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Solitary waves in systems with separated Bragg grating and nonlinearity
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The existence and stability of solitons in a dual-core optical waveguide, in which one core has Kerr
nonlinearity while the other one is linear with a Bragg grating written on it, are investigated. The system’s
spectrum for the frequenay of linear waves always contains a gap. If the group velocity the linear core
is zero, it also has two other, upper and lowierterms ofw) gaps. Ifc#0, the upper and lower gaps do not
exist in the rigorous sense, as each overlaps with one branch of the continuous spectruro=\Wharfamily
of zero-velocity soliton solutions, filling all the three gaps, is found analytically. Their stability is tested
numerically, leading to a conclusion that only solitons in an upper section of the upper gap are stable. For
#0, soliton solutions are sought for numerically. Stationary solutions are only found in the upper gap, in the
form of unusual solitons, which exist as a continuous family in the former upperdgapjteits overlapping
with one branch of the continuous spectrum. A region in the parameter ptang is identified where these
solitons are stable; it is again an upper section of the upper gap. Stable moving solitons are found too. A
feasible explanation for thévirtual) existence of these solitons, based on an analytical estimate of their
radiative-decay ratéf the decay takes plageis presented.
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I. INTRODUCTION spectrum. Generally speaking, gaps overlapping with the
continuous spectrum are no longer gaps at all. Nevertheless,
Gap solitary wavesgwhich we will call solitons without ~we will demonstrate that théormen upper gap is a spectral
implying integrability exist in nonlinear dispersive media band that contains a family of solitoria part of which is
whose spectrum contains one or more forbidden bands, irtable despitethe overlapping with the continuous spectrum.
side which linear waves cannot exist, giving room to expo- In the special case=0, a family of exact soliton solu-
nentially localized states. An important example of an opticafions filling all the three gaps is found in an analytical form.
system with such a spectrum is a fiber equipped with a Brag umer!cal s!mulatlons demo_nstrate that, in this case, only
grating (BG). The interplay of Kerr nonlinearity and strong Foer igé“t(())nSscl)ﬂtc?:sugfeersf)i;trlgnf(;)rf 'g;e r%gg?\rs Q;pnirr?];tigle'
BG-induced dispersion gives rise to a vast family BG ' ) o ¢ . ;
solitons[1]. Comprehensive theoretical studies of these soli—methOdS' ﬁ‘s notatnalytlcal S|0|tl.mon r'ls aveglablefln ﬂd“‘?’ c{a;‘se.
tons have laid the ground for their experimental observationéS a resuf,no stationary soiutions have been found in the
reported in Refg.2]. Stable gap solitons have also been pre—genume central gafwhere they might be expectgdor in
dicted in media c':or.nbinin BG with more sophisticated non—the lower gap, which gets immersed into the continuous
i i h dg 8 that 'dpd b spectrum. On the other hand, stationary solitons are found in
In€arties, such as qua ral[! ] or that provided by narrow the upper gap(which is also immersed into the continuous
!aye_rs of resonantly absor_blng two-level atoms, whose SPaGpectrum ifc#0). They form(up to the accuracy of numeri-
ing is equal to the BG periofh]. More recently, it has been 5| computationsa continuous family inside the gap, and in
shown[5-7] that families of BG solitons can be made es- 5 gan's upper section, they are found to be true stable soli-
sentially more diverse in dual-gpre fibers. In particular, dualong'in any practical sense. This seemingly new type of soli-
core systems can be mademilinear(7] so that only one  y,ng should be distinguished from recently identifigdbed-
core is nonlinear, which gives rise to specific soliton dynam-ye solitonswhich also exist inside the linear spectrum, but

ics [6,7]. ) ) . . they are isolateddiscret¢ semistable solutions that never
In the systems considered so far, including the semilineay,. iy, continuous familie8].

ones, nonlinearity and BG were presented in the same core.
The objective of this work is to introduce and analyze a
semilinear system where the nonlinearity and BG are physi-
cally separated, being placed in different cores. Although it Following Ref.[7], it is straightforward to derive a model
may seem that a difference from the previously consideredescribing two linearly coupled cores, one with the Kerr
models amounts to technical details, we will demonstratehonlinearity and the other one equipped with BG,

that, in fact, the spectrum of this system for the frequescy

IIl. THE MODEL AND ITS LINEAR SPECTRUM

i ; 2 2 —
of linear waves is drastically different from spectra of earlier gt iyt o]+ (12l Ju+ ¢=0, @
considered models: it contains a centlialterms ofw) true : ; 2 2 _

