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Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy
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We present a theoretical study of the resonant interaction between dynamical localized ditatese
breathers and linear electromagnetic excitatiofi&E’s) in Josephson junction ladders. By making use of direct
numerical simulations we find that such an interaction manifests itsetfedynant stepsnd various sharp
switchings(voltage jumpgsin the current-voltage characteristics. Moreover, the power of ac oscillations away
from the breather centéthe breather tai) displays singularities as the externally applied dc bias decreases. All
these features may be mapped to the spectrum of EE’s that has been derived analytically and numerically.
Using an improved analysis of the breather tail, a spectroscopy of the EE’s is developed. The nature of breather
instability driven by localized EE’s is established.
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[. INTRODUCTION are, respectively, the critical currents of the vertical and hori-
zontal junctions.
Various nonlinear and discrete syste(menlinear lattices Dynamical localized excitations persist in a JJL due to the

have attracted a lot of interest as they display diverse fascintrinsic bistability property of a single small underdamped
nating phenomengl]. Well-known examples of such phe- Josephson junction. One of these stable states is a supercon-
nomena are solitary excitations, propagation(mérjlinear ~ ducting one with zero voltage drop across the junction. The
waves, and the appearance of various inhomogeneous stru@ther state is a resistive one with a nonzero voltage drop,
tures. also called a whirling state. A breather state in a JJL is char-
Moreover, the interest in this area was boosted by thécterized by a few junctions being in the resistive state, while
prediction, theoretical analysig—4], and the subsequent ob- the rest of ?llbjunct:;lonstatre in the superc_:fqn&:izctmg state. Thet
servation[5-10] of intrinsic dynamic localized excitations presence ot brealher states may be venhied by measurements

(discrete breathershat are periodic in time and localized in of a total dc voltage drop across the ladder, which is used to

space. Note here that the origin of such dynamical IocalizapIOt current-voltage I(-V) characteristics. This method does

R . : not provide spatially resolved information. It has been suc-
tion is not the presence of disorder but the interplay bewvee@essfully combined with snapshots made using low-
the nonlinearity and discreteness.

_ . ..., temperature laser microscopy technig[&swhich allow for
These peculiar states have been experimentally verified 85 gh4tia) resolution of the dc voltage drops. Note that both
vibrational modes in low-dimensional crystdfs], localized  athods provide only time-averaged voltage drop data, S0
excitations in spin lattice6], and localized resistive states the internal dynamics are so far not accessible in experi-
in Josephson junction arrayg—10]. The latter systems are ments.
of special interest because they have served for many years However, the full dynamical picture is much more subtle
as well-controlled laboratory objects to study various nonlin-than the time-averaged picture might suggest. In particular,
ear phenomengl,11]. Moreover, at variance with other sys- the Josephson junctions in the superconducting state exhibit
tems, intrinsic localized modes found in Josephson coupledmall librations of the Josephson phase and correspondingly,
systems may be excited in the presence of time-independenbnzero ac voltage drops. The amplitude of these librations

external driving forces. should decay to zero with increasing distance from the resis-
A well-known structure where dynamical localized states
appear, is the anisotropic Josephson junction laddék) v LV i i ¥ v v v

[7-10]. A schematic view of such a ladder is given in Fig. 1.
The ladder contains small Josephson junctions indicated by
crosses in Fig. 1, in both longitudin@lertical junctions and
transverséhorizontaljunctiong directions to the dc bias cur-
rent y. The anisotropy of the ladder is due to the different FIG. 1. Josephson junction ladder. Crosses mark the individual
sizes of vertical and horizontal junctions and is characterizeglinctions. Arrows indicate the direction of external current figle

by the anisotropy parameter=1./1.y, wherel ., andl .y bias y).
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tive junctions. It is also well known that various systems ofand discussed in Sec. VI. Section VIl is devoted to the inter-
coupled Josephson junctions support a delocalized class pfetation of the obtained resonances and switchings.
excitations, namely, small amplitude electromagnetic waves
(EW’s) [11,12. In JJIL’s, the spectrum of EW’s consists of II. DYNAMICS OF A JJL AND THE SPECTRUM
three branches and depends in a complex manner on the OF LINEAR ELECTROMAGNETIC WAVES
anisotropyn and the dc biag. The resonant interaction of . . .
these EW’s with the homogeneous whirling statws) in _ The complete dynamics of a JJL is determined b)_/ the
the presence of an externally applied magnetic field has bedfine-dependent Josephson phases of veriialupper hori-
studied in Ref[12]. It was shown that such an interaction zontal ¢\, and lower horizontal), junctions. The subscript
leads toresonant stepin 1-V curves and the voltage posi- N labels the cell number. By making use of the RSJ model
tions of resonant steps may be mapped onto the spectrum & each junction11] we obtain the following set of equa-
EW's. tions:

Early theoretical studiegl3] dealt with the possibility of
resonant interaction of breather states with EW’s of the lad- Mep) =17,
der. Due to the intrinsic spatial inhomogeneity of a breather
state, EW’s may be excited even in the absence of an exter-
nally applied magnetic field. The resonant interaction of
EW'’s with the breather state manifests itself through the ap-
pearance of resonant stef#] and various switchings be- ~n Loy
tween different breather statés voltage jump$) in |-V Mg =—In,

. . Y

curves. Moreover, the amplitude of the Josephson phase li-
brations at some distance from the breather center increas@gere the nonlinear operatdr is defined as
drastically due to this interactiori.3].

