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We propose an algorithm based on local growth rules for kinetically generating self-avoiding walk configu-
rations at any given temperature. This algorithm, called the interacting growth (@) model, does not
suffer from attrition on a square lattice at zero temperature, in contrast to the existing algorithms. More
importantly, the IGW model facilitates growing compact configurations at lower temperatures—a feature that
makes it attractive for studying a variety of processes such as the folding of proteins. We demonstrate that our
model correctly describes the collapse transition of a homopolymer in two dimensions.
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The configurational properties of linear polymers under-for generating an ensemblg,, identically equivalent to
going a collapse transition at a tricritical temperatdrg, 7, (8>0). For example, the kinetic growth walKGW) [7]
called thed pOint, have been studied eXtenSively because OBr the smart kinetic Wa|38] ona honeycomb lattice Straight-
their relevance to a wide variety of applications such as, fo%“,\,ay generates an ensemble of configurations equivalent to

example, the protein folding problef]. The average radius e |SAW ensembleZy(8=In2). Having generated the

of gyranon(o.r eqw_valently, the average end-to-end dl:_Stanceathermal ensembleGy by such a geometric algorithm, en-

Semble averages corresponding to a lower temperature could
be obtained by Boltzmann weighting these configurations ap-
gropriately. This would ensure better statistical accuracy as
cbmpared to what could be obtained directly fréip. Yet,
eyvhether it is possible at all to sample a statistically signifi-

universal regimes, interacting self-avoiding wallSAW) cant number of maximally compact configurations is a moot

models with appropriate non-bonded nearest neighboPOim t_o consider because it involves a “zero”-temperature
(nbNN) interactions have been proposied. sampling. _ o

Let Sy denote an ensemble of equally weightsestep In this paper, we present an algorithm for kinetically
SAW configurations, generated on a lattice by a standarrowing a SAW configuration at any given temperattre
algorithm[5]. If €, is the energy associated with any nbNN =0. This algorithm, called the interacting growth-walk
contact, a SAW configuration with a total af,y such con- (IGW) model, is able to generate more accurate data_f_or
tacts will have an energlg = nyyeo. Hence, one may assign !onger walks at lower temperatures because sample attrition
to it a Boltzmann weight proportional te”#E, where is less severe at lower temperatures. In fact, on a square
=1/KkgT, kg is the Boltzmann constant arithe tempera- lattice, the walk grows indefinitely into maximally compact
ture. Such Boltzmann-weighted SAW configurations consti-configurations aff =0, in contrast to the conventional sam-
tute an ISAW ensemble, denoted By(3). By this defini-  Pling algorithms[9,10]. We demonstrate that our model is
tion, Zy(B=0) is the same asSy because all the capable of describing the universal behavior of a SAW
configurations of the former have the same probability of2bove, at, and below thé point in two dimensions.We also
occurrence irrespective of their energies. Therefore, in th@résent a speculative Flory-like argument for the IGW.
context of the ISAW ensemble§y, may be thought of as ~ We start the growth process by “occupying” an arbitrarily
representing a polymer at “infinite” temperature. The statis-Chosen sité&g of a regulard-dimensional lattice of coordina-
tical accuracy of any physical quantity averaged dfig(i3) tion numberz whose sites are initially “unoccuple_dfby
becomes poorer at lower temperatures because significaftonomers The first step of the walk may be made in one of
contribution comes from a smaller number of configurationshez available directions, by choosing an “unoccupied” NN
[6]. In order to improve the statistics, especially at low tem-Of To, Sayr, at random and with equal probability. Let the
peratures, it is necessary to generate a very large ensembyéalk be nonreversing so that it has a maximumzoef1
Sy; this process could become prohibitively slow due todirections to choose from for the next step. Lgf"m
severe attrition for largé\. =1,2,... Z]-} be the “unoccupied” NN's available for the

A better solution is to devise an algorithm based on suitd th step of the walk. Iz;=0, the walk cannot grow further
able geometricalathermal or “infinite” temperature rules  because it is geometrically “trapped.” It is, therefore, dis-

carded and a fresh walk is started from If z;# 0, the walk
proceeds by choosing one of the available sites with a prob-

auniversal(i.e., system-independegriiehavior characterized
by the exponents and y, respectivelyf2]. These exponents
have distinct sets of values for the three temperature regime
T>T,, T=T,, andT<T,[2,3]. In order to understand the

statistical nature of polymer conformations in these thre

*Email address: glass@apsara.barc.ernet.in ability defined as follows:
"Email address: kpn@igcar.ernet.in Let ny(j) be the number of nbNN sites of' . Then, the
*Email address: ramu@magnum.barc.ernet.in probability that this site is chosen for thth step is given by
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FIG. 2. Log-log plot of the mean square end-to-end distance as
a function ofN for =0, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, and 300,
from top to bottom. Inset: Logarithm of the mean trapping length,
H = In{L) as a function ofg.
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e) ® exists for our walk. We assume that it exists and is in the

