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Light rays and imaging in wave optics
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An interpretation of focusing and image formation on scattering of electromagnetic waves by a dielectric
cylinder~a cylindrical lens! is proposed on the basis of the full Maxwell theory. It is centered on analysis of the
behavior of integral curves of the Poynting vector here called wave rays. These wave rays cannot intersect so
that the focusing and imaging spots are identified with regions of high flow concentration. Two-dimensional
examples of wave rays and wave fronts in the scattering of plane and cylindrical electromagnetic waves as well
as of Gaussian beams by a dielectric cylinder derived from rigorous solution of the Maxwell equations for
incident waves perpendicular to and uniform along the scatterer are given. Their qualitative comparison with
geometrical and diffraction approximations are provided. Fixed points and vortex structure of the Poynting
flow are investigated. An example of~Gaussian-beam! scattering with transparent multiple internal reflections
and multiple wave splitting is given.
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I. INTRODUCTION

This paper attempts to discuss wave propagation and
cusing effects with the help of exactly solvable problem
classical electrodynamics of the scattering of an electrom
netic wave by a lossless perfect dielectric cylinder. T
monochromatic electromagnetic fields that are used sa
exactly the corresponding Maxwell equations with all nec
sary boundary conditions.

Formation and properties of optical images in optical s
tems belong to the most extensively studied problems
classical electrodynamics. Elementary geometrical-op
theory, based on the ray tracing methods, describes the
focusing and formation of images of illuminated objects u
ing few rules of rectilinear propagation of rays in unifor
media and simple laws of refraction and reflection at diff
ent media interfaces. This very simple theory is not only a
to explain the basic principles of most optical instrume
but also, in its more developed form, enables one to d
with distortions and aberrations of optical systems. Disc
sions of these problems can be found in all books on opt
in particular, one can refer to the monographs by Born a
Wolf @1# and Sommerfeld@2#. Mathematical aspects o
geometrical-optics are discussed in@3# while numerous ex-
amples of applications can be found in@4#.

Beside purposely achieved focusing and imaging,
light very often exhibits unintended or ‘‘natural’’ focusin
properties occurring in various forms of conspicuous bri
lines and spots in reflected or transmitted light. In the fra
of geometrical-optics and ray tracing methods these dis
guished effects correspond to caustics, i.e., envelope
bunches of rays that are basically smooth and stable with
exception of certain points at which they change their patt
in discontinuous way forming cusps. The range of such v
common effects has been systematically covered within
tastrophe theory by Nye@5#.

To define the rays in theories based on wave physics
an eikonal, defined as an optical path and closely relate
the phase of the wave, has been introduced by Somme
and Runge@6# and discussed in@1,2#. The rays are identified
1063-651X/2001/64~6!/066610~14!/$20.00 64 0666
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with lines that are tangent to the gradient of the eikona
each point. It is to be noted that the concept of eikona
strictly connected with the short-wave approximation in o
tics and diffraction theory. The eikonal approximation can
useful in analysis of light propagation in weakly nonunifor
media. At first, the concept of eikonal had been introduc
for scalar waves this scalar function were applied in a f
vector wave theory based on Maxwell’s equations@1,3#.

Although our discussion is restricted to the electroma
netic wave propagation problems described by Maxw
equations many properties of these problems occur in o
wave theories. The most important example is quantum
wave mechanics. Just as the eikonal approximation was
posed to link wave optics with geometrical optics, so t
hydrodynamic approximation to the Schro¨dinger equation
was proposed, as early as in the beginnings of quan
theory @7#, to link wave functions with classical trajectorie

However, these asymptotic theories are insufficient if
geometrical rays are intersecting. In the geometrical opt
the definition of intensity of light at a given point is dete
mined by its distance from the center of curvature of t
wave front passing through this point@8#. The centers of
curvature of the wave fronts lie on surfaces, which accord
to @8#, can be identified with caustics. Therefore, at the poi
lying on the caustics the intensity becomes infinite, and t
can be determined only by wave theory. Geometro-opt
foci themselves are distinguished points forming cusps of
caustics. To deal with the apparent singularities of intens
on caustics and foci, better theories, which take into acco
the wave properties of radiation are necessary.

Wave properties of light, not restricted by the short-wa
approximation, are usually considered within diffractio
theories. These theories started with the Huygens princi
while later findings of Young and Fresnel led to th
Huygens-Fresnel formulation followed by the Kirchhoff an
Kirchhoff-Helmholtz diffraction integral representation
These early formulations of the diffraction theory were c
ried out for scalar waves. The generalizations to the vec
wave fields have been discussed in@9–12#.

Quantitative applications of these diffraction theories a
©2001 The American Physical Society10-1
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difficult as the solutions are given in terms of integrals
rapidly oscillating functions and thus many special functio
were defined and asymptotic methods of ‘‘steepest desc
~called also ‘‘stationary phase’’ or ‘‘saddle points’’ method!
were developed. The dominant contribution to the integr
can be evaluated by deformation of the integration contou
the complex plane. In addition, the diffraction integra
methods require the knowledge of field distribution on so
reference surface. Very often ‘‘a reasonable guess’’ co
provide this distribution or it could be derived using
geometrical-optics approach. The geometrical-optics
proach was applicable in multicomponent optical system
which the diffraction-based calculations were restricted
the last stage of wave beam propagation. The compariso
various diffraction approximations, presentation of compu
tional methods in the studies of focusing problems have b
discussed by Stamnes@13#.

As mentioned above, diffraction problems lead to expr
sions containing various complicated integrals. Severe d
culties in computation of these integrals were overcome
particular, by Pearcey@14# still before computers were reall
available.

Different properties of the diffraction integrals, usual
studied with the help of stationary phase methods, were c
nected with various image patterns and interpreted in
frame of catastrophe theory@15,5,16#. The wave fronts de-
rived in these diffraction-based theories exhibit phase sin
larities at points or along lines where the wave amplitu
vanishes. Nye and Berry compared these singularities w
dislocations occurring in crystals@17#. This paper stimulated
discussions of many optical effects, e.g., airy rings in
wave diffracted by a circular aperture, in terms of wave d
locations @18,19#. The relations of phase singularities an
dislocations of waves with geometrical rays, caustics,
catastrophes are presented in@16#.