" —ivyt + + =0,
gap, and two additional, lower and upgerutually symmet- o= ivy[ul+ (2o o+ =0 @
ric), ones. These are genuine gaps in the case when the group ip+ich,+U+NY=0, ©)
velocity c in the linear core is zero; otherwise, the upper and
lower gaps each overlaps with one branch of the continuous i —icy+v+Ap=0. (4)
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Here,u andv are the forward- and backward-propagating
waves in the nonlinear core; and ¢ are their counterparts
in the linear core, the coefficient of the linear coupling be-
tween the cores is normalized to be 1, ands the coeffi-
cient of linear coupling between the left- and right-
propagating waves induced by BG in the linear core; it is
always possible to set>0. The group velocity in the non-
linear core is set equal to 1, ands the group velocity in the
linear core, measured in the same units. The two group ve-
locities may be different, as the two cores can be made of
different materials. As usual, the model neglects intrinsic dis-
persion (second-derivative termisn both cores, since the
effective dispersion induced by BG is much strondgr(it is
easy to check that this remains true even in the case when k
BG is written on a single core of a dual-core system @)
First, we consider the system’s linear spectrum. Looking 4

for a solution to the linearized equations in the form T T
u,v, ¢, h~expikx—iwt), we arrive at a dispersion relation -
0*—[(1+cAK2+ (2+\2) Jw?+ (ck?—1)2+ N2k2=0. L
®)

In the limiting casec=0, Eq.(5) yields three disjoint gaps.
If \>1/\/2, they are

AN<w<\1+N2/4+\/2; (6) i
—(VI+N?/4=N\12) <w<\1+N%/4—\/2; (7) AN, .
0 5 10 15 20
—(N1+ N4+ N2)<w<—N, (8) k

(b)

and, If)\<1/\/§’ the gaps are FIG. 1. Typical examples of the linear spectrum generated by
1+ N2JA—N/2< w< 1+ N2/4+ \/2: (9) the linearized equationgl)—(4): (a) A=1, ¢=0.1; (b) A=1/2,

c¢=0.1. Dashed curves show the spectrum in the same systems with

A< w<N\; (10 =0

A VTTNTA NV < < — (V1 NZd—\/2). Typical examples of the spectrum in the case of smalte
(VI+ATA+M2) <o (VI+A54=N2). - (1Y) displayed in Fig. 1. Evidently, the change of the shape of

Note that the gaps are symmetric with respect to the chandf€S€ dispersion curves gives rise to overlap of both the up-
of the sign ofw. In the particular cask=1/1/2, all the three per and '°V_Ver gap with on@nner_, in terms of F_|g. )Lb_ranch
gaps merge into a single one\2< <2 of the continuous spectrum, while the outer dispersion curves

. . remain outside the gaps. As is suggested by what is known
The character of the gaps becomes drastically different if . X
c#0. Indeed, in the case=0 and\>1/\2 it is easy to see about the aforementioned embedded solitg§ a gap

that Eq.(5) gives rise to two mutually symmetric branches which is overlapped with one branch, but continues to exist
: s a gap relative to another branch of the dispersion relation,
w(k) that start at the upper and lower edges of the centr gap b

gap atk=0, and, monotonically varying, in the limik| ay still be capable to support solitons of a special type,

. . which will be seen below.
—oo they asymptotically approach constant values, which

exactly coincide, respectively, with the lower edge of the
upper gap and the upper edge of the lower ghp dashed
curves in the central part of Fig(d]. In the casee=0 and In the case =0, stationary soliton solutions to Eqd)—
A<1/\2, the curves start dt=0 at the lower and upper (4) are sought for as

edges of the upper and lower gaps, respectively, and asymp-

totically approach the upper and lower edges of the central u=gu(x)exp —iwt), v=nV(x)exp —iwt), (13
gap at|k|— [the dashed curves in the central part of Fig.

