):GY(1) Sqk—q + Gkt 4(1)°Gg(1) 8

qq’ »
(28)

where superscripts like 22 and 11 are a reminder of the mode

tion that none of the wave-vector sets in the expression argrders of the arguments. In order to facilitate writing tensor
equal toa. Being of that form, we can repeat this procedureproducts, we have introduced the following notational sym-

for G{) to obtain

0 =
Ga,B:Gaa’(sa’ﬁ—’_ Gaa’Ma’ﬁG(S%)

(a)
+GaaMy, GLMY, 5

o (a,y)
a'y = yy! Gﬁﬁ )

When the procedure is continued infinitum we find

bols for products of tensors of rank A%®), rank 3(A%P¢ if
b andc belong to the same setor A2”¢ if a andb belong
to the same sgtor rank 4(such asA®P:¢.d):

(A- B)a;cEAa;bBb;c

(A: B)a;cEAa;d,de,f;c,
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b;c— ac;b A 2 A A
(SA)a C_AC a’ Gllzell+Gll(MgaGaa’M?y’l)Gll
(AOB)a,bJC,dEAa;CBde, +éll(Mgaéaa'MZ’ﬁ’éﬁ’ﬁM%l)éll
~ ~ [0} ~ ~ [0} ~
(A.B)a,b;C,dEAa;de;C’ (29) +Gll(MgaGaa’Ma/B/Gﬁ/ﬁM?i‘yny’Myfl)Gll

A 0 A 0 A 0 A 0 \&
where repeated labels are summed over. TG1M1.BaarMr1) C1a(M1, Gy My ) Gt
The two terms in the expression above @y, turm out to where the summation over repeated indices here start at

yield the_ same contribution 16, in Eq. (27). However, this mode order 2. Rearranging the terms, this can be written as
summation has a prefactor of 1/2 from the number of ways

the indices can be interchanged in th&" product. Using

Eq. (28) in Eg. (27), we obtain G11= G+ Gip* S 1 Gyt Gupr Sy p* Gy Sy px Gy oo
Gik—qq(D) (32
¢ - with
=J Gil(t— 1) MG q.q:[Git4(7)°GgY(7)1d7, (30)
0 o o
. . . . 3= E 0,
where the time convolution arises from the inverse Laplace i=1
transform.
At this point, the necessity of including multilinear modes R o
is readily apparent. For example, using the definition of the 0,= MO+ G+ M1
multilinear basis set, we can write la#1
(Qu(HQTQT)=(Q1(H QT )*K11"*+(Q:Q; Q) 0,= Z‘ MO * G, * MZ’ﬂ’*éB’B* MG,
al#1|B|#1
+GiAt)*Ka, (3D e
and note that the second term would have been absent if the R (33

bilinear modesQ, in the basis set had not been included
even though theéN ordering of this term is the same as the
first term. Another interesting point is that the first term is L
not present if the subtractions in the definition@j in the Gu(z)=[zl-My;—215(2)]" 7, (34
basis set are not included. If one assumes thatQheare ] )

Gaussian random variables, then correlations of the forn/here the inverse is taken on the 11 sub-block level. Equa-
(Q,Q*Q*) vanish. However, in dense fluids the linear den-tion (34) can be utilized to extract the complicated long-time
sities clearly do not obey Gaussian statistics since static co€Pendence that arises in the memory functions for the gen-
relations such a¢Q,Q* Q%) involve configurational aver- erallzeq Langevm when onllynear_densmes are included in
ages over the triplet distribution function and are notthe projection. In the theory_of liquids, the Lqplace trans-
negligible. Note that the second term involves a time convoform.o.f these memory functions are generalized tra.nspo'rt
lution in Eq.(30) and can be expected to have quite diﬁeremcoeffluents, which reduce to the Green-Kubo expressions in

behavior from the first term, which is proportional to an or- ;Ehe I|r_n|t Og. srr]ng]llzfaﬂd K. Equlatlodn(t34) cantbe C;.St. mtthe
dinary time correlation function. orm in which the full generalized transport coefficients are

expressed as a sum of bare transport coefficients and the
>14(2) terms, which renormalize the bare coefficients and
account for the complicated memory effects observed in
In this section we focus on the linear correlation functiondense liquid$46]. In the limit in which the energy density is

Equation(32) can be resummed as

E. Renormalization of the propagator

G, itself. Equation(24) for G14(z) reads neglected in the basis set and only bilinear modes are in-
cluded in the multilinear basis set, the idealized and extended
Gi= G+ G1M2. G, M, Gy mode-coupling theory mode[83] of the glass transition can
aTae all be obtained46,54.
+G M gaém,MZ,B,éﬁ/ﬁMEléﬂ Fmally, we mention that in Re[.4§] it was shown that. by
R R R R R rearranging the terms, along the lines of Sec. I®,,/ in
+G M ‘{aGaa,MZ,B,GB,ﬁM%yGWMz,lGlﬁ---, the ®; can be replaced by the real diagonal in wave vector

G, ,» With the restriction in summations over 3, etc., that
where for brevity we have omitted theargument. In the none of their wave-vector sets are identical. This diagonal
summations ovew, one can isolate all the terms with mode G, will factor again as in Eq(25). Then, Eq.(34), Eq.
order 1 to obtain (33), and Eq.(25) lead to a self-consistent equation 8 .
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IIl. MULTIPLE-TIME CORRELATIONS _ o oo .
M gsgo=1 — ~(— dr,d
A. Separating slow and fast behavior in the context oBY fo jo (8l TZ)Qﬁ¢9( m))dndr;
of multiple times
We now turn to multiple-time correlation functions like +<Q5QBQ§)]Kb01. (39
(Q(t,+1t1)Q(t1) Q). At first glance, it appears attractive to

use the formal solution of Ed9), Clearly, Eqs(38) and(37) are in contradiction since, in gen-

: eral, they will have different time behavior.