The observed optical phenomena are so complex and
that approximate theories to describe them become v
complicated. Many approximations have only a limit
range of applicability and any claims for universality a
rather problematic. Therefore, the desire a solvable diffr
tion model has been expressed many times, e
@13,5,20,21#. In this context, Mie’s scattering@1# of a plane
wave by a dielectric sphere was mentioned most often
fact, Khare and Nussenzveig@22# attempted to apply rigor-
ous Mie approach to the rainbow theory. They found, ho
ever, an extremely fine structure of solutions, rapidly cha
ing with the sphere radius, as well as the necessity of tak
for their parameters, several thousand partial waves. T
that approach was not recommended any further. Inst
approximate but analytical summation of partial waves c
tribution, based on the Watson transformation, was con
ered advantageous@23#. However, this analytical approac
leads to an extremely complicated formalism involving fun
tions analytically extended into the complex plane of co
plex angular momenta, as well as complex wave vectok,
and still is only approximated as it requires data on the
flection and transmission coefficients of Debye terms.

The problem studied in this paper is similar to the M
problem as the solution is expressed in the form of part
06661
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wave expansion. However, it is simpler since the cylindri
partial waves are simpler than the spherical ones, and se
ing incident waves to be normal to and uniform along t
cylinder the configuration chosen can be completely
scribed on a two-dimensional~2D! plane.

The scattering of plane electromagnetic waves by a
electric cylinder was treated for the first time by Lord Ra
leigh @24# and has long been of great theoretical interest a
admits exact solution~see, e.g.,@25# for a more recent refer-
ence!. This solution can be written in terms of partial wav
that can be expressed in terms of the well known Bes
functions. With the present state of the art computations
solution can be handled with almost arbitrary precisio
While most papers dealing with scattering on a cylinder c
sider the incident field to be a plane wave, similar metho
can be used to describe the scattering of waves emitted f
well-localized sources placed in the vicinity of the cylind
and for incident Gaussian beams@26–28#. A linear long an-
tenna placed near an infinite cylinder, while being a high
idealized source of isotropic cylindrical wave, provides t
simplest model of a point source located near a lens. In
ticular, it allows for a reconstruction of the image formatio
from the point of view of the rigorous Maxwell theory. Le
us notice that the solvability of the model has been utilized
@29# where the complete system of solutions to the Maxw
equations has been determined and applied to the field q
tization and description of spontaneous emission from
atom located near the cylinder.

The present paper attempts to provide an interpretatio
the image formation within the framework of the rigorou
Maxwell theory without explicit reference to traditional op
tical interpretations based either on geometrical optics
even supplemented by wave-optics effects including diffr
tion and the Huygens principle. That does not mean that
traditional interpretations of optical phenomena are incorre
however, it may be of some interest to show how the el
tromagnetic fields themselves deal with very rich optic
phenomena.

In this work we only consider incident waves that a
perpendicular to the cylindrical scatterer axis~taken as thez
axis of the Cartesian or cylindrical coordinate system!. In
addition, we assume that the incident waves are unifo
along the cylinder. With these two assumptions the gen
scattering problem simplifies to the two-dimensional pro
lem with the relevant field components dependent on thx
and y variables and the Poynting vector field remaining
the x-y plane.

Wave-optical rays associated with the transport of ene
are consequently defined as integral curves of the field
~time-averaged! Poynting vector and show how the imag
are formed by focusing of rays. In fact, such energy flo
lines were introduced by Braunbek and Laukien@30# ~in their
investigation of the diffraction by a half-plane! and by
Boivin, Dow, and Wolf @11#, in their study of a focused
beam. The second analysis was restricted to the focal re
only and the fields were evaluated within the diffraction a
proximation. In the present model the wave light rays can
derived for the entire space including the interior of the o
tical system~cylindrical lens in this case!.
0-2
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LIGHT RAYS AND IMAGING IN WAVE OPTICS PHYSICAL REVIEW E 64 066610
A simple consequence of mathematical properties of
differential equations describing the light wave rays is
exclusion of the ray intersections as well as their divis
and termination except at absorbers, conductors, and par
lar discrete~for a given finite cylinder radius! set of trajec-
tories, discussed further.

Wave fronts or equiphase surfaces are represented in
present simple 2D model by curves in thex-y plane orthogo-
nal to the set of wave rays. This set of equiphase cur
wave fronts, can be derived from a set of differential eq
tions similar to that for the rays.

Both sets of equations for light rays and wave fronts d
tinguish certain characteristic points. At these points
time-averaged Poynting vectors vanish. A more detailed
cussion of these stationary points is given in Sec. IV D.
particular, there are stationary points of ‘‘vortex’’ type, in th
vicinity of which the Poynting flow circulates and equipha
lines are attracted, and those of ‘‘saddle point’’ type that
generic cases repel both integral curves. Some very spe
rays can either terminate at the ‘‘saddle points,’’ or, start
at these points, run to infinity or, forming a loop, return ba
to the same ‘‘saddle point.’’ These critical curves spec
separatrices isolating Poynting flows of different types. T
generic wave light rays can either start at the source and
to infinity or form a close vortex line. The existence
closed Poynting flows is an important property of the el
tromagnetic radiation flux. Such lines occur very often
shadow regions forbidden for the geometrical rays and
important for the descriptions of radiation beam splitting a
intersection of two separate beams.

In the framework of quantum scattering theory the in
gral curves tangent to the quantum current field, cal
streamlines, were proposed in@31# to illustrate fluid features
of the wave function in the scattering process. The scatte
of plane scalar waves by spherical potential wells and ba
ers were considered. Although the scatterers were th
dimensional spheres the axial symmetry of scattering
duced this discussion to the 2D problem. The formation
the streamlines vortices were shown. However, the scatte
were rather small and not too many partial waves were n
essary. Therefore, many characteristic optical features
cussed in the present paper were not present.

The vortex-type fixed points in the theories that take
wave fronts as principal objects correspond to singular po
of phase. However, there is nothing singular in these po
when the fields are taken as fundamental variables.

