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Dissipation-induced instabilities in an optical cavity laser:
A mechanical analog near the 1:1 resonance

Marcel G. Clerc and Jerrold E. Marsden
Control and Dynamical Systems, 107-81, Caltech, Pasadena, California 91125

~Received 25 March 2001; published 26 November 2001!

The 1:1 resonance for perturbed Hamiltonian systems with small dissipative and energy injection terms has
been studied. These perturbations of the 1:1 resonance exhibit dissipation induced instabilities. This mecha-
nism allows one to show that an optical cavity with small pumping is unstable when one takes into account the
dissipative effects. The Maxwell-Bloch equations are the asymptotic normal form that describe this instability
when energy is injected through forcing at zero frequency. A simple mechanical system close to the 1:1
resonance has been displayed, which is a mechanical analog of the laser.
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I. INTRODUCTION

Equilibria of Hamiltonian vector fields can undergo a v
riety of instabilities as a single bifurcation parameter is v
ied @1#. There are two fundamental codimension one bif
cations of Hamiltonian systems. The first isthe stationary or
steady state bifurcation, which is characterized by two eigen
values merging at zero with multiplicity two@2#. The second
is the 1:1 resonance, involving the collision of two pure-
imaginary eigenvalues~and their complex conjugates! at fi-
nite frequencies with multiplicity two@3#. These instabilities
are a consequence of the fact that in the Hamiltonian cas
l is an eigenvalue, then@3# so is2l. The same property is
present in time reversible systems, i.e., they exhibit ident
generic instabilities. Recently, the instabilities of quasireve
ible systems have also been characterized@4,5#, in which the
irreversible effects are small and can be considered as
turbative terms close to the instability. In particular, syste
close to the quasireversible 1:1 resonance are describe
the Maxwell-Bloch equations when the energy is injec
through a forcing at zero frequency@5#. The Maxwell-Bloch
equations describe the interaction of an electromagnetic
and a collection of two level atoms at an optical cavity@6#.

The aim of this paper is to study the 1:1 resonance
systems in the neighborhood of a Hamiltonian one; that
we shall consider perturbed Hamiltonian systems with di
pative and energy injection terms. Near this instability,
dissipative terms are responsible for a spectral bifurcat
i.e., the dissipation induces an instability@7#. These circum-
stances can occur in several mechanical systems, in no
ear optical cavities, fluid mechanics~in the quasigeostrophic
model @8#!, in tubes carrying a fluid@9#, in the motion of
planets in celestial mechanics@10#, and galactic dynamics
@11#, to mention a few.

Because of the extensive variety of application areas,
contributions of this paper are of wide appeal to many i
portant subjects. To illustrate ourgeneralmethods, we shal
consider, as aspecific examplesimple mechanical and lase
systems. In these systems, the dissipation induced instab
enables us to show that an optical cavity with small pump
is unstable when one takes into account the dissipative
fects. The Maxwell-Bloch equations are the asymptotic n
mal form that describes this instability in the presence o
conserved quantity. We shall display a simple mechan
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system, which we call themechanical laser, which, close to
the 1:1 resonance, is a mechanical analog of the laser. A
tional applications of the ideas in this paper will be giv
elsewhere.

II. GENERAL SETUP

For simplicity, we first consider a Hamiltonian syste
with two degrees of freedomH(pi ,qi ,$l%), wherepi andqi
are canonically conjugate variables, (i 51,2), and$l% is a set
of parameters. Assume that there is a 1:1 resonance fo
equilibrium atl5lc , i.e., the spectrum at the equilibrium
has a pair of pure imaginary eigenvalues of multiplicity tw
say at6 iV. Nearby, the instability system is governed b
the normal form@12#

] tA5 iVA1B,

] tB5 iVB1 f @ uAu2,i ~AB* 2BA* !,$l2lc%#A

1 ig@ uAu2,i ~AB* 2BA* !,$l2lc%#B, ~1!

wheref andg are complex polynomial functions. There is
change of variables from the given ones$p1,q1 ,p2,q2% to
the new ones~the complex variablesA,B) of the form

$p1,q1 ,p2,q2%5ACW 1BxW 1NW (A,B,A* ,B* ), whereCW is the
eigenvector of the linearized system corresponding toiV and
xW is a generalized eigenvector in the Jordan sense,
NW (A,B,A* ,B* ) is a nonlinear vector. This change of var
ables is not canonical in general. When one considers rot
variables (A5eiVtA8,B5eiVt] tA8) and the dominant terms
the normal form reads~omitting the primes!

