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Mode-coupling theory for multiple-point and multiple-time correlation functions
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~Received 1 August 2001; published 18 December 2001!

We present a theoretical framework for higher-order correlation functions involving multiple times and
multiple points in a classical, many-body system. Such higher-order correlation functions have attracted much
interest recently in the context of various forms of multidimensional spectroscopy, and have found an intrigu-
ing application as proposed measures of dynamical heterogeneities in structural glasses. The theoretical for-
malism is based upon projection operator techniques that are used to isolate the slow time evolution of
dynamical variables by expanding the slowly evolving component of arbitrary variables in an infinite, ‘‘mul-
tilinear’’ basis composed of the products of slow variables of the system. Using the formalism, a formally exact
mode coupling theory is derived for multiple-point and multiple-time correlation functions. The resulting
expressions for higher-order correlation functions are made tractable by applying a rigorous perturbation
scheme, called theN-ordering method, which is exact for systems with finite correlation lengths in the ther-
modynamic limit. The theory is contrasted with standard mode coupling theories in which the noise or fluc-
tuating force appearing in the generalized Langevin equation is assumed to be Gaussian, and it is demonstrated
that the non-Gaussian nature of the fluctuating forces leads to important contributions to higher-order correla-
tion functions. Finally, the higher-order correlation functions are evaluated analytically for an ideal gas system
for which it is shown that the mode coupling theory is exact.

DOI: 10.1103/PhysRevE.65.011106 PACS number~s!: 05.20.Jj, 61.20.Lc, 05.40.2a
n
n

t
th
te

cu

vi
s

tu

it
ins
n
c

ns
ve
ac

led
im
f
v
of
f t
ua
s
h

rio
he

ex-
m,

ver-
sed

to
ory

r-
re-
een
ot

int
tor.
eo-

for
-
or-
per
n-
re

er-
on

mp-
al
m-
an

cal
sis
ch

and
n-
I. INTRODUCTION

In a glassy system where structural frustration preve
relaxation to equilibrium, dynamical properties often demo
strate complicated time dependence@1#. For instance, in
dense colloidal systems, at a given time some regions of
complex fluid are essentially static and crystalline, while
dynamics in other regions exhibit behavior that is associa
with fluids. In these systems, structural rearrangement oc
through relatively rapid, collective, stringlike motions@2,3#.
Furthermore, at later times, a region of the fluid that pre
ously appeared crystalline may exhibit fluidlike propertie
Such heterogeneous behavior is characteristic for struc
glasses and supercooled complex fluids@4–9#. To describe
this behavior, it is natural to examine how the local dens
of the liquid is correlated over various spatial doma
@10,11#, or—when one is more interested in the differe
time scales of slow global changes of structure and the lo
decay of correlations—multiple time correlation functio
@12#. Both types of higher-order correlation functions ha
recently been proposed and used as measures for char
izing ‘‘dynamical heterogeneities’’ in structural glasses.

A number of experimental probes for examining detai
dynamical features taking place on various length and t
scales in glassy systems have emerged over the last
years. These new approaches have the potential to pro
extremely useful information on how collective motions
the system are correlated to specific statistical features o
dynamics such as the distribution of time scales of fluct
tions, the length scale and size distribution of solidlike clu
ters, and cage structural relaxation rates. One approac
probe the nature of dynamical heterogeneities is based
single-molecule spectroscopy techniques@13–16# in which
the environment of a one molecule is tracked over a pe
of time. The technique allows the information of not only t
1063-651X/2001/65~1!/011106~17!/$20.00 65 0111
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distribution of heterogeneous environments but also the
plicit reorganization times that are present in the syste
since the individual measurements are not statistically a
aged. A somewhat different experimental approach is ba
on multidimensional nuclear magnetic resonance@17,18# and
nonresonant nonlinear Raman spectroscopy@19–21#. The re-
sponse function in these experiments can be related
higher-order correlation functions using response the
@22,23#.

Given the interest in multiple-time and multiple-point co
relation functions, the need for a theory that accurately p
dicts these quantities is clear. Surprisingly, there has b
relatively little work along these lines and the literature is n
nearly as extensive as it for ordinary, two-time, two-po
correlation functions such as the dynamic structure fac
Although there have been several recent microscopic th
ries for the off-resonant fifth-order response function
simple liquids @24,25#, little work has been done on con
structing microscopic theories for general higher-order c
relation functions since the kinetic theories of de Schep
and Ernst@26#, who attempted to extract the nonanalytic de
sity contributions to the Burnett coefficients in hard-sphe
liquids.

A common approach to describing the dynamical prop
ties of liquids and complex fluids at long times is based
the generalized Langevin equation@27#. The basic utility of
the generalized Langevin equation depends on the assu
tion that the long-time behavior of an arbitrary dynamic
variable of the system can be written in terms of the dyna
ics of a specific set of slow modes. This slow behavior c
be isolated by extracting the projection of the dynami
variable onto the slow modes, which effectively form a ba
set for the long-time behavior of the system. This approa
has been successfully applied to describe relaxation
simple time correlation functions in a wide variety of co
©2001 The American Physical Society06-1
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RAMSES van ZON AND JEREMY SCHOFIELD PHYSICAL REVIEW E65 011106
densed phase systems. In the context of simple liquid
tems, it was initially assumed that only the linear densities
conserved variables of the system composed the set of
variables of the system@28–30#. However, it was discovered
that this basis set was insufficient@31# to describe the com
plex, nonexponential relaxation of simple time correlati
functions observed in molecular dynamics simulations@32#.
The subsequent observation that theories incorporating m
tilinear products of the linear densities in the basis were
pable of yielding the correct asymptotic long-time behav
of simple correlations@33,34# led to the development o
‘‘mode-coupling’’ theories. The seminal work of Kawasa
@35#, who proposed that the linear Langevin equation be
placed by a nonlinear version in which the fluctuating forc
obey Gaussian statistics, sparked the later developmen
kinetic mode-coupling theory models of dense liquids@36–
40#. At roughly the same time, Ronis@41# used the frame-
work of the Kawasaki mode-coupling theory to formulate
theory of higher-order correlation functions in which th
multilinear slow variables forming the basis set for long-tim
evolution in the system obey Gaussian statistics. Althou
Ronis’s theory contains a number of assumptions, it is
assumption of Gaussian statistics, which leads to clear inc
sistencies in the predictions for higher-order correlat
functions. Unfortunately, the Gaussian assumption is fun
mental in Kawasaki’s formulation of mode-coupling theo
and is difficult to generalize.

The purpose of this paper is to provide a solid theoret
framework to calculate multiple-point and multiple-time co
relation functions. It is based on the mode-coupling the
obtained by a projection operator formalism@42,43# as de-
veloped by Oppenheim and co-workers@44–47#. By careful
consideration of how to consistently identify fast and slo
behavior in time correlation functions, we derive expressio
for multiple-point and multiple-time correlation functions
terms of simple time correlation functions. Since the ba
set for the slow modes is infinite, an infinite number of ter
arise in the expressions for the higher-order correlation fu
tions. It is demonstrated that if the system has a finite co
lation length, the infinite series can be truncated by apply
the so-calledN-ordering perturbation expansion metho
which is exact in the thermodynamic limit. The use of th
perturbation scheme circumvents the need to assume tha
basis set obeys Gaussian statistics. Based on this metho
leading-order expressions and first mode-coupling cor
tions for higher-order correlation functions are presented.
nally, it is shown how the formalism applies for an ideal g
system, for which it is demonstrated that the theory yie
the exact result for simple, multiple-point, and multiple-tim
correlation functions.

II. TWO-TIME CORRELATIONS

A. The system and slow variables

Consider a classical system composed ofN point particles
in which the momentum and position of particlei are de-
noted bypi andr i , respectively. Given the HamiltonianH, a
function B(G) of the phase pointG5(r1 ,...,rN ,p1 ,...,pN)
evolves according to
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Ḃ~ t !5$B~ t !,H%[LB~ t !,

where$,% denotes the Poisson bracket andL is the Liouville
operator for the system. The evolution equation can
solved formally asB(t)5exp(Lt)B(0), where here and be
low B(t) is taken to denoteB„G(t)….

Typically, each dynamical variable of the system can
separated into slowly varying and quickly varying parts. W
will assume that the time-dependent correlation functions
the quickly varying components decay to zero on a sh
~called ‘‘microscopic’’! time scaletm , whereas correlation
functions of the slowly varying part decay on a longer tim
scaleth . Hence, at long timest@tm , the decay of an arbi-
trary correlation function can be described by the decay o
slow component. In what follows, we postulate that t
slowly varying part of an arbitrary dynamical variable is a
analytic function of a set of slow variables of the system.
this sense, the slow variables form a basis set in which
represent the long-time behavior of the system.

To identify slow variables in such a system, one consid
all the conserved quantities, which can be taken togethe
one column vectorA, with componentsAa. When these
quantities are extensive, they can be expressed as a sum
contributions from the individual particles,

A~G!5(
j 51

N

aj~G!, ~1!

which leads to the identification of the densities as the lo
version ofA,

A~r ;t !5(
j

aj~ t !d„r2r j~ t !…, ~2!

with Fourier components

Ak~ t !5(
j

aj~ t !eik•r j ~ t !. ~3!

For the case of a simple fluid ofN point particles, the
extensive slow variables are the number density, momen
density, angular momentum density and the energy den
and in Eq.~2!, one would use the microscopic expressio
for those quantities. For point particles, the angular mom
tum density can be expressed in terms of the momen
density and need not be included inA.

The small wave-vector componentsAk of the densities
correspond to large length scale fluctuations, and these
expected to evolve slowly since their time derivatives a
proportional touku. On the other hand, large wave vecto
with magnitudes beyond some cutoff valuekc correspond to
small length-scale fluctuations and have large time der
tives provided the system is not too dense. Thus, one
identify the slow variables to be composed of the Four
transform of densities of conserved variables whose wa
vector argumentsk i are restricted and have magnitudes le
thankc .
6-2
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MODE-COUPLING THEORY FOR MULTIPLE-POINT AND . . . PHYSICAL REVIEW E65 011106
B. Generalized Langevin equation

The distinction between fast and slow behavior can
made more precise on the level of correlation functions,
lowing the projection operator method as used by Opp
heim and co-workers@44–47#.

