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Optical pulse propagation and holographic storage in a coupled-resonator optical waveguide
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We propose a method of storage and reconstruction of a classical light pulse based on photorefractive
holography in a coupled-resonator optical wavegyidBOW). Pulse propagation in a CROW is described in
the context of the tight-binding approximation; the use of a CROW results in a large reduction of the group
velocity, which is important for spatial compression of the optical pulses. Further, the efficiency of the pho-
torefractive effect is enhanced in a CROW, enabling quasistatic holographic grating formation using much
lower intensity optical pulses. We describe in detail the formation of a photorefractive index grating in a
CROW via interference with a reference pulse and the subsequent holographic reconstruction of the signal
pulse.
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Single pulse holographic recording requires strong nonlinby a linear dispersion relationshjg]. The results and nota-
ear properties which are not available with ordinary materition established here will be of importance in the subsequent
als, since the hologram has only a short time and a limitedliscussion of pulse propagation in a CROW.
amount of energy in which to form. The highly nonlinear  Consider an input pulsé(z=0;) described by
properties of ultracold atomic vapors form the basis of one
approach which was demonstrated receftly In this paper, &(z=0t)=¢€'“0'E(z=0}) Q)
we investigate the possibility of recording and reconstructing
holograms of optical pulses using the recently proposed 1 _ _
coupled-resonator optical waveguit@ROW) [2]. A CROW =e"”°t2—f dQ E(z=0,0)e'™, 2
consists of an array of weakly coupled highresonators, &
leading to very high optical intensities even at moderate ~ . .
(propagating power levels—exactly what is required for ho- where E(z=0,}) is the Fourier transform of the envelope
lographic recording. In the paper, we will find that in spite of E(z=04):
the discrete localization of an optical field at the individual
resonators, it is still possible to reconstruct faithfully the sig- E(z=OQ)=f dt E(z=0pt)e 1, @)
nal pulse which is recorded in the hologram. ’ '

The particular structural realization of the CROW that we . ] ) )
consider is shown in Fig. 1, in which the individual resona-The field at a distance expressed a§(z,t), is obtained by
tors consist of defect cavites embedded in a two-multiplying each frequency componentwd+€) by
dimensional(2D) periodic structurga 2D photonic crystal —€XH —ik(wo+€2)z],

[3]). In our later discussion, the material of index will be

ass_,umed to b_e photorefractive.g., GgAﬁs and_ the_ material 5(Z,t):eiwotif dQ E(z=0,0)e/ e k@0t 0z (4
of index n; will be assumed to be air, for simplicity. Note 2w

that the defect cavity is then composed of photorefractive

material, and the simultaneous presence of two optical fields -——  unitcell R
in this region will induce a photorefractive index grating
which can be used for holography. In order to describe the O 00 O 000000
holographic storage and reconstruction of an optical pulse, OO0 O O OO0 O O OO
we first need to understand how an optical pulse with a <+ O O O O0:0 O OO -
known free-space description propagates in a CROW, i.e., O O O O 0o O O\O O
the form of the fields that write the index grating. Q/@ O O OO0 OO O
Z
|. PULSE PROPAGATION IN A CROW )
ny ny —_—z defect cavity

We briefly review the theory of optical pulse propagation FIG. 1. Schematic of a photorefractive CROW realized by a
in the simplest of waveguides—one described satisfactorilyoupling of the individual defect cavities in a 2D photonic crystal,
comprised of a photorefractive dielectric medium with high refrac-
tive index n, and a nonphotorefractive dielectric medium of low
*Electronic address: shayan@caltech.edu; URL: http://refractive indexn;. The structure is periodic in thedirection, with
www.its.caltech.edu/~shayan a spatial periodR.

