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Light rays and imaging in wave optics
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An interpretation of focusing and image formation on scattering of electromagnetic waves by a dielectric
cylinder (a cylindrical lengis proposed on the basis of the full Maxwell theory. It is centered on analysis of the
behavior of integral curves of the Poynting vector here called wave rays. These wave rays cannot intersect so
that the focusing and imaging spots are identified with regions of high flow concentration. Two-dimensional
examples of wave rays and wave fronts in the scattering of plane and cylindrical electromagnetic waves as well
as of Gaussian beams by a dielectric cylinder derived from rigorous solution of the Maxwell equations for
incident waves perpendicular to and uniform along the scatterer are given. Their qualitative comparison with
geometrical and diffraction approximations are provided. Fixed points and vortex structure of the Poynting
flow are investigated. An example @Baussian-beajscattering with transparent multiple internal reflections
and multiple wave splitting is given.
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[. INTRODUCTION with lines that are tangent to the gradient of the eikonal at
each point. It is to be noted that the concept of eikonal is
This paper attempts to discuss wave propagation and fcstrictly connected with the short-wave approximation in op-
cusing effects with the help of exactly solvable problem oftics and diffraction theory. The eikonal approximation can be
classical electrodynamics of the scattering of an electromagiseful in analysis of light propagation in weakly nonuniform
netic wave by a lossless perfect dielectric cylinder. Themedia. At first, the concept of eikonal had been introduced
monochromatic electromagnetic fields that are used satisffor scalar waves this scalar function were applied in a full
exactly the corresponding Maxwell equations with all necesvector wave theory based on Maxwell's equatiphs].
sary boundary conditions. Although our discussion is restricted to the electromag-
Formation and properties of optical images in optical sysnetic wave propagation problems described by Maxwell
tems belong to the most extensively studied problems oéquations many properties of these problems occur in other
classical electrodynamics. Elementary geometrical-opticsvave theories. The most important example is quantum or
theory, based on the ray tracing methods, describes the lightave mechanics. Just as the eikonal approximation was pro-
focusing and formation of images of illuminated objects us-posed to link wave optics with geometrical optics, so the
ing few rules of rectilinear propagation of rays in uniform hydrodynamic approximation to the Scdinger equation
media and simple laws of refraction and reflection at differ-was proposed, as early as in the beginnings of quantum
ent media interfaces. This very simple theory is not only ableheory[7], to link wave functions with classical trajectories.
to explain the basic principles of most optical instruments However, these asymptotic theories are insufficient if the
but also, in its more developed form, enables one to deajeometrical rays are intersecting. In the geometrical optics,
with distortions and aberrations of optical systems. Discusthe definition of intensity of light at a given point is deter-
sions of these problems can be found in all books on opticanined by its distance from the center of curvature of the
in particular, one can refer to the monographs by Born andvave front passing through this poif8]. The centers of
Wolf [1] and Sommerfeld[2]. Mathematical aspects of curvature of the wave fronts lie on surfaces, which according
geometrical-optics are discussed[B] while numerous ex- to[8], can be identified with caustics. Therefore, at the points
amples of applications can be found[i. lying on the caustics the intensity becomes infinite, and thus
Beside purposely achieved focusing and imaging, thean be determined only by wave theory. Geometro-optical
light very often exhibits unintended or “natural” focusing foci themselves are distinguished points forming cusps of the
properties occurring in various forms of conspicuous brightcaustics. To deal with the apparent singularities of intensity
lines and spots in reflected or transmitted light. In the frameon caustics and foci, better theories, which take into account
of geometrical-optics and ray tracing methods these distinthe wave properties of radiation are necessary.
guished effects correspond to caustics, i.e., envelopes of Wave properties of light, not restricted by the short-wave
bunches of rays that are basically smooth and stable with thepproximation, are usually considered within diffraction
exception of certain points at which they change their patteritheories. These theories started with the Huygens principle,
in discontinuous way forming cusps. The range of such veryhile later findings of Young and Fresnel led to the
common effects has been systematically covered within caHuygens-Fresnel formulation followed by the Kirchhoff and
tastrophe theory by NyE5]. Kirchhoff-Helmholtz diffraction integral representation.
To define the rays in theories based on wave physics firsthese early formulations of the diffraction theory were car-
an eikonal, defined as an optical path and closely related taed out for scalar waves. The generalizations to the vector
the phase of the wave, has been introduced by Sommerfeldave fields have been discussed ®-12).
and Rungd6] and discussed ifi,2]. The rays are identified Quantitative applications of these diffraction theories are
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difficult as the solutions are given in terms of integrals ofwave expansion. However, it is simpler since the cylindrical
rapidly oscillating functions and thus many special functionspartial waves are simpler than the spherical ones, and select-
were defined and asymptotic methods of “steepest descenihg incident waves to be normal to and uniform along the
(called also “stationary phase” or “saddle points” methgds cylinder the configuration chosen can be completely de-
were developed. The dominant contribution to the integralscribed on a two-dimension&2D) plane.
can be evaluated by deformation of the integration contour in The scattering of plane electromagnetic waves by a di-
the complex plane. In addition, the diffraction integrals electric cylinder was treated for the first time by Lord Ray-
methods require the knowledge of field distribution on somdeigh [24] and has long been of great theoretical interest as it
reference surface. Very often “a reasonable guess” couldidmits exact solutiofsee, e.g.[25] for a more recent refer-
provide this distribution or it could be derived using a encg. This solution can be written in terms of partial waves
geometrical-optics approach. The geometrical-optics apthat can be expressed in terms of the well known Bessel
proach was applicable in multicomponent optical systems irfunctions. With the present state of the art computations this
which the diffraction-based calculations were restricted tosolution can be handled with almost arbitrary precision.
the last stage of wave beam propagation. The comparison &¥hile most papers dealing with scattering on a cylinder con-
various diffraction approximations, presentation of computasider the incident field to be a plane wave, similar methods
tional methods in the studies of focusing problems have beegan be used to describe the scattering of waves emitted from
discussed by Stamngs3]. well-localized sources placed in the vicinity of the cylinder
As mentioned above, diffraction problems lead to expresand for incident Gaussian beaf6—-28. A linear long an-
sions containing various complicated integrals. Severe diffitenna placed near an infinite cylinder, while being a highly
culties in computation of these integrals were overcome, indealized source of isotropic cylindrical wave, provides the
particular, by Pearceji4] still before computers were really simplest model of a point source located near a lens. In par-
available. ticular, it allows for a reconstruction of the image formation
Different properties of the diffraction integrals, usually from the point of view of the rigorous Maxwell theory. Let
studied with the help of stationary phase methods, were coriss notice that the solvability of the model has been utilized in
nected with various image patterns and interpreted in thg29] where the complete system of solutions to the Maxwell
frame of catastrophe theoft5,5,14. The wave fronts de- equations has been determined and applied to the field quan-
rived in these diffraction-based theories exhibit phase singutization and description of spontaneous emission from an
larities at points or along lines where the wave amplitudeatom located near the cylinder.
vanishes. Nye and Berry compared these singularities with The present paper attempts to provide an interpretation of
dislocations occurring in crystal47]. This paper stimulated the image formation within the framework of the rigorous
discussions of many optical effects, e.g., airy rings in theMaxwell theory without explicit reference to traditional op-
wave diffracted by a circular aperture, in terms of wave dis-tical interpretations based either on geometrical optics or
locations[18,19. The relations of phase singularities and even supplemented by wave-optics effects including diffrac-
dislocations of waves with geometrical rays, caustics, andion and the Huygens principle. That does not mean that the
catastrophes are presented 18]. traditional interpretations of optical phenomena are incorrect,
The observed optical phenomena are so complex and richowever, it may be of some interest to show how the elec-
that approximate theories to describe them become veriromagnetic fields themselves deal with very rich optical
complicated. Many approximations have only a limited phenomena.
range of applicability and any claims for universality are In this work we only consider incident waves that are
rather problematic. Therefore, the desire a solvable diffracperpendicular to the cylindrical scatterer aftisken as the
tion model has been expressed many times, e.gaxis of the Cartesian or cylindrical coordinate systein
[13,5,20,21 In this context, Mie’s scatterinfl] of a plane  addition, we assume that the incident waves are uniform
wave by a dielectric sphere was mentioned most often. lalong the cylinder. With these two assumptions the general
fact, Khare and Nussenzvejg?2] attempted to apply rigor- scattering problem simplifies to the two-dimensional prob-
ous Mie approach to the rainbow theory. They found, howdem with the relevant field components dependent onxthe
ever, an extremely fine structure of solutions, rapidly changandy variables and the Poynting vector field remaining in
ing with the sphere radius, as well as the necessity of takinghe x-y plane.
for their parameters, several thousand partial waves. Thus, Wave-optical rays associated with the transport of energy
that approach was not recommended any further. Insteadye consequently defined as integral curves of the field of
approximate but analytical summation of partial waves con{time-averagedPoynting vector and show how the images
tribution, based on the Watson transformation, was considare formed by focusing of rays. In fact, such energy flow
ered advantageoy®3]. However, this analytical approach lines were introduced by Braunbek and Laukjigf] (in their
leads to an extremely complicated formalism involving func-investigation of the diffraction by a half-plapheand by
tions analytically extended into the complex plane of com-Boivin, Dow, and Wolf[11], in their study of a focused
plex angular momenta, as well as complex wave vekfor beam. The second analysis was restricted to the focal region
and still is only approximated as it requires data on the reonly and the fields were evaluated within the diffraction ap-
flection and transmission coefficients of Debye terms. proximation. In the present model the wave light rays can be
The problem studied in this paper is similar to the Mie derived for the entire space including the interior of the op-
problem as the solution is expressed in the form of partialtical system(cylindrical lens in this cage
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A simple consequence of mathematical properties of thehe width smaller than the cylinder diameter. For such beams
differential equations describing the light wave rays is thethe rays propagate very smoothly through the lens. All sta-
exclusion of the ray intersections as well as their divisiontionary points are shifted outside the inqident beam. In this
and termination except at absorbers, conductors, and particgase one can find the reflected rays going back to the half-
lar discrete(for a given finite cylinder radiysset of trajec- space of the incident beam. There were no such reflected
tories, discussed further. rays in the other two cases, i.e., those of incident plane wave