In contrast to the light rays that in the generic cases
indestructible, the equiphase lines can terminate and sta
the vortex points. The number of fixed points strongly d
pends on the radius of the cylinder, the position of the lig
source, and on the type of incident beam. Perhaps the a
dance of such points for the system investigated in@22#
caused the rapid variation of the scattered radiation patt

As was noticed in@32,19,18# the structure of the focus
was partly influenced by diffraction effects at the apertu
boundaries or stops supporting the focusing lenses. For
supported lenses and for Gaussian-beam illumination the
cusing patterns simplify. Similar features have been found
the investigated system for the incident Gaussian beam
06661
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the width smaller than the cylinder diameter. For such bea
the rays propagate very smoothly through the lens. All s
tionary points are shifted outside the incident beam. In t
case one can find the reflected rays going back to the h
space of the incident beam. There were no such refle
rays in the other two cases, i.e., those of incident plane w
or incident cylindrical wave. For the plane-wave illumin
tion, all rays seem to flow to the forward direction and o
can ask what happened with evidently present backsca
ing. Backscattered rays can emerge only at the wings of
Gaussian beams where the usually weak scattered wav
not dominated~‘‘overshined’’! by the much stronger inciden
beam. When a Gaussian beam with nonzero ‘‘impact par
eter’’ is applied, several internal reflections are visible a
can be studied in detail. Nussenzveig’s@20# classes of
multiple-reflected and refracted rays can be easily identi
and interpreted as scattered bundles of wave rays in our
scattering model. This result makes it possible to interp
the 2D analogue of rainbow within the framework of wa
optics in a Cartesian-like way.

The rest of the paper is organized as follows. Section
defines the mathematical models and contains the b
equations. Section III is devoted to the presentation of
global properties of wave rays and the comparison with
standard geometrical-optics picture of ray propagat
through a lens. The discussion of the fine structure of r
and equal-phase contours as well as of fixed points is p
vided in Sec. IV. An investigation of rays and stationa
points specifically for the case of Gaussian-beam illumi
tion is given in Sec. V. Section VI demonstrates the behav
of intensity and phase along the optical axis. The problem
image formation of extended objects is elucidated in Sec.
by analysis of radiation of two point sources near a cylind
Section VIII is devoted to the multiple internal reflection
and refractions of rays by and inside the lens. Section
contains several final remarks.

II. THE MODEL AND ITS SOLUTION

In this work we consider the problem of scattering of
incident Einc stationary wave~dependent on time ase2 ivt)
propagating in thex-y plane and with such polarization tha
the electric field is orthogonal to this plane. The waves
scattered by a dielectric infinite cylinder of radiusa. The
dielectric is assumed to be homogeneous, lossless, and
dispersive. Its refraction index isnd . We place the origin of
the cylindrical coordinate system in the center of the cylind
with the z axis directed along the cylinder. In this case t
whole electromagnetic field is determined from theEz com-
ponent of the electric field. The magnetic field stays in t
x-y plane.

The electromagnetic field outside the sources is descr
by the Helmholtz equation

¹2Ez~r ,f!1n2~r !k2Ez~r ,f!

5S ]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]f2
1n2~r !k2D Ez~r ,f!50,

~1!
0-3
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where k5v/c, n(r )5nd for r ,a, and n(r )51 for r .a.
The solution of Eq.~1! can be written as

Ez~r ,f!5Ez
inc~r ,f!1 (

m52`

`

bmeifmHm
(1)~kr !, r .a

Ez~r ,f!5 (
m52`

`

ameifmJm~ndkr !, r ,a, ~2!

whereJm denote the Bessel functions of the first kind a
orderm, while Hm

(1) is the Hankel functions of the first kind
and orderm.

Three different incident waves corresponding to a sou
at infinity, an infinitely long and infinitely thin linear antenn
at finite distance from the cylinder, and a Gaussian beam
considered in this paper. The electric fields in these th
cases, expressed in terms of partial cylindrical waves, ar
follows:

I. Plane-wave propagating in thek(a)5k$cosa,sina,0%
direction

Ez
inc~r !5E0eik"r5 (

m52`

`

i mJm~kr !eim(f2a). ~3!

II. Cylindrical wave emitted by an antenna placed atr0 or
$r 0 ,f0% if polar coordinates are used

Ez
inc5AH0

(1)~kur2r 0u!

5AH0
(1)@kAr 21r 0

222rr 0 cos~f2f0!#, ~4!

Ez
inc~r ,f!5AH0

(1)~kur2r 0u!

5A (
m52`

`

Jm~kr !Hm
(1)~kr0!eim(f2f0),

r ,r 0 . ~5!

III. Gaussian beam

Ez
inc~r !5E0E daP~a!eik(a)•(r2r0)

5E0 (
m52`

`

i mJm~kr !eimfE daP~a!e2 imae2 ik(a)•r0,

~6!

where P(a)5(w/Ap)e2w2a2
, r0 is the position of the

beam waist, andw is the width of the beam waist~also speci-
fying its angular spread,D51/w).

The coefficientsam andbm are determined by the cont
nuity conditions of the tangent electric (Ez) and magnetic
fields (Hf}] rEz) at the boundary of the cylinder. These am
plitudes are equal to

am5Gm

Jm8 ~ka!Hm
(1)~ka!2Jm~ka!Hm

(1)8~ka!

ndHm
(1)~ka!Jm8 ~ndka!2Jm~ndka!Hm

(1)8~ka!
,

~7!
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bm5Gm

Jm8 ~ka!Jm~ndka!2ndJm~ka!Jm8 ~ndka!

ndHm
(1)~ka!Jm8 ~ndka!2Jm~ndka!Hm

(1)8~ka!
,

~8!

where in the three cases considered here we have

Gm5E0i me2 ima, plane wave,

Gm5Ae2 imf0Hm
(1)~kr0!, cylindrical wave, ~9!

Gm5E0i mE daP~a!e2 ik(a)•r0e2 ima Gaussian beam.

A small simplification may be achieved in Eq.~7! by noting
that the numerator contains the Wronskian of theJm andHm

(1)

functions.
Finding the solution for the electric field one can imm

diately get the corresponding magnetic field

Hx52
i

vm0

]Ez

]y
, Hy5

i

vm0

]Ez

]x
, Hz50,

and the time-averaged Poynting vector field:̂S&
5 1

2 ReeEÃH!.
In the case of a Gaussian beam the incident waveEz

inc and
the expansion coefficients for the cylindrical partialGm re-
quire the integration over the anglesa. While for a given
beam and cylinder configuration all relevant partial-wave
pansion coefficientGm must be calculated only once and th
scattered part of the wave can be evaluated as fast as in
other two cases, the fields of the incident wave requirea
integration at each position pointr . This leads to some in-
conveniences when one looks for light rays. To avoid th
inconveniences two computational approximations can
made. In the first one the beam is represented by a fi
number of plane waves witha j5 j D/Ne , $ j 52Ne ,2Ne
11, . . . ,Ne21,Ne%. The second approximation is valid fo
beams that are not very narrow and therefore character
by very small angular spread. In this case one can incl
only the quadratic expansion terms ink(a)'$12 1

2 a2,a,0%
and all integrations with the Gaussian distribution functi
P(a) can be done analytically. Thus, one gets

Ez
inc~x,y!'E0

2w

A4w212ik~x2x0!
eik(x2x0)

3expS 2
k2~y2y0!2

4w212ik~x2x0!
D , ~10!

