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Renormalization group analysis of autoregressive processes and fractional noise
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Arenormalization group analysis is applied to autoregressive processes with an infinite series of coefficients.
A simple fixed point is given by a random walk, and a second class is found that is proportional to the high
order coefficients of fractional autoregressive integrated moving avéfR¥IA ) processes. The approach
might be useful to detect nonstationarity in autoregressive processes.
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The renormalization groufRG) approach has been suc- ing the ARs forx; and x;_;. Terms involving differences
cessfully applied to determine large scale and long timawithin the blocks, e.g.x;_»—X;_3, are neglected since they
properties of a large number of different physical systemsepresent high frequency variability. The intensities at even
with given microscopic dynamicgl]. A very illuminating  and odd time steps on the right-hand sfdes) of Eq. (1) are
approach dates back to Kadang#i, who invented the deci- eliminated by approximating, and x,_; with x;/\/i. The
mation of degrees of freedom associated with an iterativelynamics for the combined process becomes
mapping to an effective moddkee [3,4] for examples
Since the dynamics of natural systems is often either too , a1 - ,
complex or not known, these are frequently described using XF?Xﬁ > m§=:1 (Agm-1t28m*asm+1)X;—m
autoregressivéAR) models to provide analyses, simulations,
and forecastf5]. To incorporate long time memory, Hosking 1
extended AR processes to fractional ARRAR) models +—=(€p, T €2,_1). (2
[equivalently, autoregressive integrated moving average pro- V2
cesses ARIMA (@,0)], or the so-called fractional noise
[6—8]. For FAR models, the infinite series of regression co-
efficients is determined by a single fractal dimensihrand

the power spectrum is self-similar for small frequenues,Accordingly, the time step width is enhancedA6=2A at

— _2d - . . . .
S(f). =% In this publlcatpn, a _stgnpiard RG analysis is each RG step. Thus, the dynamical equation for the renor-
applied to an AR process with an infinite number of regres-

sion coefficients. A simple fixed point is given by the randommahzed process; can be written as an AR process

walk, and a second class is proportional to Hosking’s FAR o

process for high order coefficients. The RG might be useful X\ =, ax{_,+e 3

to detect nonstationarity of AR processes. n=1
The autoregressive process AR (for the observable; at

discrete timet and for a time interval\ is

The first term on the rhérom the dynamics ok;) leads to a
nonlinearity in the RG scheme. In the second RG step, the
blocks are identified with the original time—t andm—n.

with the renormalized regression coefficients

1
P a,= (agn-1t+2az,tazns1) (4)

2_ al
Xy = Z apXt—nt € (1) _ _
n=1 and the renormalized noise

where €, is uncorrelated white noise and the,, n L

=1,...p, are the regression coefficients; in the RGis € _—2—a1(627+ €2:-1)- 5
infinite. To determine the long term behavior a renormaliza- .

tion group analysis is constructed which includes these maifhe variancee? of the noise increases by the factor 4/(2
steps.(i) Nonoverlapping adjacent pairs of time steps are_ a;)? at each RG stepwith the actuak,). The singularity
combined to blocks(ii) The dynamics of these blocks is 4 a,=2 originates in the block size of two time steps and
transformed to an AR proces@ii) Subsequent iterations of he particular design of the RG. The denominaterd, in
this procedure yield fixed points which are identified with the Egs.(4) and (5) is essential for the behavior of the RG map.

long term behavior. . _ For a finite numbep of regression coefficients, each renor-
~ In the first RG §tep,lthe process at two neighboring  majization step reducgsby a factor of two(approximately.
time steps is combined, = (x;+x;1)/\/2, wheret=217 is As a first application let us consider the relation between

an even time step ang2 is chosen to preserve the variance. stationarity of the AR process and the RG mapping. A sto-
The AR process fok_. within the blockr is written by add-  chastic process is called stationary if the mean and the vari-
ance are time independent, and the correlation depends only
on the lag.(More stringent definitions demand that the dis-
*FAX: 49.40.42838.5066. Email address: blender@dkrz.de tribution is time invariany. Stationarity of the AR processg
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requires that all rootg; of the characteristic polynomial
¢(2)=1-2[_,a,z" are outside the unit circlez;|>1 [9],
which might be complicated in general. Stationarity for
=1 is given if|a;|<1. Forp=2 the two coefficients have to
be within the trianglea,—a;<1, a;+a,<1, and|a,|<1.
The renormalized process of an &R process is ARL) with
a single coefficient given by;=(a;+2a,)/(2—a,;) ac-
cording to Eq.(4). The stationarity condition for the initial
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AR(2) process leads ttaj|<1, i.e., the renormalized pro- 03|

cess(4) is also stationary. For a stationary 3% process one i

can show that after two RG steps;|<1 (all other coeffi- [

cients vanish Therefore, we assume, although there is no 0.2 i . . "10 ” '50'
general proof at the moment, that the RG preserves station- n

arity also for higher orderp. A violation of the stationarity

condition after renormalization might give a hint of nonsta-
tionarity in the initial AR process. This approach is ex-
e

tremely simple, since a sufficient number of iterations of th

FIG. 1. Coefficientsa, multiplied by n**™¢ for the initial FAR
procesgsolid) and up to 10 RG stegslashed, step 10 with circles
The inset shows the convergenceagffor these 10 RG steps.