To isolate the slow part of a correlation function, o
assumes it to be an analytic function of the slow variab
Ak . The nonlinear dependence of the time correlation fu
tions on the slow variables can be incorporated within
framework of projection techniques by employing a basis
nonlinear functions ofAk , the so-called multilinear basis.

Using the ensemble average^¯& as an inner product, we
define a projection operatorP1 that projects onto the devia
tions Âk[Ak2^Ak& of the slow variables from their equilib
rium value as

P1X[^XÂk&* Kk
21

* Âk , ~4!

where

Kk5^ÂkÂk* &

denotes the normalization. The ‘‘* ’’ product in Eq. ~4! in-
cludes a sum over components of the column vectorAk—the
hydrodynamic indices—as well as over wave vectorsk. For a
translationally invariant system, all wave vectors in an av
age must add to zero, so only whenk equals the sum of wave
vectors inX will there be a contribution in Eq.~4!.

Using only the linear projectionP1 will not give a proper
mode-coupling theory since the long-time dependence of
namical variables due to multilinear orders of the densitie
not extracted by the projection operator@46–49#. It is there-
fore convenient to define an orthogonal, multilinear basis

Q0[1,

Qk
a[Ak

a2P0Ak
a[Âk

a ,

Qk2q,q
a,b [Âk2q

a Âq
b2~P01P1!Âk2q

a Âq
b ,

]

Q
k12k8,k2 ,...,kn

a1 ,a2 ,...,an [F 12 (
j 50

n21

Pj G Â
k12k8

a1 Âk2

a2
¯Âkn

an, ~5!

wherek85( l 52
n k l , and the projection operatorsPj are de-

fined as

PjX5 (
uau5 j

^XQâ&* K âa
21

* Qa . ~6!

In this notation, a Greek index denotes a set of wave vec
and hydrodynamic indices, anduau denotes the number, o
mode order, of hydrodynamic indices in a seta. For simplic-
ity of notation, the full notation will often be writtenQ1 ,
Q2 , Q3 , etc., forQa whenuau51,2,3,... . Furthermore, non
hatted and hatted Greek indices will always have the sa
mode order, i.e.,uau5uâu, but represent different sets o
wave vectors and/or hydrodynamic indices. Finally, in E
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~6! K âa5^QâQa& and the ‘‘* ’’ product now includes a sum
over all hydrodynamic indices and wave vectors in the su
mation indices~a and â!. To make sure the contribution
from the same component in a sum overa are not over-
counted, one has to divide by the number of ways the indi
can be rearranged ina.

The projection terms in Eq.~5! force the setQa to be
orthogonal in mode order so that^QaQb&50 unlessuau
5ubu. This property will be not only convenient but ver
important in the subsequent analysis. By assumption,
long-time behavior of an arbitrary variableC can be isolated
by the projection operator,

PC[(
j 50

`

PjC5^CQa* &Kaâ
21Qâ , ~7!

where we have used the convention that repeated Gree
dices imply a ‘‘* ’’ product and a summation over mode o
der. This notation will be used throughout this article unle
stated otherwise.

Applying operator identity

eAt5e~A1B!t2E
0

t

eA~ t2t!Be~A1B!tdt

to the evolution equation, one easily obtains

eLt5eLtP1eL't P'1E
0

t

eL~ t2t!PLeL'tP'dt, ~8!

whereP'512P andL'5P'L. We apply this operator to
Q̇a , and write outP to get

Q̇a~ t !5^Q̇aQb* &Kbb̂

21
Qb̂~ t !1fa~ t !

1E
0

t

eL~ t2t!^Qb* LeL'tP'Q̇a&Kbb̂

21
Qb̂dt

5E
0

t

Mab~t!Qb~ t2t!dt1fa~ t !, ~9!

which is the generalized Langevin equation, where

Mab~t![@2d~t!^Q̇aQ
b̂
* &2^fa~t!f

b̂
* &#K

b̂b

21
, ~10!

and the fluctuating forcefa(t) is defined by

fa~ t ![eL'tL'Qa5eL'tP'Q̇a . ~11!

Under the assumption thatP projects out all the slow
behavior, the matrixMab(t) is ‘‘fast’’ in the time variablet
in the sense that, for a microscopic time scaletm much
smaller then the hydrodynamic time scaleth of the slow
variables,

^fa~t!B&.E
0

`

^fa~ t !B&dtd~t!1O~tm /th!. ~12!
6-3
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RAMSES van ZON AND JEREMY SCHOFIELD PHYSICAL REVIEW E65 011106
It then follows that the main contribution in the integral
Eq. ~9! comes from smallt, and we can approximate Eq.~9!
by one that is local in time,

Q̇a~ t !5M̄abQb~ t !1fa~ t !, ~13!

where the instantaneous matrix is given by

M̄ab5E
0

`

Mab~ t !dt. ~14!

It will become clear in Sec. II E that the assumption o
fast decaying memory kernel in Eq.~9! is not in contradic-
tion with the slow memory kernel that occurs inlinear
mode-coupling equations like those used in the study of
glass transition@36#.

Defining the time correlation functions of the basis set
be

Gab~ t ![^Qa~ t !Q
b̂
* &K b̂b

21
, ~15!

and using Eq.~9!, one obtains the simple expression for t
time correlation function,

Ġab~ t !5E
0

t

Mad~t!Gdb~ t2t!dt, ~16!

where we have used the fact that^fa(t)Qb* &50 by con-
struction.

In the instantaneous approximation@corresponding to Eq
~12!#, Eq. ~13! yields Ġab(t)5M̄adGdb(t), which can be
integrated to obtain

Gab~ t !5@eM̄t#ab . ~17!

If we do not wish to make the instantaneous approximati
it is easiest to look at the Laplace transform of the tim
correlation function

Gab~z![E
0

`

Gab~ t !e2ztdt.

Since the time convolution in Eq.~16! is a simple product in
Laplace space, we have

Gab~z!5^Qa~z!Q
b̂
* &K b̂b

21
5@z12M ~z!#ab

21, ~18!

where theab element of the inverse is meant, andMab(z)
5@^Q̇aQ

b̂
* &2^fa(z)f

b̂
* &#K

b̂b

21
.

Note that one is frequently interested in just the part
Gab(t) that involves the linear variables, corresponding
such readily observable physical quantities as the time
relation functions of the linear density, momentum, and
ergy. These are given byG11(t), the uau5ubu51 sub-block
of the infinite-dimensional matrixGab(t).

In the hydrodynamic limit in which the magnitude of th
wave vectorsk is small, the wave vector can be used
perturbatively order various contributions toMab(z). Noting
that each time derivative in Eq.~10! brings down a factor of
01110
e
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f
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k, the first term in Eq.~10!, called theEuler term, is of order
k, whereas the second, ordissipativeterm, is O(uku2). On
the basis of these arguments, one might think that the d
pative term inMab(z) can be neglected in the hydrodynam
limit. However, examining the form of the densities, it
easy to see that in fact the Euler term is imaginary and
only give rise to oscillatory behavior.1 It is therefore clear
that the dissipative term must be included in order to obt
solutions to Eq.~13!, which are well behaved in the long
time limit.

C. N ordering

Since two-time correlation functions at a particular mo
order are given by specific blocks of the inverse of
infinite-dimensional matrix, even the calculation of simp
time correlation functions requires an infinite number
multilinear modes. Thus, the results of the previous sec
are formally exact, but not very useful.

The evaluation of the time correlation functions is grea
facilitated by applying cumulant expansion orN-ordering
techniques. TheN-ordering scheme was first introduced b
Machta and Oppenheim@44# as an extension of van Ka
mpen’s inverse system size expansion~V expansion! @50#
and developed further in Ref.@46#. It is essential in obtaining
the correct Stokes-Einstein law for a Brownian particle us
mode-coupling techniques@47#.

In theN-ordering approach, one assigns to each cumu
of an average appearing in the equations an order ofN ~the
number of particles!. The starting point is to consider cumu
lants, which we denote by ‘‘^^¯&&.’’ For a product of linear
densities, the cumulant expansion consists of all poss
ways of combining the densities into groups, i.e.,^A&
5^^A&&, ^AB&5^^AB&&1^^A&&^^B&&, and so on. The as
signment ofN orders is based on the observation that ea
cumulant containing n linear densities is of orde
N(j/a)3(n21), wherea is the average distance between p
ticles @44#. Hence, the requirements for the expansi
method to be meaningful are that the system should hav
finite @O(N0)# correlation lengthj, and that the integrated
densities should be extensive. For an extension to nonex
sive quantities like tagged particle densities, see Ref.@47#.

For instance, the cumulant of a linear-linear correlati
function of the number densityNk , defined as( j 51

N eik•r, can
be formally written as

^^NkNk* &&5^NkNk* &2^Nk&^Nk* &dk0 .

5@^N&1^N~N21!eik•~r12r2!&#~12dk0!

1@^N2&2^N&2#dk0 .

For k50, the cumulant expansion of^NkNk* & is given by
Š(N2^N&)2

‹, which, in the grand canonical ensemble, is
order ^N&. For kÞ0, the expression is proportional toN as

1The Euler term can give rise to Gaussian relaxation if one ha
infinite number of slow modes, see Sec. V.
6-4
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MODE-COUPLING THEORY FOR MULTIPLE-POINT AND . . . PHYSICAL REVIEW E65 011106
well, because particles beyond the correlation lengthj will
not contribute to the average of exp@ik•(r12r2)#, so that

^N~N21!exp@ ik•~r12r2!#&}N~N21!
j3

V
5O~N!.