Wave fronts or equiphase surfaces are represented in i incident cylindrical wave. For the plane-wave illumina-
present simple 2D model by curves in the plane orthogo- 10N all rays seem to flow to the forward direction and one
nal to the set of wave rays. This set of equiphase curve$@n ask what happened with evidently present backscatter-
wave fronts, can be derived from a set of differential equaiNd- Backscattered rays can emerge only at the wings of the
tions similar to that for the rays. Gaussian beams where the usually weak scattered wave is

Both sets of equations for light rays and wave fronts dis-10t dominated-overshined") by the much stronger incident
tinguish certain characteristic points. At these points thd’¢am. When a Gaussian beam with nonzero *impact param-
time-averaged Poynting vectors vanish. A more detailed dis€t€r” IS applied, several internal reflections are visible and

cussion of these stationary points is given in Sec. IVD. Inc@n be studied in detail. NussenzveidB0] classes of
particular, there are stationary points of “vortex” type, in the multiple-reflected and refracted rays can be easily identified

vicinity of which the Poynting flow circulates and equiphase@nd interpreted as scattered bundles of wave rays in our 2D
lines are attracted, and those of “saddle point” type that inScattering model. Th|s. result makes it possible to interpret
generic cases repel both integral curves. Some very specifig® 2D analogue of rainbow within the framework of wave

rays can either terminate at the “saddle points,” or, starting®Ptics in a Cartesian-like way. _

at these points, run to infinity or, forming a loop, return back 1 he rest of the paper is organized as follows. Section II

to the same “saddle point.” These critical curves specifydef'”e_s the ma_thema'qcal models and contams_the basic
separatrices isolating Poynting flows of different types. Thefquations. Section il is devoted to the presentation of the
generic wave light rays can either start at the source and rugloPa! properties of wave rays and the comparison with the
to infinity or form a close vortex line. The existence of Standard geometrical-optics picture of ray propagation

closed Poynting flows is an important property of the electhrough a lens. The discussion of the fine structure of rays
tromagnetic radiation flux. Such lines occur very often in@nd équal-phase contours as well as of fixed points is pro-
shadow regions forbidden for the geometrical rays and ar¥ided in Sec. IV. An investigation of rays and stationary

important for the descriptions of radiation beam splitting andPOints specifically for the case of Gaussian-beam illumina-
intersection of two separate beams. tion is given in Sec. V. Section VI demonstrates the behavior