_ _ The question of whick(if either) instantaneous form is
Qu(V)=CasDQs(0) + JOG“b(t Nés(r)dr, (35 approximately correct can be resolved by noting that prod-
ucts of the fluctuating forceb( ) cannot always be treated as
“fast,” nor as Gaussian random variables. This observation
has been noted previously by Schramm and Oppenhéiin
who considered the quantity ¢(r1)@(72)¢(73)) and
showed that it does not have a purely fast decay. To under-
stand this point, consider thegualtime correlation function

to get an explicit expression f@Q,,(t; +1,)Qg(t1) Q% ). Af-
ter all, inserting Eq(35) yields

ti+ty t
(Qult Q1)@= [ dr, oy (Qu()Qu(1)Q,(1)=(Q,Q4Q,)- Inserting Eq(35), taking
j i the limit t—, and noting that in that limiG(t)—0, one
X Gyy(t1+ta— 1) Gps(ty—71) obtains

X[(Q,QsQ%)48(72)5( 1)

_ t(t[t
(QaQpQ,)= lim fo fo fOGaﬂ(t_Tl)Gﬁﬁ(t_Tz)
+(hy(12) s(T1)Q))]. (36) "

X G, (t=13)( P, (T1) ps(T2) p(T3))
It is tempting to assume that the expression in B%) in-
volving the fluctuating force behaves agr,) 8(r;) at long Xdrydradrs. (40
times in an analogous fashion to E2), leading directly to

Lo If ¢(7) were Gaussian with zero mean, the three-point cor-
a local equation in time,

relation on the right-hand side would be zero, but since the
left-hand side of Eq(40) does not vanishg(7) is not a
5 Gaussian fluctuating force.
*\ Y The three-point correlation function in E¢40) cannot
(Qult1+12)Qp(11) Q5= Cay(11+12) ol t)M 5, '(37) have a purely fast decay either, since, by isotropy,
(b,(11) Ds(T2) ¢§(73)>=O(k4), whereas the left-hand side
~ . o _ is O(kY). It therefore follows that upon integration of the
where M, ;, is related to the infinite time integral of slow part of( ¢, (71) b5(75) b,(73)), ONe needs to generate a
[(Q,QsQ%)48(72) 8(71) +(¢,(72) s(71)Q})]. However, factork 4. Schramm and Oppenheim obtained the explicit
things are not this simple as can be seen by using time tranform of the slow behavior of the three-time correlation func-
lation invariance to write (Q.(t1+1,)Qp(t1)Q})  tion of the fluctuating force for the case of a single slow
=(Q.(t2)QQ% (—t1)). Applying again Eq(35), we obtain  variableA. It was shown that for,, 73> 7, and smallk;|
(other cases are similar

(@1, (1) iy T2) Bicy(73)) = 2| kq|*D exp D|ky|?| mo— 4]

ty -t
<Qa(t2)QﬁQ;(_tl)>:f0 defO dry
XA, bk, (T2— T3) by,
XGoy(t1 1= 1) Gl s(—ty— 71)
% whereD is the diffusion constant, which is clearly a slowly
X[(Q,QpQ5)45(72) 8(71) decaying function ofr,— 7,. On the other hand, it appears
+(¢,(T2)Qpd% (T1))], that there is a fast decay i — 75, so that the whole expres-
sion is small when that time difference becomes large. None-
theless, the slow behavior i — 7, will bring about a factor
of O(1/k?) upon integration. For the full restoration of the
O(k% term on the left-hand side of E@40), we refer the
7 reader to the original papé45].
* —1_ vi Apparently, the assumption th& projects out all the
(Qult2)QpQ5 (~11))K;, = Cay(t2M 155Gy (ta), (38) slowplgehavigr is not sufficipent to spefifijhen a correlation
function is fast decaying since clearly,(t) itself is not a
where we have used the time-translation propertyfast variable in every context. Notice that despite the appear-
Ga,}j(t)KbB=G*&(—t)K&a (see Appendix B and defined ance of slow behavior in the correlation function

of which the local time version would be
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(bk (1) Px,(72) S (73)), there are instances in which a <Q§0Qan(t1+t2+'"Hn)'"Qaz(t1+tz)Qa1(t1)>
multiple-time correlation function of fluctuating forces is

certainly small; namely, when at least two of the time argu- =(Q} e71Q,,e72Q,, -e"-1Q, eQ, )
ments of the forces are well separated. If the time arguments
of the fluctuating forces are not well separated, slow behav- =(Xef-1B),

ior can occur. In Eq(36), we cannot assume that the inte-

grand is peaked aroundr{,7;)=(0,0) because these two WhereB=Q, Q, (t,) andXis the operator

variables can come arbitrarily close in the integration awer

and 7, along the liner;~ 7, and slow behavior can be ex- X=Q§OealQale5t2Qa2~--e“nfl.

