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Solitons on a zigzag-runged ladder lattice
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The nonlinear dynamical model on a two-leg ladder lattice with the rungs arranged into a zigzag chain is
proposed. The lattice contains two structure elemémislecule$ in the unit cell. As a result, the system
exhibits the two-branch spectrum in its low-amplitude limit. The similar two branches are shown to be
observed in high-amplitude soliton solutions too. The integrability of the model is proved and the one-soliton
solutions are explicitly presented and analyzed. The model Hamiltonian, as well as the basic conserved
guantities are found.
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The integrable one-componefit] and multicomponent Thus, we clearly see that the discrete nonlinear models
[2,3] nonlinear Schrdinger systems on one-dimensional lat- play a fundamental role in a variety of physical problems.
tices arise as appropriate discretizations of their respectivghe integrable models on ladder lattices among them appear
continuous counterparts, namely the Zakharov-Sh@#at to be the most perspective ones due in part to their integra-
and Manakov[5] ones. However, the power of any dis- pjlity and realistic quasi-one-dimensional character of the
cretized model appears to be more pronounced as compargﬂmary lattice structure.
with its continuous ancestor. Thus, using the integrable | the present report we study the integrable nonlinear
Ablowitz-Ladik model[1] we have managed to reveal the ,oqel on a two-leg ladder lattice with the rungs arranged
localized solitonic modes in discrete Davydov-Kyslukhajnig 5 zigzaglike chain. Here, we would like to stress that

nonlinear systenmi6,7] as well as in a standard discrete non-
linear Schrdinger ong[7]. The physical origin of these os-
cillations turns out to be the same as that of intrinsic local-
ized modes observable in a pure unharmonic lafi&;6] in
view of the close relationship between the nonlinear Schro
dinger and the nonlinear mechanical lattice systems via
rotating-wave approximatiofnl0,11. The multicomponent
integrable nonlinear mode]g,3] may in principle be applied

to the investigation of even more sophisticated dynamical
systems.

Recently, we have developed the multicomponent inte-
grable nonlinear model on a multileg ladder lattid¢e,13. It
has permitted us to describe the slalom soliton dynamics on
a ladder lattice with zigzag distributed on-site impurities
[14,15 and has furnished insights into the nature of an
attractive-repulsive alternative in an effective soliton interac-
tion with the modified transverse bondi4].

Another approach dealing mainly with the soliton local-
ization on a double-chaifladde) lattice has been demon-
strated within the framework of two coupled one-
dimensional Ablowitz-Ladik equatiori46]. The similar idea
to couple two known integrable discrete nonlinear systems,
namely Ablowitz-Ladik[1] and Todd 17] systems, has actu-
ally been explored to investigate the solitonic energy transfer
in a coupled exciton-vibron systefi8].

It is interesting to note that ladder lattice structures are
now very popular objects also for the experimental detection
[19,20 and theoretical descriptidr20] of spatially localized
excitations(breathersin Josephson-junction arrays.

Finally, the nonlinear mechanical model of the Fermi-
Pasta-Ulam-type has recently been invoked for the experi-
mental and theoretical investigation of pulselike deforma-
tions propagating through the discrete geophysical medium
with the Hertz contact interaction between the structure ele-
ments[21].
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such a lattice has nothing to do with those considered in our
previous publication$12—-15. Consequently, the model of
interest is suggested to be another one.

We start with the explicit presentation of our model
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—ir . (N)+2wor +(N)
1+r(n)g.(n)
+or (n+D[1+r_(n+1)g_(n+1)]

to 1 (N)+or (n+1) IT= 2 q.(m)r (m=1[L+q (mr_(m)]

) + 2 g (m+1)r_(m[1+q.(m)r (m)]
+w; r (n=1[1+r_(n)g_(n)]+w,'r_(n+1) m= -

©

X[r*(n+l)q+(n)+r+(n)qf(n)]+wrrf(n) + E[qi(m)ra(m)_’_qz_(m)ri(m_1)]’ (8)
X[r_(n)g,(n)+r.(n)g_(n+1)]=0, (4) "

=—m

li= 2 [a.(mr_(m+q_(mr (m-1)], (9
as a sufficient object to give some basic definitions and as a m=-
most natural tool to trace the structure of intersite linear cou- o
plings (bonds, and hence, to imagine more clearly the pri-  1,= >, I{[14+qg_(m)r _(m)][1+qg.(m)r, (m)]},
mary structure of the whole lattice. Namely, we can safely m= -
prescribe the dynamical variablgs (n),r _(n) andq.(n), (10
r.(n) to be the field amplitude®r amplitudes of intramo- o
lecular excitationsassociated with the lattice sites, respec- IF= > [q_(m)r (m)+q,(mr_(m+1)], (11)
tively, on left (—) and right (+) straight chainglegs of the m=—c
lattice within nth unit cell. Then the quantities, ,w,” and -
w; ,o; are seen to characterize the strength of longitudinal = q_(mr_(m+1)[1+q.(m)r,(m)]
(I) and transversé) intersite linear couplings, respectively, m=—c

regardless of their possible time dependences. The overdot in o
Egs.(1)—(4) stands for the derivative with respect to dimen- n -1 14
sionless timer, whereas the longitudinal numerical coordi- m;— A+ (Mm=Dro(mi1+a-(mr-(m]

naten is assumed to run from minus to plus infinity. Finally, .

the terms proportional te, describe the regular energy shift 2

and could be easily eliminated by the standard gauge trans- +m=,x

formation of field amplitudes.