The N ordering of various quantities has been discus
extensively elsewhere@44,46,47#, so here we just state a few
properties of the procedure that enable us to estimateN or-
ders of relevant quantities.

One important basic property of averages involvingQa is
that when one has an average of the form^Qa(t)BQ1* &,
whereB can be a product ofQ1 again, it can be factored into
a term of orderN2,

^Qa~ t !BQk
a* &'^Qa21~ t !B&^Qk j

aj~ t !Qk
a* &dk jk

~19!

along with terms involving lower powers ofN, provided that
the time-dependentcorrelation length is not extensive. Henc
the leadingN-order term in the cumulant expansion can
found by equating any wave vectork j from the seta with k.
In Eq. ~19!, a21 denotes the seta with k j andaj removed,
and ‘‘'’’ means that the expression is correct up to high
orders ofN and only for the case where appropriate wa
vectors have been equated. The importance of correc
terms to the leading-order factorization of time-depend
correlation functions is discussed in greater detail in the
lowing section. We can reduce such an expression furthe
equating wave vectors inB with those in the seta21. An
important point, established in Ref.@46#, is that equating
wave vectors within the seta does not increase theN order
due to the subtraction terms in their definition Eq.~5!. Thus
the orthogonalization procedure used to construct the m
linear basis plays an important role in the properN ordering
of correlation functions of multilinear densities.

Using the ordering scheme, one obtainsKaâ5O(Nj ),
wherej is the number of matched sets of wave vectors ina
and â, and hence theN ordering of its inverse is

Kaâ
215O~N2uau!, ~20!

irrespective of the matching of wave vectors. In Ref.@44#, it
was shown that

Mab~ t !5H O~1! if uau>ubu,

O~Nuau2ubu! if uau,ubu,

with the sameN ordering holding forM̄ab . A similar result
can be obtained forGab(t),

Gab~ t !5H O~1! if uau>ubu,

O~Nuau2ubu! if uau,ubu.
~21!

D. Multiple-point correlations

We define a multiple-point correlation function to be a
Gab(t) for which uau or ubu is greater than 1. The multiple
point correlations functions therefore contain several fac
of the linear densitiesAk , and involve more than one wav
01110
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vector. Hence, in position space, the multiple-point corre
tion functions involve at least three spatial, ortwo relative,
position coordinates, justifying the name multiple-point co
relation functions.

As Mab(z) is O(1) if a and b have all wave vectors
matched, and of lower order otherwise, the leadingN-order
contributions toGab(t) can be obtained by expanding E
~18! in the wave-vector-diagonal component ofMab(z), de-
noted byMab

d 5Maa8(z)da8b . Here primed Greek indices
will always have the same set of wave vectors as th
unprimed variant, but not necessarily the same hydro
namic indices. Defining the off-diagonal part asMab

o (z)
5Mab(z)2Maa8(z)da8b , we get from Eq.~18!,

Gab~z!5@z12Md~z!2Mo~z!#ab
21

5@$z12Md~z!%$12Ĝ~z!Mo~z!%#ab
21

5@12Ĝ~z!Mo~z!#ab8
21 Ĝb8b~z!, ~22!

where we have defined the diagonal in the wave vector

Ĝaa8~z!5@z12Md~z!#aa8
21 . ~23!

We can therefore expand Eq.~22! as

Gab~z!5Ĝaa8~z!da8b1Ĝaa8~z!Ma8b8
o

~z!Ĝb8b~z!

1Ĝaa8~z!Ma8g
o

~z!Ĝgg8~z!Mg8b8
o

~z!Ĝb8b~z!

1¯ . ~24!

Note that when a term is of lower order inN, this does not
mean it can be neglected in the thermodynamic limit. T
leading N order is found from equating wave vector
whereas the next order inN often comes with an unrestricte
summation over wave vectors. IfM denotes the number o
~slow! wave vectors in the system, these correction terms
O(M /N). The number of wave vectorsM grows with the
system size. Therefore, such mode-coupling corrections
vive in the thermodynamic limit.

The magnitude of the order parameterM /N;kcj is de-
termined by two length scales. The first length scale;kc

21

corresponds to the smallest length scale for which the e
lution of the densities in the basis set is slow. The oth
length scalej is determined by the correlation length of th
possibly time-dependent correlation function under consid
ation. Both length scales change dramatically with density
dense liquids due to the emergence of slowly evolving sh
wavelength collective modes@51# and the cooperative move
ment of particles in the fluid@2,52#. Under these circum-
stances, the mode-coupling expansion in powers ofM /N is
not well defined and can only be interpreted as a form
series. On the other hand, for systems of low to mode
density, one can anticipate that time-dependent correlat
are short ranged on all time scales and thatkc is small. For
such systems,M /N can be treated as a perturbation para
eter@46#. Nonetheless, it should be emphasized that the p
jection operator formalism presented here relies on a c
separation of time scales between the slow variables an
6-5
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RAMSES van ZON AND JEREMY SCHOFIELD PHYSICAL REVIEW E65 011106
other dynamical properties in the system. For hydrodyna
densities~of small k!, this separation between microscop
and ‘‘hydrodynamic’’ time scales is evident, whereas phy
cal arguments must be invoked for other systems to estab
the necessary separation of time scales.

In Eq. ~24!, note the appearance ofĜaa8 defined in Eq.
~23!. Although this is diagonal in the wave vector, it isnot
the diagonal part ofGab , as the terms following the firs
term in Eq.~24! give contributions fora andb diagonal. As
was shown in Ref.@46#, in the thermodynamic limit, the
diagonal part ofGab , denoted byGaa8 , can be factored as

Gaa8~ t !'(
s

F)
j

Gk j

ajaj8~ t !,dk jks j
8 G , ~25!

whereaj andas j
8 are hydrodynamic indices froma anda8,

andk j andks j
8 are the respective wave vectors. The summ

tion is over all permutationss of the indices ina8. This
factorization is obtained also by cumulant expansion un
the assumption that there is a finite time-dependent corr
tion length.

Thus, if we were able to express Eq.~24! in terms ofGaa8
instead ofĜaa8 , we could combine that with Eq.~25! to get
an expression for any multiple-point function in terms of
the two-point correlation functionsG11 and verticesMab

o .
Equation~24! can be reexpressed in this desired form by
following resummation of terms: We writeGab5Gaa8da8b

1Gab
0 , and use the Dyson form of Eq.~24!,

Gab5Ĝaa8da8b1GagMgb8
o Ĝb8b ,

for the off-diagonal part to get

Gab5Gaa8da8b1GagMgb8
o Ĝb8b

~a! ,

where the superscript~a! means thatb is restricted to not
have the same wave-vector set asa. Iterating this equation
yields

Gab5Gaa8da8b1Gaa8Ma8b8
o Ĝb8b

~a!

1Gaa8Ma8g8
o Ĝg8g

~a! Mgb8
o Ĝb8b

~a!
1¯

[Gaa8da8b1Gaa8Ma8d
o G̃db

~a! ,

where by definition,G̃db
(a) has the same form as the righ

hand side of Eq.~24!, with a replaced byd and the restric-
tion that none of the wave-vector sets in the expression
equal toa. Being of that form, we can repeat this procedu
for G̃db

(a) to obtain

Gab5Gaa8da8b1Gaa8Ma8d
o G̃db

~a!

1Gaa8Ma8g
o G̃gg8

~a! Mg8d
o G̃db

~a,g! .

When the procedure is continuedad infinitum, we find
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Gab5Gaa8da8b1Gaa8Ma8b8
o G̃b8b

~a!

1Gaa8Ma8d
o G̃dd8

~a! M d8b8
o G̃b8b

~a,d!

1Gaa8Ma8d
o G̃dd8

~a! M d8g
o G̃gg8

~a,d!Mg8b8
o G̃b8b

~a,d,g!
1¯ .

This expression resembles that forGaa8 in Eq. ~24! with b

5a8 andĜgg8 replaced byG̃gg8
(a,...) . Furthermore, the defini-

tion of G̃gg8
(a,...) also resembles the definition ofGgg8 , but

now with restrictions on all wave-vector sets. In fact t
wave-vector restrictions can be relaxed in the thermo
namic limit since the restrictions remove only one term o
of the sum over intermediate wave vectors. Relatively spe
ing, the difference between the series with restricted and
restricted sums is of orderO(1/N), so the restriction on the
intermediate wave vectors is negligible in the thermod
namic limit, and we can write

G̃bb8
~a,...!

5Gbb8
~a,...! ,

whereG̃bb8
(a,...) is the full correlation function that is diagona

in the wave vector and in which the set of wave vectors inb
differ from those in sets ina, . . . .

Thus Eq.~24!, which has a nonphysicalĜ, can be re-
placed by the expansion

Gab5Gaa8da8b1Gaa8Ma8b8
o Gb8b

~a!

1Gaa8Ma8d
o Gdd8

~a! M d8b8
o Gb8b

~a,d!

1Gaa8Ma8d
o Gdd8

~a! M d8g
o Ggg8

~a,d!Mg8b8
o Gb8b

~a,d,g!
1¯ ,

~26!

which involves the full correlation functionGaa8 which is
diagonal in the wave vector. In this expression none of
intermediate wave-vector sets are allowed to be equal.

Using Eq.~26!, we can write to leadingN order,

G12~z!5G11~z!* M12~z!* G22~z!, ~27!

where, from Eq.~25!, the diagonalG22(t) is given by

Gk2q8,q8;k2q,q
22

~ t !~dq,q81dk2q8,q!

