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Fully compact higher-order computation of steady-state natural convection in a square cavity
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The flow in a thermally driven square cavity with adiabatic top and bottom walls and differentially heated
vertical walls for a wide range of Rayleigh numbers {&@Ra=<10") has been computed with a fourth-order
accurate higher-order compact scheme, which was used earlier only for the stream-function \@rigity
form of the two-dimensional steady-state Navier-Stokes equations. The boundary conditions used are also
compact and of identical accuracy. In particular, a compact fourth-order accurate Neumann boundary condition
has been developed for temperature at the adiabatic walls. The treatment of the derivative source term is also
compact and has been done in such a way as to give fourth-order accuracy and easy assimilation with the
solution procedure. As the discretization for #ev formulation, boundary conditions, and source term treat-
ment are all fourth-order accurate, highly accurate solutions are obtained on relatively coarser grids. Unlike
other compact solution procedure in literature for this physical configuration, the present method is fully
compact and fully higher-order accurate. Also, use of conjugate gradient and hybrid biconjugate gradient
stabilized algorithms to solve the symmetric and nonsymmetric algebraic systems at every outer iteration,
ensures good convergence behavior of the method even at higher Rayleigh numbers.
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[. INTRODUCTION to a Grashof number of 20De Vahl Davis[4] presented the
benchmark solutions for this problem for Ra0® to 1¢°

The problem of a buoyancy driven square cavity withthrough a second-order finite difference scheme and Richard-
adiabatic top and bottom walls and differentially heated verson extrapolation; Chenoweth and Paoludi used a for-
tical walls has been the topic of extensive study in the pastard time centered spa¢eTCS explicit predictor corrector
few decades. Along with the lid-driven cavity problem, it has method; Hortman, Peric, and Schelifd used a finite vol-
become one of the most popular means for testing and vallme multigrid method; and Ramaswamy, Jue, and AKin
dating numerical algorithms and computer codes. Some reaised a second-order finite element method. The regime of
sons for this arefi) its simple geometry with no singularities high Rayleigh number was considered by Le’ @8] using
throughout the cavity except at the corners &idthe avail- @ second-order Chebychev polynomial approach and Janssen
ability of experimental and numerical data on this problem.
The problem is also attractive because of its relevance in
varied applications such as nuclear reactor insulation, venti- 3T
lation of rooms, solar energy collection, crystal growth of 5'0
liquids, pneumatic transport, etc. This work is concerned ;W
with the higher-order compadHOC) computation of the u=x=0 y=H
problem.

The second-ordefspatially) accurate schemes, particu-
larly the central difference ones have been used in a large
number of computational fluid dynamid€FD) problems
because of their straightforwardness in application. In keep- T=
ing with this trend, in most of the previous attempts to tackle L1=\'=E) l=v=0
this problem, the schemes were at most second-order acct
rate in space. A time marching approach was used in the 1g
majority of the casefl,2] to reach the steady-state solution.
A second-order alternating direction impli¢iADI) scheme
was used by Wilkes and ChurchijlB] to produce results up
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TABLE I. Effect of grid size on the results for RalC®.

Umax U max o NUg max NUp min CPU time
Grid size [ ¢mid V) ) Nu Nuyz  Nug V) (% (seg
21x21 1.178 3.647 3.675 1.116 1.120 1.115 1.494 0.697 5.66
(0.800 (0.200 (0.100 (1.000
41X41 1.176 3.642 3.699 1.117 1.118 1.117 1.503 0.693 30.75
(0.800 (0.1795 (0.100 (1.000
81x81 1.175 3.650 3.697 1.118 1.118 1.118 1.505 0.692 2114.60
(0.813 (0.175 (0.088 (1.000

and Henkes[9] with a finite volume discretization with method is fully compact and fully higher-order accurate with
fourth-order central interpolation scheme for the convectiveassociated advantages. Another attractive feature of the com-
derivatives. Recently Tagawa and OZd€)] carried out nu-  putation is the use of conjugate gradi€é@G) [15] and hy-
merical calculations with different schemes including thebrid biconjugate gradient stabilize@®iCGStab) [16] algo-
Utopia and Kawamura-Kawahara scheme for low Prandtlithms for solving the linear algebraic equations and this
number regime. A new pseudo-vorticity-velocity formulation improves the convergence behavior of the algorithm. As ex-
and a stream function-vorticity method have been proposegdected, the results are very accurate and even coarse grid
by Ho and Lin[11] and Comini, Cortella, and Manzd®2],  results compare very well with previous computations. Over-
respectively. In perhaps the only previous examfl&] all, besides opening up new possibilities, the method may be
where an HOC method was used for the problem, computaconsidered an efficient one for computation of flow for this
tions were carried out up to a Rayleigh number of.10he  physical configuration.