It is easy to conclude that every site of adopted two-leg

ladder lattice is linearly coupled to four of its neighbdts .. via an appropriate multiplication by the coupling parameters.

two on the same leg of the ladder and to two on the opposite Although the Poisson brackets related to the madpt

!ﬁ?{lg;rr]a(k:)?gtr:i)S(;etﬂig]—el;[ﬂwe\;:]ee%evg:\sl;/o?hr?(:;r;\zizlr:?)gcrjgilr(1nlic:1vyn (4) are turned out to be nonstandard, they are unable to cause
’ any discrepancy in physical applications. Indeed, introducing

ear couplings are involved. the corrected amplitudes
In general, the coupling parametess ,»,” andw; ,o;

are proved to be arbitrary functions of time. The freedom in Q- (nN)=+[g=(n)/r=(M]IN[1+qg=(nN)r=(n)], (13
choosing their particular time modulations appears to pro-

%[q%<m>ri<m>+qi<m>r%<m+1)],

(12

vide a practically inexhaustible source of parametrically R-(n)=[r=(n/g=(MIIN[1+g=(nr-(n)], (14
driven physical systems integrable by the inverse scattering _ o _
transform. we might always convert the original modd)—(4) into the

It is worthwhile to stress that the nonlinear model of in- Standard form
terest may be readily written in rather compact Hamiltonian

form +iQ=(n)=9H/IR=(n), (15
—iR+(n)=dH/3Q+(n). (16)
+igz(n)=[1+a=(mr=(n)JoH/ir=(n), (3 Here, of courseH must be written in terms of the amplitudes
Q-(n),R_(n) andQ.(n),R.(n).
B Remarkably, the corrected modgl5),(16) possesses the
—irz(nN)=[1+qg=(n)rs(n)JaH/q=(n). (6)  same linear part as the original of®—(4) and hence, ex-
o hibits the same low-amplitude spectrum.
Here, the model Hamiltonian The model(1)—(4) is integrable by the method of inverse
scattering transform insofar as it actually has been decoded
He — ol — w1 —20pl0— 0l 1F —o 15, (7) from the Lax equation
L(n|z)=A(n+1|z)L(n|z)—L(n|2)A(n|z),  (17)
is totally determined by the conserved quantities with the following spectral operator:
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izg_(n)+iz"*q.(n)

z7%=r (n)g_(n)
(18

Z2—q(M)r_(n),

L(n|2)= izro(n)+iz"r_(n),

The corresponding evolution operata(n|z) is determined

from the Lax equatiorfl7) under the assumption that it must

be expanded in the same powers of spectral paramaeisr
L?(n|z), i.e., its matrix elementa;(n|z) must be sought in

the form
Asi(n|z)=ay4(n)z*+byy(n)Z?+cyg(n) +dyy(n)z 2, (19

Apn|z)=a1(n)Z3+byy(n)z+cyx(n)z 1+ dyy(n)z 3,
(20

Ag(n|z)=a,1(N)Z3+byy(N)Z+ Coy(N)z~ 1+ dyy(n)z 73,
(21)
Agy(n]Z2)=ay5(N)Z%+byy(N) +Col(N)Z 2+ dyy(n)z 7% (22)

Specifically, for the functions;(n), bj(n), cy(n), and
djk(n), we have
ap(n)=+iow , (23
b1y(n)=+iew; +iw q_(nN)r.(n—-1), (24)
Cu(N)=+iwgtio, g_(Mri(n—1)+iw, q+(N)ro(n—1)
X[1+g_(nr_(n)]+ie; g_(n)r_(n—1)

X[1+g (n=1)r (n=1)]+iew g2 (Mri(n—1),

(25
dyy(n)=+iw g, (n=1)r_(n), (26)
a(n)=—w; q_(n), (27)

bia(nN)=—wy q-(N)—w; q(N)[1+g_(n)r_(n)]
— o, g2 (n)ry(n—1), (28)
Cia(N)=+w q,(n—1)+w'q (n—1)

X[1+q:(n=1)r (n—1)]+w g% (n—1)r_(n),

(29
din) =+ q:(n—1), (30
ax(n)=—wy r.(n-1), (31)
boi(nN)=—w; ry(N—=1)—w r_(n-1)
X[1+1,(n=1)g,(n—1)]
—o; r3(n=1)q_(n), (32)

