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Fifth-order corrected field descriptions of the Hermite-Gaussian(0,0) and (0,1) mode laser beam
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In this paper, we extend the work of Barton and AlexarjdeAppl. Phys66, 2800(1989 ] on the fifth-order
corrected field expressions for a Hermite-Gaus$ta) mode laser beam to more general cases with adjust-
able parameters. The parametric dependence of the electron dynamics is investigated by numerical methods.
Finally, the fifth-order corrected field equations for the Hermite-Gaug§idn mode are also presented.
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I. INTRODUCTION number and waist radius of the laser beam, respectively. Un-
til now, this group of field descriptions, mostly Hermite-

During the past two decades, considerable efforts hav&aussian beams, has been widely used in laser acceleration
been made to investigate the solutions to Maxwell’'s equastudies[19] because of its relatively simple analytical form.
tions in vacuum[1—4], which are of crucial importance in To describe tightly focused beams, whergis nearly of the
the study of laser-matter interactions, such as electron accegame order as the wavelength, Barton and Alexan2ey
eration by far-field intense lasef§—7] and localized trans- modified the paraxial approximation introduced by Davis
mission of electromagnetic energy8—10. The initial  [21] to fifth-order corrected equations. In this paper, we will
progress in this direction was the discovery of a small lon-go a step forward by extending their fifth-order corrected
gitudinal field component of electromagnetic radiation withfield equations to more general cases with two adjustable
finite transverse spatial extensipil. Later it was found that parameters. Every set of fixed values of the parameters can
only by utilizing the field equations including all components provide us with one group of fifth-order corrected field equa-
[4-11] can we explain the well-known experimental resultstions. This may give us more opportunities to study the elec-
of Borham and co-workerl2], in which they observed the tron behavior with different field descriptions and to explore
independence of the energy of the emitted electrons of ththe characteristics of the electron dynamics. Furthermore, the
polarization of the laser fields. Another example showing thdifth-order corrected field equations for Hermite-Gaussian
necessity of accurate field descriptions can be found in th€0,1) mode laser beams are also obtained. These results
intensive discussiong13] resulting from the theoretical should be helpful to anyone needing to work with the full
model used by Malkat al. [14] in their laser acceleration field descriptions of a stationary laser beam, which satisfy
experiment, in which electrons of 1 MeV energies were obthe Maxwell's equations accurately.
served. The most discussed point in their model is the ne- In the following, Sec. Il is devoted to the theoretical de-
glect of the longitudinal field component. Recently, we pre-velopment of the field equations of the Hermite-Gaussian
sented an interpretation corresponding to their experimentdP,0) mode laser beam. In Sec. Ill, we present some numeri-
results with the full field components in Réf]. cal examples to demonstrate the parametric dependence of

Generally speaking, there are three categories of field dghe electron dynamics in intense lasers. In Sec. 1V, following
scription. One is the exact analytical solution of Maxwell’s the same steps as in Sec. Il, we obtain the fifth-order cor-
equations, for example ranging from the simple plane wavéected field equations for the Hermite-Gaussi@ji) mode.
solution and nondiffracted Bessel beafijto EDEPTelec-  The final part is a summary.
tromagnetic directed-energy pulse triagolutions[8], splash
modeg 15], EM missiles[16], EM bullets[17] and transient
beams[18]. At present most of these fields have been dis-
cussed mainly in theoretical work since there are a lot of
difficulties in producing them in experiments. The second For a stationary laser beam propagating in vacuum, the
category is the exact integral solutions using the angulaharmonic time dependence is assumed tee'¥& For con-
spectrum methofb,6], i.e., building the field equations from venience in the following discussions, we will drop all the
the superposition of plane waves based upon certain boundme-dependence terms in the subsequent formulas. Then the
ary conditions. The problem with this group of solutions liesMaxwell equations take the forms
in their intensive consumption of computer time, which
makes comprehensive numerical study and analysis very dif-

