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Q learning in the minority game
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~Received 24 July 2001; published 26 November 2001!

We present a numerical investigation of the minority game model, where the dynamics of the agents is
described by theQ-learning algorithm. The numerical results show that theQ-learning dynamics is suppressing
the ‘‘crowd effect,’’ which is characteristic of the minority game with standard inductive dynamics, and it
converges to a stationary state that is close to the optimal Nash equilibrium of the game.
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I. INTRODUCTION

Recently, it has been shown that the minority game~MG!
model can be successfully used to study the competitive
teraction of complex adaptive agents in a socioeconomic
vironment@1,2#.

In the MG model, a number of agents use a finite num
of strategies to react to a finite number of public inform
tions and interact through a collective variable whose va
is fixed by all of them. The agents are choosing their strat
via a simple reinforcement learning process called induc
thinking. An essential element of this model is that the age
are rewarded if they are in minority. The goal of the game
to minimize the global loss of the agents~or to maximize the
global reward!. This way, the MG model can be used
obtain some qualitative understanding of more complex s
tems like markets. For example, a higher demand on
market will tend to increase the price and the sellers~who are
the minority on the market, in this case! will be rewarded by
‘‘selling high.’’

Numerical and analytical results have shown that the M
undergoes a phase transition from an efficient phase
which the agents coordinate their actions to minimize th
loss, to an inefficient phase, where the ‘‘crowd effect’’ o
curs, leading to a higher increase of the agent’s loss@3–5#.
The best coordination among agents is achieved in the t
sition region between these two phases.

It is well known that the inductive dynamics leads to
inefficient equilibrium of the game that is far from the Na
equilibrium, i.e., the state where each agent plays the
strategy, which is minimizing the global loss and maximizi
the individual utility @4,5#. In this paper we address th
problem and present a numerical investigation, where
dynamics of the agents in the MG model is described b
more sophisticated learning rule, corresponding to
Q-learning algorithm.

II. THE MINORITY GAME MODEL

The MG model of the market consists ofN agents that can
take only two actions, such as ‘‘buy’’ and ‘‘sell’’ at each tim
stept. All agents have access to public information, which
an integer variablem(t) randomly drawn at timet in the set
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$1, . . . ,P%. Agents have at their disposalS>2 forecasting
strategies, which for each value ofm suggest which action
shall be taken. There are 2P such strategies but each age
just picks S such rules randomly at the beginning of th
game. These strategies~also called lookup tables! are de-
noted by

an,s
m 561, n51, . . . ,N, s51, . . . ,S, m51, . . . ,P.

~1!

The agents have no way of knowing what the majority w
do before taking their actions~choosing their strategies!.

The ‘‘payoff’’ ~the gain! to each agent is given by

gn~ t !52an,sn(t)
m(t) ~ t !Am(t)~ t !, n51, . . . ,N, ~2!

where

Am(t)~ t !5 (
n51

N

an,sn(t)
m(t) ~ t ! ~3!

is the global variable describing the excess demand on
market at timet.

The MG interaction is described by the logical XOR fun
tion ~Table I!. The agents from the minority@who took the
action a(t)52sgn„A(t)…] are rewarded with a gainuA(t)u,
and those from majority@who took the action a(t)
5sgn„A(t)…] are punished by a loss2uA(t)u.

In order to choose the best strategy, each agent upd
the cumulated ‘‘virtual payoff’’ for each strategy

Un,s~ t11!5Un,s~ t !2an,s
m(t)~ t !Am(t)~ t !, n51, . . . ,N,

s51, . . . ,S. ~4!

Here, ‘‘virtual payoff’’ means that this is the payoff tha
the agent would have received playing strategys.

TABLE I. The MG interaction.

sgn„a(t)… sgn„A(t)… sgn„g(t)…

- - -
- 1 1

1 - 1

1 1 -
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Inductive dynamics consists of assuming that agents
low that strategy with the current highest score~ties are bro-
ken by coin tossing!

sn~ t !5arg max
sP$1, . . . ,S%

Un,s~ t !, n51, . . . ,N. ~5!