] ttA5«A1 id] tA2auAu2A, ~2!

where« is the bifurcation parameter, which is proportional
l2lc ; henceforth we assume«!1, d is the gyroscopic
term @3# or detuning term@6# anda is an order-one param
eter. The asymptotic normal form~2! has the following
Hamiltonian:

H5] tA] tA* 2«uAu21
a

2
uAu4, ~3!

with the Poisson bracket (F andG are real valued!
©2001 The American Physical Society03-1
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$F,G%5
]F

]A

]G

]At*
2

]G

]A

]F

]At*
1 id

]F

]At

]G

]At*
1c.c.

Thus, to cubic order, the nonlinear change of variable
canonical. The eigenvalues of the zero solution (A50) are

61/2A4«22d262dAd224«. When «2d2/4 is negative,
the initial Hamiltonian system has four distinct pure ima
nary eigenvalues;«2d2/4 equal to zero is the 1:1 resonan
at 6 iV frequencies and when it is positive, the eigenvalu
have nonzero real part. Note that the gyroscopic term
stabilizing effect@3#.

III. ADDING DISSIPATION

We now consider this Hamiltonian system under the
fluence of small dissipative terms. This leads to a new te
in the asymptotic normal form as follows:

] ttA5«A2~m2 id!] tA2auAu2A, ~4!

wherem is positive. To study the effects of dissipative term
in Eq. ~4!, we consider its characteristic polynomial:l4

12ml31(m21d222«)l22l2«m1«2. Looking for roots
of the forml5a6 ib andl5c6 id, one recognizes thatm
52(a1c) and «m5@c(a21b2)1a(c21d2)#. Hence,
when« is negative,a andc are negative, i.e., all eigenvalue
are to the left of the imaginary axis. For« positive and«
2d2/4 negative, the unperturbed system is marginal, but
perturbed one satisfiesac,0; in addition, the eigenvalue
with larger frequency move to the left of the imaginary ax
~stable modes! and the others to the right~unstable modes!,
but the eigenvalues that move furthest away from the a
are stable. Finally, when«.d2/4, the eigenvalues have non
zero real part, and again the stable modes are the furt
from the imaginary axis.

We now consider dissipation induced instabilities@7#. The
destabilizing effects through positive or negative total dis
pative perturbation was known already by Thomson and
@3#. One can understand this phenomena as follows: whe«
is negative, the energy~3! has a minimum at the origin
hence when dissipation is added, the solutions near the o
move towards it. By contrast, if« is positive, the energy ha
a saddle point at the origin and when«,d2/4, this is un-
stable with an algebraic evolution in time. We say that
system~2! exhibits alatent bifurcation@13# for «50; when
one adds dissipation, this is consistent with the conclus
that the solutions near the origin move away from it, exp
nentially in time.

Using the preceding analysis, we infer that close to
1:1 resonance, generically the dissipative terms induce
instability. In the case that the instability happens with n
detuning (d50), the normal form has only a real coefficie
and so the dissipative terms do not induce instability.
physical example of this last situation is theweakly dissipa-
tive baroclinic instabilitywhen the effect of earth’s spheric
ity is ignored@14# and another is the Kelvin-Helmholz insta
bility @15#.
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IV. ENERGY INJECTION

As we shall see in detail later, the laser is a system t
shows dissipation induced instability, but first, we need
discuss how the energy is injected to the system, so that
solution that becomes unstable is persistent when the d
pative terms are added. There are two natural ways to in
energy to the modes, namely, through forcing at finite f
quency or at zero. The latter situation is common in physi
systems. In a Hamiltonian system this is only possible
there is a conserved quantity, that is, a zero eigenvalue wh
mode is nonlinearly coupled with the other ones. For
stance, when there is a cyclic variable, the respective
mentumZ is conserved. A Hamiltonian system that has a 1
resonance in the presence of conserved quantity, leads
consider an extra equation of the form] tZ50 and an addi-
tional term2ZA in Eq. ~4!. The system presents differen
behaviors depending on the value ofe2Z. When one in-
cludes dissipative terms and forcing, the asymptotic norm
form reads

] ttA5~«2Z!A2~m2 id!] tA2auAu2A,

] tZ5nZ1huAu2. ~5!

