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Noise-enhanced excitability in bistable activator-inhibitor media
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We show that external fluctuations induce excitable behavior in a bistable spatially extended system with
activator-inhibitor dynamics of the FitzHugh-Nagumo type. This can be understood as a mechanism for
sustained signal propagation in bistable media. The phase diagram of the stochastic system is analytically
obtained and numerically verified. For small-noise intensities, front propagation becomes unstable, and excit-
able pulses arise as the only possible spatiotemporal behavior of the system. For large-noise intensities, on the
other hand, the system enters an effective regime of oscillatory behavior, where it exhibits spontaneous
nucleation of pulses and synchronized firing.
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I. INTRODUCTION

Excitability is one of the most important mechanisms
sustained signal transmission in nature. Excitable syst
have only one stable steady state, but respond to weak
turbations in a nontrivial way, performing a large excursi
in phase space before eventually returning to their orig
rest state. Such behavior provides these systems with a
resetting mechanism after excitation which, complemen
with spatial diffusion, allows for the self-sustained propag
tion of waves, in the form of pulses in one-dimensional ch
nels and spiral waves~among other structures! in two-
dimensional media@1#. These phenomena are of utmo
importance, in particular, in physiology, where they cons
tute the main mechanism by which signals propagate thro
nerve and cardiac cells, for instance@2#. In the specific case
of neural tissue, propagation takes place in a substant
noisy environment, and thus it seems natural to exam
what is the role of random fluctuations in this dynamic
behavior. In this direction, previous studies have shown
noise is able to produce collective bursts in a simple mo
of the visual cortex@3#, induce spiral-wave propagation@4#
and pacemaker activity@5,6# in excitable cellular automata
drive the emission of circular and spiral waves in cellu
slime molds@7#, generate calcium waves in glial-cell ne
works @8#, and give rise to synchronized firing in cellula
automaton models of excitable media@9# and in models of
coupled neurons@10,11#. In this latter situation, random ex
citations become entrained to the characteristic time scale
the deterministic dynamics for an optimal amount of noi
locally inducing an ‘‘autonomous’’ coherent response of t
system@12#, and spatial coupling synchronizes the resulti
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local coherent behavior among the different oscillators@13#.
In all the above-mentioned situations, the underlying d

terministic state of the system is originally excitable, a
noise only produces a certain spatiotemporal behavior in
medium. A more fundamental question is whether noise
able to induce the excitable behavior itself. The answe
again positive, as shown experimentally in a subexcita
chemical medium undergoing a photosensitive Belous
Zhabotinsky reaction, which can be rendered excitable by
externally added noise in the illumination profile@14#. Re-
cent experiments in the same system have also shown n
induced transitions from an excitable to an oscillatory regi
@15#. In this paper, we address the question of whether ex
able behavior can also be induced in bistable media.

In general, bistable systems are not suitable media
signal-transmission purposes, since under normal condit
they only support propagation of fronts, and therefore a c
tain external resetting mechanism is required for the tra
mission of information-carrying pulses. In any case, no
has already proven helpful to sustain propagation of front
chains of bistable diode oscillators@16# and of harmonic sig-
nals in coupled double-well potential models@17#. Addition-
ally, an artificial model of a one-component bistable mediu
has also been developed that exhibits pulse propagation
tained by noise@18#. In what follows, we show that externa
random fluctuations naturally sustain propagation of pul
in standard models of activator-inhibitor media operating i
deterministically bistable regime, where only propagation
fronts would take place in the absence of noise under sim
initial conditions~e.g., as a response to a local perturbat
of a homogeneous steady state!. This is accomplished by
means of a noise-induced transition from the bistable to
excitable regime, as advanced in the previous paragraph

Activator-inhibitor media are usually modeled by mea
of two coupled reaction-diffusion equations, a particula
©2001 The American Physical Society05-1
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important example of which is given by the well-know
FitzHugh-Nagumo class of models, whose general form

]u

]t
5

1

«
f ~u,v !1

]2u

]x2 , ~1a!

