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Q learning in the minority game
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We present a numerical investigation of the minority game model, where the dynamics of the agents is
described by th€-learning algorithm. The numerical results show that@iearning dynamics is suppressing
the “crowd effect,” which is characteristic of the minority game with standard inductive dynamics, and it
converges to a stationary state that is close to the optimal Nash equilibrium of the game.
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[. INTRODUCTION {1, ... ,P}. Agents have at their dispos8=2 forecasting
strategies, which for each value pf suggest which action
Recently, it has been shown that the minority gaiMé) shall be taken. There aré’ Zuch strategies but each agent
model can be successfully used to study the competitive injust picks S such rules randomly at the beginning of the
teraction of complex adaptive agents in a socioeconomic ergame. These strategidalso called lookup tablgsare de-

vironment[1,2]. noted by

In the MG model, a number of agents use a finite number
of strategies to react to a finite number of public informa- ans=*1, n=1,...N, s=1,...S u=1...P.
tions and interact through a collective variable whose value (1)

is fixed by all of them. The agents are choosing their strateg;i_h h f Kk . hat th . i
via a simple reinforcement learning process called inductive e agents have no way of knowing what the majority wi
thinking. An essential element of this model is that the agent§io befo“re tak|r,1,g their gchor(schoosmg th?'r §trateg|9és

are rewarded if they are in minority. The goal of the game is The “payoff” (the gain to each agent is given by

to minimize the global loss of the agerits to maximize the — _ou() w(t) _

global reward. This way, the MG model can be used to On(V="ans AT, n=1,...N, @
obtain some qualitative understanding of more complex sys-

tems like markets. For example, a higher demand on thgvhere

market will tend to increase the price and the sel(eiso are N
the minority on the market, in this cgseill be rewarded by AR ()= E a# NG 3
sselling high.” iy sl

Numerical and analytical results have shown that the MG ] o
undergoes a phase transition from an efficient phase, il$ the global variable describing the excess demand on the

which the agents coordinate their actions to minimize theifmarket at timet. . _
loss, to an inefficient phase, where the “crowd effect” oc- The MG interaction is described by the logical XOR func-

curs, leading to a higher increase of the agent's [@ss5].  tion (Table ). The agents from the minorityjwho took the
The best coordination among agents is achieved in the trafictiona(t) = —sgr(A(t))] are rewarded with a gaipA(t)|,
sition region between these two phases. and those from rr_lajorlty[who took the actiona(t)
It is well known that the inductive dynamics leads to an =S9r(A(t))] are punished by a loss [A(t)].
inefficient equilibrium of the game that is far from the Nash  In order to choose the best strategy, each agent updates
equilibrium, i.e., the state where each agent plays the bedf€ cumulated “virtual payoff” for each strategy
strategy, which is minimizing the global loss and maximizing
the individual utility [4,5]. In this paper we address this Ups(t+1)=U, () —atDmA*O(t), n=1,...N,
problem and present a numerical investigation, where the
dynamics of the agents in the MG model is described by a s=1,...5 (4
more sophisticated learning rule, corresponding to the

Q-learning algorithm Here, “virtual payoff” means that this is the payoff that

the agent would have received playing stratsgy

Il. THE MINORITY GAME MODEL TABLE |. The MG interaction.

The MG model of the market consistsfagents that can
take only two actions, such as “buy” and “sell” at each time
stept. All agents have access to public information, which is -
an integer variable.(t) randomly drawn at time in the set - +

+ -
+ + -

sgn(a(t)) Sgn(A(t)) sgn(g(t))

+ o+ o
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Inductive dynamics consists of assuming that agents fol- 14 4 S—2
low that strategy with the current highest scéies are bro- 12 4 - - 5
ken by coin tossing Z 1 o’/N
Toos{ 4 5 W
Sp(t)=arg max Up4t), n=1,...N. 5 Z 0.6 w000
sefl,... S Y 04 | ggggu oooIo
. L _ 0.2 o HIN
The main quantity of interest is 0 i
0.1 1 10
2 2 H 1 . 2 . «
o?=(A%)=lim = 2 A()=-2 (gn), (6
T t=1 n=1
1.4 T S=3

which quantifies the fluctuations of the market and also
equals the total losses of agents. H&&("(t) only depends
on what agents do, so strictly speakipgt) has no direct
impact on the market and one can repla¢é’(t) with A(t).

By symmetry we havéA)=0, but it may happen that for
a particularu, the global quantityA*((t) is nonzero in
average, i.e{A*(M(t))#0. As a measure of this “asymme-
try” (or “available information”) one can use the quantity

/N, HIN

1
=(A)=5 2 (A OW)? Y

such thatH =0 when all averages vanistA*()(t))=0.

Using the “replica method,” it has been shown that, under
the above mentioned inductive dynamitsplays the role of
a spin glass Hamiltoniaf5]. Therefore, the ground state
properties of the HamiltoniaH gives all the information on
the stationary state of the system.

