PHYSICAL REVIEW E, VOLUME 64, 067301
Energy spectrum of grid-generated Hell turbulence
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A grid of bars towed through a sample of Heproduces both superfluid turbulence and classical hydrody-
namic turbulence. The two velocity fields—in the normal fluid and in the superfluid—have been observed to
have the same energy spectral density over a large range of scales. Here, we introduce a characteristic scale
/q=277(a/;<3)’1/4, wheree is the rate of turbulent energy dissipation per unit volume, and note that the
energy spectrum in superfluid turbulence depends also on the quantum of circelatmmwave numberg
>kq=2m!/y. We propose that the spectral density in this range is of the #fk)=Cse « k3, whereC is
the three-dimensional Kolmogorov constant in classical turbulence. This form is consistent with recent experi-
ments in the temperature range 1.2<K<2 K on the temporal decay of the vortex line density in the
grid-generated He Il turbulence.
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Superfluid turbulence is usually viewed as a tangle of Thus, even though the situation in Heeturbulence is
quantized vortex line$l], and its possible relationship to almost certainly quite complex, these two experimental ob-
hydrodynamic turbulence in classical fluids has not beerservations suggest that the two fields of turbulence—the
given much thought. In most early studies, superfluid turbuclassical turbulence in the normal component and the super-
lence was created by applying a heat current that resulted ifttlid turbulence—are closely similar to each other, and so, in
a counterflow of the normal and superfluid components ofarticular, are their energy spectra. This view has been ex-
He 1. This necessarily resulted in disconnected fields of hypanded quantitatively in Ref$3-5|. Vinen [5] has argued
drodynamic and superfluid turbulence, and so it seemed re#hat this similarity extends only for large enough length
sonable to think that the two fields were quite different inscales, and that at small length scales of order of intervortex
character. Recently, however, turbulence in H&as been spacing of the superfluid tangle, the two fields cannot be
generated in a manner similar to that in studies of classicdllly matched. For that range of scales, the superfluid spec-
turbulence, by either confining He between rotating discs tral density would depend in addition on Vinen used a
[2] or towing a grid of bars through a stationary sample ofdimensional argument similar to that of Kolmogorov to show
He 1 [3,4]. These experiments reveal a deep similarity bethat the spectral density in the wave-number sgaeeuld
tween the two fields of turbulence. However, this similarity then be of the form
breaks down at small scales where the quantization effects of
circulation have to be taken into account explicitly. The pur- B(k)=Ce?¥ Bf(ek k3, (1)
pose of this paper is to propose, for superfluid turbulence, a
form of spectral density at these small scales that is consisvhereC is the three-dimensional Kolmogorov constanis
tent with recent vortex line density measurements. the rate of turbulent energy dissipation per unit volumés

