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Noise-enhanced excitability in bistable activator-inhibitor media
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We show that external fluctuations induce excitable behavior in a bistable spatially extended system with
activator-inhibitor dynamics of the FitzHugh-Nagumo type. This can be understood as a mechanism for
sustained signal propagation in bistable media. The phase diagram of the stochastic system is analytically
obtained and numerically verified. For small-noise intensities, front propagation becomes unstable, and excit-
able pulses arise as the only possible spatiotemporal behavior of the system. For large-noise intensities, on the
other hand, the system enters an effective regime of oscillatory behavior, where it exhibits spontaneous
nucleation of pulses and synchronized firing.
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I. INTRODUCTION local coherent behavior among the different oscillafd:3).
In all the above-mentioned situations, the underlying de-
Excitability is one of the most important mechanisms ofterministic state of the system is originally excitable, and
sustained signal transmission in nature. Excitable systemsoise only produces a certain spatiotemporal behavior in the
have only one stable steady state, but respond to weak paredium. A more fundamental question is whether noise is
turbations in a nontrivial way, performing a large excursionable to induce the excitable behavior itself. The answer is
in phase space before eventually returning to their originahgain positive, as shown experimentally in a subexcitable
rest state. Such behavior provides these systems with a setfhemical medium undergoing a photosensitive Belousov-
resetting mechanism after excitation which, complemente@habotinsky reaction, which can be rendered excitable by an
with spatial diffusion, allows for the self-sustained propaga-externally added noise in the illumination profil&4]. Re-
tion of waves, in the form of pulses in one-dimensional chancent experiments in the same system have also shown noise-
nels and spiral wavesamong other structurgsin two-  induced transitions from an excitable to an oscillatory regime
dimensional medig1]. These phenomena are of utmost[15]. In this paper, we address the question of whether excit-
importance, in particular, in physiology, where they consti-able behavior can also be induced in bistable media.
tute the main mechanism by which signals propagate through In general, bistable systems are not suitable media for
nerve and cardiac cells, for instan@. In the specific case signal-transmission purposes, since under normal conditions
of neural tissue, propagation takes place in a substantiallhey only support propagation of fronts, and therefore a cer-
noisy environment, and thus it seems natural to examineain external resetting mechanism is required for the trans-
what is the role of random fluctuations in this dynamicalmission of information-carrying pulses. In any case, noise
behavior. In this direction, previous studies have shown thahas already proven helpful to sustain propagation of fronts in
noise is able to produce collective bursts in a simple modethains of bistable diode oscillatdrs6] and of harmonic sig-
of the visual corteq3], induce spiral-wave propagatid#| nals in coupled double-well potential mod¢ls]. Addition-
and pacemaker activit}s,6] in excitable cellular automata, ally, an artificial model of a one-component bistable medium
drive the emission of circular and spiral waves in cellularhas also been developed that exhibits pulse propagation sus-
slime molds[7], generate calcium waves in glial-cell net- tained by noisg18]. In what follows, we show that external
works [8], and give rise to synchronized firing in cellular random fluctuations naturally sustain propagation of pulses
automaton models of excitable med®] and in models of in standard models of activator-inhibitor media operating in a
coupled neuron§l0,11. In this latter situation, random ex- deterministically bistable regime, where only propagation of
citations become entrained to the characteristic time scales @fonts would take place in the absence of noise under simple
the deterministic dynamics for an optimal amount of noisejnitial conditions(e.g., as a response to a local perturbation
locally inducing an “autonomous” coherent response of theof a homogeneous steady sfat&his is accomplished by
system[12], and spatial coupling synchronizes the resultingmeans of a noise-induced transition from the bistable to an
excitable regime, as advanced in the previous paragraph.
Activator-inhibitor media are usually modeled by means
*Electronic address: jordi.g.ojalvo@upc.es of two coupled reaction-diffusion equations, a particularly
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important example of which is given by the well-known @  — u-nuidine ol ®  — u-nuleine
FitzHugh-Nagumo class of models, whose general form is I == v-nulicine ' - v-nulicline
0.5- 0.5r
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FIG. 1. Nuliclines of model2) for a=0.85 andy=0.7, in the

whereu(x,t) represents the activator andx,t) the inhibi- (&) bistable[b=0.12}, and(b) excitable[b=0.18] regimes. Solid
tor, ande<1, so that the activator evolves in a time scale(®MPY circles denote stableinstablg fixed points.