'Gk2q
11 ~ t !"Gq

11~ t !dq,k2q81Gk2q
11 ~ t !+Gq

11~ t !dqq8 ,

~28!

where superscripts like 22 and 11 are a reminder of the m
orders of the arguments. In order to facilitate writing tens
products, we have introduced the following notational sy
bols for products of tensors of rank 2 (Aa;b), rank 3~Aa;bc if
b andc belong to the same seta or Aab;c if a andb belong
to the same set!, or rank 4~such asAa,b;c,d!:

~A•B!a;c[Aa;bBb;c,

~A:B!a;c[Aa;d, fBd, f ;c,
6-6
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~SA!ab;c[Ac;ba,

~A+B!a,b;c,d[Aa;cBb;d,

~A"B!a,b;c,d[Aa;dBb;c, ~29!

where repeated labels are summed over.
The two terms in the expression above forG22 turn out to

yield the same contribution toG12 in Eq. ~27!. However, this
summation has a prefactor of 1/2 from the number of w
the indices can be interchanged in the ‘‘* ’’ product. Using
Eq. ~28! in Eq. ~27!, we obtain

Gk;k2q,q
12 ~ t !

5E
0

t

Gk
11~ t2t!•M̄ k;k2q,q

12 :@Gk2q
11 ~t!+Gq

11~t!#dt, ~30!

where the time convolution arises from the inverse Lapl
transform.

At this point, the necessity of including multilinear mod
is readily apparent. For example, using the definition of
multilinear basis set, we can write

^Q1~ t !Q1* Q1* &5^Q1~ t !Q1* &* K11
21

* ^Q1Q1* Q1* &

1G12~ t !* K22 ~31!

and note that the second term would have been absent i
bilinear modesQ2 in the basis set had not been includ
even though theN ordering of this term is the same as th
first term. Another interesting point is that the first term
not present if the subtractions in the definition ofQ2 in the
basis set are not included. If one assumes that theQ1 are
Gaussian random variables, then correlations of the fo
^Q1Q1* Q1* & vanish. However, in dense fluids the linear de
sities clearly do not obey Gaussian statistics since static
relations such aŝQ1Q1* Q1* & involve configurational aver-
ages over the triplet distribution function and are n
negligible. Note that the second term involves a time con
lution in Eq.~30! and can be expected to have quite differe
behavior from the first term, which is proportional to an o
dinary time correlation function.

E. Renormalization of the propagator

In this section we focus on the linear correlation functi
G11 itself. Equation~24! for G11(z) reads

G115Ĝ111Ĝ11M1a
o Ĝaa8Ma81

o Ĝ11

1Ĝ11M1a
o Ĝaa8Ma8b8

o Ĝb8bMb1
o Ĝ11

1Ĝ11M1a
o Ĝaa8Ma8b8

o Ĝb8bMbg
o Ĝgg8Mg81

o Ĝ111¯ ,

where for brevity we have omitted thez argument. In the
summations overa, one can isolate all the terms with mod
order 1 to obtain
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G115Ĝ111Ĝ11~M1a
o Ĝaa8Ma81

o
!Ĝ11

1Ĝ11~M1a
o Ĝaa8Ma8b8

o Ĝb8bMb1
o !Ĝ11

1Ĝ11~M1a
o Ĝaa8Ma8b8

o Ĝb8bMbg
o Ĝgg8Mg81

o
!Ĝ11

1Ĝ11~M1a
o Ĝaa8Ma81

o
!Ĝ11~M1g

o Ĝgg8Mg81
o

!Ĝ111¯ ,

where the summation over repeated indices here star
mode order 2. Rearranging the terms, this can be written

G115Ĝ111Ĝ11* S11* Ĝ111Ĝ11* S11* Ĝ11* S11* Ĝ111¯ ,

~32!

with

S115(
i 51

`

Q i ,

Q15 (
uauÞ1

M1a
0

* Ĝaa8* Ma81
0 ,

Q25 (
uauÞ1,ubuÞ1

M1a
0

* Ĝaa8* Ma8b8
0

* Ĝb8b* Mb1
0 ,

¯ . ~33!

Equation~32! can be resummed as

G11~z!5@z12M112S11~z!#21, ~34!

where the inverse is taken on the 11 sub-block level. Eq
tion ~34! can be utilized to extract the complicated long-tim
dependence that arises in the memory functions for the g
eralized Langevin when onlylinear densities are included in
the projectionP. In the theory of liquids, the Laplace trans
form of these memory functions are generalized transp
coefficients, which reduce to the Green-Kubo expression
the limit of small z and k. Equation~34! can be cast in the
form in which the full generalized transport coefficients a
expressed as a sum of bare transport coefficients and
(11(z) terms, which renormalize the bare coefficients a
account for the complicated memory effects observed
dense liquids@46#. In the limit in which the energy density is
neglected in the basis set and only bilinear modes are
cluded in the multilinear basis set, the idealized and exten
mode-coupling theory models@53# of the glass transition can
be obtained@46,54#.

Finally, we mention that in Ref.@46# it was shown that by
rearranging the terms, along the lines of Sec. II D,Ĝaa8 in
the Q i can be replaced by the real diagonal in wave vec
Gaa8 , with the restriction in summations overa, b, etc., that
none of their wave-vector sets are identical. This diago
Gaa8 will factor again as in Eq.~25!. Then, Eq.~34!, Eq.
~33!, and Eq.~25! lead to a self-consistent equation forG11.
6-7
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III. MULTIPLE-TIME CORRELATIONS

A. Separating slow and fast behavior in the context
of multiple times

We now turn to multiple-time correlation functions lik
^Q(t21t1)Q(t1)Q&. At first glance, it appears attractive t
use the formal solution of Eq.~9!,

Qa~ t !5Gad~ t !Qd~0!1E
0

t

Gab~ t2t!fd~t!dt, ~35!

to get an explicit expression for^Qa(t11t2)Qb(t1)Qg* &. Af-
ter all, inserting Eq.~35! yields

^Qa~ t11t2!Qb~ t1!Qg* &5E
0

t11t2
dt2E

0

t1
dt1

3Gah~ t11t22t2!Gbd~ t12t1!

3@^QhQdQg* &4d~t2!d~t1!

1^fh~t2!fd~t1!Qg* &#. ~36!

It is tempting to assume that the expression in Eq.~36! in-
volving the fluctuating force behaves asd(t2)d(t1) at long
times in an analogous fashion to Eq.~12!, leading directly to
a local equation in time,

^Qa~ t11t2!Qb~ t1!Qg* &5
?

Gah~ t11t2!Gbd~ t1!M̃hdg ,
~37!

where M̃hdg is related to the infinite time integral o
@^QhQdQg* &4d(t2)d(t1)1^fh(t2)fd(t1)Qg* &#. However,
things are not this simple as can be seen by using time tr
lation invariance to write ^Qa(t11t2)Qb(t1)Qg* &
5^Qa(t2)QbQg* (2t1)&. Applying again Eq.~35!, we obtain

^Qa~ t2!QbQg* ~2t1!&5E
0

t2
dt2E

0

2t1
dt1

3Gah~ t11t22t2!Ggd* ~2t12t1!

3@^QhQbQd* &4d~t2!d~t1!

1^fh~t2!Qbfd* ~t1!&#,

of which the local time version would be

^Qa~ t2!QbQĝ
* ~2t1!&K ĝg

215
?

Gah~ t2!M̄hbdGdg~ t1!, ~38!

where we have used the time-translation prope
Gab̂(t)K b̂b5Gbâ

* (2t)K âa ~see Appendix B!, and defined
01110
s-

,

M̄ dbu5H 2E
0

`E
0

`

^fd~t2!Qbf
û
* ~2t1!&dt1dt2

1^QdQbQ
û
* &J K

ûu

21
. ~39!

Clearly, Eqs.~38! and~37! are in contradiction since, in gen
eral, they will have different time behavior.

The question of which~if either! instantaneous form is
approximately correct can be resolved by noting that pr
ucts of the fluctuating forcef(t) cannot always be treated a
‘‘fast,’’ nor as Gaussian random variables. This observat
has been noted previously by Schramm and Oppenheim@45#
who considered the quantitŷ f(t1)f(t2)f(t3)& and
showed that it does not have a purely fast decay. To un
stand this point, consider theequaltime correlation function
^Qa(t)Qb(t)Qg(t)&5^QaQbQg&. Inserting Eq.~35!, taking
the limit t→`, and noting that in that limitG(t)→0, one
obtains

^QaQbQg&5 lim
t→`

E
0

tE
0

tE
0

t

Gah~ t2t1!Gbd~ t2t2!

3Ggz~ t2t3!^fh~t1!fd~t2!fz~t3!&

3dt1dt2dt3 . ~40!

If f(t) were Gaussian with zero mean, the three-point c
relation on the right-hand side would be zero, but since
left-hand side of Eq.~40! does not vanish,f(t) is not a
Gaussian fluctuating force.

The three-point correlation function in Eq.~40! cannot
have a purely fast decay either, since, by isotro
^fh(t1)fd(t2)fz(t3)&5O(k4), whereas the left-hand sid
is O(k0). It therefore follows that upon integration of th
slow part of^fh(t1)fd(t2)fz(t3)&, one needs to generate
factor k24. Schramm and Oppenheim obtained the expl
form of the slow behavior of the three-time correlation fun
tion of the fluctuating force for the case of a single slo
variableA. It was shown that fort2 , t3.t1 , and smalluk1u
~other cases are similar!,

^fk1
~t1!fk2

~t2!fk3
~t3!&'2uk1u2D exp@Duk1u2ut22t1u#

3^Âk1
fk2

~t22t3!fk3
&,

whereD is the diffusion constant, which is clearly a slow
decaying function oft22t1 . On the other hand, it appear
that there is a fast decay int22t3 , so that the whole expres
sion is small when that time difference becomes large. No
theless, the slow behavior int22t1 will bring about a factor
of O(1/k2) upon integration. For the full restoration of th
O(k0) term on the left-hand side of Eq.~40!, we refer the
reader to the original paper@45#.