The spatial inhomogeneity of a breather state allows also My)=y+ ay+siny. i)
for the appearance dbcalizedsmall amplitude electromag-
netiC. eXCitatiO,nS(EE'S). We will show tha.t the presence of Here, the unit of time is the inverse p|asma frequemgyl,
localized EE’'s and their resonant interaction with theand the currents’, IE, andTE are measured in units of the

breather is of crucial importance. Our study resolves a long-_ ... A . ) .
P Y Yritical current of vertical junctions. The dimensionless pa-

standing puzzle of the nature of breather instabilities. We . . . . :
. vy . . Tametera determines the damping strength in each junction.
show that most of these instabilities are driven by localize o 2 .
ote that the positive current direction is chosen to be di-

EE's. Especially the so-called retrap.plhga.z the switching rected from bottom to top and from left to right. The currents
from a breather to the superconducting stégedue to these : . ) .
flowing via the Josephson junctions and the Josephson

mstabllltles and cannot be explained using standard retra Phases are governed by the Kirchhoff laws
ping arguments.

In this paper, we present a consistent theoretical study of
resonant interactions between the breather states and EE'’s.
We will derive the spectrum of EW’s and calculate the ac o ~h . ~h
power of oscillations at some distance from the breather cen- y=Ih—Ihtlh-1, ()]
ter (“breather tail”). By making use of direct numerical
simulations of the dynamics of JJL's in different paramete
ranges, we demonstrate that th®¥ curves display a variety m b ~h
of different resonance steps and voltage jumps as the exter- “Bun=bnt dni1— b oy 4
nal dc bias, and correspondingly, the breather frequency, de- i )
crease. All these features are mapped onto various resbi€ré, we introduced the mesh curretffsand the normalized
nances of the breather frequen@yr even its second and inductance of the cell3, .
third harmonics with EE frequencies, as well as with com- ~ The Kirchhoff equations may be subtracted from each
binations of frequencies of different EE’'s. Moreover, by other yielding
monitoring the power of ac oscillations as a function of the ho~h
dc biasy, we develop a spectroscopy of the EW’s in the JJL. Int1,=C, 5)

The paper is organized as follows: In Sec. Il, we derive . ]
the equations of motion within the framework of the resis-whereC is a constant for the whole ladder. This constant
tively shunted junction(RSJ model [11] and obtain the porresponds to the net difference be_tween f[he currents flow-
spectrum of linear EW's of a JJL. A symmetry classificationind through the upper- and lower-horizontal junctions. For an
of different types of breathers is presented in Sec. Ill. Anopen ladder of finite sizeC is zero. For a ladder of annular
improved analysis of the breather tail and the correspondingeometry with periodic boundary conditio@may be non-
dependence of the power of ac oscillations on the breatheger® and corresponds to the flux “trapped” by the ladder
frequency is given in Sec. IV. In Sec. V, we will classify Ng. In the following, we will consider the case of a finite
different resonances of breathers with EE’s. Direct numericaPPen ladder withC=0. Then we may always eliminate the
simulations of the dynamics of breather states are presenteuirrentsi from the set of equationdl) asT=—1{. Since

h :l h
M) nln' 1)

) h_ h
y=latla—=lhq,

and the flux quantization law in each cell,
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the junction width is larger than the London penetration
depth, the mesh currents dri4]

m_h
In_ln'

(6)
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®n A,
on | =eltanton| A, (1D
o A,

and the currents flowing through the vertical junctions areye find that the spectrum consists of three branches. The first

expressed as

h=y—In+1 .. (7
Inserting the relationg4), (6), and (7) into Eq. (1) we
finally obtain the following set of coupled differential equa-

tions[8,12,13,1%

1

ot adbtsingl=y+ —(APL+Vh_—VPh_)),

BL
“hy Yh cio h 1 v, 4h_h
¢n+a¢n+sm¢n:_ (V¢n+¢n_¢n)a (8)
nBL
“n, sn omn L v h_~h
bntap,tsing,= (Vop+ dn— o),
7BL
where we use the notationAf,=f,_,—2f,+f,.; and

Vi=fha—fn.
Next, we carry out the analysis of tldelocalized classf

is given by

1, A,=0, A,=A,. (12)

o=

This branch is dispersionless and EW'’s corresponding to this

branch are characterized by nonactive vertical junctions and
in phase(symmetri¢ librations of the Josephson phases of
upper- and lower-horizontal junctions.

The two other solutions are generalizations of those dis-
cussed in Ref[13], namely,

w2=F=\F?-G,
1

1
+ =J1— 'yi-i— B
L

F—1+
T2 2

(1—cosq), (13

L
BLm
G—(1+i)\/ﬁ+i(1—cos )

- BLn ’ BL @

Both branches have a nonzero dispersion.

excitations, namely, of small amplitude electromagnetic The branchw. is characterized by\,=—A; for all

waves(EW'’s). Note here that the spectrum of EWs(q)

wave-vectorg, i.e., the upper- and lower-horizontal phases

depends crucially on the state of the system. In the follow-are antisymmetric. The frequency range of the branch is

ing, we will consider a stati¢superconductingstate, ¢ °

=arcsiny and ¢ "=¢*"=0. We decompose the Josephson
phases into the particular form

