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Fourier acceleration of Langevin molecular dynamics
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Fourier acceleration has been successfully applied to the simulation of lattice field theories for more than a
decade. In this paper, we extend the method to the dynamics of discrete particles moving in a continuum.
Although our method is based on a mapping of the particles’ dynamics to a regular grid so that discrete Fourier
transforms may be taken, it should be emphasized that the introduction of the grid is a purely algorithmic
device and that no smoothing, coarse-graining, or mean-field approximations are made. The method thus can
be applied to the equations of motion of molecular dynar(li¢®) or its Langevin or Brownian variants. For
example, in Langevin MD simulations our acceleration technique permits a straightforward spectral decom-
position of forces so that the long-wavelength modes are integrated with a longer time step, thereby reducing
the time required to reach equilibrium or to decorrelate the system in equilibrium. Speedup factors of up to 30
are observed relative to pufenaccelerated_angevin MD. As with acceleration of critical lattice models, even
further gains relative to the unaccelerated method are expected for larger systems. Preliminary results for
Fourier-accelerated molecular dynamics are presented in order to illustrate the basic concepts. Possible exten-
sions of the method and further lines of research are discussed.
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[. INTRODUCTION method should apply in the molecul@r particulate frame-
work. Indeed, making this connection between the molecular
Molecular dynamic§MD) simulations play an important and continuum scales is a central goal for multiscale model-

role in our fundamental understanding of the kinetics of mo-ng Projects. In this paper we show how one such continuum

lecular systems and provide a powerful tool for modeling al00l: namely, Fourier acceleration, can be applied to Lange-

wide variety of materials including biomolecules. Although vin MD without introducing any coarse-graining or mean-

MD simulai h benefited t dously f d field approximations. The basic ingredient of the method is
ML simufations have benetited tremendously from advancey,, o, 5 mapping of the original particulate system onto a
in high-performance computing, they suffer from the limita-

. ising f h ical stiff h ) regular lattice of displacement fields. Although this mapping
tion arising from the numerical stifiness inherent in New- oy nrove useful in a broader context, we restrict our atten-

ton’s equations. The result is that MD studies are generallyioy 1o Fourier acceleratiofFA) of the Langevin equations
restricted to short intervals of real time, from nanosecondsy, MD.
up to a few microseconds, even with heroic computational The idea of introducing a regular grid into MD is not new;
efforts. To overcome this difficulty, there is a growing effort grid-based recursive multipole expansi¢as], for example,
to develop accelerated MD algorithmiSee, for example, have been used for more than a decade to rapidly compute
[1-6].) Coulomb interactions. More recently, hybrid atomistic-
In contrast to moleculafor other discrete particlesys-  continuum techniques, such as the quasicontinuum method
tems with a Lagrangian data representation, there is a comi12], use finite-element techniques to bridge microscopic and
siderable variety of acceleration algorithms available formacroscopic length scales. Most applications of spectral
continuum field theories approximated on a regular grid omethods to molecular systems, however, have been confined
lattice. For example, grid-based simulations have made sulte the analysis of datéfor example, structure and response
stantial progress with the advent of cluster Monte Carlofunctions.
methods[7,8], Fourier acceleratiof9], and multigrid itera- By contrast, our procedure uses spectral analysis to
tive solvers 10]. Because the bulk properties of large aggre-modify and accelerate the dynamical evolution of the mo-
gates of molecules can often be described by continuum meecular system. Unigue to this approach is the mapping of the
chanics, it is intuitively appealing that a correspondingactual position coordinates to a grid and the ability to invert
the mapping to displace the original off-lattice molecular co-
ordinates. The introduction of the grid is a purely algorithmic

*Email address: fla@lanl.gov device and is not tantamount to a coarse-graining or mean-
"Email address: bruceb@bu.edu field approximation of any kind; that is, the accelerated dy-
*Email address: brower@bucrf20.bu.edu namics is still that of discrete particles. The result is an ac-
TEmail address: srk@engc.bu.edu celerated, stochastic dynamics that is significantly faster than
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standard Langevin MD, but still exactly preserves the equi-
librium distribution. The fundamental trade-off associated
with this approach is that of speed versus faithfulness to thd o
essential kinetics. Both of these desiderata are clearly sp
cific to the system being studied and the phenomena that th
model should faithfully represent. We stress the conceptual
differences between this approach and that of FA applied in
path integral molecular dynamid®IMD) [13-15. In the

