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Dissipation-induced instabilities in an optical cavity laser:
A mechanical analog near the 1:1 resonance
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The 1:1 resonance for perturbed Hamiltonian systems with small dissipative and energy injection terms has
been studied. These perturbations of the 1:1 resonance exhibit dissipation induced instabilities. This mecha-
nism allows one to show that an optical cavity with small pumping is unstable when one takes into account the
dissipative effects. The Maxwell-Bloch equations are the asymptotic normal form that describe this instability
when energy is injected through forcing at zero frequency. A simple mechanical system close to the 1:1
resonance has been displayed, which is a mechanical analog of the laser.
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[. INTRODUCTION system, which we call thenechanical laserwhich, close to
the 1:1 resonance, is a mechanical analog of the laser. Addi-
Equilibria of Hamiltonian vector fields can undergo a va-tional applications of the ideas in this paper will be given
riety of instabilities as a single bifurcation parameter is var-elsewhere.
ied [1]. There are two fundamental codimension one bifur-

cations of Hamiltonian systems. The firstie stationary or Il. GENERAL SETUP

steady state bifurcatignwhich is characterized by two eigen- . . . L

values merging at zero with multiplicity tw@]. The second ~_For simplicity, we first consilder a Ham|lton|:i:1n system
is the 1:1 resonangeinvolving the collision of two pure- With two degrees of freedord (p',q; ,{A}), wherep' andq;
imaginary eigenvalueéand their complex conjugateat fi-  are canonically conjugate variables=1,2), and{\} is a set

nite frequencies with multiplicity tw$3]. These instabilities ©Of parameters. Assume that there is a 1:1 resonance for an
are a consequence of the fact that in the Hamiltonian case, §auilibrium ath =\, i.e., the spectrum at the equilibrium

\ is an eigenvalue, thef8] so is—\. The same property is has a pair of pure imaginary elg.e_nvalues of _multlpI|C|ty two,
present in time reversible systems, i.e., they exhibit identica$@y at=i{. Nearby, the instability system is governed by
generic instabilities. Recently, the instabilities of quasireversthe normal form12]
ible systems have also been character{Zg8], in which the

irreversible effects are small and can be considered as per-

turbative terms close to the instability. In particular, systems _ 2 * _ R A* _

close to the quasireversible 1:1 resonance are described by HB=10B+T[|AI%I(AB" —BAT) {\ Ao} ]A

the Maxwell-Bloch equations when the energy is injected +ig[|A|%,i(AB* —BA*),{\—\.}]B, 1)
through a forcing at zero frequeng§]. The Maxwell-Bloch

equations describe the interaction of an electromagnetic fielheref andg are complex polynomial functions. There is a
and a collection of two level atoms at an optical caysy. ~ change of variables from the given ongs',q;,p?q,} to

The aim of this paper is to study the 1:1 resonance fothe new ones(the complex variablesA,B) of the form
systems in the neighborhood of a Hamiltonian one; that is{p?,q,,p?,q,} =AW +Bx+N(A,B,A* ,B*), whereV is the
we shall consider perturbed Hamiltonian systems with dissieigenvector of the linearized system correspondirigt@nd
pative and energy injection terms. Near this instability, they s 5 generalized eigenvector in the Jordan sense, and
dissipative terms are responsible for a spectral bifurcatio
i.e., the dissipation induces an instabili§]. These circum-
stances can occur in several mechanical systems, in nonli
ear optical cavities, fluid mechani@® the quasigeostrophic
model [8]), in tubes carrying a fluid9], in the motion of
planets in celestial mechani¢40], and galactic dynamics JuA=eA+i59,A— a|A|2A, )
[11], to mention a few.

Because of the extensive variety of application areas, thevheree is the bifurcation parameter, which is proportional to
contributions of this paper are of wide appeal to many im-\—\.; henceforth we assume<1, § is the gyroscopic
portant subjects. To illustrate ogeneralmethods, we shall term[3] or detuning terni6] and « is an order-one param-
consider, as apecific examplsimple mechanical and laser eter. The asymptotic normal forn2) has the following
systems. In these systems, the dissipation induced instabilityamiltonian:
enables us to show that an optical cavity with small pumping
is unstable when one takes into account the dissipative ef-
fects. The Maxwell-Bloch equations are the asymptotic nor-
mal form that describes this instability in the presence of a
conserved quantity. We shall display a simple mechanicalith the Poisson brackef(andG are real valued