Hh= 3+
h h h
bn= : +ton, )
~h_"%h, ~h
dn= : +eon,

where ¢!, ¢, andg" describe the small amplitude EW's.
Substituting these expressions into syst@nand using the
smallness of the amplitude of EW’s we obtain

L 1 -
Qi+ aph+\1-yPph= B_L(A(»Dlr;_"v‘)oﬂfl_v‘)oﬂfl)v

nBL (19

" h " h h h_~h
eptapt o= (V(Pz'*’(Pn_(Pn)a

h_ ~h
¢ (V(Plr;—f_qon_‘»on)-

h ~h, ~h
+ap,to,=
n n n nBL

In the weakly damped case as the parameate&rl, we can
derive the spectrumm(q) of EW'’s neglecting effects of dis-

sipation. By taking the Josephson phagés ¢!, and ¢! in
the form

06660

above the degenerate branep, i.e., v, (q)>wgy and it de-
pends strongly orB, . As the parametep, increases, the
width of w,(q) decreases and the branch approaches the
dispersionless oney,. In the opposite case of smad| , the
frequenciesw, (q) increase as 1JB.. For zero wave-
numberq=0, the amplitudes of EW’s in this branch are

characterized by\,=0 and An=—Ay, which means that
only horizontal junctions are excited.

The branchw_ becomes dispersionless for the particular
case ofy=0 and it corresponds to the dispersionless band
obtained in Ref[13]. The frequency range of this branch is
located belowwg, i.e., w_(q)<wg(q). For zero wave-
numberq=0, the horizontal junctions are not activa (

=A,=0) and only vertical junctions are excited.

For a finite-size ladder with open boundary conditions and
N cells, i.e.,N+1 vertical junctions, the spectrum of linear
waves is discrete and characterized by the following choice
of allowed wave number values:

|

NI =0,1,2... N.

q= (14

These EW'’s arecavity modesof the JJL. Odd values df
correspond to antisymmetric eigenvectgvath respect to
reflections at the center of the ladfewhereas even values
correspond to symmetric ones.

Note that the above spectrum of EWS3) is in general
quite different from the EW spectrum of the homogeneous
whirling state[12]. The latter may be obtained by choosing

1-3
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(Hth and { +k)th cells, respectively. By making use of the

@ [ ® o o L J L ] N 7 .
flux quantization law(4), we obtain identical voltage drops
® o L N o000 . . - . S
e o ol @ across the vertical junctions in the resistive state. For the
same reasons, the voltage drops across the horizontal junc-
a) b) o a tions are two times smaller. Neglecting nonlinear contribu-
FIG. 2. Examples of different types of breathefa: up-down 'E)I(t))?:irirom the time average of sfon resistive junctions we

symmetry,(b) left-right symmetry,(c) inversion symmetry(d) no

symmetry. Black spots indicate the positions of whirling junctions. v 1

as=—(I",
y=1 in Eqg.(13). The main difference is the appearance of a 2 7!

gaplesgacoustig lower branch.
aV=y+(I{ ) =1,

. SYMMETRIES AND DC BIAS DEPENDENT

FREQUENCIES OF BREATHERS e (15
_ In thls_ se_ctlon, we turn _to the ,analy5|s Wnamlc I_ocal- aV=y+ 1M )= 1M, ,),
ized excitations(breathers in JIL's. As mentioned in the
introduction, breather states correspond to a few junctions
L = . . . L Vv 1
being in the resistive state with all other junctions being in as=——(1").
the superconducting state. The Josephson phases of resistive 2 n

junctions are unbounded in time and the Josephson phases of o o
superconducting junctions display small amplitude librationsThus, the voltage drop across a resistive vertical junction that
with a frequencyQ). This frequency is called thbreather ~ corresponds to the experimentally measured voltage drop

frequency across the ladder, is given by
Experiments [7-10] have revealed many different
breather structures. All of them can be classified into three Vv ky (16)

symmetry types using the reflection symmetries of the JJL. - alk+n)’

Some possible realizations are presented schematically in

Fig. 2. Similarly, we analyze a breather with left-right symmeSy

Breathers from the first group reveal amp-down” re- and with inversion symmetr$,,. Taking into account that

flection symmetry S, [see, Fig. 23], i.e., they are invari- i, these cases the voltage drops across resistive horizontal
ant under exchange of upper- and lower-horizontal junctionsaq vertical junctions are identical, we find

The second group consists of breathers invariant under a

“left-right” reflection symmetry S, [see, Fig. ®)], i.e., ky

they are invariant under a reflection at a vertical line cutting V= m 17)
the ladder(this line is located either in the middle between
two vertical junctions, or passes directly through one vertical
junction). A third distinct group of breathers possesses a

“inversion” symmetry S, (Fig. 2(c)), i.e., these breathers
are invariant under a reflection at a point that is either located

on a vertical junction or in the center of a plaquette. A fourth \%
group of breathers haso symmetriesat all and does not

belong to any of the three listed symmetry types. A particulatl_he above results for the dependence of the average voltage

example of a breather without symmetry is shown in Fig.d the dc bi b bined i inal :
2(d). All of these types of breather excitations have been rop on the dc bias may be combined in a singie expression

observed experimentally and numerically—10. Each K
group of breathers may also have a different number of ver- V= Y (19)
tical junctions in the resistive state. Note that the particular a(k+[3—=(1/2)6]n)"

example in Fig. £a) possesses not onfy,q symmetry, but
also S, andS,, symmetries. However, it is also possible to

construct more complex breather states that dislaysym- that =4 for breathers with up-down symmetrg=2 for

metry only. . _left-right or inversion symmetry, ané=3 for no symmetry.