much faster than the inhibitadwhose diffusion is also ne- For the parameter values chosen in Fig)1the two sets
glected. For specific choices of the reaction terf@l,v)  of nullclines intersect in three fixed points, two of which,
andg(u,v), this model constitutes a very useful simplified |abeled 0 and 1 in the figure, can be seen to be stable. This
description of electrical signal transmission along neuron axbistable behavior disappears for increasmgvhen a tran-
ons, withu representing the membrane potential anoeing  scritical bifurcation involving the stable steady-state 1 and
related to the time-dependent conductance of the potassiuthe unstable fixed point appears, leading to the excitable re-
channeld?2,19]. We aim to examine here the influence of angime represented in Fig(ld) [23]. In this situation, the sys-
external multiplicative noise in the dynamics of the activatortem possesses a single stable steady &iasé stat[24], but
when the system is deterministically bistable. Previousa perturbation of sufficiertbut smal) intensity takes it to the
works have analyzed the effect of a fluctuating inhibitor dy-excited branch ati~1 [see dotted trajectory in Fig.(d)],
namics in the excitable regime, showing that an additivewhere it follows the vertical {=1) nullcline upwards until
noise can lead to synchronized firipgl], whereas a multi- it goes back again to theu&0) nullcline, and down to the
plicative noise is able to induce spiral breakup and turburest state. This excitation plus resetting mechanism leads, in
lence[20]. This last type of fluctuating dynamics has also conjunction with spatial coupling, to the propagation of
been examined in the bistable regime, where excitablelikpulses through the medium.
structures were foun®1]. In that case, however, such struc-  We note that single pulse propagation can also occur in
tures were produced by noise-induced decays from the “exthe bistable regime of Fig.(4), provided the initial condi-
cited” stable state, and not by a real noise-induced transitiofions of the system are carefully prepargb]. However,
between the two regimes, as reported below. under general initial conditions, such as a single local pertur-
In what follows, we examine the dynamics of a particularpation in the activator profile, a front instead of a pulse will
type of stochastic FitzHugh-Nagumo model, namely, thearise. This contrasts with the situation in the excitable re-
Barkley model with multiplicative noise, operating in a de- gime, where fronts never exist, and pulses are the only pos-
terministically bistable regime. A moderate amount of noisesible spatiotemporal behavior. In order to make this differ-
will be seen to greatly enhance excitable behavior in thence clear, we now examine the response of the system to an
system, whereas for larger noise intensities, the system exastantaneous local perturbation of the activator profile. The
hibits oscillatory dynamics leading to synchronized firing. spatiotemporal behavior of the activator variablecorre-
sponding to the two regimes represented in Fig. 1 is plotted
Il. THE BISTABLE BARKLEY MODEL in gray scale in Fig. 2. In the two cases, the system is ini-
tially in the rest state O everywhere, and only the value of the
The Barkley model is a computationally efficient version activator variable at the left boundary of the system is set
of the FitzHugh-Nagumo activator-inhibitor dynamics. It is above excitation threshold. For this simgnd realistig ini-
defined by the following choices for the reaction termstial condition, the system can only develop a front in the
f(u,v) andg(u,v) [22] bistable regime[Fig. 2@)], whereas it generates a well-
defined pulse in the excitable regirifeig. 2(b)]. In plot 2(a),
boundary conditions are absorbing, whereas in pidd),2
' (23 they are set to periodic as soon as the traveling pulse is
developed, in order to trap the pulse in a ring, so that its
g(u,v)=yu—u, (2b) Iong—ter_m .evolution can be sys_temati_cally analyzed. The
model is integrated on a one-dimensionfdD) lattice of

wherea, b, andy are constant parameters that determine themoq _Ce"S W'_th a spacmgx=p.25, maklng use of a semi-
type of local dynamics exhibited by the system, which canMPlicit algorithm for the activator equatiof26], and an
vary among purely monostable, oscillatory, excitable, ancEXPlicit algorithm for the inhibitor one.