Co(M =+ T_(M+o T (M[1+r_(n)g-(n)]

+wr2(n)g.(n—1), (33
dog(n)=+w,"r _(n), (34
ax(n)=—iw, r.(n—1)q_(n), (35)
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boy(N)=—iwe—iw r_(n)g;(N—1)—iwr(n)
X (n=D)[L1+r_(n)g_(n)]—wr_(n)
Xq-(n=1)[1+r (n=1)q:(n—1)]

— o 12 (n)g? (n—1), (36)
CoAN)=—iw —iwT_(n)q,(n—1), (37)
dzz(n): —Iw|+ . (38)

The results of the previous paragraph when combined with
the auxiliary linear problems

u(n+1Jz)=L(n|z)u(n|z), (39
u(n|z)=A(n|z)u(n[2), (40)
(whereu(n|z) is the two-component column vecjoallow
us to integrate the models of interé4)—(4). However, the
detailed description of the whole integration machinery goes
beyond the scope of the present report. Instead, we will dis-
cuss the simplest one-soliton solutions of the models al-
though being obtained within the framework of inverse scat-
tering transform.

We restrict ourselves to the case of reduction(n)
=qg*(n), r.(n)=q%(n) corresponding to the attractive type
of nonlinearity and bright soliton solutions. Then the dy-
namical Eqs(1)—(4) will be mutually consistent under con-
straintH* =H. As a consequence, the parameibgrmust be
purely real, whilew, ,w;", andw, ,w,” can be parametrized
as follows

w|i=w| exp(xiy), (41

w; =w exp(Eiy), (42
where the parameters,,y, and w;,vy; are supposed to be
the real ones. For the sake of simplicity, all of these param-
eters will be taken to be time independent.

It is interesting to note that analogous to the low-
amplitude (linean modes, the one-soliton solutions of our
nonlinear modelg1)—(4) can be separated into twa€0
andv=1) one-soliton branches

q®(n)

. . . K .
sinh( ) ex +|Kn+|( H_Z_EV) —i7Q,(k|p)

COSY{Z,U, n—%—X(O)—TU,,(K“L) }
(43
a¢(n)
K
Sinl‘(,ud)exr{-l-ikn-i—i(ﬂ—l—z-l- P —i7Q,(k|p)
COS)’{Z,LL n+%—X(0)—TUV(K|,LL) }
(44)

067601-3



BRIEF REPORTS

characterized by two differentv&0 andv=1) cyclic fre-
guencies

Q,(k|p)=—2wo— 20, cosi2u)cog k= )

—(=1)"2w, COSKM)COS( g - yt) , (49

and by two different =0 andv=1) typical longitudinal
velocities

[T . Wy |
vy(KIu)=zsmH2msm(K— )+ (= 1)”;smh(u)

X sin (46)

K
E_'Yt .

o
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Here, we suppose the wave numleto be bounded to the
interval — 7+ 2y, < k< + 7+ 2%, . In the limit of extremely
long solitonsu—0, the frequencies$),(«|u) approach to
the frequencies of linear spectrum,(«|0) (»=0,1). In the
same limitu—0, the quantities ,(«|x) acquire the mean-
ing of group velocities of respective planar waves
v,(k|0)=0Q ,(x|0)/ ik,

(v=0,1). (47)

The precise meaning of each velocity( «| ) at an arbi-
trary longitudinal size of solitor~ coth 2u may be under-
stood calculating the mean longitudinal coordinate of the re-
spective soliton wave packet on correcfadcording to Egs.
(13),(14)] one-soliton amplitudes

> [(n=14Q(MRY(n)+(n+1/4Q(mRY(n)]

X =

14

We obtain

X, =X(0)+ 7v (x| ). (49
Hence,v,(x|u) is nothing but the longitudinal velocity of
the corrected one-soliton pattern belonging #th one-
soliton branch, whilex(0) is the initial mean longitudinal
coordinate of this pattern.

The quantity, written in the denominator of definiti¢#8)

2 [QYMRY(M+ QMR (m)]

(48)

same time-independent valug.drrespective of a particular
one-solitonic branch.

Summarizing, we have developed the nonlinear dynami-
cal model on a zigzag-runged ladder lattice integrable by the
inverse scattering transform. We have found its Hamiltonian
formulation with the Hamiltonian function determined by the
superposition of basic conserved quantities and describe how
to rewrite the model in terms of physically corrected ampli-
tudes. We have proved the model integrability and presented
its one-soliton solutions, which happen to manifest two dif-

determines the number of excitations in the one-soliton Soferent solitonic branches in accordance with the number of
lution of vth branch. It owes to be time independent thanksstructural elements contained in the unit cell of primary lad-

to the conserved quantity, [see Eq.(10) taken in terms of
corrected amplitude&l3),(14)]. The direct calculations con-

der lattice.
This work has been supported by the Science and Tech-

firm this statement yielding for the number of excitations thenology Center in Ukraine, Project No. 1747.
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