Next, we derive the average voltage drop across a resis- |, grger to analyze the interaction between the breather
tive vertical junctionV=(¢") for different breather types. state and the linear EE’s, we need to know the frequeiicy
For the particular case of a breather with up-down symmetnf a breather solution. Noting that the breather frequency is
S,4. there arek rotating vertical junctions in cellsi( given by the lowest-realized voltage drop across a resistive
+1), ...,(+k) and two rotating horizontal junctions in the junction, we find

|n a similar manner, the result for a breather that has no
r]symmetry[cf. Fig. 2d)] reads

Ky

" a[k+ (32 7] (18

wherek is the number of vertical rotating junctions a@d
denotes the number of resistive horizontal junctions. Note
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(1) Up-down symmetry

L a) PP,
4l ——
0=, 20 = 3f
& 2F
(2) left-right symmetry and inversion symmetry 1-
ky I
- 7 0
@ a(k+27n)’ 21)
(3) no symmetry g
g
Ky =
Q= a(2k+37)" 22

IV. SPATIAL TAILS OF BREATHERS

We consider the spatial dependence of Josephson phases
in the presence of a breather state. At some distance from the
breather centef“breather tail”), the Josephson phases li-
brate with small amplitudes. In order to analyze the breather
dynamics in the tail, we use the linearized system of equa-
tions (10). Keeping in mind the time periodicity of the
breather solution, the librating Josephson phases take the

86
[a B}
o4

2
0
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0 02

form (for n<0, and with the breather center as the orjgin

n A,
(PE :e)\rH—i(Zt Ah (23)
en Ay

FIG. 3. Dependence df) real part Re{), (b) imaginary part
Im(\), and (c) P,. on y for different types of breathers: solid
line—up-down symmetry, dashed line—left-right symmetry, dotted
line—no symmetry. The parameters are0.1, 8, =3.0, =0.35,
andk=1.

Introducing the sum and difference variables of the ampli-complex symmetry properties of the resistive breather center

tudes of Josephson phases of horizontal junctions

L1 ~ 1 ~
Ap=5(8n+Ep), Ap=5(A-Ry, (24
it follows that
(A 2 h\)A 2(1 "MAL=0
— —Cos v~ 5 (1—e =0,
BL BL n
1 _
———(1-eYA,+BA, =0, (25)
BL7m

(—Q%+iaQ+1)A; =0,

where the frequency dependent paramefeendB are

A=—0%+iaQ+J1—y*+ —,
BL

2
B=-0Q%+iaQ+1+_—.
BLm

From Eq.(25), we immediately find thah; =0, and hence,

(26)

(see Sec. Il A nontrivial solution to the first two equations
in Eq. (25) exists if

2 4 4
AB— —B cosh\ — T+Tcosh)\zo.

(27)
B Bin BiLm

The dependence of the complex paramat@n the breather
frequency( is given by

A=In(z+JZ°—1), (29)
with
_4-BinAB
z= 12808 (29

Note here that this expression may be obtained directly
from Eg. (13) by assuming thatg=i\ and substituting
0%—iaQ) instead ofw? .

The real ReX) and imaginary Imy{) parts of A deter-
mine, respectively, the spatial decay and spatial period of
oscillations of Josephson phases in the breather tail. More-
over, Ref) and Im(\) strongly depend on the breather fre-
guency that in turn, may be changed by varying the external
dc biasy. In Figs. 3a) and 3b), we plot the real and imagi-

Ay =Ay. Itfollows thatgoﬂz —"{92, i.e., breather tails appear nary parts of\ for three breather typegf. Fig. 2) versusy.
with perfect up-down symmetry. This is at variance with theThe minima of the real part af correspond to resonances
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exist, but turns unstable, forcing the system to search for
another stable attractor state. The cause of such instabilities
is the resonant interaction of the breather state with small
amplitude(localized or delocalizedEE's.

In order to analyze the breather instabilities in more pre-
cise terms, we have to linearize the phase-space flow around
a given breather solution and study the corresponding Flo-
quet eigenvalue probleiisee Appendix B The outcome of

-~ e this analysis is a spectrum of Floquet multipli¢is., eigen-
9; {oA ; values u. In most cases, the multipliers reside on a circle of
& ! |'| radius
= ! !
o1l ',' '|| ; R(a)=exp —awl/Q), (31
002 04 06 08 1 in the complex plane, which is less than one. Thus, the mul-
Y tipliers may be expressed in the general form

FIG. 4. (8 Re(\) and(b) P,. versusy for different values of 2
the inductance of the cellg =3, solid line; 8, =1, dashed line; n= R(a)exp( iiwﬁ), (32
BL.=0.2, dotted line. All of these curves are for a left-right symme-

try breather withk=1. where(} is the breather frequency anglis some character-

istic EE frequency. The corresponding eigenvectors may be
divided into two classes, namely, those that are localized on
the breather and those that are delocalized. While it is more
involved to make analytical predictions for the class of lo-
calized Floquet eigenstates, we may immediately proceed
Suith the characterization of the class of delocalized eigen-
states. Although the concrete form of the delocalized eigen-
vectors has to be obtained numerically, the fact that they are
delocalized allows one to determine their frequercyin-
deed, since the breather is itself a localized state, delocalized
Floguet eigenstates simply correspond to the above-
discussed linear EW'’s. Their frequencies have been derived
Sec. Il, and thus, we may reconstruct the delocalized part
the Floquet spectrum using them.