1063-651X/2001/646)/0666026)/$20.00 64 066602-1 ©2001 The American Physical Society



SHAYAN MOOKHERJEA AND AMNON YARIV PHYSICAL REVIEW E 64 066602

wherek(w) is the wave vector at the optical frequeney 1 - o
(We use the sign convention of Ré#].) E(Z,t)=e""°tEJ dQ E(z=0,Q) ¢ (2)e'™
If we expandk(wg+ Q) nearwq as

dk :eiwotE e_ikoanﬂ(Z_ nR)
k(wo"l‘Q):k((vo)‘F% n

1
Q+..-Ek0+—Q+...,
g Ug

1 - ‘
) XEJ dQE(z=0,0)e U-(R/vgl (10

whereu is the group velocity of the pulse, and substitute ) o
this relationship into Eq(4), retaining terms up to the linear The term on the last line of the above expression is merely
terms inQ, we obtain the n-dependent shifted replica of the original input enve-

lope; it follows from Eq.(2) that

5(zt)=ei<wot—k02>ij dQ E(z=0,0)e'*(t-7vg) . . nR
2m &z,t)=g€'wot > e"‘O”Rw(z—nR)E(z=O,t—v—).
n

=gl(@ot koA E(z= 0t—2/vy). (6) i 11

This is the well-known resultRef. [5], pp. 322-32Bthat a In our description of the holographic process, we will

pulse propagates unchanged in shape in a weakly dispersiveed an expression for the spatial Fourier transféinmK

medium, apart from an overall phase factor, and that thgpace of £(z,t),

velocity of propagation is given by the group velocity of the

pulse vy defined from the dispersion relationship as in ~ B ks _

Eq. (5). 5(K,t)=f &z,t)e" K2dz=¢'®0 ; (K1), (12
As discussed by Yariet al.[2], we can describe a CROW

comprised of weakly coupled resonators with the tight- qre

binding approximation commonly used in solid-state physics

to describe electronic states in semiconductors with impurity

doping (Ref. [6], Chap. 10. There are slight differences in | (K,t)=e k"R

the treatment presented here as compared to/ Refn order

to make the correspondence between the usual description of _ nR

the tight-binding method in solid-state physics and the above = e"(K+k0)”RTp(K)E( z= O,t——). (13

description of pulse propagation more direct. The time- Vg

independent waveguide modeigenmodg of an infinitely

long CROW ¢, (z) with wave vectork is a linear combina-

tion of the (normalized high-Q modesi(z) of a large num-

ber of identical 'resonators located along #exis with inter- E(K,t) —¢ wotz e ikt K)nR@(K)E( 7=0t— @) _

resonator spacing: n g

nR
E(z=0,t——)
Ug

J dze *?y(z—nR)

Therefore,

(14)

d(2)= ; e "y(z—nR). (7) Equations(11) and(14) form the main conclusions of this
section, and describe pulse propagation in any medjam
'ticularly a CROW for which the eigenmodes are described
by the tight-binding assumptidreq. (7)], and the dispersion
relationship is approximately linear as in E§). It is known

that away from the band edges, such a dispersion relation-
ship fits a CROW quite well[2]. The formulation of
Egs.(11) and(14) in a structure of finite length is discussed
M f dz|2)|?=1. (8 inRef.[7]

We write ky as the wave vector corresponding to the cente
optical frequencywq as defined by Eq5), and normalize the
eigenvectors in a CROW comprised W identical resona-
tors:

Equation(7) may be written in terms of) rather thark Il. PHOTOREFRACTIVE HOLOGRAPHY IN A CROW

by expandingk(wo+{2) in a Taylor series nean, as in Eqg. If we design the CROW in a photorefractive medium, we