In the framework of quantum scattering theory the inte-Of intensity and phase along the optical axis. The problem of
gral curves tangent to the quantum current field, called™a9€ formatlon o_f e_xtended obJe_cts is elucidated in Se_c. Vi
streamlines, were proposed[1] to illustrate fluid features DY @nalysis of radiation of two point sources near a cylinder.
of the wave function in the scattering process. The scattering€ction VIl is devoted to the multiple internal reflections
of plane scalar waves by spherical potential wells and barriand refractions of rays by and inside the lens. Section IX
ers were considered. Although the scatterers were thre&Ontains several final remarks.
dimensional spheres the axial symmetry of scattering re-
duced this discussion to the 2D problem. The formation of Il. THE MODEL AND ITS SOLUTION
the streamlines vortices were shown. However, the scatterers
were rather small and not too many partial waves were neg .

essary. Therefore, many characteristic optical features d'%ropagating in the-y plane and with such polarization that

cus%_sr:ad n ';he E)rese]cm %aper \t/ve_re t';Ot t;;lresent. that take th the electric field is orthogonal to this plane. The waves are
€ vortex-type Tixed points in the theones that 1ake e tered by a dielectric infinite cylinder of radias The

wave fronts as principal ObjeCts C(_)rrespond to_singular IOO?ntaielectric is assumed to be homogeneous, lossless, and non-
of phase. However, there is nothing singular in these IOOIntaispersive. Its refraction index is;. We place the origin of

when the fields are taken as fundamental variables. the cylindrical coordinate system in the center of the cylinder

In this work we consider the problem of scattering of an
ident E'" stationary wavedependent on time as 'Y

the vortex points. The number of fixed points strongly de-

pends on the radius of the cylinder, the position of the Iightg?yn;gnoef the electric field. The magnetic field stays in the

source, and on the_ type of incident beam. Per.haps the abuf- The electromagnetic field outside the sources is described
dance of such points for the system investigated 24| .
by the Helmholtz equation

caused the rapid variation of the scattered radiation pattern:

As was noticed in32,19,1§ the structure of the focus V2E,(r,é)+nZ(r)K2E,(r, )
was partly influenced by diffraction effects at the aperture
boundaries or stops supporting the focusing lenses. For un- 2 149 1 9° 5 5
supported lenses and for Gaussian-beam illumination the fo- =\ 52 T b (77)2 +n7(r)k® [E,(r,¢)=0,
cusing patterns simplify. Similar features have been found in
the investigated system for the incident Gaussian beam with (1)
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wherek=w/c, n(r)=nq for r<a, andn(r)=1 for r>a.
The solution of Eq(1) can be written as

EAr ¢)=B7(nd)+ 2 bpe'®™H(kn), r>a

E,(r,¢)= 2_ ame'?™(ngkr), r<a, 2

where J,,, denote the Bessel functions of the first kind and
orderm, while H{} is the Hankel functions of the first kind
and ordem.

Three different incident waves corresponding to a sourc
at infinity, an infinitely long and infinitely thin linear antenna
at finite distance from the cylinder, and a Gaussian beam, a
considered in this paper. The electric fields in these thre
cases, expressed in terms of partial cylindrical waves, are
follows:

I. Plane-wave propagating in thg «) =k{cosa,sin«,0}
direction

[’

Eiznc(r) _ Eoeik~r: z ime(kr)eim(QS*a)_
m 0

©)

[I. Cylindrical wave emitted by an antenna placed g@or
{ro, o} If polar coordinates are used

Er°=AH(K|r—rg|)

=AHk\r2+r5—2rrgcodd— o)l (@)
EV(r,¢)=AH(K[r—r¢|)
=A > In(knHY(kry)em@-do),
m=—w>
r<r0. (5)

Ill. Gaussian beam

E;“C(r):Eof daP(a)e'k(@ (1o

©

=Eo E

m=—o»

ime(kr)eim¢f daP(a)e Mee=ik(@) o

(6)

where P(«a)=(w/ \/F)e“”zaz, ro is the position of the
beam waist, and is the width of the beam waisalso speci-
fying its angular spreadA= 1/w).

The coefficientsa,, andb,, are determined by the conti-
nuity conditions of the tangent electri€f) and magnetic
fields (H,d,E,) at the boundary of the cylinder. These am-
plitudes are equal to

I (kayHM (ka) — I (ka)HY' (ka)
"ngHD(ka)J! (ngka) — In(ngka)H'D' (ka)

m:

@)
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J/(ka)Jm(ngka) — ngdn(ka)Jr (ngka)

"ngHD(ka)J! (ngka) — In(ngka)HD' (ka) o
8

m:

where in the three cases considered here we have
Gm=EoiMe" M plane wave,

Gm=Ae MPoHM(kry),  cylindrical wave,

(€)

gszoimJ daP(a)e K@) Teg~Me  Gayssian beam.

A small simplification may be achieved in E) by noting

;

ki

at the numerator contains the Wronskian of peandH (!
nctions.

Finding the solution for the electric field one can imme-
ately get the corresponding magnetic field

3 i JE, 1 JE, 0
 wpg Ay Y wpg X z
and the time-averaged Poynting vector field:S)
=1 ReeEXH"*.

In the case of a Gaussian beam the incident vigleand
the expansion coefficients for the cylindrical partia) re-
quire the integration over the angles While for a given
beam and cylinder configuration all relevant partial-wave ex-
pansion coefficieng,, must be calculated only once and the
scattered part of the wave can be evaluated as fast as in the
other two cases, the fields of the incident wave require
integration at each position point This leads to some in-
conveniences when one looks for light rays. To avoid these
inconveniences two computational approximations can be
made. In the first one the beam is represented by a finite
number of plane waves witl;=jA/Ng, {j=—Ng,—Ng
+1,... Ne—1Ng}. The second approximation is valid for
beams that are not very narrow and therefore characterized
by very small angular spread. In this case one can include
only the quadratic expansion termskfa)~{1— 3 a?,a,0}
and all integrations with the Gaussian distribution function
P(«) can be done analytically. Thus, one gets

2w
0 -
VAW?+ 2ik (X — Xg)

k?(y—Yo)?
Xexp —
4w?+ 2ik(X—Xo)
2w

—— e‘kXOexp(
VAW —2ikXq

Light rays in the theory based on the Maxwell equations
can be defined as the lines tangential to the time-averaged
Poynting vector. Such lines are sometime called “the energy
flow lines” [1]. They can be determined from the solution to
the equation

EiZnC(X,y)%E eik(xfxo)

) , (10

|

(11)

(m+Kkyp)?

g ~E im - 7
moo 4w?—2ikxq
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= =(Sr"(n)). (12
dT 20 E
It is to be stressed that waefinethe wave-optical light rays
as the integral curves of EqL2).

