
PHYSICAL REVIEW E, VOLUME 64, 066703
Fully compact higher-order computation of steady-state natural convection in a square cavity
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The flow in a thermally driven square cavity with adiabatic top and bottom walls and differentially heated
vertical walls for a wide range of Rayleigh numbers (103<Ra<107) has been computed with a fourth-order
accurate higher-order compact scheme, which was used earlier only for the stream-function vorticity~c-v!
form of the two-dimensional steady-state Navier-Stokes equations. The boundary conditions used are also
compact and of identical accuracy. In particular, a compact fourth-order accurate Neumann boundary condition
has been developed for temperature at the adiabatic walls. The treatment of the derivative source term is also
compact and has been done in such a way as to give fourth-order accuracy and easy assimilation with the
solution procedure. As the discretization for thec-v formulation, boundary conditions, and source term treat-
ment are all fourth-order accurate, highly accurate solutions are obtained on relatively coarser grids. Unlike
other compact solution procedure in literature for this physical configuration, the present method is fully
compact and fully higher-order accurate. Also, use of conjugate gradient and hybrid biconjugate gradient
stabilized algorithms to solve the symmetric and nonsymmetric algebraic systems at every outer iteration,
ensures good convergence behavior of the method even at higher Rayleigh numbers.
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I. INTRODUCTION

The problem of a buoyancy driven square cavity w
adiabatic top and bottom walls and differentially heated v
tical walls has been the topic of extensive study in the p
few decades. Along with the lid-driven cavity problem, it h
become one of the most popular means for testing and v
dating numerical algorithms and computer codes. Some
sons for this are:~i! its simple geometry with no singularitie
throughout the cavity except at the corners and~ii ! the avail-
ability of experimental and numerical data on this proble
The problem is also attractive because of its relevance
varied applications such as nuclear reactor insulation, ve
lation of rooms, solar energy collection, crystal growth
liquids, pneumatic transport, etc. This work is concern
with the higher-order compact~HOC! computation of the
problem.

The second-order~spatially! accurate schemes, particu
larly the central difference ones have been used in a la
number of computational fluid dynamics~CFD! problems
because of their straightforwardness in application. In ke
ing with this trend, in most of the previous attempts to tac
this problem, the schemes were at most second-order a
rate in space. A time marching approach was used in
majority of the cases@1,2# to reach the steady-state solutio
A second-order alternating direction implicit~ADI ! scheme
was used by Wilkes and Churchill@3# to produce results up
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to a Grashof number of 105; De Vahl Davis@4# presented the
benchmark solutions for this problem for Ra5103 to 106

through a second-order finite difference scheme and Rich
son extrapolation; Chenoweth and Paolucci@5# used a for-
ward time centered space~FTCS! explicit predictor corrector
method; Hortman, Peric, and Scheure@6# used a finite vol-
ume multigrid method; and Ramaswamy, Jue, and Akin@7#
used a second-order finite element method. The regime
high Rayleigh number was considered by Le Que´ré @8# using
a second-order Chebychev polynomial approach and Jan

rt-
,

m FIG. 1. A schematic view of the differentially heated squa
cavity.
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TABLE I. Effect of grid size on the results for Ra5103.

Grid size ucmidu
umax

~y!
vmax

~x! Nu Nu1/2 Nu0

Nu0 max

~y!
Nu0 min

~y!
CPU time

~sec!

21321 1.178 3.647
~0.800!

3.675
~0.200!

1.116 1.120 1.115 1.494
~0.100!

0.697
~1.000!

5.66

41341 1.176 3.642
~0.800!

3.699
~0.175!

1.117 1.118 1.117 1.503
~0.100!

0.693
~1.000!

30.75

81381 1.175 3.650
~0.813!

3.697
~0.175!

1.118 1.118 1.118 1.505
~0.088!

0.692
~1.000!
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and Henkes@9# with a finite volume discretization with
fourth-order central interpolation scheme for the convect
derivatives. Recently Tagawa and Ozoe@10# carried out nu-
merical calculations with different schemes including t
Utopia and Kawamura-Kawahara scheme for low Pran
number regime. A new pseudo-vorticity-velocity formulatio
and a stream function-vorticity method have been propo
by Ho and Lin@11# and Comini, Cortella, and Manzan@12#,
respectively. In perhaps the only previous example@13#
where an HOC method was used for the problem, comp
tions were carried out up to a Rayleigh number of 105. The
work usedO(h4) discretization of the governing equation
but the boundary treatment was not compact and the de
tive source term treatment was not higher-order accur
The present work computes the laminar solution of the pr
lem starting with a moderate value of Ra5103 and going up
to a value as high as 107 ~with Boussinesq approximation
the flow becomes unstable at an Ra very close to 23108