(5): can form a dynamic hologram of the signal pulse via inter-
ference with a reference pulse as shown in Fig. 2; the in-
¢Q(Z):Z e~ koRy(z—nR)e~1ONRIvg, (9) duced index grating persists in the photorefractive. medium
n after the pulses have propagated away and contains all the
necessary amplitude and phase informationdassically
For an input pulse of the form of Ed1), the field at a reconstruct the signal puld&]. In this paper we will carry
distancez, analogous to Eq4), is given by out an analysis for the scenario depicted in Fi@).2
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(@) y tion of the waveg8,9]. Using the inverse Fourier transform
volume hologram to write theK space fieldEqg. (15)] in terms ofz, the grating
is

t-z/vy

on(z,t')= Fiei(wl—wz)t’E % %e—i(Kl—Kz)z

0 n,m 27T 277

narrow X SNn(Kq,K,) e kit K)nRg=i(~kptKz)mR

ignal pul
signal puise reference pulse

XE;

nR mR
z=0t'—— E; z=L,t'——

U1 U1
t-z/v

(b) y X P(K)* (K,)+c.c., (16)

volume hologram

signal pulse AN where F is the total optical power. We assume that this
grating persists temporally, so that at a later timén(z,t)
=én(z,t") and we can relabel the temporal coordingtéo
tin Eq. (16) to describe the reconstruction process. We will
narrow 7 5 only focus on the term in Eq16) written out in full, with th.e
reference pulse remark that analogous results hold for the complex conjugate
term (written in Eq.(16) as c.c—this term will ultimately
give rise to a field propagating in the direction opposite to
FIG. 2. Schematic diagram of the volume holography usingihgt of £, and is not of interest in this discussion.
pulse §ollisi0n recording in(@ a counterpropaga.ting geometry We use a backward-propagating reference péléet) to
(reflection-type holographyand (b) a copropagating geometry i, minate the grating, and preserve its distinction from the
E;rg]nsmlssmn-type holographyAfter Fig. 15.3 in Fainmaret al. reference pulse at the time of grating formatiés(z,t) to
' maintain the generality of this discussion. At a later stage, we
will assume that these two pulses are in fact identical, and

) simplify the expressions appropriately. We can wété€z,t
We will use the symbol$’ andt to denote the temporal ;. tr?ef)léourier gomain usin%quF:)M): y ez

coordinates at the time of writing the hologram and at the
time of reconstruction, respectively. In genetakt’ — T for
some time intervall. Based on the geometry shown, we dK
assume that two pulseg(z=0t') and&,(z=L,t") are in- Z(K, )= f —gletD g ik TK)PR
put at the two opposite ends of a CROW. The pulses propa- 2m p

gate in opposite directions with wave vectdes and — ks, R

and group velocities; andv, respectively. The total field ><~z,b(Kr)Er(z=L,t—p—). (17)
&(z,t") is given by the sum of the fields due to these two r

pulses, and, irK space, can be written as

Upon illumination by&,(z,t), the polarization driving the
propagation equatio8] for the reconstructed fielf(z,t) is

E(K,t/)zeiwlt’z ei(kl+K)an~p(K)El(Z:01,_ f) given by
n Ul
+eiw2t’2 ei(k2+K)m%(K)E2(Z:L,t’_@), P.(z,t)=6n(z,1)E (z,1). (18
m 1)2

(15  The evolution of the reconstructed fieftd(z,t) will follow
that of the original signal fiel&;(z,t) if this polarization
analogous to th&K-space representation of a single pulse,[Eq. (18)] can be shown to be proportional §(z,t); the
[Eq. (14)]. multiplicative constant in this relationship includes the third-
The holographic gratingn(z,t’) is produced by the in- order susceptibilityy(® rather than the linear susceptibility
terference pattern of the spectral components of this ffeld ~ y(»), since the gratingin(z,t) given by Eq.(16) is propor-
example, aK, andK,) weighted by a complex proportion- tional to the product of two optical field$].
ality coefficient 6n(K,K,) which represents the photore-  We can multiply both sides of Eq18) by exp(-iK2),
fractive coupling coefficient between two plane waves de-and integrate ovez to write Eq.(18) in Fourier-transformed
fined byK,; andK,. This coefficient depends on the material K space. In doing so, we use Eq&6) and (17), which de-
properties, the orientation of the medium, and the polarizascribe the grating and the reference pulse, to obtain
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1 . dK,; dK, dK
T - ailwg—wyt ot e T
Pe(Ke,t) Foe ' r n%p 27 27 27