The termhuAu2 permits a nontrivial coupling between th
variables. When the unperturbed Hamiltonian system
more modes without resonances between them, the pertu
system is governed by the above equations, since the in
sities of the other modes decreases in time. Through a n
linear change of variables, the previous equations are equ
lent to the Maxwell-Bloch equations@5#. Using a
multiscaling method, the dispersive instability with sma
dissipation is also described by the previous equations@16#.

V. EXAMPLE: THE LASER

To illustrate how dissipation induced instabilities ent
we consider the semiclassical description of the laser. Th
based on the self-consistent interaction of the electrom
netic field with an active medium within an optical cavit
The electric field is described classically~by the Maxwell
equations! and the matter as ensemble of atoms posses
two quantized energy levels; phenomenological terms
added to complete the description. Thus, the system is
scribed by@6,17#

]2E

]t2
5

]2E

]x2
2

]2P

]t2
2k

]E

]t
,

]2P

]t2
52g'

]P

]t
2@g'

2 1~11d!2#P2m2NE,

]N

]t
52g i~N2N0!1ES ]P

]t
1g'PD , ~6!

with periodic boundary condition at the cavity leng
@L, E(0,t)5E(L,t)#. Here E, P, and N are dimensionless
quantities, that correspond to linearly polarized electric fie
3-2
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BRIEF REPORTS PHYSICAL REVIEW E 64 067603
the dipole polarization field and the population inversio
g i , g' are the decay rate associated to spontaneous e
sion and interaction between the atoms,k is a damping re-
lated to the mirror losses,d is the detuning,m is a coupling
constant which characterizes the atoms andN0 the pump
parameter. In the time reversible limit of the above eq
tions, i.e.,g'5g i5k50, the system has, after an approp
ate scaling, the Hamiltonian density

H5
1

2 FD2S m

V D 2

PG2

1
~]xA!2

2
1S m

V D 2

N, ~7!

with the Poisson bracket

$F,K%5E dxH ]F

]A

]K

]D
2

]F

]D

]K

]A

1S m

V D 2

mW •~¹W mF3¹W mK !J , ~8!

where mW 5(N,P,] tP) and E5] tA and V511d. The
Hamiltonian is just the sum of the electromagnetic ene
and the atomic excitation energy.

Changing the cavity length in the time reversible limit
Eq. ~6!, leads to a 1:1 resonance for the nonlasing solut
(E5P50, N5D0), which gives rise to an electromagnet
wave with6V frequencies. Using the slowly varying env
lope ~WKB! approximation leads to the Maxwell-Bloc
equations@6#.

Figure 1 shows the space-time diagram of the elec
field of a numerical simulation of the semiclassical mod
plus noise with small intensity, close to the 1:1 resona
without dissipative terms@see Fig. 1~a!# and with dissipative
ones@see Fig. 1~b!#. The numerical simulations start with th
same initial condition, namely, the no-lasing solution w
excited atoms (D0.0).

It is clear from these pictures that the inclusion of dis
pation induces the laser to respond. One can physically
derstand what happens, since without dissipation the at
excited decay through the stimulated emission, i.e., the n

FIG. 1. Spatiotemporal diagram of the electric field of the se
classical model@Eq. ~6!# with L5120, d50.94, g50.6, Do

50.0338.~a! Without dissipationk5g'5g i50, ~b! with dissipa-
tion k50.03, g'50.01, g i50.03, andNo50.0338.
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lasing solution becomes unstable very slowly~nonlinear
mechanism!. Instead, when one takes into account the dis
pative terms, the excited atoms decay, for instance thro
stimulated emission and collisions, i.e., exponentially
time. Note that, one must pump toN05D0 so that the non-
lasing solution persists. Using the Energy-Casimir meth
@2# it is easy to show that the nonlasing solution has a lat
bifurcation forD050, this shows that with nonzero detunin
and slight pumping, the dissipation induces a laser respo

VI. MECHANICAL LASER

To illustrate the 1:1 resonance in a simple Hamiltoni
system, we consider a mechanical system, that we call
mechanical laser, which consists of two coupled spheric
pendula in a gravitational field, with a support, which c
rotate around a vertical axis. The lower pendulum is co
strained to move in a plane that is orthogonal to the plane
the upper pendulum~see Fig. 2!.