@5,8#! with a fourth-order accurate HOC scheme origina
proposed by Spotz and Carey@14# for the c-v form of the
two-dimensional ~2D! steady-state Navier-Stokes~N-S!
equations. The temperature gradient source term in the
ticity equation is also discretized using aO(h4) compact
scheme and smoothly integrated to the solution proced
This strategy seems to have the potential of being usef
employed in similar situations, especially, to the press
gradient term in the extension of HOC to the primitive va
able formulation of the N-S equations. Also, the bound
conditions for vorticity and temperature are compact a
O(h4). In particular, a compact temperature Neuma
boundary condition has been developed adopting the foll
ing approach. Because of compactness and higher-orde
curacy, this treatment may be taken as the model for sim
computations. Thus, unlike the previous attempts, the pre
06670
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method is fully compact and fully higher-order accurate w
associated advantages. Another attractive feature of the c
putation is the use of conjugate gradient~CG! @15# and hy-
brid biconjugate gradient stabilized~BiCGStab! @16# algo-
rithms for solving the linear algebraic equations and t
improves the convergence behavior of the algorithm. As
pected, the results are very accurate and even coarse
results compare very well with previous computations. Ov
all, besides opening up new possibilities, the method may
considered an efficient one for computation of flow for th
physical configuration.

This paper has been arranged in five sections: Sectio
deals with the problem, the governing equations, and th
nondimensionalizations; Sec. III with the discretization a
related issues; Sec. IV with the numerical issues; and Se
with the results and discussion.

II. THE PROBLEM

The problem considered here is the 2D incompress
steady-state flow of a Boussinesq fluid of Prandtl num
~Pr! 0.71 in an upright square cavity of sideH ~Fig. 1!. The
vertical walls are both isothermal; the left wall at tempe
ture Th is hotter than the right wall at temperatureTc . The
horizontal walls are both insulated. Natural convection sta
owing to the temperature difference between the left a
right walls. Body forces are present in the form of gravit
tional force that acts in the negativey direction. The govern-
ing equations of the problem can be written as

]u

]x
5

]v
]y

50, ~1!
TABLE II. Effect of grid size on the results for Ra5104.

Grid size ucmidu
umax

~y!
vmax

~x! Nu Nu1/2 Nu0

Nu0 max

~y!
Nu0 min

~y!
CPU time

~sec!

21321 5.165 16.312
~0.800!

19.520
~0.150!

2.246 2.259 2.219 3.451
~0.150!

0.599
~1.000!

9.17

41341 5.097 16.265
~0.825!

19.662
~0.125!

2.245 2.249 2.239 3.511
~0.150!

0.588
~1.000!

53.50

81381 5.080 16.203
~0.825!

19.613
~0.125!

2.245 2.246 2.243 3.526
~0.150!

0.586
~1.000!

4051.81
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TABLE III. Effect of grid size on the results for Ra5105.

Grid size ucmidu
umax

~y!
vmax

~x! Nu Nu1/2 Nu0

Nu0 max

~y!
Nu0 min

~y!
CPU time

~sec!

21321 9.172 36.375
~0.850!

66.326
~0.050!

4.507 4.502 4.321 7.001
~0.100!

0.809
~1.000!

25.49

41341 9.142 35.156
~0.850!

68.138
~0.075!

4.522 4.523 4.479 7.519
~0.100!

0.748
~1.000!

909.45

81381 9.123 34.825
~0.850!

68.606
~0.063!

4.522 4.522 4.512 7.670
~0.088!

0.733
~1.000!

7209.11
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]u

]x
1v

]u

]y
52

1

r

]p

]x
1n¹2u, ~2!

u
]v
]x

1v
]v
]y

52
1

r

]p

]y
1gb~T2T0!1n¹2v, ~3!

u
]T

]x
1v

]T

]y
5a¹2T, ~4!

whereu, v, T, r, p, n, a, andb are the velocity component
alongx andy axes, temperature, density, pressure, kinem
viscosity, thermal diffusivity, and the coefficient of therm
expansion of the fluid, respectively.T0 is a reference tem
perature, g is the acceleration due to gravity and¹2

[(]2/]x2)1(]2/]y2). The boundary conditions for the ve
tical walls are

u5v50, T5Th at x50 and u5v50,

T5Tc at x5H;y, ~5!

and for the horizontal walls are

u5v50.
]T

]y
50 at y50 and y5H;x. ~6!