[ d o|o

PIMD approach the FA is carried out in the frequency and aam o1 4 = ) & o
time discretization of the path integral not in physical and =4 OO =8 oP_| o i L P —3?
momemtum space. o - BB

The organization of this paper is as follows. Section I o a F 4—< O T( b | g
describes our procedure for mapping the particulate systenfo—=4Q = ¥ A o °e]
onto a regular lattice. This mapping is a prerequisite to the o —8 1 o © = o 5 o
application of a Fourier-mode decomposition. In Sec. Il we q IU4° lo F ol P | 4 1o
outline the Fourier-accelerated Langevin dynamics on the = 2 _7‘ : iy p—t Qlo OU
grid. We demonstrate the method in Sec. IV by applying it to|__| — o — ;'CD_‘)_C N Ol o
a ¢* model at its critical point. We then describe how to | o =2 © o1 T o ©
apply Fourier acceleration in conjunction with the lattice o 94 st Nl o IS 5
mapping in Sec. V. As an example, in Sec. VI, we apply the S 14 1% [ b [0 N ofo ]
method to the Langevin dynamics of a simple Lennard-Jone{ Ol o g @ 9 9 e

fluid. Extensions of the Fourier-accelerated molecular dy-
namics(FAMD) method and additional applications are dis- FIG. 1. Grid mapping for a two-dimensional Lennard-Jones
cussed in Sec. VII. fluid by recursive coordinate bisection.

merical analysts for load-balancing graphs on multiprocessor

architectures, known agecursive coordinate bisection
There are many ways by which a molecular system can béRCB) [17]. (See Fig. 1 To see how this algorithm works,

transformed from(off-lattice) particle coordinates to a fidu- consider a two-dimensiona2D) square domain containing

cial grid. Each has its advantages and disadvantages, depeid=L? particles, wheré- is a power of 2. We first introduce

ing upon the aim of the transformation. In this section wea two-index labei= (i ,i,) for the particles, where

discuss one method that has proved to be particularly useful.

Il. PARTICLE-TO-GRID MAPPING PROCEDURE

This is by no means necessarily the optimal mapping ix(i)=i modL, 2.2
scheme. Others may be superior in terms of performance o o
(e.g.,[16)) |y(|):(|_|x)/|—v (2.3

In one dimension, the simplest mapping procedure is to
sort the particles by their position coordinate. Each particle so that
is given a permuted labeh(i) so thatn(i)<n(j) if x; N -
<X;. Whereas the andj indices are arbitrary labels, devoid W)=ty =1L 24
of physical significance, the permuted labels are based on thgys the transformation from one-index labiels two-index
sequence of particle positions and hence may be thought @ipels; is a bijection. We can label the particles’ coordinates
as lying on a gnd vynh some physical meaning. Becem(si)a asx;=(x;,y;) or, equivalently, as;=(x;,y;)= (X Yi)-
is a permutation, it has inverse functiofn) such thain(i  As with thei labels for the one-dimensional case, these la-

(+))=-. We now transform to new coordinates by the pre-pels (hoth i and i) are assigned arbitrarily and devoid of
scription X,=X;(n) . This mapping makes it possible to di- physical content.

rectly Fourier transform the new position coordinates, Whereas it is difficult to see how to order the one-index
labelsi, the RCB method provides a straightforward pre-

';(k:E 2 X_elkn. (2.1) scription for permuting the two-index labdl$nto a new set
LS " of two-index labelsn(i) that are based on the particles’ po-

sitions. Again, this function is a permutation, so it has an
Note that this new spatial representation contains preciseliyversei(n), such thain(i(-))=-. The n’s may reasonably
the same amount of information as the original data. Alsde taken to lie on a regular two-dimensional grid, and hence
note that because this mapping is merely a geometricallprovide a set of independent variables with respect to which
motivated relabeling, all attributes, such as mags are  the new coordinateX =X = XiG(n)) can be Fourier trans-
automatically transfered to the new representation. formed, just as in the one-dimensional example.