pected. We conclude that the local time dependence of the

instantaneous Eq37) cannot be justified. _ Using Eq.(8) applied toB, and inserting the result into
We propose the following general rule to determine wher‘(XeLtn,lB>, we get

a correlation function is fast decayinigr a correlation func-

tion involving fluctuating forces, the function decays quickly

in a pair of time arguments, provided these are well sepa-

rated in time Note that “well separated” here means that the

(Xe“n-1B) =(Q%B)K = (XQj(t-1))

tn— - —
time difference is larger than the microscopic timg. In —f 1(Qj;eLNlPL B)K(s;:
applying this rule to situations when integrations are carried 0
out over the time arguments of fluctuating forces, we require X(XQj(th_1— 71)>d71+<Xeﬁﬁnfl7>L B).
that the time arguments can only get close at isolated points,
which give contributions of measure zero to the integral. (41

With these rules in mind, consider the correlation function . o o
From the discussion in Sec. Il A, it is now apparent that the

third term can be considered fasttif ; because only for-
(Do —T2) b (T1)). ward propagation occurs iX since allt; are positive, and
there is a projected propagation ip ;. For macroscopic
times for whicht,_ ;> 7, this term can be neglected. Note,
This is clearly fast inr, as well as inry providedr, and7;  however, this term could not be neglected in integrals of Eq.
are positive. Therefore, Eq38) should be correct, as the (41) over the timet,,_, . InsertingB=Q, Q. (t,) and us-
correlations of the fluctuating forces in E@Q9) are of the in ; e
) . g Eq.(35), one obtains
form above, which we can write as

th—1 (tn

. ’ . ng)i}({ti}):f 1f Ganﬁ(tn_T)MBan_lﬁ(Tle)

(bal—T2) hpdy(71)) =(Qu™ 2P, $ge™ P, Q). o 7
XG(En_l)z,..(tn*l_Tl'tnle"')deTl

s

We observe that the correlation function above is fastiin

and 7, provided ;> 1, and 7,> 7, since it has the form of *fast term inty_,, (42
a succession of two fast forward propagations, which yields here
an expression in which all time arguments are well separatee{\.'
If one of the times were negative, i.e., one of the propagators _ .
propagated backward in time, the expression would no M gaol 7:72) =[4(QpQuQ5) 8(7) 8(71)
: ; - ) ] .
longer be(purely) fast. Hence an alternative way of identi —<Q’~;eﬁi 1P, b5 T)Qa)]K;m. (43)

fying terms that are fast in all time arguments is to require
that they have only forward fast propagation when applied i

. r|Equation (42) is the desired recursion relation. Neglecting
succession.

the term that is fast i, _,, the n multiple-time correlation
functions can be related to the—=1 multiple-time correla-

B. Correlation functions involving multiple times tion, and thus ultimately in terms @(a];l_)ao(tl):Galao(tl)'

Using the conclusions of the preceding section, we will The instantaneous version of Eg2) is simply
now derive a recursion relation for multiple-time correlation - _ (1)
functions. We consider the general case, denoted by G, . (tn...)=G, sg(t))Mg, sGso ™, (tho1,..),
G\ g(tntn s ty) OF G{7\({ti}), defined as (44)

ng:}({ti}) = <Q§0Qan(t1+' oty 'Qal(t1)>K§01aoy whereM ;o= [5d7;[5dTM 5,4(7, 7).

Applying Eq. (44) to the three-time correlation function
G,yp(t2,ty), Eq.(38) is recovered,
with i=1,...n andt;=0 so the arguments are time or- .
dered. We write Gayp(ta,t1) =G os(t2)M 5,0Gga(te). (45
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Again using the recursion relation, one can also derive equaFhe leading mode-coupling corrections to E4P) involve a
tions for correlation functions involving four or more times, large number of terms of ordé& 1. Collecting these addi-

e.g., tional terms gives a net factor 8 ~VkZ, so that the sum of
_ _ all N ! terms gives a term of ordevl/N~(k.£)3, which
Gaﬁyﬁ(tSatZ- 1) =G (t3)M 154G g, (12)M )\ Gy (L) survives in the thermodynamic limit. To first order M/N,

(46)

It is clear now that any multiple-time correlati@f™ can be
written as a product afi factors ofG;; andn—1 verticesM.

C. N ordering of triple-time correlation function

In this section, we consider the leading-order and

mode-coupling term expressions for the triple-time correla-

tion function for linear densities in whicha|=|8|=|y|
=1. Taking Eq.(45) for the linear densities, this correlation
function is given by

(47)

From this relation, it is evident that tHé ordenng ofM y16

follows from that of Gya(tz)Galﬁ(tz, 1)GB§(t1) and

hence we need to establish tiNordering properties of
(Qu(t2+1t1)Q1(t1)Qp). One can show, by induction i,

that

Gaip(ta,11) =G,s(t2) M 514G op(t1)-

O(NleI*Yy if |a|<|B],
(Qu(tr+1)Q(t)Qg) =1 ONIE) —if |a|=|g],
O(NIB*Y) i |a|>|p].

Combining with Egs(42) and(20), we obtain

O(N*~(IAI=leh) if Ja|<|p],
Garp(ta,ty) =1 O(N°) if [af=|8], (48
O(N?Y) if |a|>|p].

Using Egs. (21) and (48) to establish theN order of
G,a(t2)Gap(tz,t1)Gyjs(ts), one finds that the\ ordering
of M, follows the sameN-ordering rules a&5 1 5(t5,t1).