To make the above system dimensionless, we introduce
following nondimensional variables:

x* 5
x

H
, y* 5

y

H
, u* 5

uH

a
, v* 5

vH

a
,

T* 5
T2T0

Th2Tc
5

T2T0

DT
, and p* 5

pH2

ra2 . ~7!
06670
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The dimensionless form of the Eqs.~1!–~4! on dropping the
asterisks become

]u

]x
1

]v
]y

50, ~8!

u
]u

]x
1v

]u

]y
52

]p

]x
1Pr¹2u, ~9!

u
]v
]x

1v
]v
]y

52
]p

]y
1Ra PrT1Pr¹2v, ~10!

u
]T

]x
1v

]T

]y
5¹2T, ~11!

where Ra5(gbDTH3)/na and Pr5n/a are the dimension-
less parameters mentioned earlier. Now introducing dim
sionless vorticityv and stream-functionc, defined by

v5
]u

]y
2

]v
]x

, ~12!

and

u5
]c

]y
, v52

]c

]x
, ~13!

the Eqs.~8!–~11! can be written as

u
]v

]x
1v

]v

]y
5Pr¹2v1Ra Pr

]T

]x
, ~14!

¹2c52v, ~15!
TABLE IV. Effect of grid size on the results for Ra5106.

Grid size ucmidu
umax

~y!
vmax

~x! Nu Nu1/2 Nu0

Nu0 max

~y!
Nu0 min

~y!
CPU time

~sec!

21321 15.542 63.635
~0.850!

213.397
~0.050!

8.491 8.357 7.399 11.557
~0.150!

1.267
~1.000!

575.00

41341 16.442 66.515
~0.850!

210.696
~0.050!

8.815 8.807 8.525 15.761
~0.050!

1.095
~1.000!

2210.90

81381 16.420 65.332
~0.850!

221.658
~0.038!

8.829 8.829 8.763 17.018
~0.050!

1.007
~1.000!

10 811.23
3-3
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TABLE V. Results for Ra5107.

Grid size ucmidu
umax

~y!
vmax

~x! Nu Nu1/2 Nu0

Nu0 max

~y!
Nu0 min

~y!
CPU time

~sec!

81381 29.382 155.82
~0.863!

696.238
~0.025!

16.517 16.513 16.075 34.925
~0.025!

1.509
~1.000!

72 843.52
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u
]T

]x
1v

]T

]y
5¹2T. ~16!

If the reference temperatureT0 is taken as being equal toTc ,
the dimensionless boundary conditions become

u5v50, T51 at x50 and u5v50,

T50 at x51;y, ~17!

and

u5v50,
]T

]y
50 at y50 and y51;x. ~18!

The local heat flux in a horizontal direction at any point
the cavity is

Q~x,y!5uT2
]T

]x
. ~19!

The Nusselt number describes the heat transfer charac
tics across the cavity. Through any line parallel to they axis,
the heat flow is given by

Nux5E
0

1

Q~x,y!dy. ~20!

Finally, integrating Nux along the horizontal direction, th
average Nusselt number is computed by

Nu5E
0

1

Nuxdx. ~21!

III. DISCRETIZATION AND RELATED ISSUES

A. The basic numerical scheme

The nine point variable coefficient HOC differenc
scheme of Spotz and Carey@14,17#, originally used for the
c-v formulation of the 2D steady-state N-S equation, for
the core of the discretization of the present study. This H
scheme has been obtained from the second-order centra

TABLE VI. Percentage errors for different Ra’s.

Ra ucmidu mmax nmax Nu Nu1/2 Nu0 Nu0max Nu0min

103 0.05 0.03 0.01 0.09 0.00 0.09 0.13 0.1
104 0.33 0.39 0.25 0.00 0.13 0.18 0.43 0.3
105 0.21 0.95 0.68 0.00 0.02 0.73 0.66 2.0
106 0.13 1.81 4.95 0.16 0.25 2.72 7.39 8.7
06670
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ference scheme by approximating the derivatives appea
in the second-order truncation error terms through the us
the original partial differential equation itself. Consider th
steady-state 2D convection-diffusion equation for a transp
variablef in some domain given by

2¹2f1c
]f

]x
1d

]f

]y
5 f ~x,y!, ~22!

wherec,dare the variable or constant convective coefficie
and f is a forcing function. The fourth-order HOC approx
mation of Eq.~22! is given by@14#