The multidimensional generalization of this method is not To accomplish this, the physical domain is first divided
so straightforward. The problem of sorting the particles ininto left- and right-hand portions with equal numbel¢/Z)
more than one dimension is not well defined. There is, howof particles, by sorting the particles on theircoordinates.
ever, a very good and efficient approximation used by nuThe half with smallerx coordinates will have ¥ n,< L/2
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and the half with largex coordinates will haveL/2<n,  which is diagonal in Fourier space. This choice leads to ac-
< L. In binary notation, this labeling sets the most signifi- celeration if the time steps for the sloflow-wave-number
cant bit of then, index to zero or one for the left or right half modes are amplified:

respectively. Next, we sort each sethf2 particles by their

y coordinates to obtain four sets bf/4 particles, likewise e S 5
setting the most significant bit in the,. This procedure is dx(t+AY) =y (1) +F K(k)f( T )(At)

then applied recursively to each of the four boxes viitid X

particles, maintaining the alternation between thandy \/~—

axes. For systems of relatively uniform density, the resulting +VK(k) mAt), 3.9

fiducial grid leads to a remarkably regular and local particle-
labeling scheme. RCB is an ord& InN algorithm with

. ST . where F represents a Fourier transform. A simple substitu-
many obvious similarities to fast Fourier transforms.

tion of the field ¢, with the position of a particle; would
allow us to use Fourier methods. The mappings of Sec. Il

Ill. FOURIER-ACCELERATED LANGEVIN DYNAMICS provide that substitution.
To demonstrate how Fourier acceleration works, we con-
sider in detail a simplédiscrete-timg Langevin dynamics. IV. ¢* MODEL
The Langevin equation of motion for a systemNoparticles

To illustrate the above procedure we apply the FA tech-
nique to theg* model at the critical point in two dimensions.
fi(t) It has been shown by Batrouet al.[9] that critical slowing
Xi(t+At)=x;(t)+ =— (At)?+p;(1)At, (3.)  down is completely eliminated by FA in a purely Gaussian
2m; .
model. Of course, in that case, the modes completely de-

IS

where the N momenta are Gaussian random variablesCOUple in momentum space and each can be integrated inde-

(pi(t)pj(t’)>=%kBTmi 8,601 Itis well known that this pendently. For a nonlinear model with mode coupling, it is

dynamics(in the limit of vanishing time st@psamples the not gua;]ar:ttehed th?t F'IA‘ V;']'".WOH; ?r: all. Itis alsto_ nothclﬁrb
canonical-ensemble Boltzmann-Gibbs equilibrium distripy-Pror what the optimal choicé or theé mass matrix snouid be
tion function that will most rapidly drive the system to equilibrium or

decorrelate the system once in equilibrium.
1 D Pi To gain _experien_ce in selecting the mass matrix for
P(x;,p;)= zexp{—,@(ﬁnLV(xi)”, (3.2 FAMD, we first studied a simpler system, namely, thé
' model in two dimensions at criticality. This model provides a
where 8=1/kgT and the force idf; = — aV/dx. . q_ualitatjve(and in some cases qpantita}lj\c@ascription of a .
For the moment, we set this result aside and Consideglspla_cwe phase transition. The |nvest|gat|or_1 pf such transi-
tions is one of our long-term goals. Surprisingly, the FA

lattice field problems for which Batrouret al. [9] have . : . o .

s method applied to this system at its critical point has not
shown how to accelerate the approach to equilibrium in Fou; . .
! ! . ; been analyzed. However, Batrouni and Svetitsky have stud-
rier space. For example, consider fieldg(t) on a uniform

R ' S AR ied its application to first-order phase transitions inpé
grid with sitesx, obeying the equilibrium distribution model and found a significant speedup of tunneling between

1 minima[18].
P(¢,)= ze*wa), (3.3 The Hamiltonian is given by19-21]

with actionS. This distribution is a fixed point of the discrete
Langevin dynamicgasAt—0),

IS( )
3, (At)2+ g ()AL, (3.9 2

where 7,(t) are Gaussian random fields. This Markov pro-

. i . where
cess, however, is not the only one which drives the system to
the equilibrium in Eq.(3.3). Indeed, the local dynamics of _
Eq. (3.4) generally exhibits long autocorrelation times near 0=2d- 6. (4.2)
critical points. Batroungt al. [9] have shown how to accel-
erate such grid-based Langevin equations using a Fouriéthis system exhibits critical behavior along a line of critical
decomposition of the dynamics. The FA method depends oparametersy and 6. We simulated the system at the critical
the simple observation thany mobility (or inverse mass point, y=1.0,=1.265, which was numerically determined
matrix may be introduced by the substitutioks->K, , and  previously by Tora[22].
(mx(t) mye(t))=Kyx 6(t',1) 1, without upsetting the equilib- We updated this system using the Fourier-accelerated
rium distribution of the fields. One such choice is a makltix Langevin equation described abo\&3], namely,