With the N-ordering expressions above, the dominant con-

tributions t0G44(t,,t;) are given by

Ga(tq)

+Gialty)* Mgy Goy(ty)

Gi11(to,t1) =Gyy(tp)* My *

+Gyy(tp)* My Gog(tg) + O(N ). (49)

O gt =S "Ki - Gl ) M {[GH 1= m) K G

Thus, in Eq.(50), we have

e

Lo(m2) M2 i ATG (1~

one obtains the following correction terms:
Gua(ta)* M1+ Gos(ty) + Gig(to)* Mgy * Gyy(ty)
+G1lt2)* Mo1# Gos(ty) + Gof to)* M3+ Gaa(t)

+Gyy(tp)* My Ga(ty),

These results can be easily extended to higher-order cor-
relations G{7), with n>3 and where|a;|=1 since all the

necessanN orderings are known. Thus, any multiple-time
correlation function ofQ,’s can be expressed in terms of the
vertices M .15 and two-time (but possibly multiple-point
correlation functions. In turn, the multiple-point correlation
functions can be expressed in terms of the vertideg and

the linear propagato®,4(t) as explained in Sec. IID, and
hence all time dependences in multiple-time correlation
functions at long times can be expressed in terms of the
two-time correlation functions of linear densities. From the
mode-coupling formalism, the two-time correlation functions
can be evaluated self-consistently via the relati@¥® and
(33.

Using the results from Sec. II D, and Ed49) and (30),
one can obtain the leading-order expressions foG4; in
terms of M,;, M;1;, and G4(t) as follows. Inserting the
reduced forms of the verticéd,;, andM 4, that are derived
in Appendix A into Eq.(49) yields

Glll

k=gak(t2,t1)=Hi+Hy+Hs,

(50)

where

) ' Mﬁilq;q;k’ G&l(tl)r

Ho=G% ¢ qi(t2): [KE=GrY ()],
Ha=Gil4(t2) - GEE g gilty)-

In Hy, we can use Eq(30) to expressG,’ ;. _q(t2) in
terms of the lineaiG44(t) and verticesM. For G,y in Hg,
using the fact thaGaB(t)zG[}&(t)KaaK;; [Eg. (B3)], an
analogous expression f@,, is obtained,

H1=G&£q(t2

—71)- kaq]}dTl-

72) - Kolo[Gil(ta— 72) - Gi(ty) }d 7, (51)
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ty
|—|3:sJ0 Ki 1 Gil(11) - Mg q A[GEY(t — 1) - Kgle [Gk i (tim ) Gyl 4(t2) - Ky—ql}d . (52

In a subsequent papgs5], we demonstrate that the expres- noting that in the instantaneous approximation and neglect-
sions above give excellent results for a moderately densimg mode-coupling corrections, we can write
hard-sphere system in the hydrodynamic regime.
Gil(t,— 72) - Gyl(t) = Gil(ty +t,— 7p);
IV. COMPARISON WITH KAWASAKI'S THEORY:
NON-GAUSSIAN EFFECTS

11 11 11
“ (1) Gy 4(t— =G, 4(t;+t,— .
Roughly 20 years ago, Ronfig1] examined higher-order at2) Gicg(ti = 1) =Gic (it o= m)

correlation functions within the Kawasaki mode-coupling

formalism [35,48. The treatment itself is too technical to From careful inspection of Eq$54) and (50), one sees that
recapture here, so we will simply state the results from that; [see Eq(52)] is essentially equivalent to the second term
paper to compare with those from the present theory. For & Eq. (54). However, the ternt, differs from the first term

multiple point correlation, Ronis obtairikis Eq.(3.11)] in Eq. (54) in two ways. First, the way in which the indices
are contracted with the verte*f(’ﬁ 152 Ky 88 written in Ref.
ng lkzz( )= «Aao,ko(t)ABlrklABzﬁkz» [41], differs from the tensor contractlonsl'rmz. Second, and

1 w1 more importantly, there seem to be significant differences in

X<Ak1 kl>ﬁlal<Ak2 k2>52a2 the upper limits in the time-convolution integrals, which in
. Ref.[41] isty=t,+t,, as opposed tb,. This is particularly
:Zf dt,G, 5 (Ko t—t; )Vfoflkﬁz intriguing in light of the observation that the upper limittgf

0 oro was obtained in Eq37) where the time dependence of the

correlation function of the fluctuating forces was treated in-
XGﬂlal(kl’tl)Gﬂzaz(kZ’tl)' (53 correctly. Nonetheless, in both mode-coupling theories, the
higher-order time correlation functions are expressed in
We keep Ronis’s notation here, as it is close enough to ourgrms of ordinary(two-) time correlation functions. The ma-
to be understood. Equatiof®3) looks essentially like Eq. jor differences between the theories arise because of the
(30), but is missing the first term in Eq31) as might be  Gaussian approximation in the Kawasaki formalism. Hence
expected from a Gaussian theory for three-point correlatiof is not surprising that somestatio three-point correlations
functions. Intriguingly, this first term is all one would obtain gre missed since they vanish if the linear densi@gsare
for the three-point correlation function from a projection op- assumed to obey Gaussian statistics at all times. This defi-
erator approach if only linear densities were included in thesiency was noted by Ronis who suggested that these differ-
basis set for the long-time dynamics. In addition, the verteXences result in significant deviations only at short times. It is
V in the Gaussian theory also differs from the vertdx;  clear from the present formalism, however, that this is not

due to the subtraction terms in the basis set, which are ngfe case since terms of the foml(tZ)*Mlll*Gll(tl) de-
present. These differences in functional form of the vertice%ay slowly in botht; andt,. These findings have been con-

can significantly alter the time profile of both multiple-point ¢ med in humerical simulations of hard-sphere systE5.
and multiple-time correlation functiori$5].