IlI. SOLITONS IN THE CASE c¢=0

1(b)]. In either casew?(|k| =) =\2. However, as it follows d=nd(x)exp—iot), ¢=nVY(x)exp —iwt), (14)
from Eq. (5), at anyc+#0 the asymptotic form of these )
branches atk|— is totally different, where the functionsJ,V, and®, ¥ are complex, and an
extra constanty is introduced for convenience, see below.
w?~min{c?,1}k2. (120  Substituting these expressions into E{3—(4), it is possible
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to find exact solutions, following the pattern of the well- t
known generalized hirring solitonsin the single-core non- 2000 A
linear fiber equipped with a BGELL], S\ N0
N
U (x)=2/3(sin6) sectin?xsind—ior2), N~
N~
V(x)=—\2/3(sin ) secli ’x sind+i6/2), (15 NN
N~
B ® A N
R R R —
N VN
[0 A
\Pzwz_)\zu—wz_)\zv, (16 jvj\\
where 7= \\/(0?—\?), 0 is a real parameter that takes N
values 0< <, and the frequencw is to be found from a 0 &0 J\(')/\ 030
cubic equation
X
(w/\)(w2—N\?—1)=cosd. (17

FIG. 2. Interaction between two identical stable solitons in the

This equation yields three roots far at a givend, one in ~ casec=0, x=1, #=m/4 (corresponding tow=1.56576) and
each gaprecall that there are three genuine gaps in the casé®=0. Only theu component is shown.
c=0). In particular, it is easy to check that the valugs o ) )
—0 and 6=, at which the soliton’s amplitude vanishes the stable §ectlon in the mode_zl considered in the present
according to Eqs(15) and(16), exactly correspond to edges work and in the above-mentioned generalized 'I_'h|r_r|ng
of the gaps(6)—(8) or (9)—(11): #=0 yields the upper edge model shoyvs that, although the model; are qualitatively
of the upper gap, lower edge of the central gap, and uppe§|mllar, their actua}l properties are .essent|ally different.
edge of the lower gap, and= gives rise to three other We have also simulated interactions between two identical
edge points of the gaps. Note that, although the soliton soligt@Ple solitons, with an initial phase differensg between
tions (15), (16) completely fill all the three gap&)—(8) or them: If Ag is zero, the §0I|t0n§ attraqt each other,.and their
(9)—(11), the solitons, unlike the gaps in which they exist, collision generates moving solitons witmequalamplitudes
have no symmetry relative to the change of the signwof and different velocities, see Fig. 2. This collision-induced
The same will be true for solitons considered 6e¢0 in the ~ SPONtaneous symmetry breaking may arise from the fact that
next section. a “lump,” which is temporarily formed when the two soli-

Stability of these exact soliton solutions was studied byoNS Merge, is subject to modulational instability, so that
means of direct simulations, which has yielded the followingSMa!! ran_dom perturbations can strongly distort it. In the
results:all the solitons belonging to the lower and central €@5€SA ¢=m/2 andA =, the solitons are found to repel
gaps are unstable, while the upper gap contains two section&aCh other. The symmetry breaking, as a result of the inter-
the solitons being stable in the upper section and unstable ction between_the solitons, occurs in these cases as well, but
the lower one. For instance, in the case 1, the unstable !t IS 1SS conspicuous, especially whag = .

and stable sections inside the upper re, respectively, An implication of these results is that stalf®vingsoli-
pper gapa P Y tons also exist in the model. It should be noted that exact
1<w<wy~1.525 andwy<w<(1/2)(\5+1)~1.618, analytical solutions for moving solitons are known in the

(18 generalized Thirring model describing the single-core fiber

. _ _ carrying BG[11]), and moving solitons have been observed
i.e., the stable section occupiesl5% of the upper gap. experimentally in such a fibdg].

These results are qualitatively consistent with those for
the above-mentioned generalized Thirring solitons in the
single-core fiber equipped with BG. In the latter case, the
soliton family may be directly parametrized by the fre- In the general case,+0, no exact analytical solution is
quency, which takes valuesl<w<+1. As was first dem- available. Stationary solutions can, however, be sought for
onstrated by means of variational approximati®), and numerically by solving equations produced by the substitu-
then by accurate numerical computations of stability eigention of the general expression$3)—(14) into Eqs.(1)—(4).
values[10], the generalized Thirring solitons are stable in anThis numerical analysis has produced a surprising result: in
interval w;<w<1, and unstable i-1<w<w¢, Where a the central gap, which remains a genuine one-a0 (see
numerically found valuew., is ~—0.02 (the value ofw,,  Fig. 1), no stationary solitons can be found, nor did we find
predicted by means of the variational approximation in Refany solution in the former lower gap. On the other hand,
[9] is quite close to this In that case, théalso upperstable  solitons are found in what was the upper gag&t0. As it
part of the single gap existing in the model occupies0%  was explained above, the lower and upper gaps are im-
of the whole gap. The large difference in the relative size ofmersed, each into one branch of the continuous spectrum, at