Gm'E0i m
2w

A4w222ikx0

e2 ikx0expS 2
~m1ky0!2

4w222ikx0
D .

~11!

Light rays in the theory based on the Maxwell equatio
can be defined as the lines tangential to the time-avera
Poynting vector. Such lines are sometime called ‘‘the ene
flow lines’’ @1#. They can be determined from the solution
the equation
0-4
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LIGHT RAYS AND IMAGING IN WAVE OPTICS PHYSICAL REVIEW E 64 066610
dr lr

dt
5^S@r lr ~t!#&. ~12!

It is to be stressed that wedefinethe wave-optical light rays
as the integral curves of Eq.~12!.

There exist specific points for which the time-averag
Poynting vector vanishes,

^S~r lr !&50 ~13!

so thatdr lr /dt50 at these points. They are usually~in the
theory of differential equations and dynamical system!
called stationary or fixed. They play a crucial role in t
characterization of fields in an optical system.

The equal-phase manifolds are in fact two-dimensio
surfaces. However, since our system is homogeneous a
the cylinder~z! axis, we can restrict ourselves to the inte
section of these surfaces with any plane forz5const. Such
intersections define curves described by the following eq
tion

drf

dt
5 ẑ3^S@rf~t!#&. ~14!

The curves specified above will henceforth be called
‘‘equal-phase contours.’’

III. GLOBAL STRUCTURE OF LIGHT RAYS:
COMPARISON WITH GEOMETRICAL OPTICS

Although the expressions provided in Sec. II give the a
lytical solutions to the electromagnetic field scattering pro
lem, they are fairly complicated and require numerical tre
ment for more specific exposure of the results. In particu
such numerical treatment is necessary to find solutions of
~12! that are used to draw the lines tangent to the Poyn
vector interpreted in this paper as wave light rays. The in
grations have been performed using a routine based on
Runge-Kutta method with an automatically adjustable s
~the Merson’s scheme!.

The Bessel functions were computed with the help
@33#.

The number of terms in the field expansion necessar
reach the required accuracy depends basically on the w
of the scattering cylinder and the separation of the wire
tenna~line source! if this case is considered. Although th
partial-wave expansion of fields in Eq.~2! runs formally
from minus to plus infinity, for a fixed radius of the cylinde
there is only a finite numberN of terms for which thean and
bn coefficients take significant values. We estimate this cr
cal numberN to be 10a/l.

In our example of a dielectric cylinder of radiusa515l,
the emitting antenna atr 0540l, and on using 23150 ~i.e.,
2150<m<150) partial waves the field continuity cond
tions are fulfilled with relative accuracy of 10213.

A. Comparison with geometrical optics

Figures 1 and 2 show the continuation of such light ra
calculated as lines tangent to the Poynting vector and th
06661
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obtained according to the rules of geometrical optics. T
light rays are sampled in such a way that the Poynting flu
between the two consecutive rays passing through the
are equal. In the case of an incident plane wave the star
points should be far to the left at equalDy intervals. In the
case of point antenna initial points for rays can be selec
just as easily, since near this antenna radiation emissio
isotropic.

One can find general agreement in the corresponding
tures, i.e., the incident plane wave is focused in the sa
regions and the wave emitted from the point source result
similar images. However, there are striking differences
both theories. The light rays defined according to the wa
theory, being the integral curves of a continuous vector fie
cannot cross each other~nor can any one of them cross itse
of course! as is shown in the top right segments of the p
sented figures. This property is completely different from t
behavior of rays in geometrical optics. This observati
leads to the reinterpretation of the image formation in wa
optics.

FIG. 1. Focusing of a plane wave by a cylindrical lens in wa
and geometrical light ray optics. Normal wave incidence,a
515l, nd5A1.7.
0-5
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WŁADYSŁAW Ż AKOWICZ PHYSICAL REVIEW E 64 066610
In wave optics the flow of electromagnetic flux as well
the density of the field energy become more dense in s
regions of the space. Such regions, where the separatio
light rays are very small, can be identified as the images
the sources located on the other side of the lens. The fact
the focus is not a point but a rather extended region in sp
is evident as well. There are some other differences betw
geometrical and wave rays.

One of the most ubiquitous and beautiful effects appe
ing in optical instruments are caustics, analyzed usu
within the geometrical optics and/or theory of catastrop
@5,34,16#. In our pictures of the wave-optical rays, the cau
tics behind the cylinder are visible as well. They cannot
defined as the envelopes of bundles of crossing rays sinc
wave optical rays do not cross. The caustics appear, howe
as the regions of enlarged density of rays at the boundarie
the beam of rays, see Figs. 1 and 2.

Near the boundaries and light concentration regions
wave light rays may become quite complicated, looking
parently erratic, though in geometrical optics the light sho
propagate along straight lines in homogeneous media.
wave ray flow approaching the focal region of image sp
with all its wiggles, is much different from the rather smoo
departure flow. The behavior of fields in this region w
intensively studied within diffraction-based theories start
from the numerical calculation of a diffraction integral pe
formed by Pearcey and co-workers@14,34,5#. These results
have usually been illustrated by drawing the magnitude
phase contours of the electric field. To compare our res
with those earlier works, we include figures showing t
contours of equal magnitude of the Poynting vector, see F

FIG. 2. Focusing and image formation of a cylindrical wa
emitted at the distancer 0 from a cylindrical lens in wave and geo
metrical light ray optics. Normal wave incidence,a515l, nd

5A2, r 0540l.
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3 and 4. Figure 3 illustrates rather well the focusing prop
ties of the cylindrical lens with the shadow region and brig
and dark speckles distributed inside the lens along its bou
ary. A magnified part of Fig. 3 covering the focal regio
together with an adjacent part of the lens is shown in Fig
It evidently resembles analogous figures~as well as photo-
graphs! obtained with the help of the Pearcey integral a
described as the cusp diffraction catastrophe shown
@34,15,5,16#, although our approach does not use either d
fraction integrals or any approximate diffraction theory at a

Another interesting region is located near the bounda
where the rays approach the cylinder at grazing angles
groups of rays split into two bundles, one passing by
cylinder and the other one refracted by the lens. Our mo
allows for detailed study of the mechanism of this splitti
process.