FIG. 1. Typical configurations of a 1000-step walk on a squareSame universality class as tiepoint, and then check if our

lattice for 8=0(a), 2.0(b), 3.0(c), 4.0(d), 5.0(), and 300¢). data support this assumption.
Since it is known that the exponentsand y have the

exact values 4/7 and 8/7 étpoint in two dimension§4], we

— m
P(r )= exil — Al €ol , (1)  have plottedr?(N))*%N*"as a function of lod{) in Fig. 3.
™ i m o The data tend to flatten out f@@~4 implying thereby that
mE:l exfl = Ann(l) €l the 6 point is located near this value ¢. We have also

plotted (r?(N))/N®" as a function ofg in Fig. 4 for N
=800, 1000, 1200, 1400, 1600, 1800, and 2000. The cross-
over value ofB (~4 in our casgis expected11] to corre-
spond to thed-point value.
Independently, we have obtained the exponefriom the
ction of successful walksS(N)~N?"1e *N where\ is
the attrition constant and plotted them for six different values
of B in Fig. 5. We find thaty has a value £ 1.13) close to
the expected theoretical value 8/7 6=4.

Further evidence that it is indeed close to th@oint is
presented in Fig. 6, where we have plotted the crossover

where the summation is over all tte available sites. At
“infinite” temperature (3=0), the local growth probability
Pm(r;) is equal to 1Z; and thus, the walk generated will be
the same as the KGW. However, at finite temperatures, thFra
walk will prefer to step into a site with mor@esg nbNN
contacts depending on whetheiis negative(positive). The
probability of kinetically generating a walk configuratich
={ro.f1,...rj, ...} is then given byP.=II;p(r;). We
setep equal to— 1 without loss of generality so th#t could
correspond to the dimensionless temperature.

In Fig. 1, we have shown the typical configurations of a ,
1000-step walk on a square lattice f8=0, 2.0, 3.0, 4.0, 0.75 \/

5.0, and 300. Evidently, the walk grows into a more compact § LA
configuration at lower temperatures, made up of a chain of ! v VR A
 ap i P . - A &xyy
square blobs having “helical” and “sheetlike” structures. 5 SL Y
We have generated ten million configurations of walks upgz | v v"%w Y
‘v A

to 2500 steps for various values gf and obtained the mean “a
square end-to-end distan¢e?(N)), as a simple unweighted Z
average(i.e., (r’(N))==.r?/N, where the summation is "% 050 N” "
over all the configurations generatedNe have presented ""m"‘m"
(r3(N)) as a function oN in Fig. 2.

Sample attrition is the most severe problem s 0 and
it becomes less and less severe as the valye iotcreases.
Consequently, we have presented the data up to a maximur 10 — o0
of N=2350 for 8=0 andN= 2500 for3=300. It is clear that
the dotted lines with slopes 1.5 and 1.0 indicate the
asymptotic behavior of the data f@=0 andB—c, corre- FIG. 3. Semi-log plot of r?(N))¥%N*" as a function of logy)
sponding to the SAW and the collapsed walk limits, respecfor 8=3.0, 3.5, 3.75, 3.9, 4.0, 4.25, 5.0, and 300, from top to
tively. We do not knowa priori whether a collapse transition bottom.
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FIG. 4. (r%(N))/N®" as a function ofg for N=800 to 2000 in FIG. 6. The crossover exponepi as a function of M. The
steps of 200 from bottom to top. solid line is a quartic po!ynomlal fit and is drawn to guide the eye.
The extrapolated value is 0.419+0.003.

exponentg(N) as a function of I at B=4 using the pre-

scription of Grassberger and Hegd&®2]. The solid line is a  positive (negative or zero Nevertheless, ISAW algorithm

quartic polynomial fit to the data drawn so as to guide thecannot sample the walk at an effective temperature given by

eye. The extrapolated value (0.410.003) for¢ is close to  g'=|(B"— B)| because8” can only be estimated poste-

the expected exact value 3/7. riori on the basis of the configuration generated. An alterna-
All these figures put together suggest that a collapse trartive is to have a kinetic algorithm, such as what we have

sition for this walk exists and the corresponding dimensionproposed in this paper, which grows a walk by sampling the

less nbNN contact energy is close to. available growth sites as per théircal energies. This is in
The walk configurationC having a total of nyy(C) contrast with the ISAW algorithm that samples fully grown