The system rotates with angular velocityẇ with respect to
the vertical. The quantitiesm1 , m2 , l 1, and l 2 are the mass
and length of the upper and lower pendula, respectively,
I is the dimensionless moment of inertia of the support. T
system will dissipate energy because of friction at the c
tacts and the motion of the pendulum masses in a fluid~for
example, the air! via Stokes’s law. Energy is injected throug
a constant torque at the upper pendulum pivot point. T
governing equations for the anglesu1(t) and u2(t) and the
vertical angular velocityẇ read@13#

ü152s2 sinu1 sinu2ü22s2 sinu1 cosu2u̇2
2

22s2 cosu1 cosu2ẇu̇21sinu1 cosu1ẇ2

2s2 cosu1 sinu2ẅ2
g

l
sinu12n1u̇1 ,

ü252sinu1 sinu2ü12cosu1 sinu2u̇1
212 cosu1 cosu2ẇu̇1

1sinu2 cosu2ẇ21sinu1 cosu2ẅ2
g

l
sinu22n2u̇2 ,

-
FIG. 2. Schematic representation of the mechanical laser
3-3
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d

dt H ~sin2u11s2 sin2u2!ẇ1s2 cosu1 sinu2u̇1

2s2 sinu1 cosu2u̇21I ẇ
J

52nw~ẇ2V!2m1 sin2u1ẇ2m2~sin2u11sin2u2!ẇ,

wheren1 , n2 , nw , m1, andm2 are damping coefficients,s
5Am2 /(m11m2) is the relative factor of the energy be
tween the oscillators, and we have written the torque asnwV.
For the sake of simplicity, we have considered the case
pendula of equal lengths (l 15 l 25 l ). When one considers
the Hamiltonian limit of the previous equations, the vertic
solution or nonlasing solutionu15u250, ẇ5V0 has a 1:1
resonance whenV05Vc5Ag(m11m2)/ lm1 with frequency
vc56Agm2 / lm1. The centripetal force is more intense th
the gravitational force whenV0>Vg[Ag/ l . As a conse-
quence, the Coriolis force exerted by one pendulum on
other, the nonlasing solution is marginal whenVg<V0
<Vc . In this region the system is nonlinearly unstable a
the system becomes linearly unstable whenV0.Vc ; this
exhibits a coherence oscillation, which is the signature of
laser instability.

Near the 1:1 resonance, the coupled pendulum is g
erned by Eqs.~5!, where@13#

«52
g

l

~V2Vc!

Vc
, a5

g

4l S s422s322s213

12s2 D ,

d52s~V2Vc!, n5
nw

I
, m5

1

2l 2
~n11n2!,

h5
1

I Fm11S 11
1

s2D m222
nw

s2I
S V

Vc
21D G ;

where the variables are related to the dominate order bA

5(su11 iu2)exp(ivct)/2 and Z52Vcs
2(Vc2ẇ). Trans-

forming Eq.~5! to the Maxwell-Bloch equations, one obtain
the following analogy of the electric fieldE5$su1

1 iu2%e
i (D1vc)t/21c.c., polarization P5$su̇11 i u̇2
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2)/4, where D5d(na

1h)/(2na12h2ma), a5(na1h)/a1 i2D, and «05(«
1D22dD)/a1(na1h)(ma2na2h)/a3. The mechani-
cal analog of the electric field is a simple function of th
pendulum displacements with respect to the vertical. In
Hamiltonian case the polarization is the slow time derivat
of the electric field. The mechanical analogy of the stim
lated emission mechanism~time reversal effect! is the verti-
cal angular momentum conservation. Thus, when one
creases the pendula tilt~the intensity of the electric field
enlargement!, the angular velocity decreases~the population
inversion declines!, which is a main ingredient of lase
theory. If the torque or pumping is equal to the gravitation
force (V05Vg), the mechanical laser exhibits a latent bifu
cation, and then the torque that gives rise to an angular
locity slightly higher thanVg leads to a dissipation induce
instability.

Another system that exhibits dissipation induced insta
ity is the baroclinic instability @8#, for large b effect this
occurs distant of 1:1 resonance, this suggests the presen
latent bifurcation. Work in this direction is in progress.

VII. SUMMARY

We have studied the 1:1 resonance for perturbed Ha
tonian systems with small dissipative and energy inject
terms. Nearby, the 1:1 resonance exhibits dissipation indu
instabilities. This allows us to show that a slightly pumpin
optical cavity is unstable when one takes into account
dissipative effects. The Maxwell-Bloch equations are t
asymptotic normal form that describe this instability wh
energy is injected through forcing at zero frequency. We h
displayed a simple mechanical system, the Mechanical la
or double spherical pendulum with a support, which, close
the 1:1 resonance, is a mechanical analog of the laser.
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