Numerical and analytical results have revealed the pres-

mationH/N (open symbolsas a function ofx for S=2, 3, and 4

ae=a(S)=S/2—0.6626-", (8)  from numerical simulations. The squares are for MG with standard
inductive dynamics, the diamonds are for the MG wi@ilearning.
wherea=P/N is the main free parameter of the MG model
[3-5]. Using the Logit model with exponential learning and as-
If a>a, the system is in the asymmetric phase>0, suming that the agents account for their impact on the mar-
and agents coordinate their actions to minimize their lossket, it has been shown that they attain not only an
The asymmetnH and the global loss? decrease with de- information-efficient stateH =0), but also an optimal Nash
creasinge, this means that the asymmetry (A#(0(t))#0  equilibrium with o?<1 [5].
is exploited by the adaptive behavior of agents who then Here, we investigate a different model, where the learning
reduce these quantities. At=a, the asymmetry vanishes rule (4) is replaced by th&-learning algorithn{6].
and the global lossd?) of the agents attains its minimum.
For a<a, the system is in the symmetric phasts=0, and
the “crowd effect” occurs, leading to a higher increase of the
global loss. Reinforcement learnin@RL) is a learning technique for a
Another problem of interest is the understanding undeclass of problems in which an autonomous agent acting in a
what conditions adaptive learning can lead to a stationargiven environment improves its performance by progres-
state where each agent plays the best strategy, which is mirgively maximizing a function calculated just on the basis of a
mizing the global loss and maximizing the individual utility, succession of scalar rewards and punishments received from
i.e., the Nash equilibrium of the gan8]. the environmenf7]. The agent rely only on a trial-and-error
For the standard MG model the stationary state is not astrategy and no complimentary guidance is provided for
optimal Nash equilibrium. The asymptotic state of this dy-helping the exploration/exploitation of the problem space.
namics is information efficient{ =0), but it is not optimal The agent is situated in an environment that is given as a
because when the number of agents exceeds a critical nurfinite Markov decision proced¥]. That is, at the time the
ber, the market becomes symmetric and unpredictable, witenvironment is characterized by its staf¢), and after each
large fluctuations that leads to a higher increase of the globalgent’s actiora(t), the environment changes to a new state
loss (@2~N) [5]. s(t+1) and the agent is receiving a scalar rewaftH1).

o’/IN, HIN

Ill. Q LEARNING
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Also, one assumes that the action and the state sets are finite.We would like to underline that the agents are playing
The task of the agent is to learn an optimal policy. “blind” following the “ e-greedy rule,” searching for their
A policy is the mappingm:state—action. An optimal  best rewarding strategy in the long run. This means that if an
policy is characterized by a maximal total discounted rewardagent is in the statestrategy sthen at the next step the agent
will choose the strategystate p with the probability -«

” such that
R= 9'r(t), 0<y<l1.
t=1
p=arg maXQn,s,qy (13
Within the framework of dynamic programing, it has been q

shown that the optimal policy exists* and can be found

iteratively [7]. If one knows the value of action§7(s,a), otherwise the agent will choose any straté@ys ., q#p,

for the present policyr, then after taking an action with the with a probabilitye/(S—1).

largestQ™, one obtain a new policyr’ with QW/ and so on. One can see that at this level, the public informatjon
Finally, one obtains the optimal policy* and the corre- has no direct impact on the game and it is used only at the
sponding value®*. On the other hand, if one knows all learning level. The update learning rule for the one-step
Q*(s,a), then the optimal policy is obvious given by the Q-learning equation is given by

so-called “greedy rule”

ns,p n,s —ak (t)AX(t
a(t)=arg maxQ* (s(t),b). (10 Qnsp= Qnspt ol =2 p(DA(L)
° +y max Qn,p,w_ Qn,s,p]: (14)

One of the most important breakthroughs in RL was the de-
velopment of an off-policy temporal-difference algorithm \yhere the reward has been replaced with the “payoff” to

known asQ learning[6,7]. each agent?).
The simplest form of this algorithm corresponds to the  The numerical simulation results are given in Fig. 1. The
so-called one-steQ-learning equation best results have been obtained using the following param-
eters:P=128, »=1/P, andy=0.5. In order to obtain good
Q(s(t),a(t))—Q(s(t),a(t)) + 7A(1), (1) gtatistical results the data have been averaged over 200

“measurements.” The number of iteration steps in each mea-

surement wasT=10" and thee-greedy variable was de-

creased ag=1#k, t=1,...T.
A(t)=r(t+1)+ymbaxQ(s(tJr1),b)—Q(s(t),a(t)), The Q-learning dynamics leads to a symmetry broken

(12 phase for anyy>0: H—0 whena—0. Also, the fluctua-
tions decrease, the system approaching a stationary state.

and 7 is the learning rate. However, forN— oo (C!*)-O) th_e agents are not a_tble to dis-
In this case, the learned action-value functi@rdirectly entangle .completelyzthelr gctmns and .thIS stat|onary. _state,

approximatesQ*, the optimal action-value function, inde- c_haracterlzedzby{a <N, is not an optimal Nash equilib-

pendent of the policy being followed. The only requirement"ium (whereo“<1) [5].

is that the current policy must give a possibility to make the

estim_ates of fo_r all (s,a_) pairs_. This may be ac_h_i_eved by IV. CONCLUSIONS

allowing nonoptimal actions with small probabilities. The

action with the largesQ is chosen with the probability 1 We have investigated numerically the role of reinforce-

—¢g, and any other action is chosen with the probabilityment learning in the minority game problem. We have shown

el(k—1), wherek is the total number of actions in the state that the poor performance of the agefdsie to the occur-

where

s (this procedure is called-greedy rulg. rence of “the crowd effect] is almost completely sup-
Let us see how we can implement tRelearning in the pressed if the standard inductive learning dynamics is re-
MG. First we observe that the strateges{1,... S} cor- placed by a simple one-ste@-learning algorithm. We
respond to the states of the agent. Also, in the MG context agonclude thaQ-learning agents behave almost optimally, in
action means to choose a strategiy{1,...,S} and each the sense that fdl—c« (a—0) they converge to a station-

state (strategy is accessible from a given stafstrategy. ~ ary state with a nqnyanishingzl N, which is close to the
With this observation we can define the action-value functiorPptimal Nash equilibrium.

using three indices:Q,s,, N=1,... N, s=1,...S

p=1,....S. The first index corresponds to the agent's num-

ber (n), the other two §,p) are showing which statdstrat- ACKNOWLEDGMENTS
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