There exist specific points for which the time-averaged
Poynting vector vanishes,

,<
(S(r'"))=0 13 S0

so thatdr'"/dr=0 at these points. They are usually the
theory of differential equations and dynamical systems
called stationary or fixed. They play a crucial role in the
characterization of fields in an optical system.

The equal-phase manifolds are in fact two-dimensional -20
surfaces. However, since our system is homogeneous alon
the cylinder(z) axis, we can restrict ourselves to the inter- 220
section of these surfaces with any plane Zerconst. Such
intersections define curves described by the following equa-
tion

dr¢ . =
a4y = 2(Erm). (14 . s
T \\ /// -
) | S
The curves specified above will henceforth be called the s

“equal-phase contours.” |

Ill. GLOBAL STRUCTURE OF LIGHT RAYS: \\
COMPARISON WITH GEOMETRICAL OPTICS = \

Although the expressions provided in Sec. Il give the ana-
lytical solutions to the electromagnetic field scattering prob-
lem, they are fairly complicated and require numerical treat-
ment for more specific exposure of the results. In particular,
such numerical treatment is necessary to find solutions of Eq. _ L _
(12) that are used to draw the lines tangent to the Poyntin% dFIG. L Fto_cusllnlg EI a plane ;/_vavery a c|3/I|ndr|caI_qu3 In wave
vector interpreted in this paper as wave light rays. The inte-_nls)\georie\/rl'—(:;’l Ight ray opfics. Normal wave Incidence,
grations have been performed using a routine based on the™ Na= V1.
Runge-Kutta method with an automatically adjustable step

(the Merson’s scheme obtained according to the rules of geometrical optics. The
The Bessel functions were computed with the help oflight rays are sampled in such a way that the Poynting fluxes
[33]. between the two consecutive rays passing through the lens

The number of terms in the field expansion necessary tare equal. In the case of an incident plane wave the starting
reach the required accuracy depends basically on the widthoints should be far to the left at equay intervals. In the
of the scattering cylinder and the separation of the wire ancase of point antenna initial points for rays can be selected
tenna(line sourcg if this case is considered. Although the jyst as easily, since near this antenna radiation emission is
partial-wave expansion of fields in E¢2) runs formally isotropic.
from minus to plus infinity, for a fixed radius of the cylinder  5ne can find general agreement in the corresponding pic-
there is only a finite numbe of terms for which the&, and 65 je., the incident plane wave is focused in the same
b, coefficients take significant values. We estimate this Criti'regions and the wave emitted from the point source results in
cal numbem to be lw)\.‘ : . . similar images. However, there are striking differences in
thelner?:ijtrtiﬁga;?]?;r?; igff&”;:é’l?girs?ggrﬁg%isé" both theor_ies. Thg light rays defined accprding to the wave
150=m=150) partial wave’s the field continuity C'o'n’di_ theory, being the integral curves of a continuous vectqr field,
. . i . cannot cross each oth@ror can any one of them cross itself,
tions are fulfilled with relative accuracy of 16°. . : .
of course as is shown in the top right segments of the pre-
. ) _ _ sented figures. This property is completely different from the
A. Comparison with geometrical optics behavior of rays in geometrical optics. This observation
Figures 1 and 2 show the continuation of such light raydeads to the reinterpretation of the image formation in wave
calculated as lines tangent to the Poynting vector and thoseptics.
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40 / 60

-20 -10 0 10 20 SOY

FIG. 3. Shaded contour plot of constant modulus of the Poyn-

FIG. 2. Focusing and image formation of a cylindrical wave ting vector|S| (contours themselves are remoyéar a cylindere
emitted at the distanog, from a cylindrical lens in wave and geo- =2 a=30\, and plane-wave illumination.

metrical light ray optics. Normal wave incidenca=15\, nq

=v2, ro=40\. 3 and 4. Figure 3 illustrates rather well the focusing proper-

ties of the cylindrical lens with the shadow region and bright

th Indwayte opftitchs t?elgow of eleg:tromagnetic ﬂ(;‘X as vyell 3Sand dark speckles distributed inside the lens along its bound-
€ density ot the Tield energy become more dense in som q,y A magnified part of Fig. 3 covering the focal region,

lr_egéltons of the space. SIIIJCh re%lor_lg, V\f[t;_erg thetrs]ep_aratlons Fbgether with an adjacent part of the lens is shown in Fig. 4.
'ght rays are very smafl, can be identiied as the Images ofy evidently resembles analogous figures well as photo-

the sources located on the other side of the lens. The fact th Paph$ obtained with the help of the Pearcey integral and
the focus is not a point but a rather extended region in spac escribed as the cusp diffraction catastrophe shown in

is evident as well. There are some other differences betweetlg,)4 15,5,16, although our approach does not use either dif-

ge(())metrlcf:a::]and W?veb'ray_ts. d beautiful effect fraction integrals or any approximate diffraction theory at all.
ne of the most ubiquitous and beautiiul eliects appear- o 5ipar interesting region is located near the boundaries

Ng I optical Instruments are caustics, analyzed usuallB(Nhere the rays approach the cylinder at grazing angles and
within the geometrical optics and/or theory of catastrophe%]roupS of rays split into two bundles, one passing by the

[5,34,16. In our pictures of the wave-optical rays, the caus-~,
tics behind the cylinder are visible as well. They cannot beCyllnder and the other one refracted by the lens. Our model

defined as the envelopes of bundles of crossing rays since ta(l?lgc\;\ésslor detailed study of the mechanism of this splitting
wave optical rays do not cross. The caustics appear, however, '
as the regions of enlarged density of rays at the boundaries of

the beam of rays, see Figs. 1 and 2.