]v
]t

5g~u,v !, ~1b!

whereu(x,t) represents the activator andu(x,t) the inhibi-
tor, and«!1, so that the activator evolves in a time sca
much faster than the inhibitor~whose diffusion is also ne
glected!. For specific choices of the reaction termsf (u,v)
and g(u,v), this model constitutes a very useful simplifie
description of electrical signal transmission along neuron
ons, withu representing the membrane potential andv being
related to the time-dependent conductance of the potas
channels@2,19#. We aim to examine here the influence of
external multiplicative noise in the dynamics of the activa
when the system is deterministically bistable. Previo
works have analyzed the effect of a fluctuating inhibitor d
namics in the excitable regime, showing that an addit
noise can lead to synchronized firing@11#, whereas a multi-
plicative noise is able to induce spiral breakup and tur
lence @20#. This last type of fluctuating dynamics has al
been examined in the bistable regime, where excitable
structures were found@21#. In that case, however, such stru
tures were produced by noise-induced decays from the ‘
cited’’ stable state, and not by a real noise-induced transi
between the two regimes, as reported below.

In what follows, we examine the dynamics of a particu
type of stochastic FitzHugh-Nagumo model, namely,
Barkley model with multiplicative noise, operating in a d
terministically bistable regime. A moderate amount of no
will be seen to greatly enhance excitable behavior in
system, whereas for larger noise intensities, the system
hibits oscillatory dynamics leading to synchronized firing

II. THE BISTABLE BARKLEY MODEL

The Barkley model is a computationally efficient versi
of the FitzHugh-Nagumo activator-inhibitor dynamics. It
defined by the following choices for the reaction term
f (u,v) andg(u,v) @22#

f ~u,v !5u~12u!S u2
v1b

a D , ~2a!

g~u,v !5gu2v, ~2b!

wherea, b, andg are constant parameters that determine
type of local dynamics exhibited by the system, which c
vary among purely monostable, oscillatory, excitable, a
bistable. In what follows, we will concentrate on the tw
latter situations, which are represented in Fig. 1 in terms
the phase plane (u,v). In that figure, solid lines represent th
activator nullclines, defined byf (u,v)50, and dashed lines
correspond to the inhibitor nullclineg(u,v)50.
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For the parameter values chosen in Fig. 1~a!, the two sets
of nullclines intersect in three fixed points, two of whic
labeled 0 and 1 in the figure, can be seen to be stable.
bistable behavior disappears for increasingb, when a tran-
scritical bifurcation involving the stable steady-state 1 a
the unstable fixed point appears, leading to the excitable
gime represented in Fig. 1~b! @23#. In this situation, the sys-
tem possesses a single stable steady state~rest state! @24#, but
a perturbation of sufficient~but small! intensity takes it to the
excited branch atu'1 @see dotted trajectory in Fig. 1~b!#,
where it follows the vertical (u51) nullcline upwards until
it goes back again to the (u50) nullcline, and down to the
rest state. This excitation plus resetting mechanism lead
conjunction with spatial coupling, to the propagation
pulses through the medium.

We note that single pulse propagation can also occu
the bistable regime of Fig. 1~a!, provided the initial condi-
tions of the system are carefully prepared@25#. However,
under general initial conditions, such as a single local per
bation in the activator profile, a front instead of a pulse w
arise. This contrasts with the situation in the excitable
gime, where fronts never exist, and pulses are the only p
sible spatiotemporal behavior. In order to make this diff
ence clear, we now examine the response of the system t
instantaneous local perturbation of the activator profile. T
spatiotemporal behavior of the activator variableu corre-
sponding to the two regimes represented in Fig. 1 is plot
in gray scale in Fig. 2. In the two cases, the system is
tially in the rest state 0 everywhere, and only the value of
activator variable at the left boundary of the system is
above excitation threshold. For this simple~and realistic! ini-
tial condition, the system can only develop a front in t
bistable regime@Fig. 2~a!#, whereas it generates a wel
defined pulse in the excitable regime@Fig. 2~b!#. In plot 2~a!,
boundary conditions are absorbing, whereas in plot 2~b!,
they are set to periodic as soon as the traveling puls
developed, in order to trap the pulse in a ring, so that
long-term evolution can be systematically analyzed. T
model is integrated on a one-dimensional~1D! lattice of
1000 cells with a spacingDx50.25, making use of a semi
implicit algorithm for the activator equation@26#, and an
explicit algorithm for the inhibitor one.