JA=iQA+B,

nI(I(A,B,A*,B*) is a nonlinear vector. This change of vari-
Ig_bles is not canonical in general. When one considers rotated
variables A=¢e'"'A’ B=¢'*3,A’) and the dominant terms,
the normal form readmitting the primes

o
HzﬁtAﬁtA*—s|A|2+§|A|4, ©)
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IV. ENERGY INJECTION

JF oG aG oF  9F 4G
= +cC.C

{F.G}= A gp*F ﬁ%ﬂﬁ(y_At oAF As we shall see in detail later, the laser is a system that
t t t . . . . . .
shows dissipation induced instability, but first, we need to
. . . .discuss how the energy is injected to the system, so that the
Ca;{:‘#iéfofﬁflgiggi;ﬂ; r:)?rllrl]geg;r%hzgﬁ]ﬁig(zz\g)”aa?ées I%oll_Jtion that becomes unstable is persistent when the _di_ssi-
- pative terms are added. There are two natural ways to inject
il/Z\/4s—252i25\/ 5°—4e. When e — 6°/4 is negative, energy to the modes, namely, through forcing at finite fre-
the initial Hamiltonian system has four distinct pure imagi- quency or at zero. The latter situation is common in physical
nary eigenvalues; — 6%/4 equal to zero is the 1:1 resonance systems. In a Hamiltonian system this is only possible if
at =i() frequencies and when it is positive, the eigenvalueghere is a conserved quantity, that is, a zero eigenvalue whose
have nonzero real part. Note that the gyroscopic term is aode is nonlinearly coupled with the other ones. For in-
stabilizing effect 3]. stance, when there is a cyclic variable, the respective mo-
mentumZ is conserved. A Hamiltonian system that has a 1:1
resonance in the presence of conserved quantity, leads us to
consider an extra equation of the fodyz=0 and an addi-
We now consider this Hamiltonian system under the in-tional term —ZA in Eq. (4). The system presents different
fluence of small dissipative terms. This leads to a new ternipehaviors depending on the value ef Z. When one in-
in the asymptotic normal form as follows: cludes dissipative terms and forcing, the asymptotic normal
form reads

IIl. ADDING DISSIPATION

duA=eA=(p=18)aA—alAIPA, @ A= (e —Z)A—(u—i8)aA—alAl2A,

whereu is positive. To study the effects of dissipative terms aZ=vZ+ 7|Al% (5)

in Eq. (4), we consider its characteristic polynomial?

+2uN3+ (u?+ 8°—2e)\>—\2eu+e2. Looking for roots  The term |A|? permits a nontrivial coupling between the
of the formAx=a=*ib and\=c=*id, one recognizes that variables. When the unperturbed Hamiltonian system has
=—(a+c) and su=[c(a®+b?)+a(c®+d?)]. Hence, more modes without resonances between them, the perturbed
whene is negativea andc are negative, i.e., all eigenvalues system is governed by the above equations, since the inten-
are to the left of the imaginary axis. Fer positive ande sities of the other modes decreases in time. Through a non-
— 8%/4 negative, the unperturbed system is marginal, but théinear change of variables, the previous equations are equiva-
perturbed one satisfiemc<0; in addition, the eigenvalues lent to the Maxwell-Bloch equations[5]. Using a

with larger frequency move to the left of the imaginary axis multiscaling method, the dispersive instability with small
(stable modesand the others to the riglitinstable modes  dissipation is also described by the previous equati@6

but the eigenvalues that move furthest away from the axis

are stable. Finally, whea> §%/4, the eigenvalues have non- V. EXAMPLE: THE LASER
zero real part, and again the stable modes are the furthest ) o )
from the imaginary axis. To illustrate how dissipation induced instabilities enter,

We now consider dissipation induced instabilijgg The ~ We consider the semicla_ssical _descrip'Fion of the laser. This is
destabilizing effects through positive or negative total dissi?ased on the self-consistent interaction of the electromag-
pative perturbation was known already by Thomson and Taif€tic field with an active medium within an optical cavity.
[3]. One can understand this phenomena as follows: when The e_Iectrlc field is described classicallpy the Maxwell _
is negative, the energy8) has a minimum at the origin, €duations and the matter as ensemble of atoms possessing
hence when dissipation is added, the solutions near the origif/0 duantized energy levels; phenomenological terms are
move towards it. By contrast, i is positive, the energy has added to complete the description. Thus, the system is de-
a saddle point at the origin and when< §%/4, this is un-  Scribed by[6,17]
stable with an algebraic evolution in time. We say that the
system(2) exhibits alatent bifurcation[13] for e =0; when o= _ =
one adds dissipation, this is consistent with the conclusion o2 ox%  ogt? at’
that the solutions near the origin move away from it, expo-
nentially in time. 2P oP