B. Rays in the shadow region

We observe that the beam of wave-optical rays splits its
in some regions close to the boundary of the cylinder. O
set of rays enters the cylinder and is refracted, while ano
flows round the lens. Between these two parts there i
region of low intensity.~Both groups of rays eventually com
again together at a large distance from the cylinder.!

The standard geometrical optics does not allow the ray
enter the shadow regions. However, from the solutions to
Maxwell equations it follows that there exist non-vanishi
fields in these regions. The time-averaged Poynting vecto
nonzero as well, and the wave-optical rays can be evalu
and studied.

Figure 5 shows a sample of several characteristic tra
tories near the upper boundary of the lens where the

FIG. 3. Shaded contour plot of constant modulus of the Po
ting vectoruSu ~contours themselves are removed! for a cylindere
52, a530l, and plane-wave illumination.
0-6
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LIGHT RAYS AND IMAGING IN WAVE OPTICS PHYSICAL REVIEW E 64 066610
bundle splitting takes place. Some of these trajectories
clearly closed. There are other curves that, while starting
the source and going to infinity, meander and wind in a co
plex manner. The following section will be devoted to a d
tailed investigation and interpretation of such complex
havior.

Let us remark that in spite of sometimes erratic behav
of the flow lines mentioned above, the numerical integrat
is stable and on reversing the integration~i.e., performing it
‘‘back in time’’ ! one follows the same trajectory.

The flow lines can neither intersect, nor join nor sp
apart. The latter fact is a mathematical consequence of
unique dependence of solutions of a system of differen
equations on initial conditions. Indeed, the vector field of

FIG. 4. Details of Fig. 3 in the focal and internal caustic regio
Intensity pattern equivalent to a cusp diffraction catastrophe of@34#
outside the cylinder lens is visible.

FIG. 5. Details of the upper part of Fig. 2 in the shadow reg
with families of meandering and bounded rays.
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time-averaged Poynting vector is continuously differentia
~even real analytical! in the whole space except the bounda
of the lens. Thus, it satisfies the Lipshitz condition. The
fore, the Picard theorem implies that the integral curves
the Poynting vector cannot intersect~cf., e.g., @35#!. There
are specific points—the saddle points of the phase—at wh
two or more wave-optical rays seem to meet. This does
mean, however, that the rays actually intersect. There is
possibility for one ray to reach a saddle point and to leave
The saddle points cannot be reached by the wave-optical
for any finite value of the parametert. There are rays tha
approach these points asymptotically to cross att→6`.
~Such rays called separatrices will be more thoroughly st
ied below.! In other words, one might say that a trajecto
attempting to cross itself at a point does not contain o
piece only. There are at least two pieces that can join only
infinite pseudotimet.

IV. PROPERTIES OF LIGHT RAYS,
EQUAL-PHASE CONTOURS, AND FIXED POINTS

It is clear from Fig. 5 that the flow of rays can be ve
complicated. We may expect that the ray pattern becom
simpler for smaller radius of the cylinder. In what follows w
shall consider in more detail a cylinder of the same refract
index but smaller radius to grasp more efficiently the ess
tial properties of the light structure. The analysis of rays w
be completed by investigation of equal-phase surfaces
are more frequently used in the studies of light propagat
through optical instruments and other optical systems@1#.

A. Islands in the stream of Poynting curves
in the shadow region

For a cylinder with radius 5l ~i.e., three times smalle
than in Fig. 5!, we have plotted a very dense beam of ra
~the source of light is still the line source! passing close to
the boundary of the cylinder in Fig. 6. We observe the pr
ence of ‘‘empty’’ or ‘‘white’’ islands with well-defined
boundaries. They are inaccessible to the trajectories sta
from the source. To investigate what happens in these isla

.

FIG. 6. Flow of an initially very dense bundle of rays—select
from all the rays emitted by the point source—in the shadow
gion; the overall picture of the bundle splitting and formation
void islands is provided; the parameters area55l, nd5A2, r 0

512l.
0-7
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WŁADYSŁAW Ż AKOWICZ PHYSICAL REVIEW E 64 066610
we need to analyze additionally the equal-phase contours
the stationary points of the flow. Let us note that the equ
phase contours and stationary points are the very basic
jects of important works dealing with the fine structure
light using the eikonal approximations and catastrop
theory @5#.

In Fig. 7 the wave-optical rays and the equal-phase c
tours are plotted for the half-plane above the optical a
The phase contours are obtained by integration of Eq.~14!. It
is clear that these contours~dashed lines! are perpendicular
to the rays~solid lines!, as should be the case. In the vicini
of the source they are almost circles, but in the cylinder a
behind it, its form is very different and sometimes windy. W
have started integration of Eq.~14! from the optical axis~in
all cases we have checked that the phase along them i
deed constant, which has been another test of the accura
our solutions!. It turns out that in many cases the integrati
terminates and it is not possible to continue it further. Sta
ing integration from the top toward the bottom results in
similar termination of some contours at certain points. It
interesting that all the equal-phase curves starting in cer
interval can terminate at the same point. We have found
such points are actually the stationary points of the fl
defined by Eq.~13!. Most of the stationary points are locate
in the regions empty of rays coming from the source. It
important, however, that in these regions the fields, the Po
ting vector does not, in general, vanish and the phase is
defined with the exception of some points. Therefore, b
the wave-optical rays and the equal-phase lines can be
ted. The structure of flows in the transient~‘‘ray beam-
splitting’’ ! region will be analyzed below.

B. Rays, phase contours, and fixed points
for small lenses and line source—transient region

Figure 8 provides a picture of both unbounded a
bounded rays in the transient region. The former ones s
from the source and escape to infinity, although they w
and meander when passing through the transient region.
sociated equal-phase contours and stationary points are
plotted.

Figure 8 indicates that the stationary points can be divi
into two classes, the first one consists of the vortices~V! and
the second one are the saddle points (S). We can also distin-
guish vortices that correspond to clockwise (V1) and
counter-clockwise (V2) vortex flow. One can associate a t

FIG. 7. Wave-optical rays~solid lines!, equal-phase contour
~dashed lines!, and stationary points in the upper half-space for
same system as in Fig. 6.
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pological charge to each vortex, and the equal-phase c
tours can join only the vortices with different charge~cf.,
e.g.,@36#!.