bistable. In what follows, we will concentrate on the two
latter situations, which are represented in Fig. 1 in terms o
the phase planeu(v). In that figure, solid lines represent the
activator nullclines, defined b§(u,v)=0, and dashed lines We now assume that the control paramétés subjected
correspond to the inhibitor nullcling(u,v)=0. to random fluctuations evolving at time scales much shorter

v+b

f(u,v)=u(1—u)<u—

fJII. BARKLEY MODEL WITH STOCHASTIC ACTIVATOR
DYNAMICS
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space space in the C(0)—b plane. Other parameters are those of Fig. 2. The

four labeled points denote four different regimes represented in the
FIG. 2. Spatiotemporal evolution of mod@) corresponding to  corresponding figures.
the two situations of Fig. 1(a) bistable and(b) excitable. The

profile of the activatou is plotted in grayscale. Black coding cor- In order to establish the effect of the multiplicative noise
responds tai=1, and white tou=0. Parameters used are those of (x,t) in the deterministic dynamics described in the previ-
Fig. 1, pluse =0.01. ous section, we note that the random té#nhas a nonzero

S ) mean equal t¢28|
than those of the deterministic dynamics. In order to model

this situation, we add td a zero-mean Gaussian noise 1
7(x,t) with correlation (¢)= 22 C(0){u(u-1)(2u—-1)), 5
(m(x, (X" 1)) =2C(x=x") o(t=t"), (3 where the brackets denote averaging over the probability dis-

which corresponds to a spatially extended stochastic proceé@bunon of the multiplicative noise, which has been inter-

white in time and with a spatial correlation functi@{(x). preted in the S_tratonowch sense. Acpordlng o &, the .

X o T random term gives rise to a systematic nonzero contribution
We note that this noise is multiplicatively coupled to the state . : .
of the system, since it leads in the activator Etg) to an to the average dynamics of the system. This systematic con-

additional random term of the form tributipn can be jncorporated explicitly into t_he activatqr
equation as the first-order term of a small-noise expansion
1 [28], where the remaining stochastic contributions of the
¢(u)=—u(u—1) n(x,t). (4) noise average out to zero. In that way, one can write down an
ae effective equation for the activator dynamics, which happens
to have exactly the same form as the original deterministic

The assumption of such a multiplicative noise is not unrea : ;
model, but with renormalized parameter values:

sonable, given that the FitzHugh-Nagumo equations const

tute a qualitative simplification of the well-known Hodgkin- 2C(0)

Huxley model of electrical signalling in neurons, basically a'=a— , (63
consisting in reducing the fast dynamics of the sodium con- ed

ductance of the cell membrar2,19]. In such a reduction

process, additive fluctuations of this conductance would b’ =bh— C(0) (6b)
readily give rise to multiplicative noise terms in the activator ea ’