In Ref. [41], the following expression for a three-time
correlation function was derivelEq. (6.5b therein: V. HIGHER-ORDER CORRELATION FUNCTIONS

L FOR THE IDEAL GAS
A, A% A% (O)WACAL S o . o
(g ko 10 A,y (1) A, OV A A In this section, the mode-coupling formalism will be illus-

0 o trated for an ideal gas system in the grand-canonical en-
zzf d71G4 p,(Ko,to— Tl)ch‘l’yfkikz semble composed of particles of massn a volumeV at an

0 inverse temperatur@. In the ideal gas the motion of each

XGg,a, (K2, T1)(Ag, k(T A, K, (t1)) particlej is given by
t1
_ BoB1B2

+2f0 dTleal,BO(klrtl Tl)vkl,—ko,szﬁzaz(kZ17'1) rj( )_r (0)+ — pJ( ) t, pj(t):pj(o)-
X(Ag, —ky( 1) Ang ky(t0))- (54)

Given the simple form of the particles trajectories, any time
Comparison between E@¢54) and the expression for the correlation function can be calculated exactly and compared
three-time correlation function in E@50) is facilitated by  with the expressions that follow from mode-coupling theory.
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A. Conserved quantities <
i

N N
An essential step in applying the formalism to a particular < 241 exglik-[ry(t)—r ]}
system is the identification of the slow variables of the sys- G{2H%(t)=
tem. In any gas composed of point particles, particle number, (N)
momentum, and energy are conserved and hence their corre

. o ) = . his result follows from the fact that=] , exp¢;-k))
sponding densities are slowly varying quantities. The |deaI:<N>5ko and the statistical independence of particles. As the

gas system is quite different fr_om s_lmple gases in that it ha?nomentun‘pl is Gaussian distributed, one obtains
many more conserved quantities since the momergyof

each particle is conserved along all directions. Consequently, » gilklptmg—Bp/(2m)
. . My M ik G{O}{O} t)=

a tagged particle density of the forpf{; p;,/P; e M, where k(L) 2miB

m,, my,, andm, are arbitrary integers, should be included /B

for each particlg in the set of slow variables. However, for — e (k2 (57)

collective modes, it is not hard to show that it suffices to ’

include densities of all analytical functions of the mome”tawhere~k=|k|/\/m_,8

:<eik-p1t/m>_

dp=exd — |k|?t?/2mp]

is a conveniently scaled wave vector.

f(py), i-e., We will compare the exact result E¢57) to the result
N from the mode-coupling framework of this paper obtained
> f(pj)eik'rj, using Egs(9) and(10). The first point to note is thad,,(t)
=1

is proportional toQ,, which follows from the facts the all
) o ) ) Hermite polynomials have been included in the set of slow
since the contribution of a single tagged particle to correlay,griaples and thatd/dt)H,(u)=0 for all n. This, in turn
tion of extensive variables (/). implies thatP, Q=0 andnhence the fluctuating forde,(t)
Taking the Hermite polynomial$él,, as a basis for the P Lea g
; vanishes for alt. According to Eqs(10) and(14), M ,4(7)
functionsf(p), where — ) . :
=28(7)M .5, sinced,(t)=0. Thus Eq.(13) is exact, with
dn J— . —
2 2 * 1
Ho(u)=1, Hj(u)=2u; Hn(u)=(—l)”e”me v, Map=(Qa.Q5)* K, . (58
Since Q, is can be written as a linear combination of

the complete set of linear slow variables is given by ; )
Q1's, and, in genera) ,= X 5/<|o|25Q s, We conclude that

N H, (U9H; (u)H, (u?) ('QQQZ)zo for B>« since the multilinear basis set is or-
A= '+ J Lz giker;, (55  thogonal in mode order by construction. Similarly, since
=1 2T L N (QuQp)=—(Q.Q%), (Q.Qp=0 for a>p and hence

M,z is diagonal in mode order, implying that EQL3) de-

xziirﬁ {'iudnino;f;r;hezzf; Ozghrﬁﬁir;ri]tdlcﬁ? 'I\)//vgz}’d(eaﬁriugf couples at each mode ordeinto equations for the multiple-
Y- i point correlation function&,,,(t).

=pjvBI2m, uf'=pjyp/m, anduj=pfyB/m, then the inner Focusing on the linear variables, E4.3) reduces to
product of the Hermite polynomials corresponds to the ca-
nonical average: G{ki}{”(t)zE W(i}{'}GE}{j}(t)-
. e_uz {1}
L@Hn(U)Hmw) ﬁdu#“n! Smn=(Hn(WHm(W)). Eue to the orthogonality of tha"'s, G!11/(0)= &y}, , and
(56) ence,