Two experimental observations are relevant to us. Firstthe quantum of circulation of superfluid vortices, and
Maurer and Tabeling2] produced turbulence in a flow of which represents the substance of the mismatch between the
liquid helium confined between counterrotating discs, andwo fields of vorticity, is an undetermined function of its
obtained the energy spectral densityTat2.3 K, 2.08 K, argument.
and 1.4 K. From the standpoint of the two fluid model, one We are interested here in the form of the superfluid energy
may think of liquid helium as being largely superfluid at 1.4 spectrunfor the functionf in Eq. (1)], in order to compare it
K and largely normalor classical at 2.08 K, and entirely with the temporal decay of the vortex line density known
normal at 2.3 K. Yet, the spectra obtained at all three temfrom experiments based on the second-sound attenuation.
peratures were identical and possessed an inertial range Gbnsistent with the physical picture of superfluid turbulence
the classical Kolmogorov form. Second, in the experimentsis a tangle of quantized vortex lines, the spectral density
in Refs.[3,4], turbulence was produced by pulling a grid of must be finite up to very higk—loosely speaking up to the
bars through a stationary sample of kleand the decaying order of the inverse of the vortex core representing the ulti-
average vortex line density.e., length of line per unit vol- mate cutoff scale for superfluid turbulence.
ume over a measurement volume was obtained from the We first make the elementary observation that the argu-
attenuation of the second sound. The character of the decagent of Vinen’s functiorf in Eq. (1) allows us to define by
of the superfluid vortex line density did not change with dimensional considerations a characteristic quantum wave-
temperature within the range 1.2<Kr<2.0 K, while the  number, qu(s/K3)1’4, and the corresponding quantum
ratio of the superfluid to normal fluid density varied, overlength scale/,=2m(e/x%) " The length/, represents
this temperature range, from near unity to almost zero. the scale below which quantized circulation effects become
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important. The picture is that the two fields of turbulenceture depends on whethky is comparable té, , wherek, is
have the same classical hydrodynamic spectral forms for athe inverse of the Kolmogorov scale. Two possibilities
scales much larger thafy,, but that quantization effects will - arise.
modify the superfluid energy spectrum elsewhere. This First, let us assume that the Kolmogorov scales larger
modification comes about most likely by the action of thethan the quantum scale. In this case, the quantized vortices
mutual friction force. lie entirely in the strain field set up by scal®$7), by which

The experimental observable in the experiments is thehey are stretched. It is possible then that an effective quan-
quantized vortex line densitly. We are interested in being tum subrange gets established within which the only impor-
able to deduce the form of the superfluid energy spectruntant parameters are the quantum of circulationand the
that is consistent with the temporal decaylofOur frame-  strain rate at the Kolmogorov sca®((e/v)?), wherev is
work is Eq.(1) and the analytically solvable spectral decaythe kinematic viscosity of the normal componefii the
model described in Ref$3,6]. We particularly consider the above expression, an effective viscosity might replace the
influence of the functional formi(ek %« 3) on the tempo-  actual kinematic viscosity, s¢&], but the two quantities are
ral decay ofL. Let us assume the classical Kolmogorov spec-of the same order, as already nojeSince the strain field set
tral density in the entire spectral range between some largep by the Kolmogorov scales is proportional to the square
scale wave numbekp and the quantum wave numbky  root of the energy dissipation, that is the only powee dhat
=(e/x*)Y4 and the modified one beyorig, for which we  ought to appear in the spectral density. This corresponds to
choose a form the casex= —1/6 [see Eq(2)]. The superfluid spectral den-

sity will then be of the form
d(k)=Ce?Pk ek 4k 3. )
p(k)=Ce'2cV% 1. (5)

The positive powerr makes the spectrum more steepkin
while the negativex makes it less steep, compared to the It is possible to show, in the same spirit as abf¥ that
classical roll off exponent of-5/3. By integration ovek, this special case of negative also leads to the temporal

<k<o, for a# —1/6, we get the energ to be decay ofL that gradually slows down relative to the expo-
nent of —3/2.
3C 6a Let us apply this physical picture to the late stage of the
E=—- R msmkm : (3)  decay, when the growing Kolmogorov scale becomes of the

size of the channdD. Assuming theék ! scaling in the entire

Noting the definition ofs=—dE/dt, this is a differential SPectral range between the large-scale wave nuriper
=k, andkqy, we get, by integration, the energyto be

equation for the decaying energy. However, for comparison
with the second sound experiment it is useful to discuss the 302,172
temporal decay in terms of the experimentally observed E=Cren(ky k). ®

quantity, L =L (t)—which can be related in the case of ho-  pjfterentiating with respect of time and using the relation
mogeneous and isotropic turbulence to the energy decay rafg) |eads to the inverse rate of decay of the vortex line den-
by [5] sity, consistent with numerical simulatiopB0] and also with
B 2 2 the Vinen’s original mode[11], developed on the basis of
€= Verrk L. (4) experiments ircounterflowHe 11 turbulence.