III. BARKLEY MODEL WITH STOCHASTIC ACTIVATOR
DYNAMICS

We now assume that the control parameterb is subjected
to random fluctuations evolving at time scales much sho

FIG. 1. Nullclines of model~2! for a50.85 andg50.7, in the
~a! bistable@b50.12#, and ~b! excitable@b50.18# regimes. Solid
~empty! circles denote stable~unstable! fixed points.
5-2



de
e

ce

at

ea
s
-

lly
on

ul
to
re

tiv

r
a

th
no

se
vi-

dis-
r-

tion
on-

or
ion
he
an
ns

stic

ugh

the
tive

ary
by
se
ters

r-
of

ise
he
the

NOISE-ENHANCED EXCITABILITY IN BISTABLE . . . PHYSICAL REVIEW E 65 011105
than those of the deterministic dynamics. In order to mo
this situation, we add tob a zero-mean Gaussian nois
h(x,t) with correlation

^h~x,t !h~x8,t8!&52C~x2x8!d~ t2t8!, ~3!

which corresponds to a spatially extended stochastic pro
white in time and with a spatial correlation functionC(x).
We note that this noise is multiplicatively coupled to the st
of the system, since it leads in the activator Eq.~1a! to an
additional random term of the form

f~u!5
1

a«
u~u21!h~x,t !. ~4!

The assumption of such a multiplicative noise is not unr
sonable, given that the FitzHugh-Nagumo equations con
tute a qualitative simplification of the well-known Hodgkin
Huxley model of electrical signalling in neurons, basica
consisting in reducing the fast dynamics of the sodium c
ductance of the cell membrane@2,19#. In such a reduction
process, additive fluctuations of this conductance wo
readily give rise to multiplicative noise terms in the activa
equation. Our simplified choice of the noise term cor
sponds in fact to a fluctuating excitation threshold~sinceb is
the offset of the tiltedu nullcline in Fig. 1!. This is the
approach followed in the experiments on the photosensi
Belousov-Zhabotinsky reaction@14,15#, which can be mod-
eled directly by the Barkley equations, withb corresponding
to the fluctuating illumination level@27#. We also note that
the random termf(u) vanishes identically foru50 and 1,
so that the fluctuations do not perturb the system neithe
the rest nor in the excited state. This is very different from
additive or other types of multiplicative noise@21#, where the
fluctuations actively perturb the system in some or all of
fixed points. In particular, the noise we consider here is
able to induce a decay from one of stable steady states
wards the other.

FIG. 2. Spatiotemporal evolution of model~2! corresponding to
the two situations of Fig. 1:~a! bistable and~b! excitable. The
profile of the activatoru is plotted in grayscale. Black coding co
responds tou51, and white tou50. Parameters used are those
Fig. 1, plus«50.01.
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In order to establish the effect of the multiplicative noi
h(x,t) in the deterministic dynamics described in the pre
ous section, we note that the random term~4! has a nonzero
mean equal to@28#

^f&5
1

«2a2 C~0!^u~u21!~2u21!&, ~5!

where the brackets denote averaging over the probability
tribution of the multiplicative noise, which has been inte
preted in the Stratonovich sense. According to Eq.~5!, the
random term gives rise to a systematic nonzero contribu
to the average dynamics of the system. This systematic c
tribution can be incorporated explicitly into the activat
equation as the first-order term of a small-noise expans
@28#, where the remaining stochastic contributions of t
noise average out to zero. In that way, one can write down
effective equation for the activator dynamics, which happe
to have exactly the same form as the original determini
model, but with renormalized parameter values:

a85a2
2C~0!

«a
, ~6a!

b85b2
C~0!

«a
, ~6b!

«85
«

122C~0!/«a2 , ~6c!

where the noise correlation at zero distanceC(0) measures
the strength of the noise. We can thus see that even tho
the random fluctuations only affect directly the parameterb,
they produce a renormalization of all three parameters of
activator dynamics, in the sense of decreasing the effec
values ofa andb, and increasing that of«. These renormal-
izations lead to important displacements of the bound
lines between the different dynamical regimes exhibited
this model, as shown in Fig. 3. This figure plots the pha
diagram of the system in the plane formed by the parame
b andC(0), for constant values ofa50.85 andg50.7. Sev-