=2]N:1nNN(j) nonbonded NN contacts, is grown with the and equally weighted SAW configuratioffise., chaing ac-

probability cording to theirtotal energies. To underline this basic differ-
ence, we refer to our walk as the interacting growth walk
exd —nyn(C) Beo] (IGW).
Pe=—= Z ‘ 2 It is appropriate at this juncture to note that the difference
> ext — (i) Beol between our algorithm and the PERM algoritiimethod B
j=1 \m=1 of Grassberger[10] is analogous to that between the

) ) ) _ _ Rosenbluth-Rosenbluth algorithfRR) [13] and the KGW
It is possible to write the denominator of the above equation7]. ours is the finite-temperature generalization of the
ase "B € wherep” is an effective inverse temperature. KGW, just as PERM is the finite-temperature generalization

The value of3” will be less(greatey than that ofg if €5 is  of the RR method. There is na priori reason therefore to
expect that IGW will belong to the same universality class as

1.35 ISAW, they both being different models altogether. Yet, our
data seem to suggest that it may well be so.
1.30 - Since the IGW is equivalent to the KGW in the limt
—0, it is of interest to see if survival probability arguements
1251 such as Pietronerfil4] could be devised for describing its
asymptotic behavior even if only tentatively. L&} be an
120 | 8 - point ensemble oiN-step true self-avoiding walkl5] configura-
. tions whose end-to-end distances are known to be Gaussian
1.15F distributed in a space of dimensioi=2. As we move along
an arbitrarily chosen configuration, we try to estimate the
1.10 | probability of surviving self intersections and geometrical
trappings. This involves accounting for the probability per
1051 step of encountepg and the probability of trappingp+,
1.00 . , . . . which together determine the survival of the walk. Assuming
' 3.0 35 4.0 45 5.0 that the trapping probability per step is a constant and also
B that the encounter probability per stpp~ py , Wherepy is

the chain density and is the order of encountdi.e., the
FIG. 5. The exponen as a function of3. Corresponding to the number of nbNN contaclsit has been shown that=(«
# point, y has a value~1.13. +2)/(da+2) for the KGW.
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The observed fact that the IGW becomes more compact dteing a pathological case. The fact that the first-order en-
lower temperature-ig. 1) implies, within the framework of counter does not trap the walk @at=0 implies thata also
the above Flory-like arguments, that there should be an erfias some temperature dependence. Moreover, the continuous
hancemente of the encounter probability per step; . We  dependence of on g that the above formula suggests is at
expectqe to increase implicitly as a function ¢ subjectto ~ variance with the fact that there are only three universal re-
the condition thatj.— 1 asj3—0. On the other hand, since gimes corresponding {6<,= and> g, respectively. This
the mean trapping length of IGW has been found to increasB®eds further study. _ _
exponentially with3 (inset of Fig. 2, the trapping probabil- e thus have a powerful growth algorithm for generating
ity per step may be expected to be attenuated by a factopAW configurations at any given temperatufe=0. Its
proportional to expf8). So, if we assume an implicit tem- Strength lies in the fact that it suffers less attrition and is able
perature dependenag~pf, we can show thav=(a+g  © selectively grow compact configurations at lower tempera-
+2)/[d(a+ B)+2]. While it obviously reduces to the Pi- tures. Because it is capable of generating maximally compact
etronero’s formula in the limiB—0, it reduces to the form configurations at zero temperaiure, it may prove to be a very
v=1/d for the collapsed state in the lim@—oc. Since the useful algorithm for studying prote!n foldmg processes. W(_a
first-order encounterg=1) is sufficient to trap the walk, we have aiso dempnstrated explicitly in two dimensions that it
havev=(B+3)/2(8+2) in two dimensions. This yields the correctly (_je_scrlbes the collapse transition of a hqmc_)polymer.
value B,=5 corresponding to the exaétpoint exponentv Whethe_r It is exactly the Same as HEAW) 6 point is an
=4/7. It may be noted that this value is fortuitously close tolnterestlng open question, especially because the minimum

our numerically estimated value. However, in order to ensuré(valk Ienth requjred to pe in the asymptotic regime ingreases
universality ofv, we should have a term proportional to the exponentially with the inverse of temperature even in two

) - ' . dimensions.
ratio B/ B, (say, B=K g/ B,) rather thang itself in the for-
mula. The proportionality constait may then be fixed by We are thankful to T. Prellberg and S. Bhattacharjee for
the #-point value ofv: K+a=2(1-vy)/(dvy,—1), d=1 helpful comments on this work.
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