Near the boundaries and light concentration regions the We observe that the beam of wave-optical rays splits itself
wave light rays may become quite complicated, looking apin some regions close to the boundary of the cylinder. One
parently erratic, though in geometrical optics the light shouldset of rays enters the cylinder and is refracted, while another
propagate along straight lines in homogeneous media. Thilows round the lens. Between these two parts there is a
wave ray flow approaching the focal region of image spotyegion of low intensity(Both groups of rays eventually come
with all its wiggles, is much different from the rather smooth again together at a large distance from the cylinder.
departure flow. The behavior of fields in this region was The standard geometrical optics does not allow the rays to
intensively studied within diffraction-based theories startingenter the shadow regions. However, from the solutions to the
from the numerical calculation of a diffraction integral per- Maxwell equations it follows that there exist non-vanishing
formed by Pearcey and co-workdis4,34,9. These results fields in these regions. The time-averaged Poynting vector is
have usually been illustrated by drawing the magnitude andonzero as well, and the wave-optical rays can be evaluated
phase contours of the electric field. To compare our resultand studied.
with those earlier works, we include figures showing the Figure 5 shows a sample of several characteristic trajec-
contours of equal magnitude of the Poynting vector, see Figdories near the upper boundary of the lens where the ray-

B. Rays in the shadow region
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X
40 . e=2, a=5), d=12\

35

30

x/A

FIG. 6. Flow of an initially very dense bundle of rays—selected
from all the rays emitted by the point source—in the shadow re-
gion; the overall picture of the bundle splitting and formation of
void islands is provided; the parameters are 5\, ng=+/2, ro
=12\,

25

time-averaged Poynting vector is continuously differentiable
(even real analyticain the whole space except the boundary
of the lens. Thus, it satisfies the Lipshitz condition. There-
fore, the Picard theorem implies that the integral curves of
the Poynting vector cannot intersegcf., e.g.,[35]). There

are specific points—the saddle points of the phase—at which
two or more wave-optical rays seem to meet. This does not
mean, however, that the rays actually intersect. There is no
-6 -4 -2 0 possibility for one ray to reach a saddle point and to leave it.
The saddle points cannot be reached by the wave-optical rays
for any finite value of the parametet There are rays that
approach these points asymptotically to crossrat+o.
(Such rays called separatrices will be more thoroughly stud-

bundle splitting takes place. Some of these trajectories aljgd belqw) In other words, one m|ght say that a trajgctory
ttempting to cross itself at a point does not contain one

clearly closed. There are other curves that, while starting a! . .
the source and going to infinity, meander and wind in a comP'ece only. Ther_e are at least two pieces that can join only for
plex manner. The following section will be devoted to a de-'nf'nlte pseudotimer.
tailed investigation and interpretation of such complex be-
havior. IV. PROPERTIES OF LIGHT RAYS,

Let us remark that in spite of sometimes erratic behavior =~ EQUAL-PHASE CONTOURS, AND FIXED POINTS
of the flow lines mentioned above, the numerical integration
is stable and on reversing the integrati@e., performing it

20

150

FIG. 4. Details of Fig. 3 in the focal and internal caustic region.
Intensity pattern equivalent to a cusp diffraction catastropH84f
outside the cylinder lens is visible.

It is clear from Fig. 5 that the flow of rays can be very

u o ) complicated. We may expect that the ray pattern becomes

back in time”) one follows the same trajectory. _ simpler for smaller radius of the cylinder. In what follows we
The flow lines can neither intersect, nor join nor split ghaji consider in more detail a cylinder of the same refractive

apart. The latter fact is a mathematical consequence of thejey byt smaller radius to grasp more efficiently the essen-

unique dependence of solutions of a system of differentiafig| hroperties of the light structure. The analysis of rays will

equations on initial conditions. Indeed, the vector field of they o completed by investigation of equal-phase surfaces that

are more frequently used in the studies of light propagation
AL through optical instruments and other optical systé¢ijs

18

A. Islands in the stream of Poynting curves
in the shadow region

For a cylinder with radius k& (i.e., three times smaller
than in Fig. 5, we have plotted a very dense beam of rays
(the source of light is still the line sourceassing close to
the boundary of the cylinder in Fig. 6. We observe the pres-
ence of “empty” or “white” islands with well-defined

FIG. 5. Details of the upper part of Fig. 2 in the shadow regionboundaries. They are inaccessible to the trajectories starting
with families of meandering and bounded rays. from the source. To investigate what happens in these islands

066610-7
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FIG. 8. Detailed structure of the flow in the bundle-splitting
region for the same parameters as in Fig. 6. Both bounded and
unbounded raygsolid lineg are shown. Black {~) and white
(V™) small circles denote the stationary poirit®rresponding to
vorticeg of opposite topological charge. Cros<&s denote saddle
we need to analyze additionally the equal-phase contours argbints. The vortices are attractors for equiphase lideshed lines
the stationary points of the flow. Let us note that the equalThe equiphase lines can join only vortices of opposite “charge.”
phase contours and stationary points are the very basic ob-

jects of important works dealing with the fine structure of pological charge to each vortex, and the equal-phase con-
light using the eikonal approximations and catastrophgours can join only the vortices with different charég.,
theory[5]. e.g.,[36]).

In Fig. 7 the wave-optical rays and the equal-phase con- |t js visible in Fig. 8 that the vortices form attractive ba-
tours are plotted for the half-plane above the optical axissins for equiphase curves in certain ranges of phase values.
The phase contours are obtained by integration o E4). It There are rays that start initially very close to each other but
is clear that these contoufdashed lingsare perpendicular one of them just goes without rounding a vortex, while the
to the rayg(solid lines, as should be the case. In the vicinity gther one flows round it. It might be expected that the phase
of the source they are almost CirCleS, but in the Cylinder ande|ation a|0ng these two rays is Comp|ete|y broken after
behind it, its form is very different and sometimes windy. We rounding the vortex by one of them. This is not the case,

have started integration of E¢L4) from the optical axigin  however, since the change of phase after rounding the vortex
all cases we have checked that the phase along them is i equal to an integer multiple of72

deed constant, which has been another test of the accuracy of
our solutions. It turns out that in many cases the integration
terminates and it is not possible to continue it further. Start-
ing integration from the top toward the bottom results in a The apparently void island seen in Fig. 6 is displayed
similar termination of some contours at certain points. It is2gain in Fig. 9 but with the bounded rays, equiphase curves,
interesting that all the equal-phase curves starting in certaind stationary points. It is clear that the island is actually not
interval can terminate at the same point. We have found that/0id”; the solutions of the Maxwell equations show that the
such points are actua”y the Stationary points of the ﬂo\NﬂEId intensities and the Poynting vector do not vanish and
defined by Eq(13). Most of the stationary points are located the wave-optical rays exist. The rays form, however, closed
in the regions empty of rays coming from the source. It isl00ps rather than unbounded curves. o
important, however, that in these regions the fields, the Poyn- Thus the “void”island is full of bounded, periodic trajec-
ting vector does not, in general, vanish and the phase is welPries, and plenty of stationary points, and is contained as a
defined with the exception of some points. Therefore, both

the wave-optical rays and the equal-phase lines can be plot 7 €: 9 /5;5 A d=12 X
ted. The structure of flows in the transiefiray beam- 5.0 K R a
splitting”) region will be analyzed below. YT : g ' ‘

FIG. 7. Wave-optical raygsolid line9, equal-phase contours
(dashed linegs and stationary points in the upper half-space for the
same system as in Fig. 6.