N P y 1 d
BH([$])=2, {—§¢$+Z¢f‘+§ 2 (d —¢i>2}
=1 n=1 s

b , X . 1§
5 +Z¢i_§#:1 ¢idi, | (4.1

du(t+ A=y (1) =K

Il
M =z
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' TABLE |. Mean energies and errors for each system size and

«  x FFTzo029 update method. Errors are standard deviations from ten blocked
10'L |[© O Langevin: z=1.89 ° ] averages.
System Heat bath Langevin FA
size Value Error  Value  Error Value Error
0% E L=2 0.481 *+0.016 0.496 +=0.061 0.473 =0.043
e L=4 3.174 +0.041 3.180 =0.40 3.291 +0.30
i L=8 1454 +0.16 14.65 =*0.98 14.87 =*0.52
$ ¥ % ¥ L=16 61.16 *+0.48 62.58 *+1.6
0% E L=32 2515 =16 260.6 *3.6

simulations. The results are shown in Fig. 2. The normalized
correlation functionsC(t)=(E(0Q)E(t))/{E(0)E(0)) were
10 102 computed from the time series of the energy density. Corre-
lation timesr for eachL were computed by fitting the region
FIG. 2. Finite-size scaling of the correlation timewith the  0.3<C(t)=<0.6 to exp(t/7). Error bars were estimated from
linear dimensiorL for Langevin and FA Langevin simulations of the standard deviation of the valuesmofmeasured from five
¢* theory; 7 is in units ofAt. independent time series per system. Average energies and
standard deviations of ten blocked averages were measured
oH for each system size and update algorithm. These results are
i(t+AL)= ¢i(t)+f_l[K(k)f( - %> listed in Table .
In Fig. 2 we compare the autocorrelation times for the
~ pure Langevin update with those for the Fourier-Langevin
+ VkgTK(K) ”(k)}’ (4.3 case. There is clearly an acceleration. Whether the dynamical
exponentz, which describes the growth of autocorrelation

where 7(k) represents the Fourier-transformed Gaussiaimes by the scaling relation=L" is actually different for
noise with(7)=0 and(7?)=1, andK(k) represents the Langevin and Fourier acceleration is an interesting and open
mass matrix which gives us the desired acceleration. W&Uestion, and would require more extensive computation

chose the mass matrix to be the lattice propagator of the frei@n we have done to date. For practical simulations of sys-
theory, tems far from criticality, the value afis often not as impor-

tant as the overall amplitude of the autocorrelation time.

4d+ m?
439 _sirf(k,/2) +m?

K(k)= (At)?, (4.9

V. FOURIER-ACCELERATED MOLECULAR DYNAMICS

To apply these techniques to discrete particles with a La-
grangian data representation, we must introduce a Fourier
transform of the position coordinategt). Clearly we can-

where the parameten is expected to be of order&br 11
for finite-size scalind9]. The value of this parameter was
adjusted during trial simulations by settimg=c/L for dif- not simply transform the; with respect to the particle labels
ferent values of the constant We report the results foc . . .

i=1,2,...N.As mentioned in Sec. Il, these labels are gen-

:4‘/2' As a Ch(?Ck' we repeated the S|m_ulat|ons WIthOUteraIIy devoid of physical meaning. They have no natural re-
Fourier acceleration using the pure Langevin update,

lationship to the properties of the particles or to their spatial
At? and/or temporal configuration. Hence, the first step is to map
Gi(t+A)=¢i()+ —-T(d)+ VkaT7, (49 the particles onto a uniform spatial grid.

The mapping scheme discussed in Sec. Il suggests how to
wherey is a zero-mean unit-variance Gaussian random varidefine appropriate grid coordinates. In the index method, the
able and the force terfy ¢) is mappingx;— X, is simply a relabling of the coordinatd§.o

N 2d be more explicit this notation for a 2D system is expanded
f(d)=— ﬁ __ 2 79¢i —X¢i3— 2 b |. (48 into components: x;}=(x;,y;) and X,= (an,ny’Ynx,ny)'
o¢ i=1 uw=1 wheren=(n,,ny) is a two-component integer vectpCon-

) . , sequently the Langevin dynamics is unaffected,
Simulations were conducted far< L system sizes where