work usedO(h*) discretization of the governing equations,  This paper has been arranged in five sections: Section Il
but the boundary treatment was not compact and the derivateals with the problem, the governing equations, and their
tive source term treatment was not higher-order accurateondimensionalizations; Sec. IIl with the discretization and
The present work computes the laminar solution of the probrelated issues; Sec. IV with the numerical issues; and Sec. V
lem starting with a moderate value of R40° and going up  with the results and discussion.

to a value as high as 1Qwith Boussinesq approximation,

the flow becomes unstable at an Ra very close 1@

[5,8]) with a fourth-order accurate HOC scheme originally Il. THE PROBLEM
proposed by Spotz and Cargy4] for the ~w form of the ) ) ) )
two-dimensional (2D) steady-state Navier-Stoke§N-S) The problem considered here is the 2D incompressible

equations. The temperature gradient source term in the Voﬁ_teady—stgte flow _Of a BOUSSInesq f|UId'0f Prandtl number
ticity equation is also discretized using@(h*) compact (PP 0.71in an upright square cavity of si¢e(Fig. 1). The
scheme and smoothly integrated to the solution proceduré/.ert'cal -Walls are both |sot_hermal; the left wall at tempera-
This strategy seems to have the potential of being usefull{ré Tn is hotter than the right wall at temperatifg. The
employed in similar situations, especially, to the pressur or.lzontal walls are both msu]ated. Natural convection starts
gradient term in the extension of HOC to the primitive vari- ©Wing to the temperature difference between the left and
able formulation of the N-S equations. Also, the boundaryight walls. Body forces are present in the form of gravita-
conditions for vorticity and temperature are compact andional force that acts in the negatiyedirection. The govern-
O(h%. In particular, a compact temperature NeumannNd €quations of the problem can be written as

boundary condition has been developed adopting the follow-

ing approach. Because of compactness and higher-order ac-

curacy, this treatment may be taken as the model for similar u_ 5_020 1)
computations. Thus, unlike the previous attempts, the present ax gy

TABLE II. Effect of grid size on the results for Ral0*.

Umax U max e NUp max ~ NUgmin  CPU time
Grid size | ¢mid v) (x) Nu Nu, N y) (y) (seq
21x21 5165 16.312 19.520 2.246 2259 2219 3451 0.599 9.17
(0.800  (0.150 (0.150  (1.000
41x41  5.097 16.265 19.662 2.245 2249 2239 3511 0.588 53.50
(0.825 (0.125 (0.150  (1.000
81x81 5080 16.203 19.613 2.245 2246 2243 3526 0.586  4051.81
(0.825  (0.129 (0.150  (1.000
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TABLE lIl. Effect of grid size on the results for Ra10°.

Ummax U max o NUg max ~ NUpmin  CPU time
Grid size [ ¢mid y) ) Nu Nuyz  Nug v) v) (seq
21X 21 9.172 36.375 66.326 4.507 4.502 4,321 7.001 0.809 25.49
(0.850 (0.050 (0.100 (1.000
41x41 9.142 35.156 68.138 4.522 4.523 4.479 7.519 0.748 909.45
(0.850 (0.079 (0.100 (1.000
81x81 9.123 34.825 68.606 4.522 4.522 4512 7.670 0.733 7209.11
(0.850 (0.063 (0.088 (1.000
Ju Ju 1 dp ) The dimensionless form of the Eq4)—(4) on dropping the
—4v—=———+vV 2 '
U Vo o v (2)  asterisks become
Jdu Jdv
dv v 1p —+—=0 8
—_ + [ — + — + 2 1
u XU 3y b 3y gB(T—Ty) +vV-u, (3 ax ay
gu  du ap
JT JT _ 2
o, av2 Uu—+v—=——+PVeuy, 9
U oy av-T, 4 ax o ady ax
whereu, v, T, p, p, v, &, andg are the velocity components v dv - dp 5
alongx andy axes, temperature, density, pressure, kinematic u X tu ay  ay +RaPm+PV*, (10
viscosity, thermal diffusivity, and the coefficient of thermal
expansion of the fluid, respectivel¥, is a reference tem- oT .,
perature, g is the acceleration due to gravity and? u——+v W:V T, (11)