equation. Our simplified choice of the noise term corre-

sponds in fact to a fluctuating excitation thresh@ihceb is L €

the offset of the tiltedu nulicline in Fig. 1. This is the &= 1—2C(O)/sa7' (60

approach followed in the experiments on the photosensitive

Belousov-Zhabotinsky reactidri4,15, which can be mod- where the noise correlation at zero dista@@®) measures
eled directly by the Barkley equations, withcorresponding the strength of the noise. We can thus see that even though
to the fluctuating illumination level27]. We also note that the random fluctuations only affect directly the paraméter
the random termp(u) vanishes identically fou=0 and 1, they produce a renormalization of all three parameters of the
so that the fluctuations do not perturb the system neither imctivator dynamics, in the sense of decreasing the effective
the rest nor in the excited state. This is very different from arvalues ofa andb, and increasing that of. These renormal-
additive or other types of multiplicative noi§21], where the izations lead to important displacements of the boundary
fluctuations actively perturb the system in some or all of thdines between the different dynamical regimes exhibited by
fixed points. In particular, the noise we consider here is nothis model, as shown in Fig. 3. This figure plots the phase
able to induce a decay from one of stable steady states taliagram of the system in the plane formed by the parameters
wards the other. b andC(0), for constant values ai=0.85 andy=0.7. Sev-
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FIG. 5. Noise-induced oscillatory dynamics in the bistable re-
FIG. 4. Noise-induced excitability in the bistable regime of Fig. gime of Fig. 2a): (a) effective nullclines foIC(0)=1.6x10"2; (b)
2(a): (a) effective nullclines folC(0)=4x10"*; (b) corresponding  corresponding spatiotemporal behavior fof=4x10"* and Ax
spatiotemporal behavior numerically simulated ff=10"* and =0.25.
Ax=0.25.
in Fig. 4(a). For this regime, the effective nuliclines are such
eral remarkable features in this phase diagram should bigat the only remaining stable fixed point is state 1, so that
noted. First, the transition between the bistable and excitablgow the system allows for the propagation of inverted
regimes of Fig. 1(labeled BIST and EXC I, respectively, in pulses, with the excited branch correspondingite0, and
Fig. 3) is advanced as noise intensity increases. This leads e rest state ta=1, v=. This dynamical regime exists in
an enlargement of the region of excitable behavior, in such ghe deterministic model fob<0, and the corresponding
way that a deterministically bistable medium can becomaeransition from the bistable regime is now retarded for in-
excitable for large enough intensity of the multiplicative creasing noise intensity, so that the excitable regime is again
noise. An example of this noise-induced excitable dynamicgnlarged.
is given in Fig. 4, which shows the behavior of the system in  Finally, a more unexpected feature arises in the phase dia-
the deterministically bistable regime of Figal, but with an  gram of Fig. 3 as the intensity of the noise is further in-
amount of external noise corresponding to the point labeled 4reased. Such an increase produces a reduction in the effec-
in the phase diagram of Fig. 3. The location of the effectivetive slope of the tiltedu nullcline (controlled bya), which
nuliclines in phase space is shown in Figa/which clearly  finally leads to the situation portrayed in Fig(as In this
exhibits an excitable layout. Plot(l) displays the corre- case, all three fixed points are unstable and the system de-
sponding spatiotemporal dynamics, as simulated for an exselops a limit cycle, which corresponds to a noise-induced
ternal noise taken to be white in the discrete space defined hyscillatory regime(labeled OSC in Fig. 8 analogous to the
the 1D lattice. In this cas&C(0)=o?/AX, whereAx is the  one recently observed experimentally in deterministically ex-
mesh size of the lattice. Following a local excitation in thecitable media[15]. The related spatiotemporal behavior as
left boundary of the medium, consisting only in a instanta-computed from numerical simulations is represented in Fig.
neous suprathreshold increase of the activator concentratioBib), where random initial conditions have been chosen. In
the system self organizes after a certain transient into athis regime, pulses are spontaneously nucleated simulta-
excitable pulse. We stress again that this effect cannot bgeously throughout the system, which leads to a strongly
merely due to a noise-induced decay from the metastablgynchronized firing of all lattice sites. Again, the transition
state 1[as labeled in Fig. ®], since the random ter¥)  between the excitable and oscillatory regime is clear-cut de-
vanishes in that state. Hence, this behavior must corresporithed, as can be checked by extensive numerical simulations
to a dynamical destabilization of state 1 due to the fluctuathrough the whole parameter space. We stress here that such
tions, following a noise-induced transition denoted by thean oscillatory dynamics does not exist in the deterministic
corresponding line in the phase diagram of Fig. 3. Extensivgystem for any value db, given the values o>y chosen
numerical simulations confirm the existence of such a clearhere. Furthermore, it can be seen that the dynamics shown in

cut transition, showing that below the transition line, the sys+igs. 5b) shuts down to the rest state 0 as soon as the exter-
tem develops fronts systematically, independent of the noisgal noise is switched off.

realization, whereas above it only pulses are found. In fact,

beyond the transition point, pulses are the only stable struc-

tures of the system, and fronts cannot be obtained no matter

the initial conditions considered. The effective model derived in the previous section can be
A second feature to be noted in the phase diagram of Figurther verified by examining the effect of its renormalized

3 is the appearance of a second excitable regime, labelgzhrameters on the characteristics of the propagating pulses,

EXC Il in the figure, which is symmetric to that representedsuch as their speed and width. The speed of an activator-

IV. NOISE EFFECTS IN PULSE PROPAGATION
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o 10, affect the underlying dynamics of the system, since it does
8 BIST EXC osc  (a) not vary the speed of propagation of the pul&asd does not

o 8 produce the transitions indicated in the figure

Q 6- A second quantity that can be evaluated in a straightfor-
B senen®S® e ward way from the renormalized theory is the pulse width