The main quantity of interest is

s25^A2&5 lim
T→`

1

T (
t51

T

A2~ t !52 (
n51

N

^gn&, ~6!

which quantifies the fluctuations of the market and a
equals the total losses of agents. Here,Am(t)(t) only depends
on what agents do, so strictly speakingm(t) has no direct
impact on the market and one can replaceAm(t)(t) with A(t).

By symmetry we havêA&50, but it may happen that fo
a particularm, the global quantityAm(t)(t) is nonzero in
average, i.e.,̂Am(t)(t)&5” 0. As a measure of this ‘‘asymme
try’’ ~or ‘‘available information’’! one can use the quantity

H5^A2&5
1

P (
m51

P

^Am(t)~ t !&2, ~7!

such thatH50 when all averages vanish,^Am(t)(t)&50.
Using the ‘‘replica method,’’ it has been shown that, und

the above mentioned inductive dynamics,H plays the role of
a spin glass Hamiltonian@5#. Therefore, the ground stat
properties of the HamiltonianH gives all the information on
the stationary state of the system.

Numerical and analytical results have revealed the p
ence of a phase transition~Fig. 1! with symmetry breaking a

ac5ac~S!>S/220.6626̄ , ~8!

wherea5P/N is the main free parameter of the MG mod
@3–5#.

If a.ac the system is in the asymmetric phase,H.0,
and agents coordinate their actions to minimize their lo
The asymmetryH and the global losss2 decrease with de
creasinga, this means that the asymmetry in^Am(t)(t)&5” 0
is exploited by the adaptive behavior of agents who th
reduce these quantities. Ata5ac the asymmetry vanishe
and the global loss (s2) of the agents attains its minimum
For a,ac the system is in the symmetric phase,H50, and
the ‘‘crowd effect’’ occurs, leading to a higher increase of t
global loss.

Another problem of interest is the understanding un
what conditions adaptive learning can lead to a station
state where each agent plays the best strategy, which is m
mizing the global loss and maximizing the individual utilit
i.e., the Nash equilibrium of the game@5#.

For the standard MG model the stationary state is no
optimal Nash equilibrium. The asymptotic state of this d
namics is information efficient (H50), but it is not optimal
because when the number of agents exceeds a critical n
ber, the market becomes symmetric and unpredictable,
large fluctuations that leads to a higher increase of the glo
loss (s2;N) @5#.
06710
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Using the Logit model with exponential learning and a
suming that the agents account for their impact on the m
ket, it has been shown that they attain not only
information-efficient state (H50), but also an optimal Nash
equilibrium with s2<1 @5#.

Here, we investigate a different model, where the learn
rule ~4! is replaced by theQ-learning algorithm@6#.

III. Q LEARNING

Reinforcement learning~RL! is a learning technique for a
class of problems in which an autonomous agent acting
given environment improves its performance by progr
sively maximizing a function calculated just on the basis o
succession of scalar rewards and punishments received
the environment@7#. The agent rely only on a trial-and-erro
strategy and no complimentary guidance is provided
helping the exploration/exploitation of the problem space

The agent is situated in an environment that is given a
finite Markov decision process@7#. That is, at the timet the
environment is characterized by its states(t), and after each
agent’s actiona(t), the environment changes to a new sta
s(t11) and the agent is receiving a scalar rewardr (t11).

FIG. 1. Global losss2/N ~filled symbols! and available infor-
mationH/N ~open symbols! as a function ofa for S52, 3, and 4
from numerical simulations. The squares are for MG with stand
inductive dynamics, the diamonds are for the MG withQ learning.
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Also, one assumes that the action and the state sets are
The task of the agent is to learn an optimal policy.

A policy is the mappingp:state→action. An optimal
policy is characterized by a maximal total discounted rew

R5(
t51

`

g tr ~ t !, 0,g<1. ~9!