. . . o . However, this is not what the experiments on grid gener-
Here vq¢s is the e;ffectlve kinematic viscosity o_f turbulent 5teq4 Hen turbulence show4,12], and one must look for
He i [5,7,8], and is of the same order of magnitude as the,jtematives to Eq(5). The grid experiments demonstrate that
kinematic viscosity defined as the dynamic viscosity over the, ine |ate stage of decay of the grid turbulence iniHehe
total density of Hel. The above differential equation can be \,qrtex line density decays exponentiall,4]. Measure-
solved analyticallyf9] for L(t). Naturally, fora=0 we have  ments show that the effective kinematic viscosity is about
a spectral density that remains classical Korkp and cor-  3_g times less thamr [8], which in turn suggests that the
responds to the usual universal power law with exponentsy oimogorov scale and the quantum scale are of the same
—2 for decaying energy ang 3/2 for decaying vorticity or  orger. One form of the spectral densit) that is continuous

vortex line density. For ang>0, ¢(k) is steeper beyonkl, 5 kq and consistent with the exponential decay is obtained
andL decays faster; the case @f- = corresponds to a sharp o, = 1/3, and corresponds to

cutoff at ky, considered in Refg4,6]. For —1/6<a<0,

#(k) becomes less steep beyokd and L decays more d(k)=Cex k3 7

slowly. Note that the value of the roll-off exponent in the

energy spectrum alone does not determine the character &dr k>Kk, [13]. The implication of the above equation is that

the temporal decay of energy or vortex line density, but doeghere is only one time scale in the problem and it is given by

so only when combined with the time evolution of the rel- (x/£)°. This time scale represents a balance of the turbulent

evant length scales that is implicitly given by their depen-kinetic energy that is now almost entirely due to the quan-

dence ore. tized vortex lines, and the rate of energy “dissipation” pre-
Returning to the two fluid model of turbulent He the  sumably in the form of energy radiation by Kelvin waves, as

precise way in which the quantization effects enter the picvisualized by Viner]5]. Other likely mechanisms of dissipa-
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tion are mutual friction and the shortening of the vortexchange of the spectral form for wave numbers larger than

cores during reconnection. Needless to say, the above spelc;. The experimental resolution at present does not allow us

tral form is likely to be truncated sharply when the waveto make any statements on the form of the spectrum in this

number is of the order of the core size of quantized vorticessange. An intriguing possibility therefore remains that the

so the divergences naively suggested bykth&form are not -3 scaling holds only in the range e{«%)Y*<k

of concern. _ o o <(elv3;)Y* beyond which the the spectral density might,
Thek™ = form is not the only possibility for explaining the ¢, rea50ns explained earlier, display tke! form before

observed exponential decay in late stages. One may potefiain . trncated sharply; this form is also expected for a

tially explain it, for example, by assuming the existence of _: . . . . .
. ! 8 S ingl raight vortex line. Mor xperimen includin
big eddies(due to mean flow associated with mhomogene—S gle straight vorte € ore experiments, including