IV. THE CASE c#0
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t rized (for A\=1) in Fig. 4 in the form of a stability diagram
2000 on the €,w) plane. The right boundarg=c,{) (shown
by dotg, separates stable and unstable soli{evesstress that
the solitons of the present type, as stationary solutions to
Eqgs.(1)—(4), exist on both sides of the dotted boundaiiyhe
top horizontal line, which was found to coincide with the
upper edge of the upper gap

0= 0= VI+ %44+ 012 (19

|
%T>>>>>>>
|

[see Egs(6) and(9)], limits, as a matter of fact, the existence
(rather than stability region of the solitons. We have also
investigated the situation at other values\gpbbtaining quite
similar results. In particular, the stability region is smaller for
smaller values oh.

I I Figure 4 strongly suggests thaf,,(w)—® as o— w,.

40 80 This feature can be readily understood, as well as the fact
that the upper existence bounddfyd) for the solitons does
not depend orc. Indeed, recall that, in the cage=0, the
upper edge of the upper gawhich is a genuine gap in that
case, = w,,, exactly corresponds =0 according to Eq.
any c# 0, that is why these solitons are unusual objects degﬂ)' Itis easy to check that, close to this edge, gh.e W'ﬂth of

; T - the exact soliton solutiol5), (16) diverges as f-sin6)
serving detailed investigation.

PR : ) : e
To test the dynamical stability of these solitons, we simu—Jﬂp—w) , and its amplitude vanishes gg|sing
wyp

lated Egs(1)—(4), using the numerically obtained stationary E _3‘”' Vzm; tT)e diverging \I'V'd;? thext-r(]jerlvaiNe tetrmé n
solitons as initial conditions. As a result, it was found that gs.(3) and(4) become negligi élon. € contrary 10 EQS.
they may be both stable and unstable. An example shown ihl) and (2), where the. small derivatives are necessary to
Fig. 3 illustrates a general conclusion following from the. aIange the small nonlinear ter]anreover, n this case it
simulations: if a soliton is unstable, it does not completely'S straightforward to expand the stationary soliton sglutlon in
decay into radiation. Instead, in all the cases simulated, thBOWers of the small parametex/w,,— w; we do not display
unstable soliton sheds off some radiation and rearranges i€ result as it is cumbersome. This explains why the upper
self into a stable soliton with larges, larger width, and €d9€e of the upper gap does not dependcpmwhich is a
smaller amplitude. Thus, the stable solitons, although thegoefflment in frqnt of the terms that vanish exactly at th.e
occupy only a small part of the upper gésee Fig. 4 appear pper edge. This argument also supports the above conjec-
to be strongattractorsin the present modein conservative ~tUré thatCma(w)—* asw—wyp. S
nonlinear-wave models, attractors may exist due to radiative A duéstion may arise as to whether one may identify the
losses. exact(in a numerical sengdower borderw,,(c) of the re-

The results of the numerical stability analysis are summad/on where the solitons exist far# 0. As ¢ approaches zero,
omin(C) approaches the lower edge of the true upper gap

T

0

L 1
-80 -40

FIG. 3. Evolution of an unstable soliton witt=0.2, w=1.5,
A=1. Only theu component is shown.

1.62 . existing atc=0, see Fig. 1. However, for larger valuesmf
L, e ¢ we did not aim to identify the lower boundary of the exis-
1.6F o® _ tence region of the solitons with a high accuracy because

- ] . convergence of the numerical procedure deteriorates as one
1.58 * 1 approaches the border. In any case, this lower border lies

within that part of the soliton existence region where they are

8 156 o 7 definitely unstable, therefore, it is not a feature of significant
[ hd l physical interest.
1.54 . -
- * 4
1521 @ - V. AN ESTIMATE FOR THE RATE OF RADIATIVE
o 1 DECAY FOR THE SOLITONS OVERLAPPING
LS s T 95 2 25 3 354 WITH THE CONTINUOUS SPECTRUM

Due to the finite accuracy of the numerical methods, there
FIG. 4. The stability diagram in the plane, ) atA=1. Stable  Still remains a fundamental question as to whether a continu-
solitons overlapping with the continuous spectrum occupy the tri-ous family of the solitons considered here exists in a rigorous
angular region between the vertical axis, dotted curve, which is th&ense, or the solitons would eventually decay into radiation,
border between stable and unstable solitons, and the horizontal lifgecause of the resonance with the branch of the continuous
w=(1/2)(\/5+1)~1.618, which is the upper border of the gap in spectrum with which they overlap, if the simulations could
which the solitons exist. be run indefinitely long. If the latter is true, it is possible to

066617-4



SOLITARY WAVES IN SYSTEMS WITH SEPARATED . . .