& 4 ! s This magnitude is equal tw=cT, whereT is the time that

= 20 (b) the system locally spends in the excited branch. Assuming
§ 15'_ again a vanishingly smalk, this quantity is simplyT
| =fg’“dv/g(l,v), wherewv, is the maximum value reached
lc% 1 1 O 0 O O O O 1 by the inhibitorv, which can be calculated by imposing that
a | | the speeds of the leading and trailing fronts of the pulse are

equal[19]. With this approachy ,, can be seen to be given by
vn=2a’'—2b’, which happens not to depend on the noise
intensity, since the two contributions froai andb’ cancel
FIG. 6. Dependence of pulse spe@l and width (b) on the efach other. ThusT is noF mo_difie.d by the noise strength
external noise intensity. Parameters are those of Hig. Bolid  €ither, and the pulse width is given by=cIn[y/(y+2b
lines represent the analytic results from the effective theory, and-a)]. Therefore, the width of the pulse increases with noise
symbols numerical simulations in a lattice of 1000 sites with  intensity as well, as shown by the solid line in Fidbg a
=0.05, with full circles corresponding to multiplicative noise of prediction that is also verified by numerical simulations, rep-
intensity %, and empty squares to additive noise of intengify resented by full circles in the same figure. Additive noise, on

o . . . the other hand, always produces pulses of the same width.
inhibitor pulse can be easily evaluated in an approximate

way by assuming a vanishingly small time-scale ratio
Within that approximation, the speed of the leading front of
the pulse(the one going fromu=0 to u=1), which corre-
sponds in fact to the speed of the pulse itself, can be easily We have derived in the previous sections an effective Bar-
determined 1,19]. For the Barkley model, its value is kley model that accounts for the influence of multiplicative
noise in the activator dynamics of the system as the first-

(=]
P

40x10°  8.0x10°  1.2x107™
o, B7/10

V. CONCLUSIONS

_ 1 b’ order term of a small-noise expansion. The phase diagram of
c=——|1-2—-], (7) . . :
28’ a the resulting renormalized model predicts a general enhance-

ment of the excitable behavior of the system for small-noise
where the renormalized parameters b’, ande’ are given intensities, as well as the appearance of an oscillatory regime
by Egs.(6). This result predicts that the pulse speed willfor larger-noise intensities, for which the system exhibits
grow with increasing noise intensity, as shown by the solidspontaneous nucleation of pulses that leads to synchronized
line in Fig. 6@a), and in agreement with previous results onfiring. All these predictions have been verified by numerical
front propagation in one-component bistable mef#8].  simulations. The excitability enhancement leads to a destabi-
This analytical prediction can be verified by systematic NnU4ization of front propagation due to noise, and allows the

merical simulations, as shown by full circles in Figah  propagation of pulses in situations where only front propa-

which represents the time-averaged pulse speed in the ste ¥tion could arise in the absence of noise. This effect can be
state. The deterministic parameters are those of the bistab

X . . o derstood as a mechanism for sustained signal propagation
regime of Fig. 1a), which undergoes two transitions as the ghal propag

ST A L _in spatially extended bistable systems. Even though we have
multiplicative noise intensity increases. These two transi- . . .
. . . ; considered here the case of continuous media, our results can
tions, first towards the excitable regime and later towards thée

oscillatory one, are represented in Fig. 6 by vertical dashegls‘O be applied to discrete arrays of locally coupled bistable

lines. Puises in the bistable regime are obtained only by sp lements. The nontrivial influence of random fluctuations is
cial initial conditions[25]. In the oscillatory regime a pulse urther verified by analyzing the dependence of the charac-

train is obtained, from which the speed of a single pulse cafe"istics of propagating pulses, such as pulse speed and
be measured. width, on the noise intensity. Our analysis shows that both

The nontrivial influence of multiplicative noise in this the speed and width of the pulses grow with increasing noise
system can be readily recognized by comparing the deperftrength, a fact that is verified by numerical simulations.
dence of pulse speed on noise intensity with that correspond- Experimental evidence shows bistable behavior in an in-
ing to additive noise. To that end, we consider the effect of &reasing variety of neural systems, such as thalamocortical
simple additive noise, white in space and time with zeroneurons[30] and mitral cells[31]. Our results demonstrate
mean and intensity?, in the activator equation. The speed that signal propagation is possible even in such a bistable
of the pulse in this case is represented as empty squares liegime, and could thus provide an interpretation of the excit-
Fig. 6(@). It can be seen that, although such a noise is alsable behavior observed in noisy neural media, which has
able to produce excitablelike pulses in the bistable regiméeen usually associated so far only to locally excitable dy-
(by means of a noise-induced decay mechahismoes not namics.
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