2a i j dx
2f i j 2b i j dy

2f i j 1Ci j dxf i j 1Di j dyf i j

2
h2

6
@dx

2dy
22ci j dxdy

22di j dx
2dy2g i j dxdy#f i j 5Fi j ,

~23!

wheredx anddy are the first anddx
2 anddy

2 are the second-
order central difference operators alongx and y directions,
respectively,h is the uniform mesh size along bothx andy
directions and the coefficientsa i j , b i j , g i j , Ci j , Di j , and
Fi j are as follows:

a i j 511
h2

12
~ci j

2 22dxci j !, ~24!

b i j 511
h2

12
~di j

2 22dydi j !, ~25!

g i j 5dyci j 2ci j di j 1dxdi j , ~26!

Ci j 5ci j 1
h2

12
~dx

21dy
22ci j dx2di j dy!ci j , ~27!

Di j 5di j 1
h2

12
~dx

21dy
22ci j dx2di j dy!di j , ~28!

Fi j 5 f i j 1
h2

12
~dx

21dy
22ci j dx2di j dy! f i j . ~29!

Here it is assumed that the forcing functionf and its deriva-
tives are known analytically or their discrete approximatio
are known.

B. Discretization of the governing equations

For the vorticity equation~14!, f, c, d, and f in Eq. ~22!
are replaced byv, u/Pr, v/Pr, and Ra]T/]x, respectively.
The forcing function in the vorticity equation is not explicitl
3-4
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TABLE VII. Comparison ofucmidu for different schemes.

Ra 103 104 105 106 107

De Vahl Davis@4# 1.174 5.071 9.111 16.32
Ramaswamy, Jue, and Akin@7# 1.170 5.099 9.217 16.68 29.43
Le Quéré @8# 16.38 29.362
Dennis and Hudson@13# 1.175 5.074 9.113
Present work 1.175 5.080 9.123 16.42 29.3
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sure
known and is in derivative form. It may be mentioned that
the earlier HOC simulation of the present physical config
ration @13#, although the overall accuracy of the scheme w
fourth, this particular source term was approximated us
the standard central difference scheme at most of the po
In the following, we proceed to obtain a compact fourt
order accurate approximation of this term applying the sa
mechanism of using the original partial differential equatio

]T

]xU
i j

5FdxT2
h2

6

]3T

]x3G
i j

1O~h4!. ~30!

From Eq.~16!,

]3T

]x3U
i j

5F2
]3T

]x]y2 1u
]2T

]x2 1
]u

]x

]T

]x
1v

]2T

]x]y
1

]v
]x

]T

]y G
i j

,

52@dxdy
2T1udx

2T1dxudxT1vdxdyT1dxvdyT# i j

1O~h2!. ~31!

Substituting Eq.~31! into Eq. ~30! yields

]T

]xU
i j

5dxTi j 1
h2

6
@dxdy

2T2udx
2T2dxudxT2vdxdyT

2dxvdyT# i j 1O~h4!. ~32!

Also for Eq.~15!, f5c, c5d50, andf 5v. Oncev and
c are obtained, the velocitiesu andv can easily be calculate
in the following way:

ui j 5
]c

]yU
i j

5Fdyc2
h2

6

]2c

]y3 G
i j

1O~h4!,
06670
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and using Eq.~15!,

ui j 5dyc i j 2
h2

6 F2
]v

]y
2

]3c

]x2]yG
i j

1O~h4!,

5dyc i j 1
h2

6
@dyv1dx

2dyc# i j 1O~h4!. ~33!

Likewise for they component of velocity

v i j 52dxc i j 2
h4

6
@dxv1dxdy

2c# i j 1O~h4!. ~34!

Finally, for the Eq.~16! f5T, c5u, d5v, f 50.
For the calculation of heat fluxQ(x,y) appearing in Eq.

~19! across the cavity, except atx50 andx51, the fourth-
order approximation of]T/]x is computed using Eq.~31!.
At the vertical boundaries, to approximate]T/]x, along with
the standard two point first-order formula, the third- a
fourth-order Jensen formulas@18# have also been used. Th
Nusselt numbers Nux andNu are calculated through numer
cal integration using Simpson’s rule.