Il. THEORETICAL DEVELOPMENT FOR THE HERMITE-
GAUSSIAN (0,00 MODE LASER BEAM

ficult and inefficient. The third category are the approximate V-E=0, @

field equationd 1], which are summations of factors to dif-

ferent orders ofs=1/kw,, wherek and w, are the wave VXE+iwB=0 )
*Email address: Jia-Xiang.Wang@theo.physik.uni-giessen.de V.-B=0, 3
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VxB- —E=0. (4)
C
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Yo=iQe 1", (16)

in which p?= &2+ 52 andQ=1/(i + 2¢). By substituting the

Throughout this paper, Sl units are used. Solutions to thgbove equation into Eq19), Davis[21] found ¢, to be

above equations can be found by constructing a Hertz vector

oriented, for example, along a transverse direction,
M=u(xy.z)e e, (5
which satisfies the Helmholtz equation, i.e.,
V2M +k?M =0. (6)

We will work under the Lorentz gauge as in R¢20]
with A=M and ¢=(ic/k)V-M. Then

- . ic.. .
E=—ioM- 1 -VVM, (7)
B=VXM. (8

To obtain the Hertz vector, we substitute E§) into Eq.
(6). Then

P P
— + —+——2ik— | y=0. 9)
ax?  ay? 9z? 72)?

As usual[20,21], we normalizex,y by the beam widthw,
andz by the diffraction lengttkwj, i.e.,

X y z
gzw_o’ 7= Wy’ sz—wg (10
So the Helmholtz equation can be rearranged as
(92 2 J (92
(&_§2+&_7;2_2i(7_§> 1p=—52&—§2 (12)

with s=1/kw3. If sis assumed to be smally can be ex-
panded as a sum of even powersspf

Y=o+ SPip Sty (12

where g, >, ¥, satisfy the following series of equations:

((9_52 F_Zlﬂ?) lﬁo 0, (13)
(0_2+a_2_2'i) __32(9_2 (14)
2 g Sar)V TSl
((9_2_’_0_2_2.1) —_S2a_2 (15)

Equation(18) is the well-known paraxial equation with the

fundamental Hermite-Gaussian solution

¥2=(2iQ+ip*Q% ¢y, (17

and by using thisf,, Barton and Alexandef20] found ¢,
from Eq. (20) to be

Ya=(—6Q7—3p*Q*—2ip°Q5~ 0.5°Q°) .

Through our work, we know that, and, are only two
special cases of more general solutions. To show this, we
assumey, to be of the form

U= ho(p,Q) o

Substituting the above equation into Ed9) results in

(18)

(19

” + 2 4iQp? ’ +4iQ? ’ $,=161Q°
—t -4 — +4i — | o=
2 ap L Poq| %2 P

+4Q%5—80Q2p. (20)

By intensive and somewhat tedious calculations, we can ob-
tain the polynomial solution o, to be

$2=C1Q+(—2-iC1)Q*p?+iQ%*,

where C; is an arbitrary constant. The technique used to
obtain Eq.(21) is to assume a general polynomial expansion,
ie.,

(21)

+ oo

¢>z=m;:1 CrnnQMp". (22)

Then, substituting it into Eq20), we can get the solution by
equating the coefficients of the factors of the same power on
both sides of Eq(20). From this procedure, we can see that
Eq. (21) should be a quite general solution to Eg0). The
same is true for Eq(19) and Eq.(14). For example, if there
exists another different solution satisfying E4), which is
assumed to b&, satisfying Eq.(14), it can be shown that

N B
,9_§2+(9_772_2I£9_§ ((/IZ—FZ)—O. (23)

Because we are now seeking the Hermite-Gaus§ia®)
mode solution, it is required that

U= F,=Cipg

whereC is an arbitrary constant. This is merely equivalent to
adding a trivial constan€ to ¢, in solving Eqg.(20). So
there is no more general solution to E#i4) than Eq.(21) as
far as the Hermite-Gaussigf,0) mode field equations are
concerned.

Once i, is known, in the same way, we can continue to
find the general solutiogy,, which can be expressed as

(24)
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Ys=[A1Q*+(—6C;—2iA;)Q%p?
+(6+6iC;—0.5A,)Q%p*+ (—4i+C;)Q%°
—0.5Q%°%] ¢, (295

in which A; is another constant.