=(0%19x?)+ (9%l 9y?). The boundary conditions for the ver-

tical walls are where Ra (gBATH®)/va and Pk v/a are the dimension-

less parameters mentioned earlier. Now introducing dimen-

u=v=0, T=Ty at x=0 and u=v=0, sionless vorticityw and stream-functior, defined by

T=T. at x=HVy, (5) U du
. 0= == —, (12)
and for the horizontal walls are dy ox
aT and
u=v=0. (9_:0 at y=0 and y=HVx. (6)
y 7 7 13
To make the above system dimensionless, we introduce the u= ay’ vT T X (13
following nondimensional variables:
the Egs.(8)—(11) can be written as
L. X LY , UuH ., vH
=g YTy YTz U T o  do ) al
U—+v—=PV°w+RaPr—, (14
ax o ady X
- T-Ty T-To 4 o pH? .
= = , an = —.
To—T. AT P pa’ @ V2y=—w, (15)
TABLE V. Effect of grid size on the results for Ral0’.
Umax U max e NUg max  NUpmin  CPU time
Grid size | /mid %) ) Nu  Nup  Nu ) ) (seq
21x21 15.542 63.635 213.397 8.491 8.357 7.399 11.557 1.267 575.00
(0.850 (0.050 (0.150 (1.000
41x 41 16.442 66.515 210.696 8.815 8.807 8.525 15.761 1.095 2210.90
(0.850 (0.050 (0.050  (1.000
81x81 16.420 65.332 221.658 8.829 8.829 8.763 17.018 1.007 10811.23
(0.850  (0.038 (0.050  (1.000
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TABLE V. Results for Ra=10".

o Umax U max . NUp max  NUp min~ CPU time
Grid size | ¢mid v) (%) Nu Nuy/ Nup y) v) (seg
81x81 29.382 155.82 696.238 16.517 16.513 16.075 34.925 1509 72843.52
(0.863 (0.0295 (0.025 (1.000
oT oT ) ference scheme by approximating the derivatives appearing
U v By VeT. (16)  in the second-order truncation error terms through the use of

If the reference temperatuilg is taken as being equal 1.,
the dimensionless boundary conditions become

u=v=0, T=1 at x=0 and u=v=0,
T=0 at x=1Vy, (17

and

aT
u=v=0, —=0 at y=0 and y=1Vx. (19

ay

The local heat flux in a horizontal direction at any point in

the cavity is

aT
Q(x,y)=uT— e (19

The Nusselt number describes the heat transfer character

tics across the cavity. Through any line parallel to yreis,

the original partial differential equation itself. Consider the
steady-state 2D convection-diffusion equation for a transport
variable ¢ in some domain given by

J J
_¢+d_¢
ax o ady

wherec,d are the variable or constant convective coefficients
andf is a forcing function. The fourth-order HOC approxi-
mation of Eq.(22) is given by[14]

-V2¢+c

f(x.y), (22)

— ajj 83 bij — By 8, ij + Cij Seehiy + Dij Sy by
h2
- §[5§5§—Cij5x5§—dij5>2<5y— Yij OOy dij =Fij ,