Stable breathers are characterized by all Floquet multipli-
ers being located inside or on the unit circle. Instabilities
occur after collisions of multipliers on the inner circle with

with linear EW's w,(q) and w_(q). As one can see, the
current positions of these minima shift for different types of
breathers. Note that thg range in the plots extends from
zero to one. In fact, the breather will exist only in a narrower
current region. This is due to the presence of both a finit
nonzero retrapping currefi1,16 (switching to the super-
conducting stateand a particular curreny<1, where the
breather switches to the HWS.

Since the EW frequencies , (q) decrease with increas-
ing inductance of the cel{13), the position of the global
minimum also depends strongly ¢gh [see Fig. 49)].

Although the dynamics of the Josephson phases in th
breather tail are completely determined by the dependence ol
the parametek on the breather frequency, it may be more
convenient to measure just the time-average poRgr of
the libration of a junction at the edge of a JJL. We show

below that the monitoring dP. upon decreasing the dc bias 5 qj5(31) and a subsequent detaching from this circle to-
allows one to develop a spectroscopy of EW's. The value oarqs |arger absolute values. Although in the dissipative

P.c is determined by the average kinetic energy of the edg%ase, an additional change of the control paramiterbias

vertical junction y) is necessary in order for the corresponding Floquet eigen-
1 N valug(s) to cross and escape the unit circle, we may still look
P = (aV° |=— — 30 for collision conditions and classify possible instability sce-
ac 2<¢| >' 2 ( ) .
narios.
_ _ _ _ _ Note that for Hamiltonian systems any collision and de-
and is derived in Appendix A. The typical dependences ofaching from the unit circle leads to an instability. Finite
P.c on the dc bias and the inductance of the cell for differenteven though possibly weakdissipation may drastically

types of breathers are presented in Figs) and 4b). change the instability patterns by selecting the strong insta-
bilities (large detachmeni®ver the weak instabilitiesmall
V. BREATHER INSTABILITIES AND CLASSIFICATION detachments This is exactly what we observe in our nu-
OF RESONANCES merical studies.

By applying the general stability analysis of nonlinear dis-

In early experiments on breathers in JIE&S], it was  crete systemfL7] we obtain three possibilities for multiplier
observed that breather states may switch to other breathgp|iisions. The first is realized when the collision takes place
states or HWS’s upon variation of the dc bigs These on the positive real axis in the complex plane. This implies

switchings may be either due to the disappearance of thghat a multiplier is colliding with its complex conjugate part-
breather state as a solution of the underlying dynamicaher. With Eq.(32), it follows that

equations or due to the effect dnamical instabilityof the
breather state. In the latter case, the solution continues to w=m(), (33

066601-6



BREATHERS IN JOSEPHSON JUNCTION LADDERS. . PHYSICAL REVIEW E 64 066601

for any integer numbem. These argrimary resonancesof 0.8 T
the breather frequency or its higher harmonics with any of :
the frequencies of the EE’s. ¢ . .
The collision of an eigenvalue with its complex conjugate : :
partner may also take place on the negative real axis in the 0.7
complex plane 1 | !
= n : i
1 ; | |
w= §+m Q. (34) 0.6—:

These argrarametric resonancesof the breather state with
EE's.

The third case is realized when the collision takes place 05
away from the real axis. Then a multiplier has to collide with
a different one, but not with its own complex conjugate part-
ner. It follows that

FIG. 5. 1-V characteristics and the,. dependence on the dc

©1% = mA. (35) bias current fore=0.1, 8, =0.2, n=1.15.

This is acombination resonance as the breather frequency power P, (30) of ac oscillations of the vertical junction at
(or its multiple has to match a surdifference of the fre-  the edge of JJL’s. Finally, we generate time-resolved images
guencies of two different EE frequencies. (movies of the full dynamical behavior of the ladder so that
We stress again that EE’s may be localized or delocalizedve may visually check whether the system still resides in the
While we may proceed with an analytical prediction of col- initially chosen breather state, or switches into another state.
lisions using delocalized Floquet multipliers, we have to useéOur results are presented in Figs. 5-11, where each figure
numerical calculations to observe collisions involving local-consists of two parts. In the left-hand parts, thé charac-
ized ones. Especially the combination resonance may interistics are showrsolid lines together with the approxi-
volve either two delocalized, two localized, or one delocal-mate results from Sec. Ildotted line$. The vertically ori-
ized and one localized Floquet eigenvalues. In addition, thented dashed lines indicate the band edges of the linear
above-mentioned dissipation-induced selection of weak angW's. In the right-hand part of the figures we show the de-
strong instabilities will result in some possible collisions be-pendence oP, (solid lines on the dc bias together with our
ing harmlesg(leaving the breather stablevhile others will  approximate analysis from Sec. IV and AppendiXdashed
turn out to be important for understanding breather instabili{ines), where appropriate.

ties. We start with the case of smafl, values. Forg =0.2
and »=1.15 (Fig. 5 the breather is easily excited, and its
VI. NUMERICAL SIMULATIONS OF BREATHER frequency is located below ., (q). In the P, plot, we ob-
DYNAMICS serve peaks that are due to the resonance of the second and

) , third harmonics of the breather witlh, (). These reso-
To study the breather dynamics, we performed direct NUpances are primary ones, as discussed above. Note that their
merical simulations of the set of equatio(®. All simula- presence is barely seen on th&/ curve. The series of ob-

tions were carried out for JJL’s witR =10 cells. We impose  qereq peaks is related to the finite size of the system, and
open boundary conditions and use the fourth-order Runge-

Kutta method. Time is measured in dimensionless time units.