Apparently, the assumption thatP projects out all the
slow behavior is not sufficient to specify when a correlati
function is fast decaying since clearlyfa(t) itself is not a
fast variable in every context. Notice that despite the app
ance of slow behavior in the correlation functio
6-8
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^fk1
(t1)fk2

(t2)fk3
(t3)&, there are instances in which

multiple-time correlation function of fluctuating forces
certainly small; namely, when at least two of the time arg
ments of the forces are well separated. If the time argum
of the fluctuating forces are not well separated, slow beh
ior can occur. In Eq.~36!, we cannot assume that the int
grand is peaked around (t2 ,t1)5(0,0) because these tw
variables can come arbitrarily close in the integration overt2
and t1 along the linet1't2 and slow behavior can be ex
pected. We conclude that the local time dependence of
instantaneous Eq.~37! cannot be justified.

We propose the following general rule to determine wh
a correlation function is fast decaying:In a correlation func-
tion involving fluctuating forces, the function decays quic
in a pair of time arguments, provided these are well se
rated in time. Note that ‘‘well separated’’ here means that t
time difference is larger than the microscopic timetm . In
applying this rule to situations when integrations are carr
out over the time arguments of fluctuating forces, we requ
that the time arguments can only get close at isolated po
which give contributions of measure zero to the integral.

With these rules in mind, consider the correlation functi

^fa~2t2!fbfg~t1!&.

This is clearly fast int2 as well as int1 providedt2 andt1
are positive. Therefore, Eq.~38! should be correct, as th
correlations of the fluctuating forces in Eq.~39! are of the
form above, which we can write as

^fa~2t2!fbfg~t1!&5^Q̇aeL't2P'fbeL't1P'Q̇&.

We observe that the correlation function above is fast int1
andt2 providedt1@tm andt2@tm since it has the form of
a succession of two fast forward propagations, which yie
an expression in which all time arguments are well separa
If one of the times were negative, i.e., one of the propaga
propagated backward in time, the expression would
longer be~purely! fast. Hence an alternative way of ident
fying terms that are fast in all time arguments is to requ
that they have only forward fast propagation when applied
succession.

B. Correlation functions involving multiple times

Using the conclusions of the preceding section, we w
now derive a recursion relation for multiple-time correlati
functions. We consider the general case, denoted
Gan ,an21 ,...,a0

(n) (tn ,tn21 ,...,t1) or G$a i %
(n) ($t i%), defined as

G$a i %
~n! ~$t i%!5^Qâ0

* Qan
~ t11¯1tn!¯Qa1

~ t1!&K â0a0

21 ,

with i 51, . . . ,n and t i>0 so the arguments are time o
dered. We write
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^Qâ0
* Qan

~ t11t21¯1tn!¯Qa2
~ t11t2!Qa1

~ t1!&

5^Qâ0
* eLt1Qa1

eLt2Qa2
¯eLtn21Qan21

eLtnQan
&

[^XeLtn21B&,

whereB5Qan21
Qan

(tn) andX is the operator

X5Qâ0
* eLt1Qa1

eLt2Qa2
¯eLtn21.

Using Eq.~8! applied toB, and inserting the result into
^XeLtn21B&, we get

^XeLtn21B&5^Qd* B&Kdd̂

21
^XQd̂~ tn21!&

2E
0

tn21

^Q̇d* eL't1P'B&Kdd̂

21

3^XQd̂~ tn212t1!&dt11^XeL'tn21P'B&.

~41!

From the discussion in Sec. III A, it is now apparent that t
third term can be considered fast intn21 because only for-
ward propagation occurs inX since all t i are positive, and
there is a projected propagation intn21 . For macroscopic
times for whichtn21@tm , this term can be neglected. Not
however, this term could not be neglected in integrals of
~41! over the timetn21 . InsertingB5Qan21

Qan
(tn) and us-

ing Eq. ~35!, one obtains

G$a i %
~n! ~$t i%!5E

0

tn21E
0

tn
Ganb~ tn2t!Mban21d~t,t1!

3Gd,an22 ...
~n21! ~ tn212t1 ,tn22 ,...!dtdt1

1fast term in tn21 , ~42!

where

Mbad~t,t1!5@4^QbQaQd̂&d~t!d~t1!

2^Q̇d̂
* eL't1P'fb~t!Qa&#K d̂d

21
. ~43!

Equation ~42! is the desired recursion relation. Neglectin
the term that is fast intn21 , the n multiple-time correlation
functions can be related to then21 multiple-time correla-
tion, and thus ultimately in terms ofGa1a0

(1) (t1)5Ga1a0
(t1).

The instantaneous version of Eq.~42! is simply

Gan ,...
~n! ~ tn ,...!5Ganb~ tn!M̄ban21dGd,an22 ,...

~n21! ~ tn21 ,...!,

~44!

whereM̄ dau5*0
`dt1*0

`dtM dau(t,t1).
Applying Eq. ~44! to the three-time correlation functio

Gagb(t2 ,t1), Eq. ~38! is recovered,

Gagb~ t2 ,t1!5Gad~ t2!M̄ dguGub~ t1!. ~45!
6-9
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Again using the recursion relation, one can also derive eq
tions for correlation functions involving four or more time
e.g.,

Gabgd
~3! ~ t3 ,t2 ,t1!5Gaz~ t3!M̄ zbuGuh~ t2!M̄hglGld~ t1!.

~46!

It is clear now that any multiple-time correlationG(n) can be
written as a product ofn factors ofG11 andn21 verticesM̄ .

C. N ordering of triple-time correlation function

In this section, we consider the leadingN-order and
mode-coupling term expressions for the triple-time corre
tion function for linear densities in whichuau5ubu5ugu
51. Taking Eq.~45! for the linear densities, this correlatio
function is given by

Ga1b~ t2 ,t1!5Gad~ t2!M̄ d1uGub~ t1!. ~47!

From this relation, it is evident that theN ordering ofM̄g1d

follows from that of Gga
21(t2)Ga1b(t2 ,t1)Gbd

21(t1), and
hence we need to establish theN-ordering properties of
^Qa(t21t1)Q1(t1)Qb&. One can show, by induction inubu,
that

^Qa~ t21t1!Q1~ t1!Qb&5H O~Nuau11! if uau,ubu,

O~Nubu! if uau5ubu,

O~Nubu11! if uau.ubu.

Combining with Eqs.~42! and ~20!, we obtain

Ga1b~ t2 ,t1!5H 0~N12~ ubu2uau!! if uau,ubu,

O~N0! if uau5ubu,

O~N1! if uau.ubu.
~48!

Using Eqs. ~21! and ~48! to establish theN order of
Gga

21(t2)Ga1b(t2 ,t1)Gbd
21(t1), one finds that theN ordering

of M̄g1d follows the sameN-ordering rules asGg1d(t2 ,t1).
With theN-ordering expressions above, the dominant c

tributions toG111(t2 ,t1) are given by

G111~ t2 ,t1!5G11~ t2!* M̄111* G11~ t1!

1G12~ t2!* M̄211* G11~ t1!

1G11~ t2!* M̄112* G21~ t1!1O~N21!. ~49!
01110
a-

-

-

The leading mode-coupling corrections to Eq.~49! involve a
large number of terms of orderN21. Collecting these addi-
tional terms gives a net factor ofM'Vkc

3, so that the sum of
all N21 terms gives a term of orderM /N'(kcj)3, which
survives in the thermodynamic limit. To first order inM /N,
one obtains the following correction terms:

G13~ t2!* M̄312* G21~ t1!1G13~ t2!* M̄311* G11~ t1!

1G12~ t2!* M̄212* G21~ t1!1G12~ t2!* M̄213* G31~ t1!

1G11~ t2!* M̄113* G31~ t1!,

These results can be easily extended to higher-order
relationsG$a i %

(n) with n.3 and whereua i u51 since all the

necessaryN orderings are known. Thus, any multiple-tim
correlation function ofQ1’s can be expressed in terms of th
vertices M̄a1b and two-time ~but possibly multiple-point!
correlation functions. In turn, the multiple-point correlatio
functions can be expressed in terms of the verticesM̄ab and
the linear propagatorG11(t) as explained in Sec. II D, and
hence all time dependences in multiple-time correlat
functions at long times can be expressed in terms of
two-time correlation functions of linear densities. From t
mode-coupling formalism, the two-time correlation functio
can be evaluated self-consistently via the relations~34! and
~33!.

Using the results from Sec. II D, and Eqs.~49! and ~30!,
one can obtain the leadingN-order expressions forG111 in
terms of M̄11, M̄111, and G11(t) as follows. Inserting the
reduced forms of the verticesM211 andM112 that are derived
in Appendix A into Eq.~49! yields

Gk2q,q,k
111 ~ t2 ,t1!5H11H21H3 , ~50!

where

H15Gk2q
11 ~ t2!•M̄ k2q;q;k

111
•Gk

11~ t1!,

H25Gk2q;2q,k
12 ~ t2!:@Kq

11+Gk
11~ t1!#,

H35Gk2q
11 ~ t2!•Gk2q,q;k

21 ~ t1!.

In H2 , we can use Eq.~30! to expressGk2q;2q,k
12 (t2) in

terms of the linearG11(t) and verticesM̄ . For G21 in H3 ,
using the fact thatGab(t)5Gb̂â(t)K âaK

b̂b

21
@Eq. ~B3!#, an

analogous expression forG21 is obtained,
Gk2q,q;k
21 ~ t1!5SE

0

t1
Kk

21
•Gk

11~t1!•M̄ k;k2q,q
12 :$@Gq

11~ t12t1!•Kq#+@Gk2q
11 ~ t12t1!•Kk2q#%dt1 .

Thus, in Eq.~50!, we have

H25E
0

t2
Gk2q

11 ~t2!•M̄ k2q;2q,k
12 :$@G2q

11 ~ t22t2!•Kq#+@Gk
11~ t22t2!•Gk

11~ t1!#%dt2 , ~51!
6-10
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H35SE
0

t1
Kk

21
•Gk

11~t1!•M̄ k;k2q,q
12 :$@Gq

11~ t12t1!•Kq#+@Gk12k2

11 ~ t12t1!•Gk2q
11 ~ t2!•Kk2q#%dt1 . ~52!
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In a subsequent paper@55#, we demonstrate that the expre
sions above give excellent results for a moderately de
hard-sphere system in the hydrodynamic regime.