o : ; . . those at very low temperature are needed to shed more light
ities of the towed grid, el¢ which survive to this last stage L 1 . .
and decay exponentially due to finite viscosity. However,o.n th|s_|ssue. we note. thatla " spectrum is fo_unq n the
with characteristic size of the chanigk1 cm and effective simulations of{10], but in the gbsence of any dissipation.
kinematic viscosityr of order 2x 10~ * cn¥/s, one gets the In summary, based on available experimental realt
characteristic viscous decay tirB#/» of order of an hour or  ©N Hell isothermal turbulence, we have suggested a form of
so, about two orders of magnitude larger than that measured three-dimensional energy spectrum in developed ig-
experimentally. b_ule_nce. Th_e spectrum is classical fc_>r large scales. The quan-
Assuming again that during the late stages of decay th&zation of circulation leads to the existence of the character-
quantum scale is limited by the size of the chanrg, istic quantum length scale’ of order 2m(s/x®)~ . For
=2m/D, the energy content of the turbulent flow is given by wave numberk>k,=2w//, the spectrum depends also
integration of Eq(7) as on the circulation quantum and is likely to be of the form
E(k)=Cex k3. This form of the energy spectrum is con-
sistent with the experiments on temporal decay of the vortex
line density in grid generated He turbulence in the tem-
perature range 1.2 KT<2.0 K, but remains to be con-
where the temperature independent characteristic decay tinfigmed by direct measurement.
to=(C/k)(d/2m)?. ForC=1.5[14] andD=1 cm, Eq.(7)
yields 38 s forty, close to experimental value (25) s
reported in Ref.[4] for the temperature range 1.3<KT Valuable discussions with W.F. Vinen, R.J. Donnelly, C.F.
<2 KJ[15]. Barenghi, G.L. Eyink, D. Holm, and D. Kivotides, and the
In these calculations leading to the exponential decdy of financial support by NSF under Grant No. DMR-9529609,
we have neglected any possible cutoff or other possiblare gratefully acknowledged.
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[9] The equation forL(t) is of the form L+a;L*3+a,
=0, where a;=—[3C/(v¥3c¥*Z](17);a0=[al(1
+6a)][9C/vY2kY)](1/7), and the virtual  origin
time  t,o=[3C/(vX3c¥%Z3 (1LY [ al(1+6a)][9C/
(v¥2,12)1(1/L,), whereL , denotes the vortex line density at
t=0. We are interested in the real solution foithat decays
with time: L(7) =k3«/vesi(tg/7)¥?cos’d, where cos(8)=
—[9a/(1+6a)]\/tg and tg=4C/(xk3). For given a, the
time dependent term ciis a measure of the up or down
deviation from thelL o7~ %2 which is the result for classical
scaling.
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have reached the limits of sensitivity of resolution, and the
remnant vorticity may have affected the observations. D.D.
Awschalom and K.W. Schwarz, Phys. Rev. L&2, 49 (1984
quote that the remnant vortex line denslity<2 In(D/a,)/D?,
whereay=1.4x10 8 cm is the vortex core parameter. For the
geometry of Ref[4] this formula gives a remnant vorticity of
aboutLz=35 cm 2, which is of order of the lower limit of
the experimental sensitivity in Ref4]. This level of remnant
vorticity, included in the background attenuation of the second
sound, was approximately stable in the experiment, and so
should not affect measured valuesLofHowever, the possibil-

ity that the late stages of decay are in some way affected by the
remnant vorticity cannot be fully excluded.

[13] The analytical solution for decaying vortex line density for

=1/3 is of the same form as the classical solution for decaying
vorticity [see Eq(4) in Ref.[4]], obtained when the exponen-

tial tail in the classical energy spectrum is approximated by a
sharp cutoff at effectively the Kolmogorov wave number. The
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resulting solutiorL(t; @ = 1/3) [9] describes experimental data [14] K.R. Sreenivasan, Phys. Fluids 2778(1995.
on the temporal decay of the vortex line density after satura{15] The agreement is even better if one accounts for the existence

tion of the energy containing length scale[d] equally well, of the boundary layer that ought to build up even in the case of
using classical value foC and the measured valuesmfi; [8], zero mean flow grid turbulence, due to shear between the
with t,, as the only parameter. However, this form of decay  channel wall and the energy containing eddies. Full agreement
cannot occur beyontk/2, when the growing quantum scale with the experiment, assumir@= 1.5 would require introduc-

approaches the size of the channel and becomes sa_lturated by it ing the boundary layer of thickness about 0.08 cm, or about
for the rest of the decay. It is easy to show that this happens g of the channel width. Boundary layers of similar fractional

— — 2 H
when L=Lq=Vk/ver(2m/D)", which for the E]Z)eometry of thickness have been observed by us in classical towed grid
Ref. [4] corresponds roughly th, about 100 cm*, or to the experiment in water

average intervortex distance of about 1 mm.
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