The initial value of the dc bias wag=0.8. We choose 8 T !

proper initial conditions that lead to the relaxation of the f i i 2

system into a particular breather state of left-right symmetry 078 | 1

with one resistive vertical junction, as in Fig(h2. After a o6l i :

waiting time of 500 time units we use the next 500 time units : i :

to calculate the time-averaged characteristics of the state. We [

then decrease the dc bigdy a tiny step ofA y=0.0005 and | i 5

repeat the procedure. We checked that our results do not i 5

change upon further increase of the waiting time. We varied I | e

the anisotropyn and the inductance of the cgdl. while the 034 5 5

dissipationa=0.1 was fixed. We will comment on hysteresis I i |

effects due to additional increasing of the current in the con- A I RIS SR || DD

clusion. I 2 3 4 5 6 702456810
There are three different ways to monitor the simulations. v 3 }861;%10

The first one is thd-V characteristics, that is, the depen-
dence of the averaged voltage drop across the resistive ver- FIG. 6. |-V characteristics and the,. dependence on the dc
tical junction on the dc bias. Furthermore, we obtain thebias current fore=0.1, 8, =0.2, 7=0.35.
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FIG. 7. 1-V characteristics and the,. dependence on the dc

FIG. 9. |-V characteristics and the,. dependence on the dc
bias current for«=0.1, 8, =0.5, »=1.15.

bias current fore=0.1, B, =1.0, »=0.5.

therefore to the resonant interaction of the breather with g, Fig. 7, we show the results fop=1.15. For the initial

discrete set of cavity modes as was discussed at the end ¢ of the dc biag= 0.8, the breather frequency is already
Sec. Il. We tested our interpretation by increasing the size of;.ated inside the . (q) band of EW’s, and this primary
the system and observed the predicted increase in the nuUmbelsonance is observed in tha/ curve. In’deed the slope of

of resonance peaks. Close to the lowest possible curret. v/ curve is larger than the predictid@1), which does
(around y=0.55), we observe a switching to another

, not take into account resonant interactions with EE'’s. With
breather state, which however has the same symmetry ang reasing dc bias, the breather frequency is lowered and the
spatial structure. Note that shortly after this switchiogon ;5 primary resonance disappears. However, at lower cur-
further lowering of the currentwe lose the breather and the rent values the next primary resonanceé3=2w . (q) occur
system switches to the superconducting ground state. and are observable, both in the breather tail and inl tke

For lower values of the anisotropy=0.35 (Fig. 6), the .o acteristics.
resonances are again not detectable inlthecurve. How-

The primary resonance structurg@f) =w in the
ever, by monitoringP,, primary e +(a)]

¢, We observe the singularities that |5rge current domain are also observed for smaller values of
correspond to the primary resonanc€ 2 w,(q). More-

) X the anisotropy parametey= 0.5 (Fig. 8). In this case, they
over, at the dc biag~0.35, we detect a weak third-order \,apitest themselves througsonant stepi the -V curve
primary resonance 83=w.(q) in the breather tail. The 18] At lower values of the dc bias, we again observe pri-
dashed line in the right part of the figure is the prediction Ofmary resonances witm= 2.

P4c using our approximate tail analysis. Note that our ap- For B,=1.0 andy=0.5(Fig. 9, the breather frequency is

proximate tail analysis is based on the assumption of a dengg.ateq above» . (q) for large current values. Upon decreas-
spectrum of EW's. Consequently, the calculaled presents  jng the dc bias, we observe a peculiar switch to a different

an envelope of the numerically observed series of discretgeather state with the same spatial structure but a lower
peaks.

) . frequency located inside . (q). The most interesting feature
Next, we increased the inductance of the celfio=0.5.  pere s that shortly before the switching, the breather fre-

0.8 T
L ! " 08T i
0.74'."3 i P
0751
061 4 i i o
- 3 ; ; i P
o5 : : = 06! P
l b) b P
04f | % 05
. I i |i P P R I I:,:: i i
03 1 2 3 4 0 1 2 3 4 04 il M 1 | 1 1
Y a) 1021) : 1 2 3 0 1 2 3
b) 10°P5S v 10°P