Using the preceding analysis, we infer that close to the —=— M——[yf+(1+ 8)?1P— u?NE,
1:1 resonance, generically the dissipative terms induce an at? dt
instability. In the case that the instability happens with null
detuning ¢=0), the normal form has only a real coefficient N
and so the dissipative terms do not induce instability. A St~ Y(N=No)+E
physical example of this last situation is tiveakly dissipa-
tive baroclinic instabilitywhen the effect of earth’s spheric- with periodic boundary condition at the cavity length
ity is ignored[14] and another is the Kelvin-Helmholz insta- [L, E(0t)=E(L,t)]. HereE, P, andN are dimensionless
bility [15]. quantities, that correspond to linearly polarized electric field,
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FIG. 1. Spatiotemporal diagram of the electric field of the semi- FIG. 2. Schematic representation of the mechanical laser.

classical mode[Eq. (6)] with L=120, §=0.94, g=0.6, D,
=0.0338.(a) Without dissipationk=y, = y,=0, (b) with dissipa-  lasing solution becomes unstable very slowlyonlinear
tion k=0.03, y, =0.01, y=0.03, andN,=0.0338. mechanism Instead, when one takes into account the dissi-
pative terms, the excited atoms decay, for instance through
the dipole polarization field and the population inversion.stimulated emission and collisions, i.e., exponentially in
y|,» 7. are the decay rate associated to spontaneous emiime. Note that, one must pump k=D, so that the non-
sion and interaction between the atomsis a damping re- lasing solution persists. Using the Energy-Casimir method
lated to the mirror losses) is the detuningu is a coupling  [2] it is easy to show that the nonlasing solution has a latent
constant which characterizes the atoms &hgdthe pump  bifurcation forDy=0, this shows that with nonzero detuning
parameter. In the time reversible limit of the above equa-and slight pumping, the dissipation induces a laser response.
tions, i.e.,y, = y= =0, the system has, after an appropri-

ate scaling, the Hamiltonian density
VI. MECHANICAL LASER

2 (&XA)Z 2

2
= 1 N Lad To illustrate the 1:1 resonance in a simple Hamiltonian
H D P + N, (7) \ C
2 Q 2 Q system, we consider a mechanical system, that we call the
. ) mechanical laserwhich consists of two coupled spherical
with the Poisson bracket pendula in a gravitational field, with a support, which can
rotate around a vertical axis. The lower pendulum is con-
(F K}:f dgx) IE K _9F K strained to move in a plane that is orthogonal to the plane of
' dA dD D 9A the upper pendulurtsee Fig. 2.
2 The system rotates with angular velocigywith respect to
+ el nﬁ.(v*mva*mK)}, (8)  the vertical. The quantities;, my, |4, andl, are the_mass
Q and length of the upper and lower pendula, respectively, and

. | is the dimensionless moment of inertia of the support. The
where m=(N,P,¢,P) and E=9,A and Q=1+4. The system will dissipate energy because of friction at the con-
Hamiltonian is just the sum of the electromagnetic energytacts and the motion of the pendulum masses in a fliaid
and the atomic excitation energy. example, the ajrvia Stokes’s law. Energy is injected through

Changing the cavity length in the time reversible limit of a constant torque at the upper pendulum pivot point. The
Eq. (6), leads to a 1:1 resonance for the nonlasing solutioryoverning equations for the anglég(t) and 6,(t) and the
(E=P=0,N=Dy), which gives rise to an electromagnetic yertical angular velocityy read[13]
wave with = ) frequencies. Using the slowly varying enve-
lope (WKB) approximation leads to the Maxwell-Bloch

equationg6]. 6,=—0?sinf, sin 6,0, — o sinf; cosh, 03
Figure 1 shows the space-time diagram of the electric o .
field of a numerical simulation of the semiclassical model, — 202 c0s6, c0Sh,p0,+ Sin B, cOSH; >

plus noise with small intensity, close to the 1:1 resonance
without dissipative termpsee Fig. 1a)] and with dissipative
ones[see Fig. 1b)]. The numerical simulations start with the
same initial condition, namely, the no-lasing solution with
excited atomsD,>0). _ o
It is clear from these pictures that the inclusion of dissi- 6,= —sin 6, sin 6,6, — cos6; sin 6,65+ 2 cosb, cost,¢ b,
pation induces the laser to respond. One can physically un-
derstand what happens, since without dissipation the atoms
excited decay through the stimulated emission, i.e., the non-