It may be mentioned that the treatment of the first-ord
derivative source term mentioned earlier can easily be
tended to second-order derivatives as well. One such si
tion arises in the solution of pressure Poisson equation a
end of a c-v computation. However, the more importa
point is that through this source term treatment, an HO
scheme for the primitive variable form of the 2D N-S equ
tions can be constructed as the pressure gradient term in
momentum equation and the source term in the pres
Poisson equation equation can now be handled.
2

2
2

52
TABLE VIII. Comparison ofNu for different schemes.

Ra 103 104 105 106 107

Chenoweth and Paolucci@5# 1.118 2.244 4.520 8.822 16.8
De Vahl Davis@4# 1.118 2.243 4.519 8.800
Le Quéré @8# 8.825 16.52
Hortmann, Peric, and Scheure@6# 2.245 4.521 8.825
Saitoh and Hirosh@19# 2.242 8.712
Ball and Kuo@20# 1.118 2.244 4.522 8.825 16.5
Ho and Lin @11# 1.118 2.248 4.528 8.824 16.5
Comini, Cortella, and Manzan@12# 4.503 8.825 16.53
Present work 1.118 2.245 4.522 8.829 16.
3-5



2

JITEN C. KALITA, D. C. DALAL, AND ANOOP K. DASS PHYSICAL REVIEW E64 066703
TABLE IX. Comparison ofvmax for different schemes.

Ra 103 104 105 106 107

Chenoweth and Paolucci@5# 3.695 19.62 68.63 220.8 699.0
De Vahl Davis@4# 3.697 19.62 68.63 219.4
Ramaswamy, Jue, and Akin@7# 19.62 68.64 232.97 717.04
Le Quéré @8# 220.56 699.2
Saitoh and Hirosh@19# 19.62 216.76
Ho and Lin @11# 3.697 19.63 68.63 219.86 705.3
Hortmann, Peric, and Scheure@6# 19.63 68.64 220.46
Dennis and Hudson@13# 3.698 19.63 68.64
Present work 3.697 19.61 68.61 221.66 696.
t

rd

-

-

C. HOC wall boundary conditions

The stream functionc equals zero on the boundaries. A
the corners, bothu andv do not vary in thex andy directions
and, therefore, the vorticity is equal to zero. Using forwa
differencing on the left wall@Eq. ~13!#,

v1,j52
]c

]xU
1,j

,

52Fdx
1c2

h

2

]2c

]x22
h2

6

]3c

]x32
h3

24

]4c

]x4 G
1,j

1O~h4!.

~35!

As v1,j equals zero, using Eq.~15!, we have

TABLE X. Effect of order of accuracy of]T/]x at x50 and 1
on Nu’s.

Ra Order Nu Nu0

Nu0max

~y!
Nu0min

~y!

O(h3) 1.118 1.118 1.505 0.692
103 ~0.088! ~1.000!

O(h4) 1.117 1.118 1.505 0.692
~0.088! ~1.000!

O(h3) 2.245 2.245 3.527 0.587
104 ~0.150! ~1.000!

O(h4) 2.244 2.245 3.528 0.587
~0.150! ~1.000!

O(h3) 4.522 4.530 7.710 0.737
105 ~0.088! ~1.000!

O(h4) 4.521 4.538 7.730 0.737
~0.088! ~1.000!

O(h3) 8.831 8.967 17.789 1.022
106 ~0.038! ~1.000!

O(h4) 8.830 9.028 17.980 1.024
~0.038! ~1.000!

O(h3) 16.530 17.668 42.369 1.561
107 ~0.025! ~1.000!

O(h4) 16.532 17.846 42.175 1.565
~0.025! ~1.000!
06670
05F2dx
1c1

h

2 S 2v2
]2c

]y2 D1
h2

6 S 2
]v

]x
2

]3c

]x]y2D
1

h3

24S 2
]2v

]x2 2
]4c

]x2]y2D G
1,j

1O~h4!.

Also in view of the fact that]2c/]y250, ]3c/]x]y2

5]2v/]y250 on the left wall and ]4c/]x2]y2

5]3/]x]y2(]c/]x)52]3v/]x]y2, the above relation be
comes

05F2dx
1c2

h

2
v2

h2

6 S dx
1v2

h

2

]2v

]x2 D
2

h3

24S ]2v

]x2 2
]3v

]x]y2D G
1,j

1O~h4!.

Finally, as u5v50 on the walls so that Eq.~14! yields
¹2v1Ra]T/]x50, we get the following fourth-order accu
rate expression on the left wall:

F2dx
1c2

h

2
v2

h2

6
dx

1v1
h3

24
~2dy

2v2Radx
1T!

1
h3

24
dx

1dy
2vG

1,j

50. ~36!

Similarly on the right wall

F2dx
2c1

h

2
v2

h2

6
dx

2v1
h3

24
~dy

2v1Radx
2T!