FIG. 3. Phase diagram of the Barkley model with external no
in the C(0)2b plane. Other parameters are those of Fig. 2. T
four labeled points denote four different regimes represented in
corresponding figures.
5-3



ab
n
s
h
m
e
ic
i

d
iv

e
d

he
ta
tio
a

t
ab

o
ua
h
iv
a

ys
oi
ac
ru
at

Fi
el
ed

ch
hat
ed

in-
ain

dia-
n-
ffec-

de-
ed

ex-
as
ig.
In
lta-
gly
n
de-
ions
such
tic

n in
ter-

be
d

lses,
tor-

ig.
re-
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eral remarkable features in this phase diagram should
noted. First, the transition between the bistable and excit
regimes of Fig. 1~labeled BIST and EXC I, respectively, i
Fig. 3! is advanced as noise intensity increases. This lead
an enlargement of the region of excitable behavior, in suc
way that a deterministically bistable medium can beco
excitable for large enough intensity of the multiplicativ
noise. An example of this noise-induced excitable dynam
is given in Fig. 4, which shows the behavior of the system
the deterministically bistable regime of Fig. 1~a!, but with an
amount of external noise corresponding to the point labele
in the phase diagram of Fig. 3. The location of the effect
nullclines in phase space is shown in Fig. 4~a!, which clearly
exhibits an excitable layout. Plot 4~b! displays the corre-
sponding spatiotemporal dynamics, as simulated for an
ternal noise taken to be white in the discrete space define
the 1D lattice. In this case,C(0)5s2/Dx, whereDx is the
mesh size of the lattice. Following a local excitation in t
left boundary of the medium, consisting only in a instan
neous suprathreshold increase of the activator concentra
the system self organizes after a certain transient into
excitable pulse. We stress again that this effect canno
merely due to a noise-induced decay from the metast
state 1@as labeled in Fig. 1~a!#, since the random term~4!
vanishes in that state. Hence, this behavior must corresp
to a dynamical destabilization of state 1 due to the fluct
tions, following a noise-induced transition denoted by t
corresponding line in the phase diagram of Fig. 3. Extens
numerical simulations confirm the existence of such a cle
cut transition, showing that below the transition line, the s
tem develops fronts systematically, independent of the n
realization, whereas above it only pulses are found. In f
beyond the transition point, pulses are the only stable st
tures of the system, and fronts cannot be obtained no m
the initial conditions considered.

A second feature to be noted in the phase diagram of
3 is the appearance of a second excitable regime, lab
EXC II in the figure, which is symmetric to that represent

FIG. 4. Noise-induced excitability in the bistable regime of F
2~a!: ~a! effective nullclines forC(0)5431024; ~b! corresponding
spatiotemporal behavior numerically simulated fors251024 and
Dx50.25.
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in Fig. 4~a!. For this regime, the effective nullclines are su
that the only remaining stable fixed point is state 1, so t
now the system allows for the propagation of invert
pulses, with the excited branch corresponding tou'0, and
the rest state tou51, v5g. This dynamical regime exists in
the deterministic model forb,0, and the corresponding
transition from the bistable regime is now retarded for
creasing noise intensity, so that the excitable regime is ag
enlarged.

Finally, a more unexpected feature arises in the phase
gram of Fig. 3 as the intensity of the noise is further i
creased. Such an increase produces a reduction in the e
tive slope of the tiltedu nullcline ~controlled bya!, which
finally leads to the situation portrayed in Fig. 5~a!. In this
case, all three fixed points are unstable and the system
velops a limit cycle, which corresponds to a noise-induc
oscillatory regime~labeled OSC in Fig. 3!, analogous to the
one recently observed experimentally in deterministically
citable media@15#. The related spatiotemporal behavior
computed from numerical simulations is represented in F
5~b!, where random initial conditions have been chosen.
this regime, pulses are spontaneously nucleated simu
neously throughout the system, which leads to a stron
synchronized firing of all lattice sites. Again, the transitio
between the excitable and oscillatory regime is clear-cut
fined, as can be checked by extensive numerical simulat
through the whole parameter space. We stress here that
an oscillatory dynamics does not exist in the determinis
system for any value ofb, given the values ofa.g chosen
here. Furthermore, it can be seen that the dynamics show
Figs. 5~b! shuts down to the rest state 0 as soon as the ex
nal noise is switched off.

IV. NOISE EFFECTS IN PULSE PROPAGATION

The effective model derived in the previous section can
further verified by examining the effect of its renormalize
parameters on the characteristics of the propagating pu
such as their speed and width. The speed of an activa

FIG. 5. Noise-induced oscillatory dynamics in the bistable
gime of Fig. 2~a!: ~a! effective nullclines forC(0)51.631023; ~b!
corresponding spatiotemporal behavior fors25431024 and Dx
50.25.
5-4
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inhibitor pulse can be easily evaluated in an approxim
way by assuming a vanishingly small time-scale ratio«.
Within that approximation, the speed of the leading front
the pulse~the one going fromu50 to u51!, which corre-
sponds in fact to the speed of the pulse itself, can be ea
determined@1,19#. For the Barkley model, its value is

c5
1

A2«8
S 122

b8

a8D , ~7!