L=2, 4, 8, 16, 32, 64 using the FA Langevin update and for fr(t)
L=2, 4, 8, 16 for the pure Langevin case. A time step of Xn(tHAD=Xp(O)+ 5
At=0.05 was used. Note that our time step corresponds to '
Je in Ref.[9] and thus should give very little discretization where we have introduced the normalized independent
error. We ran each system for a time that is approximate\Gaussian noise with variangepn)=1. Because we have

1000 times longer the correlation time estimated from trialestablished a two-dimensional grid, we may now try to ac-

A2+ kg Ty,(H)AL, (5.2)
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TABLE Il. Correlation times in(integration time step<or dif- TABLE lIl. Correlation times in(integration time stepor dif-
ferent wavelengths fo =16 particles. ferent wavelengths foN =64 particles.
Wave number FAMD Langevin Wave number FAMD Langevin
Value Error Value Error Value Error Value Error
n=1 12000 +3000 80000  *=12000 n=1 40000 *=13000 1200000 =130000
n=2 3300 +500 22000 +4000 n=2 15000  *=2000 310000  *=60000
n=4 1100 +130 8600 +600 n=4 4200 +700 40000 +4000

celerate the dynamics simply by going to Fourier space agherek=2#n/L, andL is the linear dimension of the sys-
described above for a generic lattice field theory. The fieldgem.
are now the position vectors of each particle. As we will | Taples Il and 11, we show the autocorrelation times for
demonstrate numerically in Sec. VI, this grid is indeed useful,arious modes in both Langevin and FAMD simulations. As
for a two-dimensional Lennard-Jones fluid. seen from the tables, the FAMD dynamics is clearly more
efficient at decorrelating long-wavelength modes. A precise
VI. TWO-DIMENSIONAL LENNARD-JONES FLUID measure of the gain over standard Langevin MD was not
possible, because standard Langevin MD has a very long
correlation time. We therefore do not know exactly how
much faster FAMD is. Moreover, whether or not there is
simply a decrease in the amplitude of decorrelation time or
An actual decrease in its algebraic form is not known. As
with the precise determination affor the ¢*-model simu-
lation, that will require considerably more computational ef-
12 gf fort which we postpone to future work.
Vig(r)=4e 12 6 (6.2) Finally, we limited our investigation to a maximum of
only 64 particles to allow us to equilibrate the system at its
In our simulations we chose=o=1, a potential cutoff at cfitical point using Langevin dynamics. We expect that gains
2.5, and worked at the liquid-vapor critical point, with tem- OVer standard Langevm_MD will be ever more significant as
perature and density parametdis T.=0.47 andp.=0.35, thglnumbt_—:tr of particles increases, both at and away from the
respectively. Both pure Langevin MD and FAMD were Cfitical point.
tested forN=16 and 64 particles with periodic boundary
conditions. Each system was evolved on the order df 10
integration steps witiAt=0.005. This time step allowed us
to accurately determine the critical thermodynamic quanti- We have described a Fourier-based Langevin scheme, ca-
ties. The acceleration kernel we used in FAMD was identicapable of accelerating the dynamics of particulate systems

Motivated by the successful application of Fourier accel-
eration to decorrelate latticé* systems, we have tested its
ability to reduce the autocorrelation time of a system of
Lennard-Jones atoms in two dimensions using the inde
method.

The Lennard-Jones interaction potential is given by

VIl. DISCUSSION

in form to the one we applied to thé* model, namely, with a Lagrangian data representation. We have demon-
4d+1/N strated that there is great potential in speeding up the dynam-

e(k)= I (At)2, (6.2 ics of long-wavelength modes. One issue related to the ac-

437, _sir(k,/2)+ 1N celerated dynamics that will be addressed in future research

. ) . . is the following. Does this method offer even more of a gain
whereN is now the number of particles in the system. This\yhen it is applied to molecular systems with nonconserved
should be compared to E¢4.4). order parameteréfor example, dipolar systems or systems

We allowed the system to evolve for l@teps before ith structural phase transitiorisWe believe that our pre-
statistics were taken. To compare the effectiveness of thgminary computational investigations of Fourier methods

Fourier acceleration, we examined the autocorrelation ofave shown great promise, and we intend to explore this and
various long-wavelength modes of the system. In particulargther questions in detail in future work.

we looked at the circularly averaged time autocorrelation of
the cosine-transformed density. Inspatial dimensions, we
write dk=kP ~1dkdQ, wherek=|k| anddQ is the direction ACKNOWLEDGMENTS
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