5ﬁ(K1,K2)U dZé(Kl_K2+Kr_Kc)Z]

x e ikt Kl)nRe—i(—errKr)pRei(—k2+K2)le"p(Kl)~¢(Kr)l7j* (KZ)E]_( 72=0t— E)
U1

R
7= L,t_ p_
Uy

xE, Eil z=Lt— —

U2

(19

mR).

The phase-matching integral ovecan be approximated by25(K,—K;) §(K,—K,), and we can carry out the integrals
overK, andK;. We write K, =K’ andK.=K to generalize the notation. In order to focus the discussion on a holographic
reconstruction of the signal pulse, we now assumeBh@=L,t) =E,(z=L,t")|;/~;, k;=K,, o,=w,, andv,=v,, i.e., we
use a replica of the reference write-in pulsg(in the original temporal coordinateé) as the reference reconstruction pulse.
Then, Eq.(19) becomes

1 dK’" .
f—ﬁn(K,K’)

~ ) . nR
Pc(Kc,t)=e'“’l‘§ e'(kl*Kl)””&(Kl)El(Z=0,t——) nFo) 27

U1

_ Neb , ~ R mR
XZ e i(=ka+K)pRai(—kp+K )mR{b(K/)w*(KI)E2<Z:L,t_ IIJ}_) E;(Z: L,t— U—)} (20
m,p 2 2

The term in square brackets in HEO) can be written as - , _ ,
gz(K/’t):EOelwztE eI(—k2+K JmR
m

_ 1 dKI ~ ’ ’ * !
[...]_ﬁjﬁan(K,K )G(K',1)G* (K1), 3 mR
(21) ><¢(K’)5(t—t0— U—z) (27)

where ) o ) i
Next, if the individual resonator modes are highly localized,
_ , R 7)=8(z—2,), we can write

G(K’,I)ZE e i(—ka+K )DW(K,)EZ(Z:L,I—S—» (2) = o( 0)

P 2

(22) UK YFR (K = E12] ]2 —i(—kp+K')(m-m')R
E(K' DE (K ) =Eol? [§f? X e'(He
m,m’

We can multiply G(K',t) by exp{w,t) without changing

Eqg. (22). mR m'R
Then, using the relationship established in Ed), X| 6| t—to— o, ol t—=to— el
Po(K, D) =Z1(K,1) Xh(K, 1), (23 28)
where For cumulative power transfer over a finite time interval, as

given by integrating the above expression over a region of
1 dK’ . S a2 comparable to or greater th&v ,, the term in square brack-
h(K't):FFOJ ﬁﬁn(K'K &K% (24 ets in Eq.(28) can be replaced by the Kronecker defta,, ,
and the result is
We assume that the photorefractive properties of the

CROW characterized byn are spectrally nonselective: S(K' DES (K 1) =|Eg|? ¢°M, (29

on(K,K")=ons(K—K")  forall KandK’. (25  \hereM is the number of resonators. Using the normaliza-

ti lationship Eq(8), implify Eq(24),
Further, we assume that t{backward-propagatingrefer- lon refationship Eq(8), we can simplity Eq/(24)

ence pulses are intense and narrow, i.e., the input free-space

reference pulsé€,(z=L,t) is given by h(K.t)= 1 5ﬁ|E 2 (30)
Um0

E(z=L,t)=€e“2'Ey8(t—ty). (26)
The corresponding field in the CROW is given by Ef4): which is a constanth, and therefore,
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ﬁc(K,t)=ﬁZ€1(K,t). (31) the yvavgguide. A CROW dgsigned.for a facto_r of $de-
duction in group velocity will permit a Gaussian pulse of