However the electromagnetic field components thus ob-

tained from Eq.(19) and Eq.(25) through Eqgs(7) and (8)

lack symmetry in the electric and magnetic fields siBgas
always equal to zero while the other components are not. To
get symmetric field equations, we start with the Herz vector

in the e, direction, namely,

M=y’ (x,y,2)e ¥, (26)
A=M", (27)

ic. -
=1V M. (28)

Then, repeating the same procedures, we acquire another
fifth-order corrected field equation, in whidg, is always

equal to zero.

Finally, by superimposing the above two groups of solu-
tions, we can get symmetric electromagnetic field compo

nents, which are summarized as follows:

Ey=[1+ (X, 2£2Q2)$2+ (X, + X3£2)s ] hoe 4%,

(29)

E,=(—2Q%2+ X35%) ényoe 4%, (30)
E,=(—2Qs+ X%+ Xs8%) £~ 145, (31)
CBy = (—2Q22+ X55%) Enpuppe 4%, (32)

CBy=[1+(xl—2n2Q2>s2+<x2+x3n2>s4]¢oe‘“’52(,3 )

CB,=(—2Qs+ XS+ Xs8%) pipoe 95, (34)
in which
X1=(C1—2i)Q+(—3-iC1)Q%*+iQ%* (35

Xo=[A;—2—4iC;]Q?+(10i — 11C, — 2iA;)Q3p?
+(13+7iC;—0.5A,)Q%*+ (—5i + C;)Q%p"
—0.5Q%p8, (36)

X3=(12 —6C;) Q3+ (12+2iC;)Q*p%—2iQ5p*
(37

X,=(8i —4C;)Q%+(10+2iC;)Q*p?—2iQ*p*, (39)
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FIG. 1. Schematic configuration of electron scattering by a laser
beam. The laser propagates along thexis. The parameter, is

the beam width at the waist. Without losing generality, we assume
that the free electrons come in from the negasi\géde and parallel

to thex-z plane. The quantity; ,P,;,Py;,P,;) denotes the incom-
ing energy and momentum of the electron angk,P,:,Py;
=0,P,) that of the outgoing electrony is the Lorentz factor and

by the impact parametef=tan (P,;/P,;) is the incident angle of
the electron, andzztan’l(ny/PXf) the deflection angle in they
plane.

Xs=(12+24iC,—6A;)Q3+(—60i +48C,+6iA;)Q*p?
+(—54—20iC;+A;)Q%*+(14i —2C,)QCp®
+Q"p". (39

As should be expected, when we pti=2i andA;=—6,
Eqgs.(31)—(41) return to the special case obtained by Barton
and Alexandef20].

Ill. ELECTRON DYNAMICS
WITH DIFFERENT FIELD PARAMETERS

As found by numerical investigations of the relative per-
cent error by Barton and Alexandg20], the fifth-order cor-
rected field equations can satisfy the Maxwell equations to
high accuracy. For example, if a deviation of 1% is accept-
able, then the field equations can be used ddess than
about 0.2, which means that the beam waist radius to wave-
length ratio is about 0.8. But it should be mentioned here
that, as far as the electron dynamics in the laser fields are
concerned, the absolute error may be a more stringent crite-
rion to decide the applicability of the field equations, espe-
cially when very strong lasers are involved. We are not sure
whether it is possible to minimizing the errors by optimizing
the two arbitrary parameters in our field equations since de-
tailed and comprehensive work is needed in order to check
this possibility, which is not our main interest here. In the
following, we will study the variations of electron dynamics
with C; andA;.

The interaction configuration between the free electron
and the laser beam in vacuum is presented in Fig. 1, in which
the electron will be injected from the negatixeaxis side
into the laser beam with a small crossing angle to the field
propagation direction, the axis in our case. The electron
motion is obtained by solving the relativistic Lorentz-
Newtonian equation with a fourth-order Runge-Kutta nu-
merical method, as in our previous wdrk,19|.

By observing Eqgs(31)—(41), we find that the factors in

066612-3



J. X. WANG, W. SCHEID, M. HOELSS, AND Y. K. HO PHYSICAL REVIEW B4 066612

100 T

: : IV. FIFTH-ORDER CORRECTED FIELD EQUATIONS
(@) a=10 FOR THE HERMITE-GAUSSIAN (0,1) MODE

807 I LASER BEAM
Y

601 | For laser beams of Hermite-Gaussi@nl) mode, the pro-

40 : . . cedures to obtain the field equations are the same as in Sec.