C. Bounded structures of the flux

B. Rays, phase contours, and fixed points
for small lenses and line source—transient region

A

Figure 8 provides a picture of both unbounded and =
bounded rays in the transient region. The former ones star
from the source and escape to infinity, although they wind
and meander when passing through the transient region. As
sociated equal-phase contours and stationary points are als
plotted. 3.5 )

Figure 8 indicates that the stationary points can be divided ' - ‘ ‘ ‘
into two classes, the first one consists of the vortidésand 0-0 0-5 Xl/o)\ 15 20
the second one are the saddle poir8p. (Ve can also distin-
guish vortices that correspond to clockwis&*() and FIG. 9. Detailed structure of the flow in the void region of Fig.
counter-clockwise{ ™) vortex flow. One can associate a to- 6. Nested families of bounded rays are shown.

4.0
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FIG. 10. Collection of all separatrices for an upper part of the 2.55
cylindrical lens of Fig. 6. The lens is illuminated by a point source.

/— wave ray separatrices, |

whole within a large-scale periodic ray. Some vortices tend " ——— equiphase séparatrices *

to group in pairs of s'Fauonary ppmts with qpposne topolog.|- 2.52 F - i equiphase it .
cal charges, such pairs are assisted by pairs of saddle point R R i R A T
However, some single vortices are present as well so tha 11.85 11.88 11.91 11.94
total topological charge of the island is nonzero. x/)\
D. Ray separatrices FIG. 11. Separatrices and equiphase lines for the isolated vortex

. L saddle points pair. The same system as in the four previous figures.
The plethora of wave-optical rays shown in Figs. 8 and 9

seem to avoid the stationary points, especially the saddle
points. There are, however, some special rays that asympto“—n
cally approach the saddle points. These rays separate flo
of different kinds. In the theory of dynamical systef@%]

In addition to the light ray separatrices and equiphase
es this figure shows an object—equiphase separatrices.
Yhese equiphase separatrices determine boundary for differ-

nt basins of the equiphase lines. This example shows that

th%):jlare c_:alle? S?F;?“_at”cels- Th? iep‘?ratn((:jes_ caTTreach & saddle point, similarly as for the ray separatrices, is also
saddle points for infinite values of the “pseudotime’Two 5 meeting point for the equiphase separatrices.

or more ;uch separatrices that approach a single .saddle poiNt 1 q following subsection discusses the equiphase separa-
seem to intersect each other. They are in fact dlsconnectemCes in a region with many stationary points

and there IS no s_mgle dynamical trajectory passing through a The number and location of stationary points is not an
saddle point, which could be obtained by integration of Eintrinsic property of the cylinder lens. It depends on the en-

(12). Indeed two or three independent integrations of thiS'[ire optical system that includes the sources of radiation. By

equ_ation are needed to obtain _the full collection of ray Separ'noving the point source one can change the position of those
ratrices attached to saddle poiriteree for unbounded ray points, hence the form of separatrices, which, in turn,

separatrices and two for bounded@hey have to start from
points slightly displaced from the saddle points and one haghanges the shape of the rays.
to integrate both forward and backward in The shape of ) .
. : . . E. Equiphase separatrices

any remaining ray is determined by two separatrices embrac-
ing it. Like all the other rays, the ray separatrices do not The equiphase contours can be divided into different
cross each other so that they can meet at one saddle poiciasses by the equiphase separatrices. The equiphase lines
only (at 7= £ ), and separatrices play a similar role to the wave rays and ray

All ray separatrices and stationary points that have beeseparatrices that characterize the light flow. An example of
found in a region close to the boundary of the cylinder areequiphase separatricésold dashed lingswith background
shown in Fig. 10. This figure as well as Figs. 8 and 9 showof ray separatriceghin lines is shown in Fig. 12.
that every saddle point can be associated with the corre- All equiphase separatrices are obtained integrating Eq.
sponding vortex point. Not all data presented in Fig. 7 seem§l4) in the forward and backward directions ef starting
to confirm this property. However, this property is true; only tirom two points displaced infinitesimally in opposite direc-
due to the scale of the figure some vortex points and saddlégons from the saddle points. This way four equiphase sepa-
points overlap. Figure 11 shows the vortex and saddle pointatrices attached to each saddle point can be found. The pro-
together with equiphase lines and separatrices for the mosedure is similar to that used in the case of ray separatrices.
right-hand vortex dot of Fig. 7. This figure looks almost These equiphase separatrices extend either to the neigh-
identical to Fig. 11 of 17] that was considered as a generic boring vortex points or to the points on the optical axyes
example of a wave edge dislocation. Our discussion shows 0. The end points on the optical axis can lie to the right of
that such simple pattern of the energy flow may occur only irthe light source ak>Xxq or, for equiphase lines encompass-
the vicinity of an isolated vortex point—saddle point pair. ing the light source, at<x,.
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FIG. 14. Details of the structure of rays, equal-phase contours,
and stationary points in the focal region; parameters are the same as
in Figs. 2 and 5.

deeper towards the center of the cylinder and may thus be
associated with a cusp of a cauditompare Fig. 17 below
r}I,t is interesting that the stationary points are present on the
optical axis as well, but there are no such points close to the
position of the image of the sourdsee Fig. 14 At the

The equiphase lines are always staying in the correspond®age distance the stationary point is moved out of the axis.
ing basins enclosed by the equiphase separatrices. They canAS in the case of the smaller lens, the shapes of rays
extend either between the vortex points of opposite chargéPfopagating through the optical system are determined by
or between the two points on the optical axis placed on théeparatrices. The number of separatrices is very Iar'ge _an'd it
two sides of the source. The second case occur, for examp|gpes not seem useful to show them all. Their shape is similar

for equiphase circles surrounding the source in its vicinity. t©© that shown for the smaller system. The loop part of most
of them is of very small size, such that only one vortex point