.9 .
— 0% cosh, sinfp— TSin01—v16,

+5in 6, cosO, >+ sin 6, cOSO,p— T Sing2=v20s,

067603-3



BRIEF REPORTS PHYSICAL REVIEW E 64 067603

d [ (sirf6,+ 02 sirf6,) o+ a2 cosb; Sin 6,0, +a(ob,+i6) e @2+ c.c. and population inversiomN
=20.0%(¢— Q) a+eq— (c203+ 63)14, where A=5(va

+ )/ (2va+2n—pa), a=(va+p)la+i2A, andeg=(e
+A%2=6A) a+ (va+ n)(wa—va—n)la®. The mechani-

cal analog of the electric field is a simple function of the
wherev,, vy, v,, py, andu, are damping coefficientgy ~ Pendulum displacements with respect to the vertical. In the
=m is the relative factor of the energy be- Hamiltonian case the polarization is the slow time derivative
tween the oscillators, and we have written the torque, . of the electric field. The mechanical analogy of the stimu-
For the sake of simplicity, we have considered the case dited emission mechanis(time reversal effegtis the verti-
pendula of equal lengthd (=1,=1). When one considers cal angular momentum conservation. Thus, when one in-
the Hamiltonian limit of the previous equations, the verticalcreases the pendula tiithe intensity of the electric field
solution or nonlasing solutiofl, = 6,=0, ¢:Qo has a 1:1 enlargement the angular velocity decreaséke population

resonance whefl, = Q= \g(m; + my)/Im, with frequency inversion declines which is a main ingredient of laser
.=+ m The centripetal force is more intense than theory. If the torque or pumping is equal to the gravitational
h° RS Il'f heif)o= .= \g/l. A force ((Qo=1{)), the mechanical laser exhibits a latent bifur-
the grawtr?tlona' ?rc;a Whenlo=321g=v0/l. AS a Iconse- hcation, and then the torque that gives rise to an angular ve-
quence, the Cor|o_|s orce _exer'ged by one pendulum on ¢ ?ocity slightly higher than(), leads to a dissipation induced
other, the nonlasing solution is marginal whén,<(, g

=0 In this region the system is nonlinearly unstable and" S22
=%%c. 1N IS region the system 1S noniinearly unstable and ooy system that exhibits dissipation induced instabil-
the system becomes linearly unstable wheg>Q.; this

N A T : ity is the baroclinic instability [8], for large 8 effect this
exhibits a coherence oscillation, which is the signature of th%ccurs distant of 1:1 resonance, this suggests the presence of
laser instability |

. latent bifurcation. Work in this direction is in progress.
Near the 1:1 resonance, the coupled pendulum is gov- prog

erned by Eqs(5), where[13]

dt —o?sinf, cosh,0,+ 1 ¢

= — v (¢—Q)— uy SiNP 09— po(Sinf O, +sirf ) @,

VIl. SUMMARY

€

_,9(0-99 g (0’4—20'3—202+3
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We have studied the 1:1 resonance for perturbed Hamil-
tonian systems with small dissipative and energy injection
" 1 terms. Nearby, the 1:1 resonance exhibits dissipation induced
60=20(0—-Q¢), v= I—‘P u=—7(vi+vy), instabilities. This allows us to show that a slightly pumping
2 optical cavity is unstable when one takes into account the
dissipative effects. The Maxwell-Bloch equations are the
) asymptotic normal form that describe this instability when
' energy is injected through forcing at zero frequency. We have
displayed a simple mechanical system, the Mechanical laser
where the variables are related to the dominate ordeA by or double spherical pendulum with a support, which, close to
=(00,+i0,)explod)2 and ZZZQCUZ(QC—¢). Trans- the 1:1 resonance, is a mechanical analog of the laser.
forming Eq.(5) to the Maxwell-Bloch equations, one obtains ..M. was partially supported by the National Science
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