IV. COMPARISON WITH KAWASAKI’S THEORY:
NON-GAUSSIAN EFFECTS

Roughly 20 years ago, Ronis@41# examined higher-orde
correlation functions within the Kawasaki mode-coupli
formalism @35,48#. The treatment itself is too technical t
recapture here, so we will simply state the results from t
paper to compare with those from the present theory. F
multiple point correlation, Ronis obtains@his Eq.~3.11!#

Ck0k1k2

a0a1a2~ t ![^̂ Aa0 ,k0
~ t !Ab1 ,2k1

Ab2 ,2k2
&&

3^Ak1
Ak1

* &b1a1

21 ^Ak2
Ak2

* &b2a2

21

52E
0

t

dt1Ga0b0
~k0 ,t2t1!Vk0k1k2

b0b1b2

3Gb1a1
~k1 ,t1!Gb2a2

~k2 ,t1!. ~53!

We keep Ronis’s notation here, as it is close enough to o
to be understood. Equation~53! looks essentially like Eq.
~30!, but is missing the first term in Eq.~31! as might be
expected from a Gaussian theory for three-point correla
functions. Intriguingly, this first term is all one would obta
for the three-point correlation function from a projection o
erator approach if only linear densities were included in
basis set for the long-time dynamics. In addition, the ver
V in the Gaussian theory also differs from the vertexM21
due to the subtraction terms in the basis set, which are
present. These differences in functional form of the verti
can significantly alter the time profile of both multiple-poi
and multiple-time correlation functions@55#.

In Ref. @41#, the following expression for a three-tim
correlation function was derived@Eq. ~6.5b! therein#:

^̂ Aa0 ,k0
~ t0!Ab1 ,k1

* ~ t1!Ab2 ,k2
* ~0!&&^Ak1

Ak1
* &b1a1

21

52E
0

t0
dt1Ga0b0

~k0 ,t02t1!Vk0 ,2k1 ,k2

b0b1b2

3Gb2a2
~k2 ,t1!^Ab1 ,k1

~t1!Aa1 ,k1
~ t1!&

12E
0

t1
dt1Ga1b0

~k1 ,t12t1!Vk1 ,2k0 ,k2

b0b1b2 Gb2a2
~k2 ,t1!

3^Ab1 ,2k0
~t1!Aa0 ,k0

~ t0!&. ~54!

Comparison between Eq.~54! and the expression for th
three-time correlation function in Eq.~50! is facilitated by
01110
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noting that in the instantaneous approximation and negl
ing mode-coupling corrections, we can write

Gk
11~ t22t2!•Gk

11~ t1!5Gk
11~ t11t22t2!;

Gk2q
11 ~ t2!•Gk2q

11 ~ t12t1!5Gk2q
11 ~ t11t22t1!.

From careful inspection of Eqs.~54! and ~50!, one sees tha
H3 @see Eq.~52!# is essentially equivalent to the second te
in Eq. ~54!. However, the termH2 differs from the first term
in Eq. ~54! in two ways. First, the way in which the indice
are contracted with the vertexVk0 ,2k1 ,k2

b0b1b2 , as written in Ref.

@41#, differs from the tensor contractions inH2 . Second, and
more importantly, there seem to be significant differences
the upper limits in the time-convolution integrals, which
Ref. @41# is t05t11t2 , as opposed tot2 . This is particularly
intriguing in light of the observation that the upper limit oft0
was obtained in Eq.~37! where the time dependence of th
correlation function of the fluctuating forces was treated
correctly. Nonetheless, in both mode-coupling theories,
higher-order time correlation functions are expressed
terms of ordinary~two-! time correlation functions. The ma
jor differences between the theories arise because of
Gaussian approximation in the Kawasaki formalism. Hen
it is not surprising that some~static! three-point correlations
are missed since they vanish if the linear densitiesQ1 are
assumed to obey Gaussian statistics at all times. This d
ciency was noted by Ronis who suggested that these di
ences result in significant deviations only at short times. I
clear from the present formalism, however, that this is
the case since terms of the formG11(t2)* M̄111* G11(t1) de-
cay slowly in botht1 and t2 . These findings have been con
firmed in numerical simulations of hard-sphere systems@55#.

V. HIGHER-ORDER CORRELATION FUNCTIONS
FOR THE IDEAL GAS

In this section, the mode-coupling formalism will be illus
trated for an ideal gas system in the grand-canonical
semble composed of particles of massm in a volumeV at an
inverse temperatureb. In the ideal gas the motion of eac
particle j is given by

r j~ t !5r j~0!1
pj~0!

m
t, pj~ t !5pj~0!.

Given the simple form of the particles trajectories, any tim
correlation function can be calculated exactly and compa
with the expressions that follow from mode-coupling theo
6-11
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A. Conserved quantities

An essential step in applying the formalism to a particu
system is the identification of the slow variables of the s
tem. In any gas composed of point particles, particle num
momentum, and energy are conserved and hence their c
sponding densities are slowly varying quantities. The id
gas system is quite different from simple gases in that it
many more conserved quantities since the momentumpj of
each particle is conserved along all directions. Conseque
a tagged particle density of the formpjx

mxpjy
mypjz

mzeik•pj , where
mx , my , and mz are arbitrary integers, should be include
for each particlej in the set of slow variables. However, fo
collective modes, it is not hard to show that it suffices
include densities of all analytical functions of the momen
f (pj ), i.e.,

(
j 51

N

f ~pj !e
ik•r j ,

since the contribution of a single tagged particle to corre
tion of extensive variables isO(1/N).

Taking the Hermite polynomialsHn as a basis for the
functions f (p), where

H0~u!51, H1~u!52u; Hn~u!5~21!neu2 dn

dun e2u2
,

the complete set of linear slow variables is given by

Ak
~ i !5(

j 51

N Hi x
~uj

x!Hi y
~uj

y!Hi z
~uj

z!

A2i x1 i y1 i zi x! i y! i z!
eik•r j , ~55!

where$i% denotes the set of three indices$ i x ,i y ,i z%, each of
which runs from zero to infinity. If we defineuj

x

5pj
xAb/2m, uj

y5pj
yAb/m, anduj

z5pj
zAb/m, then the inner

product of the Hermite polynomials corresponds to the
nonical average:

E
2`

`

Hn~u!Hm~u!
e2u2

Ap
du52nn!dmn5^Hn~u!Hm~u!&.

~56!

Since^Hi(u)&50 unlessi 50, Âk
$ i % is given by

Âk
$ i %5Ak

$ i %2^N&d i z0
d i y0d i z0

dk0

and the correlation function̂Âk
$ i %Âk

$ j %* & is given by

^Âk
$ i %Âk

$ j %* &5^N&d i xj x
d i y j y

d i xj z
.

B. Two-time, two-point correlation functions

Consider the density modeNk , which corresponds toAk
$0%

~$0% is short for$0, 0, 0%!. For kÞ0, the density-density time
correlation function is given by
01110
r
-
r,
re-
l
s

ly,

-

-

Gk
$0%$0%~ t !5

K (
j 51

N

(
l 51

N

exp$ ik•@r j~ t !2r l #%L
^N&

5^eik•p1t/m&.

This result follows from the fact that̂ ( i 51
N exp(r i•k)&

5^N&dk0 and the statistical independence of particles. As
momentump1 is Gaussian distributed, one obtains

Gk
$0%$0%~ t !5E

2`

` ei ukupt/me2bp2/~2m!

A2pm/b
dp5exp@2uku2t2/2mb#

5e2~ k̃t !2/2, ~57!

wherek̃5uku/Amb is a conveniently scaled wave vector.
We will compare the exact result Eq.~57! to the result

from the mode-coupling framework of this paper obtain
using Eqs.~9! and~10!. The first point to note is thatQ̇a(t)
is proportional toQa , which follows from the facts the al
Hermite polynomials have been included in the set of sl
variables and that (d/dt)Hn(u)50 for all n. This, in turn,
implies thatP'Q̇a50, and hence the fluctuating forcefa(t)
vanishes for allt. According to Eqs.~10! and ~14!, Mab(t)
52d(t)M̄ab , sincefa(t)50. Thus Eq.~13! is exact, with

M̄ab5^Q̇aQ
b̂
* &* K

b̂b

21
. ~58!

Since Q̇1 is can be written as a linear combination
Q1’s, and, in general,Q̇a5( ubu<uauaabQb , we conclude that

^Q̇aQb* &50 for b.a since the multilinear basis set is o
thogonal in mode order by construction. Similarly, sin

^Q̇aQb&52^QaQ̇b* &, ^Q̇aQb&50 for a.b and hence

M̄ab is diagonal in mode order, implying that Eq.~13! de-
couples at each mode ordern into equations for the multiple-
point correlation functionsGnn(t).

Focusing on the linear variables, Eq.~13! reduces to

Ġk
$ i %$ j %~ t !5(

$ l %
M̄ k

$ i %$ l %Gk
$ l %$ j %~ t !.

Due to the orthogonality of theAk
$ i %’s, Gk

$ i %$ j %(0)5d$ i %$ j % , and
hence,

Gk
$ i %$ j %~ t !5@exp~M̄ k

11t !#$ i %$ j % . ~59!

The structure of the matrixM̄11 is relatively simple,
which makes it possible to actually calculateG11(t) from Eq.
~59!. Fixing the direction ofk to be alongx̂, for ukuÞ0 we
note that

Ȧk
$ j %5 i k̃@Aj x11Âk

$ j x11,j y , j z%1Aj zÂk
$ j x21,j y , j z%#,

where Eqs.~55! and the recursion relation for the Hermi
polynomials

2uHn2122~n21!Hn225Hn~u!

have been used. With Eq.~58!, this leads to the tridiagona
form for the matrixM̄11 at linear order,
6-12
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M̄ k
$ i %$ j %5 i k̃d i y j y

d i zj z
~Ai x11d i x11 j x

1Ai xd i x21,j x
!. ~60!