. . Gt =[exp M) i - (59)
Since(H'(u))=0 unlessi=0, A" is given by “ i iy
. ' The structure of the matrixM 4, is relatively simple,
A=Al - <N>5i205iy05i205k0 which makes it possible to actually calcu[ﬁ@l(t) from Eq.
(59). Fixing the direction ok to be alongk, for |k|#0 we

note that

A{kj}:i]‘('[ /jx_|_ 1Af(jx+1xjysz}+ jzA‘:t(jx_lyjy:jz}],

where Egs.(55) and the recursion relation for the Hermite
polynomials

2uH,_1—2(n—1)H,_,=Hp(u)

and the correlation functiopA{!Al}") is given by

(ALAY )=(N)8ij, 8,00,
B. Two-time, two-point correlation functions

Consider the density modé,, which corresponds ta{"! _ _ -
({0} is short for{0, 0, @). Fork+0, the density-density time have been used. With E¢58), this leads to the tridiagonal
correlation function is given by form for the matrixM,; at linear order,
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MM ZiKs 8 (Viok 1S v +io8 ). (60 The time correlations for other basis functions are now
k iy O VDt 101, Vix 13- (60 easily obtained using E@62). For example,

The terms in Eq(60) can be conveniently expressed as the (i} e\ A{0.0.0
expectation values of the raising and lowering operators in (AL (DA )
the Hermite basis representation of the quantum harmonic (N)
oscillator. Identifying

eta (2
:<0|e|ktajx>e (kt) /Zé\jyoé\]zo

(itE)jX T2
o _ —(k)22s o
|n>:A~I{(nJyxlz} \/ﬁ e 51),05120' (63)

and defining Note that it is only with an infinite set of conserved quan-
R tities that it is possible for a system with no dissipative terms
(m|Bny=(Al™y 12" gAl™Iy 2y () to lead to relaxation. One might argue that taking a finite
number of slow variableay, mass, momentum, and energy
for any operato®3 and density, the dissipative terms iM would no longer be zero.
_ Ty While this is correct andM is not purely imaginaryM
— _ =n+ + . .
aln) \/ﬁ|n 1), alm=yn+1jn+1), would still be finite in each mode block, and one would get
one has exponential decay in the instantaneous limit instead of
Gaussian decay for all correlation functions.
(mlan)=ndmnn-1, (Mla'ny=yn+18,,.1.
C. Two-time, multiple-point correlation functions

i i M HIY i : : .
In this representation, the matri| '’ can be written as Consider the correlation function

MY = (i | A N N N
MicH= (i Mio, CIZPR (O =(Ri g ONGORE(N)
where M is the operator with |k|#0, |g|#0, andk#q. The direct calculation of this
— = correlation function is simple if one notes that
M=ik(a"+a). (61
N N N
In essenceM is nothing but the Liouville operatof, re- <Z el nm Y gamty e'k‘r”> /<N>
stricted to act on the space of phase space functions that are =1 m=1 =t
linear combinations of . N _ . 4
To reproduce Eq(57), according to Eq(59), we must = Z exli(k—aq)-r(t)]e'd " We k),
evaluate -

it since any term in the summation over particle indices in
(0le™"0), whichi#m, | #n, orm#n yields a Kronecker delta for one

which can be done in a straightforward fashion using theof the wave vectors. Such terms do not give a contribution if

Baker-Campbell-Hausdorf formul[®6]. This formula states S:Ltivpiggsci?rzsa?\ga nonzero. The wave vecfairops out of
that if A and B are linear operators, a linear operafoexists
such that e“ef=e’, where C of the form C=A+B

N
- . 2
+1[A, ] plus repeated commutators. Takirig=ikta’ and  CIZIH (1) = < |21 ek p'”m> /(N)=G{k°}{0}(t)=e (k212

B=ikta and noting thafa,a’]=1, Eq.(61) yields (64)
gikta’gikta_ ef‘jlte&t)zfz, The mode-coupling derivation of this same result goes as
_ _ follows. From Eq.(30), noticing thatM,;=0, we immedi-
which can be rearranged to give ately obtainG,,(t)=0. The simplest argument for the van-
= ey~ = ishing of G,4(t) is that sinceM is diagonal in mode order, no
eMi=glta gltag= (k)72 (62 correlations between different mode orders exist, so that
and therefore Gp(t)=0 if |a|#|B|.
(0|eA_4‘0>=<e*iitao|eiitao>e*('~“>2’2, From the definition of the multilinear basis set in E§),
. C{2HOHD}(t) can be written in terms of the linear and bilinear
But ase'*'3|0)=|0), densities as
(0]ei0y =g~ k072 CIHO0) = (QIZPHONEMNY+ (RN
which coincides, as expected, with the exact reif. X (N(DNE(NY2.
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However, sinceGy(t) =0, C2OHDi(t) gets its value solely theory developed here does not assume that fluctuating
from the subtraction terms. Furthermore, sinceforces(noise are Gaussian distributed and therefore is a gen-

(Nk_quNf(‘F(N) for an ideal gas system, one gets eralization of mode-coupling theories based on Kawasaki’s
formalism[35,48. Furthermore, unlike kinetic theories, it is
C{ko,}go(}q{.ﬁ}(t)=<Nk(t)N’|§)/<N> not restricted to low densities and should be applicable to
o dense fluids where cooperative motions of particles and col-
in agreement with Eq64). lective modes are important.
The formalism is based on projection operator techniques,
D. Multiple-time correlation functions which, for ordinary two-point, two-time correlation func-

Finally, we conclude our discussion of the higher-ordert'ons’ Iea;j tot?‘ geanerahzed Langgvm equ.at|t(_)n In Whl'Ch_IEﬂe
correlation functions in the ideal gas by examining the valig-memory function decays on a microscopic ime scale. The
simple extension of the projection operator formalism to

lty of the expressions for the multiple-time correlation func- multiple-time correlation functions is complicated by the fact
tions in Eq.(45). For the three-time correlation function for h ph f . f comp h y lized
the density mod&N, , direct calculation gives that the fluctuating forces appearing in the generalize
Langevin equation do not obey Gaussian statistics. Further-
N more, multiple-time correlations of the fluctuating force can
Gﬂo,}goé{ﬁ}(tz,tl)= < > explip- |k(t1+t2)—qt2|}> /(N) in fact have a slow decay when the time arguments of these
o =1 forces become comparable.