(23

where 8, and 8, are the first ands; and &7 are the second-
order central difference operators alon@ndy directions,
Irse'spectively,h is the uniform mesh size along boxhandy

e directions and the coefficients;;, 8j;, v, Cjj, Dj;, and
the heat flow is given by F;; are as follows:
1
2
Nu =f X,y)dy. 20
k= Jo QUeyIdy 0 oy =1+ 5 (ch - 25,8, (24)
Finally, integrating Ny along the horizontal direction, the h2
average Nusselt number is computed by Bij=1+ 1_2(di2j —25,djj), (25)
J— 1
Nu= jO NuXdX' (21) yij=5ycij—cijdij+5xdij s (26)
h? 2, o2
lll. DISCRETIZATION AND RELATED ISSUES Cij=Cij+ 75 (0%+ 9y = Cjj ox—dijéy)cij, (27)
A. The basic numerical scheme )
The nine point variable coefficient HOC difference Dij=d;;+ h_(5)2(+ 52—Cij 8,—d;8,)d;; , (28)
scheme of Spotz and Car¢y4,17], originally used for the 12 Y
- formulation of the 2D steady-state N-S equation, forms h2
the core of the discretization of the present study. This HOC a2 2 e 3
scheme has been obtained from the second-order central dif- Fi=Tij+ 12(5"+ 0y~ Cij &= dij &) - (29

TABLE VI. Percentage errors for different Ra’s. Here it is assumed that the forcing functiband its deriva-
tives are known analytically or their discrete approximations
Ra |‘r/fmid| Mmax Vmax NU  Nuys Nug  NUgmax  NUpmin are known.
10° 0.05 0.03 001 0.09 0.00 0.09 0.13 0.14 . o . .
10 033 039 025 000 013 018 0.43 0.34 B. Discretization of the governing equations
10° 021 095 0.68 0.00 0.02 0.73 0.66 2.05 For the vorticity equatior{14), ¢, c, d, andf in Eq. (22)
10° 0.13 1.81 495 0.16 025 272 7.39 8.74 are replaced by, u/Pr, v/Pr, and RAaT/dx, respectively.

The forcing function in the vorticity equation is not explicitly
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TABLE VII. Comparison of| ¢4 for different schemes.

Ra 10 10* 10° 108 107

De Vahl Davis[4] 1.174 5.071 9.111 16.32

Ramaswamy, Jue, and AKk|T] 1.170 5.099 9.217 16.68 29.436
Le Quee [8] 16.38 29.362
Dennis and Hudsofl3] 1.175 5.074 9.113

Present work 1.175 5.080 9.123 16.42 29.382

known and is in derivative form. It may be mentioned that inand using Eq(15),
the earlier HOC simulation of the present physical configu-

ration[13], although the overall accuracy of the scheme was h?[ do &y .
fourth, this particular source term was approximated using Ujj = Oy ibij — Bl W_ ax2ay +0(h%),
the standard central difference scheme at most of the points. ij
In the following, we proceed to obtain a compact fourth-
order accurate approximation of this term applying the same _ h? 2 4
mechanism of using the original partial differential equation, = Oyt + E[ﬁy‘”Jr 8y lij +O(h). (33)
aT 298
- = { 5T— Y +0(h%). (30) Likewise for they component of velocity
X|.. X
i i .
From Eq.(16), vij= = O~ 5 [+ 880l +0(h%). (39
T ST PT gudT  ¢*T v dT
a3 | oxay? U T ax X Y axay *ox ayl Finally, for the Eq.(16) ¢=T, c=u, d=v, f=0.
! . For the calculation of heat fluQ(x,y) appearing in Eq.
- _[5X5§T+ usiT+ é,u 8 T+v 66, T+ 60 6,T]; (19) across the cavity, except at=0 andx=1, the fourth-
5 order approximation o#T/dx is computed using Eq31).
+0(h%). (1) Atthe vertical boundaries, to approximat&/ dx, along with
. i i the standard two point first-order formula, the third- and
Substituting Eq(31) into Eq. (30) yields fourth-order Jensen formuld48] have also been used. The
oT h2 Nusselt numbers NuandNu are calculated through numeri-
—| =8T;+ _[5)(531-_ uscT—8usT—v 8x8,T cal integration using Simpson'’s rule.
X[ 6 It may be mentioned that the treatment of the first-order

ij
derivative source term mentioned earlier can easily be ex-
tended to second-order derivatives as well. One such situa-
tion arises in the solution of pressure Poisson equation at the
end of ay~w computation. However, the more important
point is that through this source term treatment, an HOC
scheme for the primitive variable form of the 2D N-S equa-
tions can be constructed as the pressure gradient term in the