The terms in Eq.~60! can be conveniently expressed as t
expectation values of the raising and lowering operators
the Hermite basis representation of the quantum harm
oscillator. Identifying

un&5Âk
$n, j y , j z%

and defining

^muBn&[^Âk
$m, j y , j z%* BÂk

$n, j y , j z%&/^N&

for any operatorB and

aun&5Anun21&, a†un&5An11un11&,

one has

^muan&5Andm,n21 , ^mua†n&5An11dm,n11 .

In this representation, the matrixM̄ k
$ i %$ j % can be written as

M̄ k
$ i %$ j %5^ j xuM̄i x&,

whereM is the operator

M̄5 i k̄~a†1a!. ~61!

In essence,M̄ is nothing but the Liouville operatorL, re-
stricted to act on the space of phase space functions tha
linear combinations ofÂk .

To reproduce Eq.~57!, according to Eq.~59!, we must
evaluate

^0ueM̄t0&,

which can be done in a straightforward fashion using
Baker-Campbell-Hausdorf formula@56#. This formula states
that if A andB are linear operators, a linear operatorC exists
such that eAeB5eC, where C of the form C5A1B
1 1

2 @A,B# plus repeated commutators. TakingA5 i k̃ ta† and
B5 i k̃ ta and noting that@a,a†#51, Eq. ~61! yields

eik̃ta†
eik̃ta5eM̄te~ k̃t !2/2,

which can be rearranged to give

eM̄t5eik̃ta†
eik̃tae2~ k̃t !2/2, ~62!

and therefore

^0ueM̄t0&5^e2 i k̃ ta0ueik̃ta0&e2~ k̃t !2/2.

But aseik̃tau0&5u0&,

^0ueM̄t0&5e2~ k̃t !2/2,

which coincides, as expected, with the exact result~57!.
01110
in
ic
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e

The time correlations for other basis functions are n
easily obtained using Eq.~62!. For example,

^Ak
$ j %~ t !Ak

$0,0,0%* &

^N&
5^0ueik̃taj x&e

2~ k̃t !2/2d j y0d j z0

5
~ i t k̃ ! j x

Aj x!
e2~ k̃t !2/2d j y0d j z0

. ~63!

Note that it is only with an infinite set of conserved qua
tities that it is possible for a system with no dissipative ter
to lead to relaxation. One might argue that taking a fin
number of slow variables~say, mass, momentum, and ener
density!, the dissipative terms inM̄ would no longer be zero
While this is correct andM̄ is not purely imaginary,M̄
would still be finite in each mode block, and one would g
exponential decay in the instantaneous limit instead
Gaussian decay for all correlation functions.

C. Two-time, multiple-point correlation functions

Consider the correlation function

Ck2q,q;k
$0%$0%$0%~ t ![^N̂k2q~ t !N̂q~ t !N̂k* &/^N&

with ukuÞ0, uquÞ0, andkÞq. The direct calculation of this
correlation function is simple if one notes that

K (
l 51

N

ei ~k2q!•r l ~ t ! (
m51

N

eiq•rm~ t ! (
n51

N

e2 ik•rnL Y^N&

5K (
l 51

N

exp@ i ~k2q!•r l~ t !#eiq•r l ~ t !e2 ik•r lL ,

since any term in the summation over particle indices
which iÞm, lÞn, or mÞn yields a Kronecker delta for one
of the wave vectors. Such terms do not give a contributio
all wave vectors are nonzero. The wave vectorq drops out of
the expression and

Ck2q,q;k
$0%$0%$0%~ t !5K (

l 51

N

eik•pl t/mL Y^N&5Gk
$0%$0%~ t !5e2~ k̃t !2/2.

~64!

The mode-coupling derivation of this same result goes
follows. From Eq.~30!, noticing thatM2150, we immedi-
ately obtainG21(t)50. The simplest argument for the van
ishing ofG21(t) is that sinceM̄ is diagonal in mode order, no
correlations between different mode orders exist, so that

Gab~ t !50 if uauÞubu.

From the definition of the multilinear basis set in Eq.~5!,
Ck2q;q;k

$0%$0%$0%(t) can be written in terms of the linear and biline
densities as

Ck2q,q;k
$0%$0%$0%~ t !5^Qk2q,q

$0%$0% ~ t !N̂k* &/^N&1^N̂k2qN̂qN̂k* &

3^N̂k~ t !N̂k* &/^N&2.
6-13
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However, sinceG21(t)50, Ck2q,q;k
$0%$0%$0%(t) gets its value solely

from the subtraction terms. Furthermore, sin

^N̂k2qN̂qN̂k* &5^N& for an ideal gas system, one gets

Ck2q,q;k
$0%$0%$0%~ t !5^N̂k~ t !N̂k* &/^N&

in agreement with Eq.~64!.

D. Multiple-time correlation functions

Finally, we conclude our discussion of the higher-ord
correlation functions in the ideal gas by examining the va
ity of the expressions for the multiple-time correlation fun
tions in Eq.~45!. For the three-time correlation function fo
the density modeNk , direct calculation gives

Gk2q,q,k
$0%$0%$0%~ t2 ,t1!5K (

l 51

N

exp$ ipl•uk~ t11t2!2qt2u%L Y^N&

5exp@2uk̃~ t11t2!2q̃t2u2/2#, ~65!

wherek̃5k/Amb and q̃5q/Amb.
If k andq are both alongx̂, the mode-coupling expressio

for the multiple-time correlation@see Eq.~45!# is

Gk2q,q,k
$0%$0%$0%~ t2 ,t1!5Gk2q

$0%$ j %~ t2!M̄ k2q,q,k
$ j %$0%$ i %Gk

$ i %$0%~ t1!,

where the repeated sets of indices$i% and $j% are summed.
Since G$ i %N(t) was previously evaluated in Eq.~63!, and
G$ i %N(t)5GN$ i %* (2t), the only unknown quantity in this ex
pression is

M̄ k2q,q,k
$ j %$0%$ i %5^Âk2q

$ j % Âq
$0%Âk

$ i %* &/^N&.

Writing this out using Eq.~55!, the only surviving terms in
the summations over particle index for an ideal gas sys
are the terms where all indices are equal, so that

M̄ k2q,q,k
$ j %$0%$ i %5d$ i %$ j % .

Hence,

Gk2q,q,k
$0%$0%$0%~ t2 ,t1!5 (

j x50

`

exp@2uk̃2q̃u2t2
2/2#e2uk̃ t1u2/2

3
1

j x!
@2t1t2k̃x~ k̃x2q̃x!#

j x.

This can be summed to

exp$2@ uk̃2q̃u2t2
22uk̃u2t1

22 k̃x~ k̃x2q̃x!t1t2#/2%,

which corresponds to the exact result~65!.

VI. SUMMARY

In this paper, a mode-coupling theory was presented
which multiple-point and multiple-time correlation function
are expressed in terms of ordinary two-point, two-time c
relation functions and a set of vertices. The mode-coup
01110
r
-

m

in

-
g

theory developed here does not assume that fluctua
forces~noise! are Gaussian distributed and therefore is a g
eralization of mode-coupling theories based on Kawasa
formalism@35,48#. Furthermore, unlike kinetic theories, it i
not restricted to low densities and should be applicable
dense fluids where cooperative motions of particles and
lective modes are important.

The formalism is based on projection operator techniqu
which, for ordinary two-point, two-time correlation func
tions, lead to a generalized Langevin equation in which
memory function decays on a microscopic time scale. T
simple extension of the projection operator formalism
multiple-time correlation functions is complicated by the fa
that the fluctuating forces appearing in the generaliz
Langevin equation do not obey Gaussian statistics. Furt
more, multiple-time correlations of the fluctuating force c
in fact have a slow decay when the time arguments of th
forces become comparable.

In order to treat multiple-time correlation functions o
fluctuating forces properly, the correlation functions we
massaged so that the time arguments of all fluctuating fo
appearing in the correlations were guaranteed to be w
separated, ensuring that all memory functions that arise
the mode-coupling theory decay to zero on a molecular t
scale. This construction allows equations that are loca
time to be obtained, which relate the multiple-time corre
tion function to two-time but multiple-point correlation
coupled by essentially time-independent vertices. T
multiple-point correlations, in turn, can be written as conv
lutions of two-point and two-time correlation function
coupled by time-independent vertices. These correla
functions can either be taken directly from experiment, sim
lation, or can be solved self-consistently within the mod
coupling formalism. The vertices, which are composed o
static part~Euler term! and a generalized transport coef
cient, can similarly be calculated from kinetic theory
taken from molecular dynamics and Monte Carlo simu
tions.

The equations for higher-order correlation functions co
tain an infinite sum of terms that can be made tractable
systems with a finite correlation length by applying a cum
lant expansion technique termed theN-ordering method. The
method was applied to obtain the leading-order and fi
order mode-coupling corrections of expressions for multip
point and multiple-time correlation functions. A key step
the N-ordering method and the proper setup of the theory
the definition of anorthogonalmultilinear basis. Although,
in principle, it is possible to apply cumulant expansion me
ods to other choices of a multilinear basis, the orthogon
ization procedure simplifies the perturbation analysis en
mously and helps to avoid erroneous truncations of
mode-coupling series.

The expressions for the higher-order correlation functio
bear a resemblance to those found by Ronis@41# within the
framework of Kawasaki’s mode-coupling theory. In this a
proach, the linear densities composing the set of slow v
ables are assumed to be Gaussian random variables a
times. Although the Gaussian assumption provides ano
method of simplifying the mode-coupling series for highe
6-14
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order correlation functions, certain terms are absent from
Gaussian theory that are neither small nor quickly decay

The mode-coupling predictions for higher-order corre
tion functions for an ideal gas system were calculated a
lytically and shown to give the exact results for bo
multiple-time and multiple-point correlation functions. A
essential step in arriving at the correct result was the in
sion of a complete set of densities in the set of slow va
ables. Although the ideal gas system does not constitu
rigorous test of the formalism since all fluctuating forc
vanish, it is important to note that the formal mode-coupli
theory expressions for the higher-order correlation functi
yield the exact result. In a future paper@55#, we compare the
mode-coupling predictions for the multiple-point an
multiple-time correlation functions for a hard-sphere fluid
data from simulations. The theoretical predictions of
higher-order correlation functions are in remarkable agr
ment with the simulation results in the hydrodynamic regi
provided both Euler and dissipative vertex couplings are
cluded.