PHYSICAL REVIEW B4 066617

estimate the corresponding soliton’s decay rate. Following @asesA ¢=0 andA ¢ =7, we observed that the interaction
perturbative formalism for the description of the energycould additionally destabilize the solitons that were very
emission by solitons coupled to the continuous spectrunglose to the stability border.

[12], the energyP emitted by the soliton per unit of time
(i.e., the emission powgis proportional to a squared inte-
gral of the following type:

2

P~ fmeikxusm(x,t) , (20)

wherek is the wave number of a linear wave coupled to the

frequencyw of the soliton by the dispersion relatigh), and
Ugol(X,t) is the soliton’s wave field. For an estimdtehich is
definitely valid in the case of smad| when the perturbation
theory is most relevantwe may use the asymptotic approxi-
mation(12), i.e.,k~ = w/c, and approximate the soliton by a
simple wave form,u(x,t)~sech&/W)exp(—iwt), W being

its characteristic half width. Substituting these approxima

tions into Eqg.(20), we obtain an exponential factor that de-
termines the order of magnitude of the emission rate

P~exp — 7Ww/c), (21

(recall that the present solitons exist only witt»0). Then,

VI. CONCLUSION

In this work, we have introduced a model of a dual-core
optical system where one core has the Kerr nonlinearity and
the other one is linear, being equipped with a Bragg grating.
The linear spectrum of the system has a central gap, which is
always a genuine one, and lower and upper gaps, each over-
lapping with one branch of the continuous spectrum, except
for the case when the group velocityin the linear core is
zero. In the latter case, all the three gaps are genuine ones,
and a family of soliton solutions is found in an exact form.
These solutions completely fill all the three gaps, but only in
an upper section of the upper one they are found to be dy-
namically stable. Atc#0, the model gives rise to what

seems to be a new type of solitons. In this case, no solitons
are found in the genuine central gap and in the former lower
one. On the other hand, in the upper gap, which overlaps
with the continuous spectrum, unusual solitons were found.
They exist as a continuous family inside the gdpspiteits

overlapping with one branch of the continuous spectrum. An

for example in the case shown in Fig. 3, SUbStitUti_Oh of V_a|-upper section of the upper gap, in which these solitons are
ues of the parameters for the apparently stable final solitogtable, has been identified. It was also found that the stable

into Eq. (21) yields P~10 %, i.e., in this case the soliton

solitons may be set into motion as a result of their interac-

may be regarded as a genuine one in any sense. Ewen iftion, the moving solitons remaining stable.

=1, the exponential factor remains extremely small. For in-

stance, in a typical case of a stable soliton with 1.8 and
w=1.6, we findW~ 10, andP~ exp(—28)~10 *2.

Note added in proofVery recently, A.R. Champneys has
numerically investigated the characteristics of the stationary
solutions by reducing the model to a set of ODEs and solving

In this connection, we stress that these estimates, concertirem using a very accurate numerical scheme based on the

ing theexistencef the solitons overlapping into the continu- AuTo software package. As a result, it has been found that,
ous spectrum, pertain equally to both stable and unstablstrictly speaking, there is a dense but discrete system of em-
solitons. The distinction between thesimilar to the distinc-  bedded solitons in the region where our numerical results
tion between stable and unstable generalized Thirring soliindicated the existence of the continuous family. However, as

tons[9,10]) is a dynamical feature, absolutely different from
their existence/nonexistence property.

one is approaching the upper border of the redwee Fig.
4), the difference between truly localized embedded solitons

Lastly, we have also simulated interactions between twand delocalized onevith tiny spatially oscillating tails at-

identical stable solitons with a phase differerice. In gen-

tached to them existing in the gaps between the embedded

eral, the results are similar to those briefly described aboveolitons, becomes so small that no distinction between them

for the casec=0 (see Fig. 2, for instangeIn particular,

is visible, and the soliton family is indeed getting continuous

stablemovingsolitons of the present type exist too. For bothin any practical sense.
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