— 8,0 8,T];;+0O(h%). (32

Also for Eq.(15), ¢= ¢, c=d=0, andf = w. Oncew and
 are obtained, the velocitiesandv can easily be calculated
in the following way:

d h? 52 : :
uij:_lp :[5y¢—€—f +0(h%), momentum equation and the source term in the pressure
%y ij %y ij Poisson equation equation can now be handled.
TABLE VIII. Comparison ofNu for different schemes.
Ra 1¢ 10* 10° 108 107
Chenoweth and Paolucfh] 1.118 2.244 4520 8.822 16.82
De Vahl Davis[4] 1.118 2.243 4,519 8.800
Le Quae[8] 8.825 16.52
Hortmann, Peric, and Scheu@] 2.245 4521 8.825
Saitoh and Hirosh19] 2.242 8.712
Ball and Kuo[20] 1.118 2.244 4.522 8.825 16.52
Ho and Lin[11] 1.118 2.248 4.528 8.824 16.52
Comini, Cortella, and Manzaj2] 4.503 8.825 16.53
Present work 1.118 2.245 4.522 8.829 16.52
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TABLE IX. Comparison ofv,,y for different schemes.

Ra 16 10* 10° 1° 10’
Chenoweth and Paolucfh] 3.695 19.62 68.63 220.8 699.0
De Vahl Davis[4] 3.697 19.62 68.63 219.4
Ramaswamy, Jue, and AK|T] 19.62 68.64 232.97 717.04
Le Quee [8] 220.56 699.2
Saitoh and Hirosti19] 19.62 216.76
Ho and Lin[11] 3.697 19.63 68.63 219.86 705.3
Hortmann, Peric, and Scheur@] 19.63 68.64 220.46
Dennis and Hudsofl3] 3.698 19.63 68.64
Present work 3.697 19.61 68.61 221.66 696.2

C. HOC wall boundary conditions

The stream functiony equals zero on the boundaries. At
the corners, bothhandv do not vary in thex andy directions
and, therefore, the vorticity is equal to zero. Using forward

differencing on the left wal[Eq. (13)],
__9

VLT T

1)

2 2 13 3 44
RNy
X 2 9x° 6 x5 24 ox* 1

As v, equals zero, using E¢15), we have

+0

(h%).

(39

TABLE X. Effect of order of accuracy o#T/dx atx=0 and 1

on Nu’s.
_ NUpmax NUgmin
Ra Order Nu Ny (y) (y)

O(h®) 1.118 1.118 1.505 0.692

10° (0.088 (1.000
O(h% 1.117 1.118 1.505 0.692

(0.088 (1.000
0O(h®) 2.245 2.245 3.527 0.587

104 (0.150 (1.000
O(h% 2.244 2.245 3.528 0.587

(0.150 (1.000
O(h®) 4.522 4.530 7.710 0.737

10° (0.088 (1.000
O(h% 4.521 4.538 7.730 0.737

(0.088 (1.000
O(h®) 8.831 8.967 17.789 1.022

10° (0.038 (1.000
O(h% 8.830 9.028 17.980 1.024

(0.038 (1.000
O(h®) 16.530 17.668  42.369 1.561

10 (0.025  (1.000
O(h% 16.532 17.846  42.175 1.565

(0.025 (1.000

a2¢)+h2(_aw

Py
a2 6

0=|—-46; +h
S| Txdtg| e X Ixay?

+__ —
24 X2 ax2ay?

h3 o &y
X“dy

+0(h%).
1]

Also in view of the fact thatd?y/dy?>=0, 3%yl axay?
=¢%loy?=0 on the left wall and 9*ylax?ay?
= 33 axay?(ayl ox) = — vl dxay?, the above relation be-
comes

2 2
0=~ 5t g o[ s T
x¥ 2 6 | X% 2 9x?
h®/Pw v .
" 24\ a2 axay?) | TOMD:

1]

Finally, asu=v=0 on the walls so that Eq14) yields
V2w+RadT/dx=0, we get the following fourth-order accu-
rate expression on the left wall:

2 3

h
— U s 0 F o wt 271(—5§w—Ra5;T)

hS
+ 5285 0o

54 =0. (36)