2
h3

24
dx

2dy
2vG

m j

50. ~37!

On the bottom wall

Fdy
1v1

h

2
v1

h2

6
dy

1v1
h3

24
~dx

2v1RadxT!1
h3

24
dx

2dy
1uG

i ,1

50. ~38!

On the top wall
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FULLY COMPACT HIGHER-ORDER COMPUTATION OF . . . PHYSICAL REVIEW E 64 066703
FIG. 2. For Ra5103, ~a! stream-function contours (cmin521.175), ~b! vorticity contours~vmin5232.02 andvmax551.25!, ~c! iso-
therms,~d! the Nusselt number distribution across the cavity.
h h2 h3 h3

t
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en
pi
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Fdy
2c2

2
v1

6
dy

2v2
24

~dx
2v1RadxT!2

24
dx

2dy
2uG

i ,m

50. ~39!

Here space indices vary from 1 tom in both x andy direc-
tions.

On the insulated top and bottom walls, we now proceed
develop a fourth-order accurate zero-gradient tempera
boundary condition. It may be mentioned that as tempera
remains constant on the vertical walls, this zero-gradi
condition is automatically satisfied at the corners. At a ty
cal node~i,j!, we may write

05
]T

]y
5FdyT2

h2

6

]3T

]y3G
i j

1O~h4!.

As on the boundaries¹2T50, the last relation yields
06670
o
re
re
t

-

05FdyT1
6

dx
2dyTG

i j

1O~h4!.

Thus the finite difference approximation of the temperat
equation on the insulated boundaries are

Ti 11,j 111Ti 21,j 1114Ti , j 115Ti 11,j 211Ti 21,j 21

14Ti , j 21 . ~40!

Again HOC discretization of the energy equation at the wa
are given by

Ti 11,j 111Ti 21,j 1114~Ti 11,j1Ti , j 11Ti 21,j !

1~Ti 11,j 211Ti 21,j 2114Ti , j 21!220Ti j 50.

~41!
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JITEN C. KALITA, D. C. DALAL, AND ANOOP K. DASS PHYSICAL REVIEW E64 066703
FIG. 3. For Ra5104, ~a! stream-function contours (cmin525.079), ~b! vorticity contours~vmin52124.90 andvmax5427.17!, ~c!
isotherms,~d! the Nusselt number distribution across the cavity.
da

-
re

is
la-

tes
lgo-
are
rms.
ghtly
ve
From Eqs. ~40! and ~41!, it follows that, for the lower
boundary

Ti 11,21Ti 21,214Ti ,212~Ti 11,11Ti 21,1!210Ti ,150,
~42!

and for the upper boundary

Ti 11,m211Ti 21,m2114Ti ,m2112~Ti 11,m1Ti 21,m!210Ti ,m

50. ~43!

This approach used to develop the temperature boun
conditions on the insulated walls can also be extended
similar physical situations for a flow variablef, where, on
the boundary,]f/]n50 and¹2f50 ~n being the direction
normal to the boundary!. One important situation of this na
ture could be the pressure Poisson equation with zero p
06670
ry
to

s-

sure gradient boundary conditions, when HOC algorithm
attempted to be extended to the primitive variable formu
tion of the N-S equations.

IV. NUMERICAL ISSUES

The nonlinearity of the governing equations necessita
an iterative solution procedure. We use a decoupled a
rithm where vorticity, stream-function, and temperature
solved in sequence separately, lagging the appropriate te
The successive iterates for the temperature have been sli
over-relaxed and that for stream-function and vorticity ha
been under-relaxed. That is to say, iff8 is the unrelaxed
update offn, thenfn11 is given by

fn115lf81~12l!fn,

wherel is the relaxation factor and the superscriptsn and
n11 are iteration indices.
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FULLY COMPACT HIGHER-ORDER COMPUTATION OF . . . PHYSICAL REVIEW E 64 066703
FIG. 4. For Ra5105, ~a! stream-function contours (cmin529.633), ~b! vorticity contours~vmin52606.95 andvmax52622.89!, ~c!
isotherms,~d! the Nusselt number distribution across the cavity.
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Again, the coefficient matrices resulting from the HO
discretization are not diagonally dominant@17# and, there-
fore, iterative techniques like Gauss-Seidel cannot be app
here. As the coefficient matrix for the stream-function
symmetric and positive definite, the CG@15# algorithm has
been used, and those for the vorticity and temperature b
nonsymmetric, a hybrid BiCGStab@16# algorithm has been
employed.