In order to treat multiple-time correlation functions of
fluctuating forces properly, the correlation functions were
massaged so that the time arguments of all fluctuating forces
appearing in the correlations were guaranteed to be well
separated, ensuring that all memory functions that arise in
the mode-coupling theory decay to zero on a molecular time
scale. This construction allows equations that are local in
time to be obtained, which relate the multiple-time correla-
tion function to two-time but multiple-point correlations
coupled by essentially time-independent vertices. The
multiple-point correlations, in turn, can be written as convo-
lutions of two-point and two-time correlation functions
coupled by time-independent vertices. These correlation
functions can either be taken directly from experiment, simu-
lation, or can be solved self-consistently within the mode-
coupling formalism. The vertices, which are composed of a
rﬁtatic part(Euler term) and a generalized transport coeffi-
cient, can similarly be calculated from kinetic theory or
taken from molecular dynamics and Monte Carlo simula-

=exd — [k(ty+tp) —Tt,|%2], (65)

wherek = k/VmB andq=qg/ymp.
If k andq are both along, the mode-coupling expression
for the multiple-time correlatiofisee Eq.(45)] is

GO (t,t1) = G2 (1) MK GO 1y,

where the repeated sets of indicgs and {j} are summed.
Since G'IN(t) was previously evaluated in E¢63), and
GUIN(t)=GMI}* (—t), the only unknown quantity in this ex-
pression is

W= A AR o).

Writing this out using Eq(55), the only surviving terms in
the summations over particle index for an ideal gas syste
are the terms where all indices are equal, so that

MoK Z 5 tions. . , _ ,
k=a.q.k™ AiHi} The equations for higher-order correlation functions con-
Hence, tain an infinite sum of terms that can be made tractable for
systems with a finite correlation length by applying a cumu-
* _ - lant expansion technique termed tleordering method. The
GO (ty,t)= X exy] — |k—g|2t2/2]e ktl*2 method was applied to obtain the leading-order and first-
=0 order mode-coupling corrections of expressions for multiple-
1 - point and multiple-time correlation functions. A key step in
xﬁ[—tltzkx(kx—qx)]lx. the N-ordering method and the proper setup of the theory is

the definition of anorthogonalmultilinear basis. Although,
in principle, it is possible to apply cumulant expansion meth-

This can be summed to : 2 )
ods to other choices of a multilinear basis, the orthogonal-

expl — [ |k—G|2t2— | k|22 =k, (ky— G t1t,]/2} ization procedure simplifies the perturbation analysis enor-
2 Lol T ' mously and helps to avoid erroneous truncations of the
which corresponds to the exact res{@f). mode-coupling series.

The expressions for the higher-order correlation functions
bear a resemblance to those found by R$dal{ within the
framework of Kawasaki's mode-coupling theory. In this ap-

In this paper, a mode-coupling theory was presented iproach, the linear densities composing the set of slow vari-
which multiple-point and multiple-time correlation functions ables are assumed to be Gaussian random variables at all
are expressed in terms of ordinary two-point, two-time cor-times. Although the Gaussian assumption provides another
relation functions and a set of vertices. The mode-couplingnethod of simplifying the mode-coupling series for higher-

VI. SUMMARY
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order correlation functions, certain terms are absent from the <Aa (t,+1,)AB(t )Qcﬁd* )
Gaussian theory that are neither small nor quickly decaying. k=gt T2/ g g

The mode-coupling predictions for higher-order correla- Aa AC* \/Abry | Adk
. . ) ~ + ’
tion functions for an ideal gas system were calculated ana- (Ak—q(la t2)Ak—q><Aq(t1)’A‘GI )0aq
lytically and shown to give the exact results for both
multiple-time and multiple-point correlation functions. An
e_:ssentlal step in arriving at the _qorrgct result was the 'nde a similar fashioanzl factors to leadingN order,
sion of a complete set of densities in the set of slow vari-
ables. Although the ideal gas system does not constitute a o1 .
rigorous test of the formalism since all fluctuating forces k—g.qk—0a',q"
vanish, it is important to note that the formal mode-coupling._, . . o
theory expressions for the higher-order correlation functions;lj-.hIS Iea:js tot thtes foll?w;ng. factorization of the wave-vector-
yield the exact result. In a future padé&5], we compare the lagonal part 0fGs{t5,11):
mode-coupling predictions for the multiple-point and 112 11 11
multiple-time correlation functions for a hard-sphere fluid to G gqk—qr,a (12:1) = Gi g(t1+12)° Gy (1) gq
d_ata from 5|mulat|or_1$. The _theoreUcz_;tI predictions of all +Gﬁl,q(tlthz)-Gél(tl)5kq_q/,
higher-order correlation functions are in remarkable agree-

ment with the simulation results in the hydrodynamic regimeyhere the notation introduced in E@9) has been used.
provided both Euler and dissipative vertex couplings are in-

+ <Aﬁ—q(tl+ tZ)AE—q* ><Ag(tl)Ag* > 5k7q,q’ .