FIG. 8. 1-V characteristics and thB,. dependence on the dc FIG. 10. |-V characteristics and the,. dependence on the dc
bias current fore=0.1, 8, =0.5, =0.5. bias current fore=0.1, 8, =3.0, =0.5.
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08— Thus, we find extreme sensitiveness of the outcoming
breather structuréncluding its symmetriesto small fluctua-
07w i tions. This implies that the boundaries of the volumes of
wood attraction of differen(breathey attractors are entangled in a
06fF it very peculiar way. We may reliably predict the switching
ER position, but not the outcome of the switching.
=054 || We also numerically simulated the breather dynamics in
o the JJL with an extremely large inductance of the ¢l
o4t || =500. We did not find any indication of resonances and
P instabilities. We argue that the reason for that is the weak
03H || dispersion of the linear EW'’s for such large valuesgyf.
. This implies that interactions along the ladder are weak. The
0.2 L ' ' L breather is continued to small current values until it switches

v 10'p to the superconducting state at the dc bias0.22 for
=0.35. This particular value may be obtained by making use
FIG. 11.1-V characteristics and the,. dependence on the dc 0f the simple dc analysigl7) and the standard theory of the
bias current forw=0.1, 8, =3.0, =0.35. retrapping current in a single small Josephson junction

[10,16
quency is clearly larger and outside of the (q) region.
Upon further lowering of the dc bias we observe primary
resonance$)=w (q), and corresponding resonant steps in
thel-V curve.

Let us increase the inductance of the gglleven further.
For 8, =3 and»=0.5 (Fig. 10 we again find that breather
frequencies are located abowe, for large current values. This equation yields a value of 0.22 for the considered case,
Similar to the previous case, we observe a switching whein good agreement with the numerical observation. Note that
the breather frequency is clearly outsi@ove the branch  within this theory, retrapping occurs purely due to energy
w, (q). This brings the system into another breather stateonsiderations, not due to resonanéesinstabilities.
with the same spatial structure, but with a frequency again It is very important to notice that for cases with small or
located abovev .. . This highly nonlinear state is then lost by intermediate values of inductance of the ¢€ligs. 5—11 the
switching to the superconducting ground state after furthepbserved currents at which we lose the breather state and
decrease of the dc bias. switch to the superconducting one exceed the expected re-

Now we come to an interesting observation. Lowering thetrapping valueq36). We will explain this disagreement in
anisotropy»=0.35 (Fig. 11), we again observe the switch- the next section.
ing at a breather frequency being located abewe(q). Motivated by the above findings, we investigated the loss
However, the switchingncreaseshe voltage drop. The state of the HWS upon lowering the current. We recall that in this
is of a different internal structure. We remind the reader thastate, all vertical junctions are resistive arall horizontal
all previous numerical results have been obtained for @nes are superconducting. Usually, it is assumed that the
breather with a structure as in Fig(b2 Here we find that HWS loss is again due to a standard retrapping mechanism.
after the switch, the breather state is characterizethge It is important that any numerical simulation of such a pro-
vertical junctions being in the resistive state. At the samecess is done with the addition of some weak noise, because
time the, symmetry is broken. In fact, this state exactly corthe processor will otherwise perform a perfect simulation of
responds to the example given in FigdR Note that similar ~ a single junction repeated+ 1 times. We chos@, =3 and
switchings(which lead to an increase of the number of re- =0.35. Thel-V characteristic is shown by a thick dashed
sistive junctiong have been reported in early experimentalline in Fig. 11. The expected retrapping current/4r
studies[8,19]. The left-right symmetry breaking leads to in- =0.127 is clearly not reached. Instead, we observe the loss
teresting features in the breather tails. The no-symmetrpf the HWS aty=0.273. At the same time, it follows from
breather has a two times lower frequency than the voltag&gs. (8) that the HWS exists as a solution down to the re-
drop across the vertical junction. Thus, the breather fretrapping current of a single junction, i.e., down tp
quency is inside the upper bard, (q), and a primary reso- =0.127 So in this case, we conclude that the numerically
nance is clearly observed in tli,. dependence on. observed loss of the HWS at=0.273 isdue to an instabil-

In order to test the influence of small fluctuations on theity. The HWS continues to exist as a solution down to the
-V curves, we repeated the simulations in the presence aftandard retrapping current, but it is anstablestate. This
small noise with amplitude=10-8. All obtained results are result is very important, since very often the current value of
stableexceptthe switching outcome in Fig. 11. While this HWS loss in the absence of a magnetic field is used to esti-
switching occurs at the same current value, the breather stateate different parameters of the systassumingthat the
is changed. In particular, we observed the left-right symmeHWS is behaving similar to a single junction. Our results
try breather with three junctions being in the resistive stateshow that this is definitelyot the case.

4o
ye=(1427) . (39
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TABLE I. Comparison of theoretical predictions of primary theoretical and observed numbers are much less than the fre-
resonances with the numerical results from Fig. 6. First colunn: quency difference between adjacent cavity modes.
Second column: the spectrum of EWes, (q,) [cf. (14)]. Third
column: X) obtained from the peak positions &,.(y) in Fig.

. . B. Parametric resonances
6(a). Fourth column: 8) obtained from the peak positions of

P..(7) in Fig. &b). So far, we did not comment on the nature of the switching

from a breather state to the superconducting state for small

k () 20 30 and intermediate values @, . The Floquet analysis results
show thatall these switchings are due to arstability of the

1 5.475 breather. In terms of Floquet multipliers, all of these insta-

2 5.581 5.594 5.590 bilities are due to a collision of twincalizedFloquet multi-

3 5.745 pliers on the negative real axis. The breather state continues

4 5.949 5.947 5.945 to exist as a solution to the dynamical equations for lower

5 6.174 current values, but it is unstable. Note that the so-called re-

6 6.400 6.387 6.384 trapping mechanism instedds for a single junctionuses

7 6.609 the critical current value as a criterion for retrapping. This

8 6.788 6.769 6.772 argument is based purely on energy considerations and does

9 6.923 not take into account any resonance mechanism. This is not

10 7.008 6.960 6.958 surprising, as a single junction has no other degrees of free-

dom it may resonate with. Below the retrapping current, the

resistive state disappears in this case. So, we may state that

VIl. EVALUATION OF RESONANCES the switching from a breather state to the superconducting
AND EWS SPECTROSCOPY one as observed in our simulations is usually driveméso-

_ o o . nanceswith localized EE’s(frequency matchingand isnot
This section is devoted to a quantitative explanation of thejue to energy effect&urrent value matching

observed resonances and switchings.