1

Similarly on the right wall

h h2 3
— — 2 —
[—5)( Y+ Ew— Eéx w+ Z‘(éwarRaﬁx T)

h3

- 2
_ﬁb‘x (SyU

=0. (37)

mj

On the bottom wall

2 h3 h3
dy wt 50+ =y wt 5 (Sw+RasT)+ 250U

2 6 2477 i1

=0. (39)

On the top wall
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FIG. 2. For Ra=10°, (a) stream-function contoursyfy,=—1.175), (b) vorticity contours(wyin=—32.02 andwma,=51.29, (c) iso-
therms,(d) the Nusselt number distribution across the cavity.

h h? h3 h3 2
5;1p—§w+€5;w—ﬁ(6§w+Ra5xT) — 825U o—{ayTJraiayT +0(h%).
i,m

24%%% 6 !

=0. 39
39 Thus the finite difference approximation of the temperature

Here space indices vary from 1 toin bothx andy direc- ~ €duation on the insulated boundaries are

tions.

On the insulated top and bottom walls, we now proceed to TivajrrtTicge1t4Tij1=Tivej 1+ Tiogj 1
develop a fourth-order accurate zero-gradient temperature
boundary condition. It may be mentioned that as temperature AT (40)
remains constant on the vertical walls, this zero-gradient
condition is automatically satisfied at the corners. At a typi-Again HOC discretization of the energy equation at the walls

cal node(i,j), we may write are given by
2 93
0= 4l { T % 2 +0(h?). TivajeatTicgjraT4(Tip T TijeaTiogy)
ay ay3|.
ij +(Tigaj-1+Ti—qj-11t4T;;-1)—20T;;=0.
As on the boundarie§?T=0, the last relation yields (47
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FIG. 3. For Ra=10% (a) stream-function contoursy{,,=—"5.079), (b) vorticity contours(wmi,=—124.90 andwma,=427.17, ()
isotherms(d) the Nusselt number distribution across the cavity.

From Egs.(40) and (41), it follows that, for the lower sure gradient boundary conditions, when HOC algorithm is
boundary attempted to be extended to the primitive variable formula-

tion of the N-S equations.

Tiy1 ot Tio1 ot 4T o+ 2(Ti 410+ Ti-1,0) — 10T, 1=0,
(42) IV. NUMERICAL ISSUES

The nonlinearity of the governing equations necessitates
and for the upper boundary an iterative solution procedure. We use a decoupled algo-
rithm where vorticity, stream-function, and temperature are
Titim-1tTicim-1+t4Time1+ 2(Tipam+ Tioym) — 10T, solved in sequence separately, lagging the appropriate terms.
_ The successive iterates for the temperature have been slightly
=0. (43 over-relaxed and that for stream-function and vorticity have
been under-relaxed. That is to say,df is the unrelaxed
This approach used to develop the temperature boundaiypdate ofg", then¢"** is given by
conditions on the insulated walls can also be extended to
similar physical situations for a flow variablg, where, on P"TI=Np +(1-N) ",
the boundaryg¢/on=0 andV?¢=0 (n being the direction
normal to the boundajy One important situation of this na- where\ is the relaxation factor and the superscriptand
ture could be the pressure Poisson equation with zero pres—+ 1 are iteration indices.
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FIG. 4. For Ra=10°, (a) stream-function contoursy{,,=—9.633), (b) vorticity contours(wmi,=—606.95 andw ,q,=2622.89, (c)
isotherms(d) the Nusselt number distribution across the cavity.

Again, the coefficient matrices resulting from the HOC progress of outer iterations. If the systems associated gyith
discretization are not diagonally domindri7] and, there- o, and T equations are represented By=Db, the inner
fore, iterative techniques like Gauss-Seidel cannot be applieitierations are terminated here as soon as the residual
here. As the coefficient matrix for the stream-function is|Az—b]|, falls below 10 . Convergence is considered to
symmetric and positive definite, the J@&5] algorithm has be achieved when the maximum difference between

been used, and those for the vorticity and temperature beintgvo successive iterates for all af, o, and T falls below
nonsymmetric, a hybrid BiCGStati 6] algorithm has been 10 0.
employed.