-1 -1 -1 -1
kaquq 5qq’+Kk7q'Kq 5k,q'ql.

cluded. The factorization ofG,,' can be worked out as well,
The theory outlined here has obvious applications to mul- » . .

tidimensional Raman and nuclear magnetic resonance spec- Giz_ . ,(tl)meﬁfq(tl)oeéf (ty) Bqqr

troscopy, and simulation studies of dynamic heterogeneity in daEmana . )

dense fluids, glasses, and polymers. Since the theory in- +G&ffq(t1)-Géf (t1) Skqq-

volves physical correlation functions, it is well positioned to

address fundamental issues in characterizing the dynamics inserting these expressions into E41) and using Eq(17)
systems exhibiting nonexponential relaxation processes angelds

frustration. In fact the current formalism has been used in

Refs.[46], [54] to justify some of the approximations made 112 =~ ,NGll:l(tz).Gli (t,+t ).Gll:l(t Yo1Sqr

in mode-coupling theory for the supercooled liquidss]. k-gak-a'q “ q,l K- vk qill %

These avenues are currently being investigated. +Gﬁl,q (t,) -Gﬁl,q(tzﬂl)-Gﬁl,q(tl)°l5qq/
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APPENDIX A:  REDUCTION OF THE VERTICES My, M il_lq/+q’q,;_q;k% Ko18yq + 1K o8gq1 (A3)
AND M5
) . , — to lowest order in the mode-coupling parameietN. It in-
Neglecting mode-coupling corrections, the vertiéés;,  teresting that the first term in E¢43) gives the only contri-
andM;, can be reduced to very simple forms. The strategybution to M,;; at order M/N)?% In other words, when
used to simplify these terms is similar to that used for themode-coupling corrections are neglected, the term involving
factorization of M, in Ref. [46]. First My, is rewritten  the fluctuating forces in Eg43) can be dropped.

with the help of Eq(45) as Note that in this appendix, we have allowed ourselves to
neglect the difference between the inverse of quantities on
'\71122Gfal(tz)Galﬁ(tz1'[1)G§21(t1)- the multilinear level and the linear-linear sub-block level,
which is correct to order NI/N)° and consistent with the
Using theN ordering ofG 1 4(t2,t1), G14(t2), andGgy(ty), level of approximation of the rest of the derivation of Egs.
one sees that to leading order, (A2) and(A3).
M115=G11 () Gridtz 1) Gos (1), (A1) APPENDIX B: SYMMETRY PROPERTIES OF G ,4(t)
_ _ _ o AND M .4
In this expression, the leadifg-order contributions are ob-
tained from the part of the various factors in E41) that In the ideal gas case, th@,'s are either even or odd
are diagonal in the wave vector. functions of momentum. This property implies that the ele-

By the property in Eq(19), G1;, can be factored using ments of the multilinear basis s@t, are either symmetric or
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antisymmetric under the time-reversal operafpwhich re-  which, combined with Eq(B1), implies thatK . is real and

verses the momenta. Mathematically, this property can bgymmetric, and henc& ,4(t)=y,v;G,s(—1). This can be

written as7Q,=v,Q,, wherey, is either 1 ifa contains an  combined with Eq(B1) to yield

even number of momenta indices, o when it has an odd

number. In addition, there typically is a symmetry under the

reflection operatofR, which inverts both the momenta and Gap(1)=Gla(—1). (B2)

the positions of all particles. As the basis set eleménis

depends on the spatial degrees of freedom through

exp(k-r;) [see Eq.(55)], it follows that RQ,=7.Qy - So from Egs.(B1) and (B2), we conclude that ify,y

These relations also holds for other systems in which the_; () is real, even in wave vectors, and s «’h
» Gag , , ymmetric

potential energy depends only on the distances between palfhdert—>—t, whereas ify,y,=—1, it is imaginary, odd in

ticles in the system. These two symmetries plus time trans- . _ _ —
L . s — wave vectors, and antisymmetric under time reversallVAs
lation invariance have the following implications fod 4

andG,(t) (see also Ref57)). =[dG(1)/dt]G*(t), this also implies thaM ,; is real and
As the equilibrium distribution function is invariant under €ven in wave vectors i, y;=1, and imaginary and odd in
R, wave vector otherwise.

The following ordering is now valid when the magnitudes

Caﬁ(t)=(Qa(t)Q’é):([RQa(t)](RQE))= yayﬁczﬁ(t). of the wave vectors are small. Imaginary correlation func-
(B1) tions and vertices, being odd in the wave-vector arguments,

are typically of linear order in the wave vectors. But as the

Hence, ify,y;=1, the imaginary part is zero, otherwise the . _ — .
real part is zero. Since the wave-vector dependence of thl\éertlcesM contain time derivatives, they will always be at
east of the order of the wave vectors, so a real-valued vertex

densities always enters in the formiagimes a wave vector, . | dratic i h lvalued
imaginary correlation functions must be odd functions of the!S at least quadratic in wave vector, whereas a real-value

wave vector and real correlation functions must be everforrelation function is typically of order one.
functions of wave vector, provided these quantities are ana- Finally, using time-translation invariance,G,4(t)

lytic in wave vector. =G’5A(—t)K&aK7*1, which conveniently combines with
) . . ot Ba B
Time reversal invariancée~'=e™ ~'7 yields Egs.(B2) to give
((e7'Q,)Q%)=((Te” “1Q,) Q%) =((e”“'TQ,) TQ¥)
N -1
= v.75((€7"'Q)Q%), Gupl(t)=Gpal) KoK g7 (B3)
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