600 . .
(b) a=100 Il except that
2
Y 4501 - ho=Q%¢e ", (40
from which we obtain
300 . . .
-1000 -500 0 500 1000 , . 2
C, $2=[C1Q+(—3-0.HC})Q%p*+iQ%p*]Q%*¢e "<,
(41
FIG. 2. Parametric dependence of the electron final energy, mea-
sured byy; in units of m.c?. In (a), the electron is injected with | oar o . N~ 2
Pyi/m.c=5, Py;/m,=0, P, /m,=>50 into the laser beam with Pa=| AQ "+ (—1A;—6C1)Q%
a=10 andkwy=100(solid line) and 200(dotted ling, (b) the same
but for P,;/ms,c=50, Py;/m,c=0, P,;/m,c=>500, anda=100. r 44
+ _5A1+4|C1+10 Qp
the expansions including, are at least of ordes®, com-
pared withs? in the factors including, . Thus the influence ) N5 6 6 8|2 sa—ip2Q
of A, upon the electron dynamics should be much smaller +(=5i1+0.5C1)Q%p"—0.5Q%p"%|Q°ge "7 .
than that ofC,, especially for large beam width. Two ex- 42)

amples are presented in Fig. 2 to show the final electron
energy variations against the free paramé&eunder differ-
ent dimensionless laser intensig=eE;/m,wc=10 and
100, where—e andm, are the electron charge and rest mass
respectively,E, the reference electric field intensity, the
laser circular frequency, arcthe light speed in vacuum. Just
as expected, for larger beam width, ekw,=200 in the
figure, the electron final energies change very little. But
whenkw, is reduced to 100, we observe nearly 50% energy, o have

variation in the range- 1000<C;=<1000. It should be men-

tioned thatC, cannot be made arbitrarily large since in order _ 2 2\ 41 2 a—ip2Q—ifIs?

to I<2eep the field expansion valid it is necessary to have Exm[1+4Y:8°+ (Yo + Y5£7)sT]¢Q%e 1 7HE, (44)
C,s°<1. It appears that the importance of the first-order . i 20_ise2
corrections, which directly result in the discovery of longitu- Ey=[(~2iQ—-4Q%?)s*+ (Y, +Y5£)s*] yQ%e Q1%

HereC, andA; are two arbitrary constants. After intensive
calculations, we summarize the corresponding field equa-
tions as follows.

First, for the Hertz vector polarized alor&g, i.e.,

M = (gho+ 9hoS°+ ghas™) e ¥, , (43)

dinal field components, has been well established now, re- (45

sults that further demonstrate the importance of the higher- e 5 o\ 3

order corrections to the laser fields in the description of the B =[(=1+2Q87)s+ (Yo Y7£)s

electron dynamics. The great care that should be taken in the (Yot Yo£2)s5102e 1p7Qi¢1S? 46

laser field description has been expounded in detail by Hora (Yot Yot")s™IQ ' (46)

et al. in a recent papelrll], which focuses on the principle B.=0 (47)
X il

of high accuracy for the nonlinear theory of electron accel-
eration in vacuum. Another interesting phenomenon in Fig. 2
is that the parametric dependence of the electron dynamics is
much more influenced by the width than by the laser inten- 3 5 21020 il
sity since by increasing from 10 to 100 the relative energy B,=(—2Qs+Y;8°+ Y387 néQ%€ '* . (49
variations in Figs. @) and Zb) do not change very much.
This implies that this kind of parametric dependence can b
well studied in the low laser intensity regioa{ 10). This _ . , 22 INN2 2 A3
can be understood when the following fact is consideeed: Y1=(=6i+C)Q=48Q7+ (=3-0.5C,) Q% +ip (QSO)
appears linearly in the field equations while the fact(;;s re-

lated toC, depend upon the beam width in the form of CATA2L (10 O (2 . A o~INA3 .2
=(1/kwp)?, s°, etc. In our calculations, we have not found V2= ALQTH(718-8IC) Q7 (30 ~1A; ~9C1)Q7p
much parametric dependence Af using the same param-

By=(1+ Y82+ Y1559 EQ2%e 1PR7145° - (4g)

in which

1
GAI+4iC]+16

eters as in Fig. 2. This tells us that the second-order correc- + Q*p*+(—5i+0.5C1)Q%p°
tions should play the predominant role in the above effect
sinceA; only starts to appear in the third-order corrections. —0.5Q%p8, (52

066612-4



FIFTH-ORDER CORRECTED FIELD DESCRIPTIONSRQ . .