For computational advantage, the computed solution fo
lower Ra can be used as the initial guess for a higher Ra.
vorticity, stream function, and temperature equations
solved in that order. The CG and hybrid BiCGStab iteratio
used for solving these equations to a certain accuracy
termed as inner iterations. The process of iteratively solv
the three equations once may be termed as one outer iter
that is to be repeated until convergence is achieved. It m
be noted that the number of inner iterations needed to me
particular stopping criterion generally reduces with t
06670
ed

ng

a
he
e
s
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y

t a

progress of outer iterations. If the systems associated witc,
v, and T equations are represented byAz5b, the inner
iterations are terminated here as soon as the resi
iAz2bi2 falls below 10210. Convergence is considered t
be achieved when the maximum difference betwe
two successive iterates for all ofc, v, and T falls below
10210.

It may be noted that for ann3n grid, A is an n23n2

matrix andz andb aren2-component vectors. However, th
actual storage required forA is much less thann23n2 words,
as the algorithm requires the storage of only the nonz
elements ofA. The number of nonzero entries ofA for v, c,
and T equations are 9n2220n124, 9n2232n132, and
9n2222n112, respectively. A condition number analys
based on a power method for eigenvalues, shows that
matrices are well conditioned, the value of the conditi
number generally being less than 1.3. This is the reason
no need for preconditioning was felt when using the CG a
3-9



JITEN C. KALITA, D. C. DALAL, AND ANOOP K. DASS PHYSICAL REVIEW E64 066703
FIG. 5. For Ra5106, ~a! stream-function contours (cmin5216.86), ~b! vorticity contours~vmin523288.5 andvmax51528.8!, ~c!
isotherms,~d! the Nusselt number distribution across the cavity.
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hybrid BiCGStab algorithms. All computations in this wo
were carried out on a HP C 200 machine using a seque
code.

V. RESULTS AND DISCUSSION

In this section, besides discussing other aspects, we
examine the accuracy of the present fully compact high
order accurate algorithm by comparing its results with
ready existing results. They are presented here through ta
and graphs for Ra’s ranging from a moderate 103 to a high
laminar 107. Tables I, II, III, and IV present the results fo
Ra5103 to 106 for grids of size 21321, 41341, and
81381. Table V shows the results for Ra5107 on a
81381 grid. The quantities presented here are the stre
function cmid at the midpoint of the cavity, the maximum
horizontal velocityumax on the vertical midplane togethe
with its location, the maximum vertical velocityvmax on the
06670
ial

lso
r-
-
les

m

horizontal midplane together with its location, the avera
Nusselt numberNu, the average Nusselt number Nu1/2 on
the vertical midplane of the cavity, the average Nusselt nu
ber Nu0 on the hot wall, the maximum and minimum value
Nu0 max and Nu0 min of the local Nusselt number on the ho
wall together with their locations, and the CPU time in se
onds. The grid independence of the results is evident fr
the first four tables as the variation in results is insign
cantly small~Table VI! with grid refinement. Owing to high-
order ~viz fourth! accuracy of both the scheme and t
boundary conditions, high quality solutions are obtained w
as coarse a grid as 21321. This comes out clearly from
Tables VII, VIII, and IX, where the computed values o
ucmidu, Nu, and vmax are compared with some well esta
lished results and the agreement is found to be excellent.
Nusselt numbers that are presented in Tables I, II, III,
and V are calculated using the first-order approximation
]T/]x at the vertical walls. The same Nusselt numbers e
3-10



FULLY COMPACT HIGHER-ORDER COMPUTATION OF . . . PHYSICAL REVIEW E 64 066703
FIG. 6. For Ra5107, ~a! stream-function contours (cmin5230.32), ~b! vorticity contours~vmin5218 610 andvmax586 313.5!, ~c!
isotherms,~d! the Nusselt number distribution across the cavity.
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mated through the use of the third- and fourth-order Jen
formulas@18# are presented in Table X. Comparisons amo
these Nusselt numbers clearly show that, except for the
ues of Nu0 and Nu0 max calculated with the first-order for
mula at Ra5107, all the other estimates are in very clo
agreement, in particular, the values calculated with third-
fourth-order formulas.

Figure 2 shows the stream-function contours, the vortic
contours, isotherms and the Nusselt number distribution
the cavity for Ra5103. Figures 3–6 show the same for R
5104– 107, respectively. The contours and distributions be
very close resemblance with similar figures presented by
Vahl Davis @4#, Le Quéré @8#, Ramaswamy, Jue, and Aki
@7#, Chenoweth and Paolucci@5#, and Hortmann, Peric, an
Scheure@6#.