It may be noted that for anxn grid, A is ann?xn?
For computational advantage, the computed solution for anatrix andz andb aren?-component vectors. However, the

lower Ra can be used as the initial guess for a higher Ra. Thactual storage required féris much less than?x n? words,
vorticity, stream function, and temperature equations ares the algorithm requires the storage of only the nonzero
solved in that order. The CG and hybrid BiCGStab iterationselements ofA. The number of nonzero entries Affor w, i,
used for solving these equations to a certain accuracy amnd T equations are ¥ —20n+24, 9n?—32n+32, and
termed as inner iterations. The process of iteratively solvingn?—22n+12, respectively. A condition number analysis
the three equations once may be termed as one outer iteratipased on a power method for eigenvalues, shows that the
that is to be repeated until convergence is achieved. It maynatrices are well conditioned, the value of the condition
be noted that the number of inner iterations needed to meet@umber generally being less than 1.3. This is the reason why
particular stopping criterion generally reduces with theno need for preconditioning was felt when using the CG and
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FIG. 5. For Ra=1CP, (a) stream-function contoursi{,,=—16.86), (b) vorticity contours(wm,=—3288.5 andw,=1528.9, (c)
isotherms (d) the Nusselt number distribution across the cauvity.

hybrid BiCGStab algorithms. All computations in this work horizontal midplane together with its location, the average
were carried out on a HP C 200 machine using a sequentiajusselt numbeNu, the average Nusselt number juon
code.

the vertical midplane of the cavity, the average Nusselt num-
ber Ny, on the hot wall, the maximum and minimum values
V. RESULTS AND DISCUSSION NUg max @nd Ny min Of the local Nusselt number on the hot

wall together with their locations, and the CPU time in sec-
In this section, besides discussing other aspects, we alsmds. The grid independence of the results is evident from

examine the accuracy of the present fully compact higherthe first four tables as the variation in results is insignifi-
order accurate algorithm by comparing its results with al-cantly small(Table VI) with grid refinement. Owing to high-

ready existing results. They are presented here through tablesder (viz fourth) accuracy of both the scheme and the
and graphs for Ra’s ranging from a moderaté fida high

boundary conditions, high quality solutions are obtained with
laminar 10. Tables I, Il, Ill, and IV present the results for as coarse a grid as 1. This comes out clearly from
Ra=10° to 1P for grids of size 2k21, 41x41, and

Tables VII, VIII, and IX, where the computed values of
81x81. Table V shows the results for RA0’ on a

| /migl, NU, andv .« are compared with some well estab-
81x 81 grid. The quantities presented here are the streaiished results and the agreement is found to be excellent. The

function ¢,,4 at the midpoint of the cavity, the maximum Nusselt numbers that are presented in Tables I, II, IlI, 1V,

horizontal velocityu,,,, on the vertical midplane together and V are calculated using the first-order approximation to
with its location, the maximum vertical velocity,,, 0n the

dT/dx at the vertical walls. The same Nusselt numbers esti-
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FIG. 6. For Ra=10’, (a) stream-function contoursyf,,=—30.32), (b) vorticity contours(wmi,=—18 610 andwm,=86313.5, (c)
isotherms(d) the Nusselt number distribution across the cavity.

mated through the use of the third- and fourth-order Jensepoint Richardson extrapolation and claimed their results to
formulas[ 18] are presented in Table X. Comparisons amongoe sixth-order accurate. It may, however, be noted that these
these Nusselt numbers clearly show that, except for the vakxtrapolated solutions are obtained only at those nodes that
ues of N and Ny ax Calculated with the first-order for- are shared by different levels of grids. Previously, the need to
mula at Ra=10’, all the other estimates are in very close use extrapolation to obtain higher-order accurate solution us-
agreement, in particular, the values calculated with third- anihg a lower-order accurate scheme was probably necessitated
fourth-order formulas. by the absence of well-examined HOC schemes. In contrast,

Figure 2 shows the stream-function contours, the vorticitythe present work obtains high quality solutions with a fourth-
contours, isotherms and the Nusselt number distribution imrder fully HOC scheme on a single coarse grid. The com-
the cavity for Ra= 10°. Figures 3—6 show the same for Ra putations use De Vahl Davis’ nondimensionalization to ob-
=10*-10/, respectively. The contours and distributions beartain reasonably accurate solutions even for a Rayleigh
very close resemblance with similar figures presented by Daumber as high as 1palthough Le QUee [8] remarked that
Vahl Davis[4], Le Quee [8], Ramaswamy, Jue, and Akin De Vahl Davis’ dimensionless form is inappropriate for the
[7], Chenoweth and Paolucf], and Hortmann, Peric, and Rayleigh number regime beyond ®1@nd used a slightly
Scheurd6]. different scaling.