Within the framework of dynamic programing, it has be
shown that the optimal policy existsp* and can be found
iteratively @7#. If one knows the value of actions,Qp(s,a),
for the present policyp, then after taking an action with th
largestQp, one obtain a new policyp8 with Qp8 and so on.
Finally, one obtains the optimal policyp* and the corre-
sponding valuesQ* . On the other hand, if one knows a
Q* (s,a), then the optimal policy is obvious given by th
so-called ‘‘greedy rule’’

a~ t !5arg max
b

Q* „s~ t !,b…. ~10!

One of the most important breakthroughs in RL was the
velopment of an off-policy temporal-difference algorith
known asQ learning@6,7#.

The simplest form of this algorithm corresponds to t
so-called one-stepQ-learning equation

Q„s~ t !,a~ t !…←Q„s~ t !,a~ t !…1hD~ t !, ~11!

where

D~ t !5r ~ t11!1g max
b

Q„s~ t11!,b…2Q„s~ t !,a~ t !…,

~12!

andh is the learning rate.
In this case, the learned action-value functionQ directly

approximatesQ* , the optimal action-value function, inde
pendent of the policy being followed. The only requireme
is that the current policy must give a possibility to make t
estimates ofQ for all (s,a) pairs. This may be achieved b
allowing nonoptimal actions with small probabilities. Th
action with the largestQ is chosen with the probability 1
2«, and any other action is chosen with the probabil
«/(k21), wherek is the total number of actions in the sta
s ~this procedure is called«-greedy rule!.

Let us see how we can implement theQ learning in the
MG. First we observe that the strategiessP$1, . . . ,S% cor-
respond to the states of the agent. Also, in the MG contex
action means to choose a strategysP$1, . . . ,S% and each
state ~strategy! is accessible from a given state~strategy!.
With this observation we can define the action-value funct
using three indices:Qn,s,p , n51, . . . ,N, s51, . . . ,S,
p51, . . . ,S. The first index corresponds to the agent’s nu
ber (n), the other two (s,p) are showing which states~strat-
egies! are involved in the decision taken at timet. If p5s
then the agent has decided to stick with the same strat
otherwise (p5” s) the agent has decided to change t
strategy.
06710
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We would like to underline that the agents are playi
‘‘blind’’ following the ‘‘ «-greedy rule,’’ searching for their
best rewarding strategy in the long run. This means that if
agent is in the state~strategy! s then at the next step the age
will choose the strategy~state! p with the probability 12«
such that

p5arg max
q

Qn,s,q , ~13!

otherwise the agent will choose any strategyQn,s,q , qÞp,
with a probability«/(S21).

One can see that at this level, the public informationm
has no direct impact on the game and it is used only at
learning level. The update learning rule for the one-s
Q-learning equation is given by

Qn,s,p←Qn,s,p1a@2an,p
m ~ t !Am~ t !

1g max
w

Qn,p,w2Qn,s,p#, ~14!

where the rewardr has been replaced with the ‘‘payoff’’ to
each agent~2!.

The numerical simulation results are given in Fig. 1. T
best results have been obtained using the following par
eters:P5128, h51/P, andg50.5. In order to obtain good
statistical results the data have been averaged over
‘‘measurements.’’ The number of iteration steps in each m
surement wasT5105 and the«-greedy variable was de
creased as«51/t, t51, . . . ,T.

The Q-learning dynamics leads to a symmetry brok
phase for anya.0: H→0 whena→0. Also, the fluctua-
tions decrease, the system approaching a stationary s
However, forN→` (a→0) the agents are not able to di
entangle completely their actions and this stationary st
characterized by 1,s2!N, is not an optimal Nash equilib
rium ~wheres2<1) @5#.

IV. CONCLUSIONS

We have investigated numerically the role of reinforc
ment learning in the minority game problem. We have sho
that the poor performance of the agents~due to the occur-
rence of ‘‘the crowd effect’’! is almost completely sup
pressed if the standard inductive learning dynamics is
placed by a simple one-stepQ-learning algorithm. We
conclude thatQ-learning agents behave almost optimally,
the sense that forN→` (a→0) they converge to a station
ary state with a nonvanishings2/N, which is close to the
optimal Nash equilibrium.
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