is included. There are, however, separatrices with large loops
embracing several tens of stationary points as well as many
On having obtained the necessary experience by analyzounded “internal” separatrices. Figure 15 presents those
ing small cylinders we can reconsider the light propagatingargest separatrices located at the top of the cylindrical sur-
along a bigger system, to the one presented in Figs. 1, 2, affglce. It is interesting to notice that, as in the case of smaller
5 (radiusa equal to 1%). The number of fixed points rapidly separatrice$Figs. 8—10, the large ones can form pairs with
grows with the radius. In the upper half-plane displayed inopposite vorticity of members of the pair.
Fig. 13, the number of stationary points is larger than 3000.
Most of the singularities are concentrated in the annulus near V. RAY STRUCTURE AND FEIXED POINTS
the surface of the cylinder. In addition, there is a family of FOR GAUSSIAN BEAMS
fixed points along the rim of the focused bundle of rays, as
shown in Fig. 14. There is a clear correspondence between It has been observed by Karman and co-workég;18),
the positions oflgroups of stationary points in Fig. 13 and that the structure of stationary poingshase singularities in
the form of the rays from Fig. 5. Also, the irregularities in the his languaggis strongly dependent on the type of source. In
rays near the “entrance(front) surface and “departure” sur- particular, they investigated in detalioth theoretically and
face of the cylinder in Fig. 2 are evidently connected withexperimentally the case of a truncated Gaussian-beam illu-
the region in which there is plenty of stationary points. Themination and the light structure in the focal region. One of
stationary points close to the optical axis in Fig. 13 entetheir conclusions was that both the “creation” and “annihi-
lation” of phase singularities can happen when proceeding
from uniform to Gaussian illumination.
Let us now consider the case of the Gaussian-beam illu-

FIG. 12. Equiphase and ray separatrices in the multistationa
points region. The same parameters as in the last figures.

F. Fixed points for the large cylinder

y/A

v/A

-10 -5 0 5 10 15

FIG. 13. All stationary points and their influence on the flow of  FIG. 15. Selected large-scale separatrices for the same system as
the rays for a larger lens for the set of parameters of Figs. 2 and 5n Fig. 5.
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FIG. 16. Wave-optical rays and equal-phase
3 s sEaasssee =y contours for the Gaussian-beam illumination. The
-10 - A4 ) parameters ara=15\, e=2, w=2.

y/A
[en]

mination. This can be a good model for light beams pro-fields decay rapidly thus making possible the clear appear-
duced by many laser sources. In order to find out effects naince of the reflected rays. The reflected rays shown in Fig.
visible in the case of point source and plane wave, the widtli6 correspond to a multiple-reflected geometro-optical ray
w of the Gaussian beam cannot be either too large or tooontributing to the rainbow, as can be seen by comparison
small. Indeed, ifw were too large, the whole picture would with geometrical-optics drawing of Fig. 17.
be very similar to the case of the plane-wave illumination. If The smooth and regular flow of rays in the case of the
w were too small, the beam would spread out very fast reGaussian beam does not mean that there are no stationary
sembling the point source pattern. But for an intermediatgoints. They are, however, located outside the dominant part
value ofw, i.e., Ary/(2a)<w<a, the entire incident beam of the beam, cf. Fig. 18. A part of them bounds the beam
passes through the cylinder. A large portion of the scatteretiefore it enters the cylinder. There is an interesting oscilla-
light stays outside the incident beam and, therefore, can b@ry structure in the vicinity of the reflected ray. Lots of fixed
visible. The general pattern of the light scattered by the cylpoints are present within the cylinder outside the beam and it
inder, including the rays and equal-phase contours, is showseems that behind the lens and close to the optical axis there
in Fig. 16. The parameters of the position of the source ands a similar group of these points as in the other illuminations
of the lens are the same as in Fig. 2. The light rays are starteshown in Fig. 14. One cannot, however, consider these re-
to keep equal fluxes between the subsequent lines. Compastlts to be complete.
ing Fig. 16 with Fig. 2 we observe that the rays flow in a
very regular, smooth way while the equal-phase contours in-
side the beam resemble those usually drawn for Gaussian
beams. Most of them are terminated just out of the bundle of
the rays of Fig. 16 since the intensity falls off exponentially ~ Our approach enables us to show the properties of both
and the right-hand side of E¢L4) becomes extremely small. the intensity and phase of the fiel@which are often dis-

In Fig. 16, one very distinguished feature is present. TWacussed in a similar contéxalong the optical axis. The phase
reflected rays appear, scattered at large angles. In the casej@fspecified asb = arg(E,).
the other two sources considered in this paper, these large- For the case of the point source, Fig. 19, the intensity is a
angle scattered rays are hidden due to the overwhelming coRery rapidly oscillating function of position along the axis.
tribution of the incident beams. But the incident GaussianThe change in the oscillation pattern close to the boundaries
of the cylinder clearly correspond to the structure of station-
ary points shown in Fig. 13. A similar change of pattern is
evident in the position dependence of the phase, which varies
rapidly in the same regions. Beyond the cylinder, we have

VI. INTENSITY AND PHASE PROFILES
ALONG THE OPTICAL AXIS

e=2

, a=15 A,

w=2, x40

o

FIG. 17. Geometric-optics rays starting at a point source. The
rays that had been internally reflected one time are visible including FIG. 18. Stationary points of the flow for the Gaussian-beam
those contributing to the rainbow. illumination. All the parameters are as in Fig. 15.
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FIG. 19. Intensity and phase along the optical axis for the point

source case.

found only one point of the phase anomaly close to the point

xI\~33 (see Fig. 14 for a comparisprilo our surprise, we

have not detected any phase jump close to the image regior
For the case of Gaussian beam, the analogous intensity
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FIG. 21. (a) Wave-optical rays for radiation from two point

oscillations are much smaller as shown in Fig. 20. The be- L o i X X
sources scattered by the cylindrical lens. Formation of inverted im-

havior of phase is very regular except the small irregularitie
at x/A\~7 that one may possibly associate with the

age by the enlarged concentration of rays is shailunThe same
image formation according to the geometrical optics.

geometro-optical cusp occurring in Fig. 17. Again, there is
no phase jump either at the source or at the image position. _ _ o ) i
Ing question arises: how is it possible to get the inverted

VIl. IMAGE FORMATION OF EXTENDED OBJECTS
IN WAVE OPTICS

We have stressed several times that the wave-optical ra)%)r
as defined in this paper cannot intersect. But then the follow.
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images of objects, which is usually obtained in the geometri-
cal optics by a construction that requires the crossing of
rays? Another important question is, how to get the wave-
tical picture of multiple reflection inside the cylinder? The

mer one will be discussed in this section, while the latter
in the following one.

To answer the first question in the simplest way, we dis-
cuss the wave-optical rays from two point sources located in
the vicinity of the cylinder. Let us for a moment assume that
the sources are coherent—they oscillate with the same fre-
quency and the phase difference is fixed. The total fields are
superpositions of the fields irradiated by each source, and the
interference effects clearly have to be present. The rays must
not be, of course, simply “added,” but should be obtained
from the total electric and magnetic fields and the corre-
sponding Poynting vector.