The theory outlined here has obvious applications to m
tidimensional Raman and nuclear magnetic resonance s
troscopy, and simulation studies of dynamic heterogeneit
dense fluids, glasses, and polymers. Since the theory
volves physical correlation functions, it is well positioned
address fundamental issues in characterizing the dynami
systems exhibiting nonexponential relaxation processes
frustration. In fact the current formalism has been used
Refs.@46#, @54# to justify some of the approximations mad
in mode-coupling theory for the supercooled liquids@53#.
These avenues are currently being investigated.
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APPENDIX A: REDUCTION OF THE VERTICES M̄ 211

AND M̄ 112

Neglecting mode-coupling corrections, the verticesM̄211

andM̄112 can be reduced to very simple forms. The strate
used to simplify these terms is similar to that used for
factorization of M̄ab in Ref. @46#. First M̄112 is rewritten
with the help of Eq.~45! as

M̄1125G1a
21~ t2!Ga1b~ t2 ,t1!Gb2

21~ t1!.

Using theN ordering ofGa1b(t2 ,t1), G1a(t2), andGb2(t1),
one sees that to leadingN order,

M̄1125G11
21~ t2!G112~ t2 ,t1!G22

21~ t1!. ~A1!

In this expression, the leadingN-order contributions are ob
tained from the part of the various factors in Eq.~A1! that
are diagonal in the wave vector.

By the property in Eq.~19!, G112 can be factored using
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e
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^Âk2q
a ~ t11t2!Âq

b~ t1!Q
k2q8,q8

c,d* &

'^Âk2q
a ~ t11t2!Âk2q

c* &^Âq
b~ t1!Âq

d* &dqq8

1^Âk2q
a ~ t11t2!Âk2q

d * &^Âq
b~ t1!Âq

c* &dk2q,q8 .

In a similar fashion,K22
21 factors to leadingN order,

Kk2q,q;k2q8,q8
2221

'Kk2q
21 +Kq

21dqq81Kk2q
21 "Kq

21dk2q,q8 .

This leads to the following factorization of the wave-vecto
diagonal part ofG112(t2 ,t1):

Gk2q;q;k2q8,q8
112

~ t2 ,t1!'Gk2q
11 ~ t11t2!+Gq

11~ t1!dqq8

1Gk2q
11 ~ t11t2!"Gq

11~ t1!dkq2q8 ,

where the notation introduced in Eq.~29! has been used.

The factorization ofG22
21 can be worked out as well,

Gk2q,q;k2q8,q8
2221

~ t1!'Gk2q
1121

~ t1!+Gq
1121

~ t1!dqq8

1Gk2q
1121

~ t1!"Gq
1121

~ t1!dkq2q8.

Inserting these expressions into Eq.~A1! and using Eq.~17!
yields

M̄ k2q;q;k2q8,q8
112 'Gk2q

1121
~ t2!•Gk2q

11 ~ t21t1!•Gk2q
1121

~ t1!+1dqq8

1Gk2q
1121

~ t2!•Gk2q
11 ~ t21t1!•Gk2q

1121
~ t1!"1dqq8

'1+1dqq811"1dk2q,q8 , ~A2!

where1ac5dac .
Finally, Eq. ~A2! and the relation M̄211

5K22* (M̄11* 2)* * K11
21 give the leadingN-order expression

for M211,

M̄ k2q81q,q8;2q;k
211 'Kq+1dkq811"Kqdqq8 ~A3!

to lowest order in the mode-coupling parameterM /N. It in-
teresting that the first term in Eq.~43! gives the only contri-
bution to M211 at order (M /N)0: In other words, when
mode-coupling corrections are neglected, the term involv
the fluctuating forces in Eq.~43! can be dropped.

Note that in this appendix, we have allowed ourselves
neglect the difference between the inverse of quantities
the multilinear level and the linear-linear sub-block lev
which is correct to order (M /N)0 and consistent with the
level of approximation of the rest of the derivation of Eq
~A2! and ~A3!.

APPENDIX B: SYMMETRY PROPERTIES OF Gab„t…
AND M̄ ab

In the ideal gas case, theQa’s are either even or odd
functions of momentum. This property implies that the e
ments of the multilinear basis setQa are either symmetric or
6-15
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antisymmetric under the time-reversal operatorT, which re-
verses the momenta. Mathematically, this property can
written asTQa5gaQa , wherega is either 1 ifa contains an
even number of momenta indices, or21 when it has an odd
number. In addition, there typically is a symmetry under
reflection operatorR, which inverts both the momenta an
the positions of all particles. As the basis set elementsQa
depends on the spatial degrees of freedom thro
exp(ik•r j ) @see Eq. ~55!#, it follows that RQa5gaQa* .
These relations also holds for other systems in which
potential energy depends only on the distances between
ticles in the system. These two symmetries plus time tra
lation invariance have the following implications forM̄ab
andGab(t) ~see also Ref.@57#!.

As the equilibrium distribution function is invariant unde
R,

Cab~ t !5^Qa~ t !Qb* &5^@RQa~ t !#~RQb* !&5gagbCab* ~ t !.
~B1!

Hence, ifgagb51, the imaginary part is zero, otherwise th
real part is zero. Since the wave-vector dependence of
densities always enters in the form ofi times a wave vector
imaginary correlation functions must be odd functions of
wave vector and real correlation functions must be e
functions of wave vector, provided these quantities are a
lytic in wave vector.

Time reversal invarianceTeLt5e2LtT yields

^~eLtQa!Qb* &5^~Te2LtTQa!Qb* &5^~e2LtTQa!TQb* &

5gagb^~e2LtQa!Qb* &,
m

C

,

-

n

01110
e

e

h

e
ar-
s-

he

e
n
a-

which, combined with Eq.~B1!, implies thatKab is real and
symmetric, and henceGab(t)5gagbGab(2t). This can be
combined with Eq.~B1! to yield

Gab~ t !5Gab* ~2t !. ~B2!

So from Eqs.~B1! and ~B2!, we conclude that ifgagb

51, Gab(t) is real, even in wave vectors, and symmet
undert→2t, whereas ifgagb521, it is imaginary, odd in

wave vectors, and antisymmetric under time reversal. AsM̄

5@dG(t)/dt#G21(t), this also implies thatM̄ab is real and
even in wave vectors ifgagb51, and imaginary and odd in
wave vector otherwise.

The following ordering is now valid when the magnitud
of the wave vectors are small. Imaginary correlation fun
tions and vertices, being odd in the wave-vector argume
are typically of linear order in the wave vectors. But as t

verticesM̄ contain time derivatives, they will always be a
least of the order of the wave vectors, so a real-valued ve
is at least quadratic in wave vector, whereas a real-val
correlation function is typically of order one.

Finally, using time-translation invariance,Gab(t)

5Gb̂â
* (2t)K âaK

bb̂

21
, which conveniently combines with

Eqs.~B2! to give

Gab~ t !5Gb̂â~ t !K âaK
bb̂

21
. ~B3!
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@17# R. Böhmer, G. Hinze, G. Diezemann, B. Geil, and H. Sillesc

Europhys. Lett.36, 55 ~1996!.
@18# U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Roh

and H. W. Spiess, Phys. Rev. Lett.81, 2727~1998!.
@19# D. A. Blank, L. J. Kaufman, and G. R. Fleming, J. Chem

Phys.113, 771 ~2000!.
@20# V. Astinov, K. J. Kubarych, C. J. Milne, and R. J. D. Miller

Chem. Phys. Lett.327, 334 ~2000!.
@21# O. Golonzka, N. Demirdo¨ven, M. Khalil, and A. Tokmakoff, J.

Chem. Phys.113, 9893~2000!.
@22# K. Okumura and Y. Tanimura, J. Chem. Phys.106, 1687

~1997!.
@23# S. Saito and I. Ohmine, J. Chem. Phys.108, 240 ~1998!.
@24# A. Ma and R. M. Stratt, Phys. Rev. Lett.85, 1004~2000!.
@25# R. A. Denny and D. R. Reichman, Phys. Rev. E63, 065101~R!

~2001!.
6-16



o
ald
-

nd

ys.

nd

MODE-COUPLING THEORY FOR MULTIPLE-POINT AND . . . PHYSICAL REVIEW E65 011106
@26# I. M. de Schepper and M. H. Ernst, Physica~Amsterdam! 75, 1
~1974!; 93A, 611 ~1978!.

@27# For a more complete review of the description of the history
the physics of liquids, see J.-P. Hansen and I. R. McDon
Theory of Simple Liquids, 2nd ed.~Academic Press, San Di
ego, 1986!.

@28# P. Schofield, Proc. Phys. Soc. London88, 149 ~1966!.
@29# R. C. Desai, Phys. Rev. A3, 320 ~1971!.
@30# C. Murase, J. Phys. Soc. Jpn.29, 549 ~1970!.
@31# I. Michaels and I. Oppenheim , Physica A81, 454 ~1975!.
@32# B. J. Alder and T. E. Wainwright, J. Phys. Soc. Jpn.26, 267

~1968!; Phys. Rev. Lett.18, 988 ~1967!.
@33# M. H. Ernst and J. R. Dorfman, Physica~Amsterdam! 61, 157

~1972!; J. Stat. Phys.12, 311 ~1975!.
@34# Y. Pomeau, Phys. Rev. A6, 776 ~1972!.
@35# K. Kawasaki, Ann. Phys.~N.Y.! 61, 1 ~1970!.
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