where the renormalized parametersa8, b8, and«8 are given
by Eqs. ~6!. This result predicts that the pulse speed w
grow with increasing noise intensity, as shown by the so
line in Fig. 6~a!, and in agreement with previous results
front propagation in one-component bistable media@29#.
This analytical prediction can be verified by systematic n
merical simulations, as shown by full circles in Fig. 6~a!,
which represents the time-averaged pulse speed in the st
state. The deterministic parameters are those of the bist
regime of Fig. 1~a!, which undergoes two transitions as th
multiplicative noise intensity increases. These two tran
tions, first towards the excitable regime and later towards
oscillatory one, are represented in Fig. 6 by vertical das
lines. Pulses in the bistable regime are obtained only by s
cial initial conditions@25#. In the oscillatory regime a puls
train is obtained, from which the speed of a single pulse
be measured.

The nontrivial influence of multiplicative noise in thi
system can be readily recognized by comparing the dep
dence of pulse speed on noise intensity with that correspo
ing to additive noise. To that end, we consider the effect o
simple additive noise, white in space and time with ze
mean and intensityb2, in the activator equation. The spee
of the pulse in this case is represented as empty squar
Fig. 6~a!. It can be seen that, although such a noise is a
able to produce excitablelike pulses in the bistable reg
~by means of a noise-induced decay mechanism! it does not

FIG. 6. Dependence of pulse speed~a! and width ~b! on the
external noise intensity. Parameters are those of Fig. 2~a!. Solid
lines represent the analytic results from the effective theory,
symbols numerical simulations in a lattice of 1000 sites withDx
50.05, with full circles corresponding to multiplicative noise
intensitys2, and empty squares to additive noise of intensityb2.
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affect the underlying dynamics of the system, since it do
not vary the speed of propagation of the pulses~and does not
produce the transitions indicated in the figure!.

A second quantity that can be evaluated in a straight
ward way from the renormalized theory is the pulse widthw.
This magnitude is equal tow5cT, whereT is the time that
the system locally spends in the excited branch. Assum
again a vanishingly small«, this quantity is simplyT
5*0

umdv/g(1,v), wherevm is the maximum value reache
by the inhibitorv, which can be calculated by imposing th
the speeds of the leading and trailing fronts of the pulse
equal@19#. With this approach,vm can be seen to be given b
vm5a822b8, which happens not to depend on the no
intensity, since the two contributions froma8 andb8 cancel
each other. Thus,T is not modified by the noise strengt
either, and the pulse width is given byw5c ln@g/(g12b
2a)#. Therefore, the width of the pulse increases with no
intensity as well, as shown by the solid line in Fig. 6~b!, a
prediction that is also verified by numerical simulations, re
resented by full circles in the same figure. Additive noise,
the other hand, always produces pulses of the same wid

V. CONCLUSIONS

We have derived in the previous sections an effective B
kley model that accounts for the influence of multiplicati
noise in the activator dynamics of the system as the fi
order term of a small-noise expansion. The phase diagram
the resulting renormalized model predicts a general enha
ment of the excitable behavior of the system for small-no
intensities, as well as the appearance of an oscillatory reg
for larger-noise intensities, for which the system exhib
spontaneous nucleation of pulses that leads to synchron
firing. All these predictions have been verified by numeric
simulations. The excitability enhancement leads to a dest
lization of front propagation due to noise, and allows t
propagation of pulses in situations where only front prop
gation could arise in the absence of noise. This effect can
understood as a mechanism for sustained signal propag
in spatially extended bistable systems. Even though we h
considered here the case of continuous media, our results
also be applied to discrete arrays of locally coupled bista
elements. The nontrivial influence of random fluctuations
further verified by analyzing the dependence of the char
teristics of propagating pulses, such as pulse speed
width, on the noise intensity. Our analysis shows that b
the speed and width of the pulses grow with increasing no
strength, a fact that is verified by numerical simulations.

Experimental evidence shows bistable behavior in an
creasing variety of neural systems, such as thalamocor
neurons@30# and mitral cells@31#. Our results demonstrat
that signal propagation is possible even in such a bista
regime, and could thus provide an interpretation of the ex
able behavior observed in noisy neural media, which
been usually associated so far only to locally excitable
namics.
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