Y3=(321—8C;)Q3+(28+2iC})Q*p?—4iQ°p*,
(52

Y,=(—-6-3iC)Q?*+ (10— C1Q%*+2Q%", (53

Y5=(32—8C;)Q3+(28+2iC;)Q*p?—4iQ5p*,
(54

Ye=(—4-iC;)Q?+(5i —0.5C;)Q%p*+Q%*, (59
Y,=(18—3C;)Q?+(14+iC;)Q%p?—2iQ%*, (56)

Yg=(—iA;—6C))Q*+(—A]+12C;+24Q%?

1- ’ ’ q 4 4 4 5 6
+| 5IAL+5C] 261 |Q'p"+(~7-0HC)HQ%
+0.5Q%®, (57)

8' ’ / 4 2
31AL+44C{ 152 |Q%p

Yo=(—4A;+36iC}+48)Q3+

+

1
§A1—13ici—94)Q5p4+(1&—c;)Q6p6+Q7p8,
(58)
Y10=(C1—4)Q+(~5-0.5C})Q%**+iQ%", (59
Y11= (A]—6iC1)Q%+(—iA; —12C] +241)Q%p?
1 ’ Tal 4 4 H ’ 5 6
+| — gAL+5ICI+26]Q%p + (- 7i+0.5C))Q%
—0.5Q%5, (60)

Y1,=(6i—3C;)Q?+(10+iC;)Q%p2—2iQ*p*, (61)

Yi5=(—4A;+12C))Q3+

8- ’ ’ 1 4 2
31A1+28C1— 40 |Qp

1
+|5A;—11C;—50

3 Q%"+ (14 -C)Q%°+Q"p°.

(62

Second, when the Hertz vector is polarized alépg for
symmetry reasons, we use

Po=Q%ne 1, 63)

¢é=[C1Q+(—3—0.50;)Q2p2+iQquane-isz( |
64
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¢£=[A1Q2+(—iAi—6CDQ3PZ

1

+
6

A;+4iC;+10|Q%*

+(—5i+0.5C;)Q%p°— 0.5Q6p8}Q27;e_iP2Q

(65

to replaceyy, ¥, andy, in Eq. (45). Then the related field
equations can be obtained as

Ex=[(—2iQ—4Q%»*)s
+(Ya+ Ysn?)s*EQ2e P10 (g
E,=[1+Y:82+(Yo+ Y3n))s*]7Q2e W Q7105 (67)
E,=[(—i+2Q7%)s+Y,7’s’
+(Yg+ Yor?)s®|Q%e 17714, (6g)
By=(1+ Y82+ Y;58%) 7Q2e #1405 (69)
B,=0, (70)

B,=[—2Qs+ Y183+ Y557 ¢ Qe 107710 (71

Finally the symmetric field descriptions can be obtained
by superimposing the above two groups of equations.

V. SUMMARY

In this paper, we have extended the work of Barton and
Alexander{20] on the fifth-order corrected field expressions
for a Hermite-Gaussia(D,0) mode laser beam to more gen-
eral cases with adjustable paramet€ssandA;. C, begins
to appear in the expansion from the factor of orsfeandA,
from the factor of ordes®. The parametric dependence of
the electron dynamics was investigated by numerical meth-
ods. It was found that such dependence is mainly influenced
by the beam width and comes from the second-order correc-
tions in the expansions. Finally, the fifth-order corrected field
equations for Hermite-Gaussidf,1) mode were also pre-
sented. All these results will be of potential interest in ex-
ploring the electron dynamics in strong laser fields, where
highly precise analytical descriptions are in great demand
since they can greatly simplify the numerical calculations
and make the analysis of results much more efficient. To
study the physical consequences of all these high-order field
expressions in laser acceleration will be our next work.
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