It is visible in Fig. 8 that the vortices form attractive ba
sins for equiphase curves in certain ranges of phase va
There are rays that start initially very close to each other
one of them just goes without rounding a vortex, while t
other one flows round it. It might be expected that the ph
relation along these two rays is completely broken af
rounding the vortex by one of them. This is not the ca
however, since the change of phase after rounding the vo
is equal to an integer multiple of 2p.

C. Bounded structures of the flux

The apparently void island seen in Fig. 6 is display
again in Fig. 9 but with the bounded rays, equiphase curv
and stationary points. It is clear that the island is actually
‘‘void’’; the solutions of the Maxwell equations show that th
field intensities and the Poynting vector do not vanish a
the wave-optical rays exist. The rays form, however, clos
loops rather than unbounded curves.

Thus the ‘‘void’’ island is full of bounded, periodic trajec
tories, and plenty of stationary points, and is contained a

FIG. 8. Detailed structure of the flow in the bundle-splittin
region for the same parameters as in Fig. 6. Both bounded
unbounded rays~solid lines! are shown. Black (V2) and white
(V1) small circles denote the stationary points~corresponding to
vortices! of opposite topological charge. Crosses~S! denote saddle
points. The vortices are attractors for equiphase lines~dashed lines!.
The equiphase lines can join only vortices of opposite ‘‘charge.

FIG. 9. Detailed structure of the flow in the void region of Fi
6. Nested families of bounded rays are shown.
0-8
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LIGHT RAYS AND IMAGING IN WAVE OPTICS PHYSICAL REVIEW E 64 066610
whole within a large-scale periodic ray. Some vortices te
to group in pairs of stationary points with opposite topolo
cal charges, such pairs are assisted by pairs of saddle po
However, some single vortices are present as well so
total topological charge of the island is nonzero.

D. Ray separatrices

The plethora of wave-optical rays shown in Figs. 8 an
seem to avoid the stationary points, especially the sad
points. There are, however, some special rays that asymp
cally approach the saddle points. These rays separate fl
of different kinds. In the theory of dynamical systems@35#
they are called separatrices. The separatrices can reac
saddle points for infinite values of the ‘‘pseudotime’’t. Two
or more such separatrices that approach a single saddle
seem to intersect each other. They are in fact disconne
and there is no single dynamical trajectory passing throug
saddle point, which could be obtained by integration of E
~12!. Indeed two or three independent integrations of t
equation are needed to obtain the full collection of ray se
ratrices attached to saddle points~three for unbounded ray
separatrices and two for bounded!. They have to start from
points slightly displaced from the saddle points and one
to integrate both forward and backward int. The shape of
any remaining ray is determined by two separatrices emb
ing it. Like all the other rays, the ray separatrices do
cross each other so that they can meet at one saddle
only ~at t56`).

All ray separatrices and stationary points that have b
found in a region close to the boundary of the cylinder
shown in Fig. 10. This figure as well as Figs. 8 and 9 sh
that every saddle point can be associated with the co
sponding vortex point. Not all data presented in Fig. 7 see
to confirm this property. However, this property is true; on
due to the scale of the figure some vortex points and sa
points overlap. Figure 11 shows the vortex and saddle po
together with equiphase lines and separatrices for the m
right-hand vortex dot of Fig. 7. This figure looks almo
identical to Fig. 11 of@17# that was considered as a gene
example of a wave edge dislocation. Our discussion sh
that such simple pattern of the energy flow may occur only
the vicinity of an isolated vortex point—saddle point pair.

FIG. 10. Collection of all separatrices for an upper part of
cylindrical lens of Fig. 6. The lens is illuminated by a point sourc
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In addition to the light ray separatrices and equipha
lines this figure shows an object—equiphase separatri
These equiphase separatrices determine boundary for d
ent basins of the equiphase lines. This example shows
the saddle point, similarly as for the ray separatrices, is a
a meeting point for the equiphase separatrices.

The following subsection discusses the equiphase sep
trices in a region with many stationary points.

The number and location of stationary points is not
intrinsic property of the cylinder lens. It depends on the e
tire optical system that includes the sources of radiation.
moving the point source one can change the position of th
points, hence the form of separatrices, which, in tu
changes the shape of the rays.

E. Equiphase separatrices

The equiphase contours can be divided into differ
classes by the equiphase separatrices. The equiphase
and separatrices play a similar role to the wave rays and
separatrices that characterize the light flow. An example
equiphase separatrices~bold dashed lines! with background
of ray separatrices~thin lines! is shown in Fig. 12.

All equiphase separatrices are obtained integrating
~14! in the forward and backward directions oft, starting
tfrom two points displaced infinitesimally in opposite dire
tions from the saddle points. This way four equiphase se
ratrices attached to each saddle point can be found. The
cedure is similar to that used in the case of ray separatri

These equiphase separatrices extend either to the ne
boring vortex points or to the points on the optical axesy
50. The end points on the optical axis can lie to the right
the light source atx.x0 or, for equiphase lines encompas
ing the light source, atx,x0.

.

FIG. 11. Separatrices and equiphase lines for the isolated vo
saddle points pair. The same system as in the four previous figu
0-9
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WŁADYSŁAW Ż AKOWICZ PHYSICAL REVIEW E 64 066610
The equiphase lines are always staying in the correspo
ing basins enclosed by the equiphase separatrices. They
extend either between the vortex points of opposite cha
or between the two points on the optical axis placed on
two sides of the source. The second case occur, for exam
for equiphase circles surrounding the source in its vicinit

F. Fixed points for the large cylinder

On having obtained the necessary experience by ana
ing small cylinders we can reconsider the light propagat
along a bigger system, to the one presented in Figs. 1, 2,
5 ~radiusa equal to 15l). The number of fixed points rapidly
grows with the radius. In the upper half-plane displayed
Fig. 13, the number of stationary points is larger than 30
Most of the singularities are concentrated in the annulus n
the surface of the cylinder. In addition, there is a family
fixed points along the rim of the focused bundle of rays,
shown in Fig. 14. There is a clear correspondence betw
the positions of~groups of! stationary points in Fig. 13 and
the form of the rays from Fig. 5. Also, the irregularities in th
rays near the ‘‘entrance’’~front! surface and ‘‘departure’’ sur
face of the cylinder in Fig. 2 are evidently connected w
the region in which there is plenty of stationary points. T
stationary points close to the optical axis in Fig. 13 en

FIG. 12. Equiphase and ray separatrices in the multistation
points region. The same parameters as in the last figures.