renormalization reduces the number of coefficients to a

single final coefficient.

analysis shows that the FAR coefficients with dimensibn

A central issue in a RG analysis is the identification ofconverge to a fixed series that dependscriThe higher
fixed pointsa;, of Eq. (4) since these represent the long term Order coefficients are pf?Pg’”'O”a' to the initial FAR coeffi-
behavior of the system. The sum of the fixed point regressiofi€nts and reach,~An"""*. Thus Eq.(4) leads to

coefficientsa’, is unity, =,_,a"=1, provided that the sum is
finite anda;#0. A first type of fixed point is obtained for a
single nonvanishing coefficier#t; #0 that obeys the itera-
tiona;j=a;/(2—a,) as given by Eq(4). Note that this map
becomes simplyw’ =2a—1 for the inversea=1/a,. The
unstable fixed poing}=1 represents a random walk. The
second, trivial fixed poin}=0 is attractive due to the re-
duction of memory by the RG.

A more complex set of fixed points with infinitely nonva-

nishing parameters is reached by starting from fractional

1
2—-a]

4a3,, n—oo, (8)

which requiresa}=2(1—2"%). Furthermore, the numerical
result hints thatA=d(1—d). As an example, this larga
approximation fora; andd=1/2 deviates from the numeri-
cal result by less than 4%.

The RG iterations of the initial FAR coefficients, for

noise (FAR processes FAR processes are defined to modeld=1/2 are shown in Fig. 1 up t8=10 RG stepsmultiplied

long time memory with a single parameter, the dimenslpn

which leads to an infinite series of AR coefficients. The dy-

namics is defined d¥]

(1-B)%,= € (6)
with the backshift operatoB, Bx,=X;_1. This can be iden-
tified as an AR process with coefficients

I'(n—d)
= T T (—d)(n+1) ™
Noninteger dimensionsl lead to fractional processes. The
coefficients obey the recursion,,;=(n—d)a,/(n+1),
starting froma,;=d. For largen, a,~—n"1"9T(—d). For
small dimensiord— 0 and largen, the FAR process coeffi-
cients area,~d/n. The FAR procesq7) has long time
memory with a power spectrur®(f)~f 2 for f—0. The
FAR process is stationary fgd|<1/2 and 1f noise is ob-
tained ford=1/2.

A main result of the present study pertains to the behavior

of FAR processes subjected to the RG proceddye For

small dimension, the FAR coefficients remain fixed in the

RG, a;,~d/n (n—). For finite dimension, a closed expres-
sion for the remaining;; could not be derived. Numerical

by n**9). To illustrate the rate of convergence, the inset
shows the iterations foa;. The power spectrum i§(f)

= €?/|1— = a,exp (2minAf)[?, wheref is defined up to the
Nyquist frequencyf.=1/2A, with the renormalized time

stepA and the renormalized noise variane® both at the
actual RG step. Figure 2 shov&f) for the original FAR
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FIG. 2. Power spectr&(f) for the initial FAR coefficients
(solid) and the RG result after 10 steps ); the frequencyf is in
units of the inverse initial time stej.
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process and for the renormalized process afterlO RG  solution of the fixed point equation has yet to be found. A
steps. The small frequency part remains fixed. further question is the relation between the stationarity prop-
In conclusion, the RG procedure proposed here yields arties of an AR process and the renormalized process. The
method to determine the long time behavior of AR processegesult for low order processes up to /3R indicates that a
The fixed points of the RG depend on the initial AR coeffi- violation of nonstationarity after renormalization is a hint of
cients. A finite set is given by the random walk and an infi-nonstationarity of the original process. Since the RG reduces
nite series of fixed coefficients is proportional to fractionalthe number of coefficients, this is a possible application of
AR processes for high coefficients. The power spectrunthe approach.
shows that the RG conserves the self-similar small frequency
properties of the FAR process. Other classes of fixed points The author acknowledges discussions with Professor K.
are possible but could not be determined since the gener&raedrich, Dr. F. Lunkeit, and Dr. U. Luksch.
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