De Vahl Davis[4] obtained his results using an FTCS  For the range of Rayleigh numbers considered here, there
scheme of second-order spatial accuracy in conjunction witis generally a centro symmetry of velocity, vorticity, and
Richardson extrapolation; similarly Chenoweth and Paolucciemperature distribution. This is obvious from the streamline
[5] used a second-order accurate method followed by a thregnd vorticity contours and the isotherms in pd#s (b), and
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1 equation(viz. dT/dx) has been resolved at least to second-
‘ order accuracy. The present work, besides including the re-
sults for the high Rayleigh numbers of Ra0® and 10,
employs an algorithm that is uniformly fourth-order accurate
and compact in the discretization of the governing equations,
treatment of the boundary conditions and source term reso-
lution. This is the reason why the solution procedure may be
termed as a fully compact higher-order method with the as-
sociated advantages. The no-heat-flux boundary condition at
the adiabatic walls has been imposed through a special strat-
egy taking care to maintain compactness at higher accuracy.
This technique has the potential of being extended to other
similar physical situations. The work also achieves higher-
order compact resolution of the source term and its easy
- assimilation into the solution procedure. This opens up new
diffZ:Sr;:I.?z-ir’ze variation of Nusselt numbers across the hot wall forpossibilities of_this strategy being e_x_tended_ to situations _Iike
' pressure gradient term in the primitive variable formulation
) . i i of the N-S equations. Hence, a complete HOC primitive vari-
(c) of Figs. 2, 3, 4, 5, and 6. At Ral0', recirculation re-  ape formulation of the N-S equations is now possible that
gions are seen to appear at the upper left and lower rightyn frther be extended to three-dimensions as well. Another
comners{Fig. 6@]. From part(d) of Figs. 2, 3, 4, 5, and 6, 5.t that we come across in course of the work is that Le
the distribution of Ny is seen to be symmetric about the Quéaes [8] observation about De Vahl Davis’ nondimen-
central vertical line. At Ra 10°, there is one peak located at sionalization[4] being not adequate beyond Ra0® may
the axis of symmetry and for the other Ra’s there exist tWo ot e correct as computation has been carried out here with
peaks symmetrical about the axis moving further and furthefhe same nondimensionalization with sufficient accuracy.
away from it as Ra increases. Figure 7 shows that the 10cayisq in the course of the estimation of the hot wall Nusselt
tion of the maximum local Nusselt number at the hot Wa”numbers, De Vahl Davif4] observed that varying the order
progressively moves down as Ra increases. §econdary VOTlt approximation of the finite difference formulas produced
ces appear at Ral0” and persist for higher Ra’s. From part gjgnificantly different values. But in the present calculations,
(b) of Figs. 2, 3, 4, 5, and 6, on the vertical walls, boundaryjose agreement among the Nusselt numbers estimated
layer thickness is seen to progressively decrease as Ra ifyrqugh approximation ofT/ox at the vertical walls with
creases. These observations tally with those of earliefomylas of three different orders show that the solutions
Investigators. obtained by us are indeed very accurate. Finally, use of CG
and hybrid BiCGStab algorithms to solve the symmetric and
VI. CONCLUSION nonsymmetric algebraic systems at every outer iteration
This work is concerned with HOC computation of the makes the solution procedure robust. The method.also has
standard thermally driven square cavity problem with adiaN€ advantage that the fully HOC method used provides ma-
batic horizontal walls and differentially heated vertical walls trices tha_t are Well_c_ondltloned aTTd hen_ce the_ complexity of
for values of Ra varying from £oto 10. In the previous constructing an efficient preconditioner is avoided.
(probably only example of HOC computatiofiL3] for this
problem, the difficult cases of Ral0® and 10 have not
been studied. Also, the boundary conditions are not compact J.C.K. would like to express his thanks to the University
and the derivative source term that appears in the vorticitysrants Commission, India for supporting his research work.
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