FIG. 13. All stationary points and their influence on the flow
the rays for a larger lens for the set of parameters of Figs. 2 an
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deeper towards the center of the cylinder and may thus
associated with a cusp of a caustic~compare Fig. 17 below!.
It is interesting that the stationary points are present on
optical axis as well, but there are no such points close to
position of the image of the source~see Fig. 14!. At the
image distance the stationary point is moved out of the a

As in the case of the smaller lens, the shapes of r
propagating through the optical system are determined
separatrices. The number of separatrices is very large a
does not seem useful to show them all. Their shape is sim
to that shown for the smaller system. The loop part of m
of them is of very small size, such that only one vortex po
is included. There are, however, separatrices with large lo
embracing several tens of stationary points as well as m
bounded ‘‘internal’’ separatrices. Figure 15 presents th
largest separatrices located at the top of the cylindrical s
face. It is interesting to notice that, as in the case of sma
separatrices~Figs. 8–10!, the large ones can form pairs wit
opposite vorticity of members of the pair.

V. RAY STRUCTURE AND FIXED POINTS
FOR GAUSSIAN BEAMS

It has been observed by Karman and co-workers@19,18#,
that the structure of stationary points~phase singularities in
his language! is strongly dependent on the type of source.
particular, they investigated in detail~both theoretically and
experimentally! the case of a truncated Gaussian-beam i
mination and the light structure in the focal region. One
their conclusions was that both the ‘‘creation’’ and ‘‘annih
lation’’ of phase singularities can happen when proceed
from uniform to Gaussian illumination.

Let us now consider the case of the Gaussian-beam

ry

5.

FIG. 14. Details of the structure of rays, equal-phase conto
and stationary points in the focal region; parameters are the sam
in Figs. 2 and 5.

FIG. 15. Selected large-scale separatrices for the same syste
in Fig. 5.
0-10
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FIG. 16. Wave-optical rays and equal-pha
contours for the Gaussian-beam illumination. T
parameters area515l, e52, w52.
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mination. This can be a good model for light beams p
duced by many laser sources. In order to find out effects
visible in the case of point source and plane wave, the w
w of the Gaussian beam cannot be either too large or
small. Indeed, ifw were too large, the whole picture woul
be very similar to the case of the plane-wave illumination
w were too small, the beam would spread out very fast
sembling the point source pattern. But for an intermedi
value of w, i.e., lr 0 /(2a),w,a, the entire incident beam
passes through the cylinder. A large portion of the scatte
light stays outside the incident beam and, therefore, can
visible. The general pattern of the light scattered by the c
inder, including the rays and equal-phase contours, is sh
in Fig. 16. The parameters of the position of the source
of the lens are the same as in Fig. 2. The light rays are sta
to keep equal fluxes between the subsequent lines. Com
ing Fig. 16 with Fig. 2 we observe that the rays flow in
very regular, smooth way while the equal-phase contours
side the beam resemble those usually drawn for Gaus
beams. Most of them are terminated just out of the bundle
the rays of Fig. 16 since the intensity falls off exponentia
and the right-hand side of Eq.~14! becomes extremely smal

In Fig. 16, one very distinguished feature is present. T
reflected rays appear, scattered at large angles. In the ca
the other two sources considered in this paper, these la
angle scattered rays are hidden due to the overwhelming
tribution of the incident beams. But the incident Gauss

FIG. 17. Geometric-optics rays starting at a point source. T
rays that had been internally reflected one time are visible includ
those contributing to the rainbow.
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fields decay rapidly thus making possible the clear appe
ance of the reflected rays. The reflected rays shown in
16 correspond to a multiple-reflected geometro-optical
contributing to the rainbow, as can be seen by compari
with geometrical-optics drawing of Fig. 17.

The smooth and regular flow of rays in the case of
Gaussian beam does not mean that there are no statio
points. They are, however, located outside the dominant
of the beam, cf. Fig. 18. A part of them bounds the be
before it enters the cylinder. There is an interesting osci
tory structure in the vicinity of the reflected ray. Lots of fixe
points are present within the cylinder outside the beam an
seems that behind the lens and close to the optical axis t
is a similar group of these points as in the other illuminatio
shown in Fig. 14. One cannot, however, consider these
sults to be complete.

VI. INTENSITY AND PHASE PROFILES
ALONG THE OPTICAL AXIS

Our approach enables us to show the properties of b
the intensity and phase of the fields~which are often dis-
cussed in a similar context! along the optical axis. The phas
is specified asF5arg(Ez).

For the case of the point source, Fig. 19, the intensity
very rapidly oscillating function of position along the axi
The change in the oscillation pattern close to the bounda
of the cylinder clearly correspond to the structure of statio
ary points shown in Fig. 13. A similar change of pattern
evident in the position dependence of the phase, which va
rapidly in the same regions. Beyond the cylinder, we ha

e
g FIG. 18. Stationary points of the flow for the Gaussian-be
illumination. All the parameters are as in Fig. 15.
0-11
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WŁADYSŁAW Ż AKOWICZ PHYSICAL REVIEW E 64 066610
found only one point of the phase anomaly close to the p
x/l;33 ~see Fig. 14 for a comparison!. To our surprise, we
have not detected any phase jump close to the image reg

For the case of Gaussian beam, the analogous inten
oscillations are much smaller as shown in Fig. 20. The
havior of phase is very regular except the small irregulari
at x/l;7 that one may possibly associate with t
geometro-optical cusp occurring in Fig. 17. Again, there
no phase jump either at the source or at the image posit

VII. IMAGE FORMATION OF EXTENDED OBJECTS
IN WAVE OPTICS

We have stressed several times that the wave-optical
as defined in this paper cannot intersect. But then the foll

FIG. 19. Intensity and phase along the optical axis for the po
source case.

FIG. 20. ~a! Intensity of the field for the Gaussian-beam illum
nation along the optical axis.~b! Phase distribution along the optica
axis for the Gaussian-beam illumination.
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ing question arises: how is it possible to get the inver
images of objects, which is usually obtained in the geome
cal optics by a construction that requires the crossing
rays? Another important question is, how to get the wa
optical picture of multiple reflection inside the cylinder? Th
former one will be discussed in this section, while the lat
in the following one.

To answer the first question in the simplest way, we d
cuss the wave-optical rays from two point sources located
the vicinity of the cylinder. Let us for a moment assume th
the sources are coherent—they oscillate with the same
quency and the phase difference is fixed. The total fields
superpositions of the fields irradiated by each source, and
interference effects clearly have to be present. The rays m
not be, of course, simply ‘‘added,’’ but should be obtain
from the total electric and magnetic fields and the cor
sponding Poynting vector.