The flow of the wave-optical rays case is displayed in Fig.
21(a). The rays start at both the emission points. If there was
no lensing cylinder, the density of rays would form interfer-
ence fringes around the system. The cylinder itself gives rise
to the image of the sources in a very peculiar way. The rays
starting at the more distant source do not have any chance to
reach the cylinder at all. Only the rays starting at the closer
source enter the cylindrical lens. In spite of this fact, two
distinct ray concentration spots are apparent corresponding
the source images as is clear by comparing with the geo-
metrical construction shown benedffig. 21(b)]. Thus, the

information on the second source is “recorded” and con-

FIG. 20. (a) Intensity of the field for the Gaussian-beam illumi- tained in the rays originating at the closer one. The visibility

nation along the optical axi¢b) Phase distribution along the optical Of images of the sources becomes better for larger cylinder

axis for the Gaussian-beam illumination.

size as it gathers more radiation rays. Thus the contrast be-
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FIG. 22. Shaded contour plot of constant modulus of the Poyn- ‘ ‘ XQ=0 s yo‘//\=25 .
ting vector (loggS|) (light intensity shades; contours themselves -40 20 0 20 40
are removegfor the noncentral Gaussian-beam illumination. Mul- X/)\
tiple refraction and reflections are apparent. The position of the
waist of the beam(units of \) is xo=0, y,=25, the width of the
beamw=4, the radius of the cylindea/\ = 30.

FIG. 23. Wave-optical rays for the same illumination and pa-
rameters as in Fig. 22. It is clear that the rays do not intersect. The
rays corresponding to the double internal reflection are formed—
tween the image spots and the surrounding regions is bettéfside the lens—by the “circulating(periodig rays, which are thus
Figure 21a) has been drawn for zero difference betweennecessary to obtain the full picture of scattering with multiple re-
phases of the two sources. In the case of nonzero differencéections.
the individual rays could look differently, but the concentra-
tion spots would stay at the same places so that the cohetirect reflection, direct transmission, as well as to single and
ence of two sources assumed above does not matter. double internal reflections. The picture is not complete, how-
ever, unless we draw the “circulating” rays that do not origi-
nate in the entering bundle. The bundle of rays of Clags.3
[20]) consists of the circulating sub-bundle and a peripheral

To address the second important question posed above vigart of the incident bundle. The fact that these two parts fit so
consider multiple reflections inside the cylinder. In geometri-well is truly astonishing. These two examples show that even
cal optics such multiple reflections obviously lead to thein the situation in which we could expect the crossing of
(multiple) ray intersections. Now, our wave-optical rays can-trajectories, they find their way to avoid any intersection.
not cross. To solve this puzzle, let us consider a Gaussian
beam entering the cylindrical lens noncentrally. Figure 22
shows the modulus of the Poynting vectaot yet the rays
inside and close to the lens. The shades of gray ranging from This discussion shows how the solutions of Maxwell
white to black are proportional to I¢f§f and cover the range equations for various electromagnetic radiation beam prob-
of 40 dB of relative intensities to highlight the small inten- lems or external source problem and their scattering by a
sities of multiple-reflected beams. dielectric cylindrical lens may illustrate all optical effects

The presented exact solution shows in a natural way thevolving light propagation. It is possible to account for re-
multiple reflection and transmissidqoorresponding to Class flections, refractions, focusing and image formation, appear-
1 - Class 5 of rays if20]). There is no need for any extra ance of caustics and foci, waves’ interference and diffraction,
assumptions or constructions. Parts of the reflected beam adtc. Usually such effects are treated in the approximate theo-
ter two and three internal reflections are very important asies referring either to geometrical or diffractive optics. The
they contribute to the rainbow. Every reflection takes intolong history of research in optics resulted in well developed
account the curvature of the reflecting cylindrical surface in-and understood accurate analytical methods and the quality
cluding the focusing propertigsuch as in a composite op- of optical instruments is the best proof of the value of optical
tical system. However, Fig. 22 itself does not yet solve the theories. However, | do believe that the present discussion
“intersection” puzzle. using explicit solutions for the fields has revealed interesting

Only a picture of wave-optical rays themselves can leagroperties of classical electromagnetic radiation.
to the solution. It is shown in Fig. 23, again for the Gaussian- Taking these findings into account, we may conclude that
beam illumination entering the lens from the left-hand sidethe concept of rays is still very well defined in the full wave
with a nonzero impact parameter. In the entering bundle ofheory. What is more, these rays may be used to find the
rays there is a splitting into sub-bundles corresponding tamages of objects formed by optical devices. The images are

VIIl. MULTIPLE-REFLECTED AND REFRACTED RAYS

IX. FINAL REMARKS
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regions in space where the density of rays becomes large. Concluding this discussion one can pose some interesting
Also, we argue that the ray concept is not less useful in theand fundamental questions to be addressed in the future. In
full Maxwell theory than in the geometrical optics. The im- particular, when the rays are not straight lines but can be-
ages of objects provided by optical devices can be rigorouslg¢ome quite complicated curves, what is the meaning of the
obtained by tracing the rays being integral curves of the:gptical path” in wave optics? Moreover, how can we for-
Poynting vector. It is to be noted that the tracing of “physi- mylate a wave-optical version of the Fermat principle, so
cal” rays, that is, the integration of the Poynting vector field, that the curves of energy flow would provide the solution to
must be performed with extreme care. Indeed, the rays arg corresponding variational problem? Besides, we believe
not segments of straight lines, and they can even be quitgyat the above discussion can be useful for investigations of
erratic. This is obviously connected with the properties of thengre complicated systems, as, e.g., a dielectric sphere and
phase of electromagnetic field that can be an extremely confea| electromagnetic fields requiring 3D analysis. In fact,
plicated function of a position in space. even a dielectric cylinder would lead to 3D problems if the

It is to be noted that the geometrical rays are self-incident beams were finite in the two transverse directions.
determined and can be plotted without any knowledge of the

fields. In fact, they can be specified with the help of a few
simple rules and equations even for multicomponent sources.
On the other hand, the wave rays discussed in this paper are
not self-defined and require first the solution for the field ina | would like to thank very much Dr Maciej Janowicz for
given problem. Only after these fields are known the wavehis contributions to the problems discussed above and his
rays can be determined. Thus, the wave rays allow to reprdielp in writing this paper. In particular | would like to ac-
sent and illustrate in full richness the wave properties of lightknowledge his contribution in raising the question of the role
and can be compared to the properties of geometrical raysof stationary points of the Poynting flow.
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