. L . temporal duration 150 ps to be completely contained in a
This shows that the polarization term driving the avgguide of length 108Lm. pletely

evolutipn of t_he reconstructgd pulse is indeed _propor'Fiona Photorefractive holography of single pulses has been
to the input signal pulse, as it would be for the input S'gnaldifficult because of the low efficiency of the process,

pulse itself. Note that the scaling constant is depende nd usually, multiple write-in procedures of thousands of

on the intensity of the reference pulse, but for weakio eateq pulses are necessary to obtain a sufficiently

signal pulses, the total field intensity is dominated by theStrong quasi-steady state grating. In a CROW, the highly
reference andF,~|E,|? so that the two factors cancel

h oth concentrated optical field can also enhance this aspect of the
each otner. photorefractive effect. The propagating power flBxin a

CROW is proportional to the group velocity of the CROW
IIl. DISCUSSION band[2],

The earlier sections have described pulse propagation in a
CROW, and have shown that photorefractive holography via
short and intense reference pulses in a weakly coupled 1
CROW with spectrally nonselective photorefractive proper- pP=__
ties exactly reconstructs the signal pulse. In this section we 87R
point out two features of the CROW that make it particularly
suitable for such holographic pulse storage and reconstruc-

tion processes. _ . ~and, therefore, we can obtain a higher optical field for
As discussed by Yariet al.[2]., it has_, been s_hown that, in 5 given power flux because of the reduction in group
a weakly coupled CROW, the dispersion relation for a waveyelocity. Consequently, the time constant which determines
guide mode is approximately the photorefractive response tirt@nd which varies linearly
with the intensity[8]) is reduced by a factovg~10*3
Ao compared to the group velocity in a medium with spatially
wy=w,| 1+ — + k cogkR) |, (32)  uniform dielectric properties and refractive index. The
2 quasi-steady-state equilibrium is reached with orders of
magnitude lower intensities in a photorefractive CROW as
in terms of the single-resonator mode frequensy, a compared to a photorefractive bulk medium. As pointed out
coupling factorx, and an overlap integrake. (Although by Yeh [13], the fundamental limit on the speed of the
the single defect cavity modes are actually doubly degeneiPhotorefractive effect depends on the intensity rather than the
ate, the two resultant CROW bands have opposite polaritieBhenomenological parameters induced by doping or heat
and cannot couple to each other; therefore, the dispersidifieatment.
relation of each band has the same form as the above expres-In summary, we have analyzed optical pulse propagation
sion[11].) In an earlier analysis, we have assumed that thén a coupled-resonator optical wavegui@ROW), and pro-
central wave vectok, corresponds to a linear section of this Pose a method for the storage and reconstruction of optical
curve; an analysis using the form of E@®2) is presented Pulses using photorefractive holography in a CROW. The
elsewhere. Thé&-dependent group velocit§Ref. [8], p. 37 advantages of this method include a substantial reduction in
is given by the group velocity, leading to a spatial compression of the
signal pulse so that it may be contained in a relatively short
waveguide compared to the spatial extent of the pulse in free
Wy ) space. The highly localized field distribution enhances the
vg(k)= gk - @aRk sin(kR), (339 photorefractive effect, and we have examined in detail the
process of the formation of the grating and the reconstruction
of the signal pulse by holography. There are many possible
e : X ; ) : . applications of such room-temperature, compact, nondestruc-
group velocity in a medium with spatially uniform dielectric tive, and low-intensity pulse storage mechanisms; two im-

properties and refractive indem) for a weakly coupled ,tant ones are buffers for optical switches and correlators
CROW [11], and for sufficiently narrow band pulses. Be- for optical measurement devices.

cause of this reduction in group velocity, an optical pulse

propagating in the CROW is compressed by a facter, 1/

relative to its spatial extent in free space. Spatial compres- ACKNOWLEDGMENTS
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which can be made quite smal.g.,v,~10"3 times the
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