De Vahl Davis @4# obtained his results using an FTC
scheme of second-order spatial accuracy in conjunction w
Richardson extrapolation; similarly Chenoweth and Paolu
@5# used a second-order accurate method followed by a t
06670
n
g
l-

d

y
in

r
e

th
ci
ee

point Richardson extrapolation and claimed their results
be sixth-order accurate. It may, however, be noted that th
extrapolated solutions are obtained only at those nodes
are shared by different levels of grids. Previously, the nee
use extrapolation to obtain higher-order accurate solution
ing a lower-order accurate scheme was probably necessi
by the absence of well-examined HOC schemes. In contr
the present work obtains high quality solutions with a four
order fully HOC scheme on a single coarse grid. The co
putations use De Vahl Davis’ nondimensionalization to o
tain reasonably accurate solutions even for a Rayle
number as high as 107, although Le Que´ré @8# remarked that
De Vahl Davis’ dimensionless form is inappropriate for t
Rayleigh number regime beyond 106 and used a slightly
different scaling.

For the range of Rayleigh numbers considered here, th
is generally a centro symmetry of velocity, vorticity, an
temperature distribution. This is obvious from the streaml
and vorticity contours and the isotherms in parts~a!, ~b!, and
3-11
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~c! of Figs. 2, 3, 4, 5, and 6. At Ra5107, recirculation re-
gions are seen to appear at the upper left and lower r
corners@Fig. 6~a!#. From part~d! of Figs. 2, 3, 4, 5, and 6
the distribution of Nux is seen to be symmetric about th
central vertical line. At Ra5103, there is one peak located a
the axis of symmetry and for the other Ra’s there exist t
peaks symmetrical about the axis moving further and furt
away from it as Ra increases. Figure 7 shows that the lo
tion of the maximum local Nusselt number at the hot w
progressively moves down as Ra increases. Secondary v
ces appear at Ra5105 and persist for higher Ra’s. From pa
~b! of Figs. 2, 3, 4, 5, and 6, on the vertical walls, bounda
layer thickness is seen to progressively decrease as R
creases. These observations tally with those of ea
investigators.

VI. CONCLUSION

This work is concerned with HOC computation of th
standard thermally driven square cavity problem with ad
batic horizontal walls and differentially heated vertical wa
for values of Ra varying from 103 to 107. In the previous
~probably only! example of HOC computation@13# for this
problem, the difficult cases of Ra5106 and 107 have not
been studied. Also, the boundary conditions are not com
and the derivative source term that appears in the vorti

FIG. 7. The variation of Nusselt numbers across the hot wall
different Ra’s.
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equation~viz. ]T/]x! has been resolved at least to secon
order accuracy. The present work, besides including the
sults for the high Rayleigh numbers of Ra5106 and 107,
employs an algorithm that is uniformly fourth-order accura
and compact in the discretization of the governing equatio
treatment of the boundary conditions and source term re
lution. This is the reason why the solution procedure may
termed as a fully compact higher-order method with the
sociated advantages. The no-heat-flux boundary conditio
the adiabatic walls has been imposed through a special s
egy taking care to maintain compactness at higher accur
This technique has the potential of being extended to o
similar physical situations. The work also achieves high
order compact resolution of the source term and its e
assimilation into the solution procedure. This opens up n
possibilities of this strategy being extended to situations l
pressure gradient term in the primitive variable formulati
of the N-S equations. Hence, a complete HOC primitive va
able formulation of the N-S equations is now possible t
can further be extended to three-dimensions as well. Ano
fact that we come across in course of the work is that
Quéré’s @8# observation about De Vahl Davis’ nondimen
sionalization@4# being not adequate beyond Ra5106 may
not be correct as computation has been carried out here
the same nondimensionalization with sufficient accura
Also, in the course of the estimation of the hot wall Nuss
numbers, De Vahl Davis@4# observed that varying the orde
of approximation of the finite difference formulas produc
significantly different values. But in the present calculatio
close agreement among the Nusselt numbers estim
through approximation of]T/]x at the vertical walls with
formulas of three different orders show that the solutio
obtained by us are indeed very accurate. Finally, use of
and hybrid BiCGStab algorithms to solve the symmetric a
nonsymmetric algebraic systems at every outer itera
makes the solution procedure robust. The method also
the advantage that the fully HOC method used provides
trices that are well conditioned and hence the complexity
constructing an efficient preconditioner is avoided.
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