The flow of the wave-optical rays case is displayed in F
21~a!. The rays start at both the emission points. If there w
no lensing cylinder, the density of rays would form interfe
ence fringes around the system. The cylinder itself gives
to the image of the sources in a very peculiar way. The r
starting at the more distant source do not have any chanc
reach the cylinder at all. Only the rays starting at the clo
source enter the cylindrical lens. In spite of this fact, tw
distinct ray concentration spots are apparent correspon
the source images as is clear by comparing with the g
metrical construction shown beneath@Fig. 21~b!#. Thus, the
information on the second source is ‘‘recorded’’ and co
tained in the rays originating at the closer one. The visibil
of images of the sources becomes better for larger cylin
size as it gathers more radiation rays. Thus the contrast

t

FIG. 21. ~a! Wave-optical rays for radiation from two poin
sources scattered by the cylindrical lens. Formation of inverted
age by the enlarged concentration of rays is shown.~b! The same
image formation according to the geometrical optics.
0-12
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LIGHT RAYS AND IMAGING IN WAVE OPTICS PHYSICAL REVIEW E 64 066610
tween the image spots and the surrounding regions is be
Figure 21~a! has been drawn for zero difference betwe
phases of the two sources. In the case of nonzero differe
the individual rays could look differently, but the concentr
tion spots would stay at the same places so that the co
ence of two sources assumed above does not matter.

VIII. MULTIPLE-REFLECTED AND REFRACTED RAYS

To address the second important question posed abov
consider multiple reflections inside the cylinder. In geome
cal optics such multiple reflections obviously lead to t
~multiple! ray intersections. Now, our wave-optical rays ca
not cross. To solve this puzzle, let us consider a Gaus
beam entering the cylindrical lens noncentrally. Figure
shows the modulus of the Poynting vector~not yet the rays!
inside and close to the lens. The shades of gray ranging f
white to black are proportional to loguSu and cover the range
of 40 dB of relative intensities to highlight the small inte
sities of multiple-reflected beams.

The presented exact solution shows in a natural way
multiple reflection and transmission~corresponding to Clas
1 - Class 5 of rays in@20#!. There is no need for any extr
assumptions or constructions. Parts of the reflected beam
ter two and three internal reflections are very important
they contribute to the rainbow. Every reflection takes in
account the curvature of the reflecting cylindrical surface
cluding the focusing properties~such as in a composite op
tical system!. However, Fig. 22 itself does not yet solve th
‘‘intersection’’ puzzle.

Only a picture of wave-optical rays themselves can le
to the solution. It is shown in Fig. 23, again for the Gaussi
beam illumination entering the lens from the left-hand s
with a nonzero impact parameter. In the entering bundle
rays there is a splitting into sub-bundles corresponding

FIG. 22. Shaded contour plot of constant modulus of the Po
ting vector (log10uSu) ~light intensity shades; contours themselv
are removed! for the noncentral Gaussian-beam illumination. Mu
tiple refraction and reflections are apparent. The position of
waist of the beam~units of l) is x050, y0525, the width of the
beamw54, the radius of the cylindera/l530.
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direct reflection, direct transmission, as well as to single a
double internal reflections. The picture is not complete, ho
ever, unless we draw the ‘‘circulating’’ rays that do not orig
nate in the entering bundle. The bundle of rays of Class 3~cf.
@20#! consists of the circulating sub-bundle and a periphe
part of the incident bundle. The fact that these two parts fi
well is truly astonishing. These two examples show that e
in the situation in which we could expect the crossing
trajectories, they find their way to avoid any intersection.

IX. FINAL REMARKS

This discussion shows how the solutions of Maxw
equations for various electromagnetic radiation beam pr
lems or external source problem and their scattering b
dielectric cylindrical lens may illustrate all optical effec
involving light propagation. It is possible to account for r
flections, refractions, focusing and image formation, appe
ance of caustics and foci, waves’ interference and diffracti
etc. Usually such effects are treated in the approximate th
ries referring either to geometrical or diffractive optics. T
long history of research in optics resulted in well develop
and understood accurate analytical methods and the qu
of optical instruments is the best proof of the value of opti
theories. However, I do believe that the present discuss
using explicit solutions for the fields has revealed interest
properties of classical electromagnetic radiation.

Taking these findings into account, we may conclude t
the concept of rays is still very well defined in the full wav
theory. What is more, these rays may be used to find
images of objects formed by optical devices. The images

-

e

FIG. 23. Wave-optical rays for the same illumination and p
rameters as in Fig. 22. It is clear that the rays do not intersect.
rays corresponding to the double internal reflection are forme
inside the lens—by the ‘‘circulating’’~periodic! rays, which are thus
necessary to obtain the full picture of scattering with multiple
flections.
0-13
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regions in space where the density of rays becomes la
Also, we argue that the ray concept is not less useful in
full Maxwell theory than in the geometrical optics. The im
ages of objects provided by optical devices can be rigorou
obtained by tracing the rays being integral curves of
Poynting vector. It is to be noted that the tracing of ‘‘phys
cal’’ rays, that is, the integration of the Poynting vector fie
must be performed with extreme care. Indeed, the rays
not segments of straight lines, and they can even be q
erratic. This is obviously connected with the properties of
phase of electromagnetic field that can be an extremely c
plicated function of a position in space.

It is to be noted that the geometrical rays are se
determined and can be plotted without any knowledge of
fields. In fact, they can be specified with the help of a f
simple rules and equations even for multicomponent sour
On the other hand, the wave rays discussed in this pape
not self-defined and require first the solution for the field in
given problem. Only after these fields are known the wa
rays can be determined. Thus, the wave rays allow to re
sent and illustrate in full richness the wave properties of li
and can be compared to the properties of geometrical ra
,

-
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Concluding this discussion one can pose some interes
and fundamental questions to be addressed in the future
particular, when the rays are not straight lines but can
come quite complicated curves, what is the meaning of
‘‘optical path’’ in wave optics? Moreover, how can we fo
mulate a wave-optical version of the Fermat principle,
that the curves of energy flow would provide the solution
a corresponding variational problem? Besides, we beli
that the above discussion can be useful for investigation
more complicated systems, as, e.g., a dielectric sphere
real electromagnetic fields requiring 3D analysis. In fa
even a dielectric cylinder would lead to 3D problems if t
incident beams were finite in the two transverse direction
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