C. Combination resonances

A. Primary resonances Let us discuss the nature of the switchings of the breather

Primary resonances are characterizedhify = w, where  for intermediateB, values when the breather frequency is
w is some EE frequency. We detected various primary resoocatedabovethe branchw . (q). These switchings are again
nances withextendedEW'’s. The casen=1, which corre- due to an instability. It is characterized by Floquet multipli-
sponds to the breather frequency being located inside thers colliding away from the real axis. As discussed in Sec. V,
w4 (q) band, shows up with resonant steps in thé curves  this corresponds to a combination resonance. The numerical
(see, Figs. 8-P The finite number of observed resonant Floquet analysis shows that one of the two participating mul-
steps is due to the discrete spectrum of the excited cavitgipliers is alocalizedone[which bifurcates from the lower
modes. In addition, we observe strong variations of thebranchw _(q)], while the second one belongs to the delocal-
breather tail amplitudes. ized spectrum ofv, (q). The Floquet multiplier that finally

Higher-order primary resonances€ 2,3) are much less leaves the unit circle is bbcalizedone. So again the insta-
pronounced in thé-V characteristics. They mainly lead to a bility of the breather is driven by a localized perturbation.
weaker localization of the breather tail and may be clearly In Fig. 12, the dependence of the arguments and absolute
detected in the form of sharp peaks in tRg.(y) depen- values of all relevant Floquet multipliers is shown for the
dence. Since the breather in our case has left-right symmetripreather of Fig. 11. For convenience, we do not plot the
the only linear cavity modes that may be exited are symmeteomplex conjugate multipliers and restrict the arguments to
ric (see Sec. )l These modes are characterized by even valO<arg(u)<w. The narrow bando _(q) and broad band
ues ofk in the expression, (14). We start our evaluation of . (q) are nicely observed. The degenerate bands lo-
these resonances with the case shown in Fig. 6. We detecated slightly above» _(q). This band does not interact with
mine they value of each observed peak.(y) and thus  other multipliers when crossing them, as expected from our
obtain the corresponding breather frequefiyy). We then  analytical considerations. The two separated arguments that
compare its multiples with the discrete spectrum of linearare locatechelowthe w _(q) band havdocalizedeigenvec-
mode frequencies of the, branch. The numbers are listed tors[21].
in Table I. We find that all observed resonances are due to In the plot of the absolute values, we observe the pre-
symmetric linear modegvenk=2,4,6,8,10) as expected. dicted valuesu=1 ande *To. The multipliers that corre-

The same method of analysis allows us to conclude thagpond to lines between these two states generally reside on
the three peaks in Fig. 6n decreasing order of dc bipare  the circle with radiug31). Many of them depart from this
due to the following resonancesm(k)=(2,6)12,4);(3,8). circle due to collisions. At current values of 05%<0.7,
Similarly, the shoulder and the peak in Fig. 6 are due towe observe parametric resonance3=2w ,(q), which be-
resonances withni, k) = (2,10)12,8). Finally, the resonances long to the set of weak resonances and do not evolve into a
in Fig. 8 correspond to the valuesm(k)=(2,8)(2,6);(2,4. global instability. However, it is possible that a slight varia-
Note that in all of these cases, the deviations between thigon of control parameterée.g., decreasing the dampimg
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FIG. 12. Arguments and absolute values of Floquet multipliers

versusy for the breather state in Fig. 11. FIG. 13. Arguments and absolute values of Floquet multipliers

versusy for the HWS in Fig. 11.

might change these resonances into strong ones. Then Weypijity due to parametric resonance sets in, which brings

would expect sudden instabilities of the breatherl state ghe HWS to the next instability well above the expected re-
these large current values. In our case, the global mstabllltyrapping current.

is realized when one of the localized multipliers collides with
the w . (q) band aroundy=0.48. Subsequent lowering of the
current leads to a fast escape of this multiplier from the unit
circle and to the observed switching. We have presented analytical and numerical studies of

The importance of localized EE’s for the destabilization breather properties in Josephson junction ladders. Our results
of a breather is simply due to the localized nature of theconfirm and substantially extend early suggestions that
latter. It is hard(if not impossible for a breather to generate breathers may resonate in different ways with localized and
a parametric instability through extended EW'’s alone, asxtended electromagnetic modes. The numerical studies have
these excitations are damped out far from the breather centdseen done in a parallel manner to the way experiments are
In contrast, localized EE's do not travel away from the conducted. The variation of the control paramejeallows
breather center. These modes may be effectively excited byne to continuously change the breather frequency, whereas
the breather, leading to an instability of the latter. the linear mode spectrum is not significantly changed in the

To understand the nature of the observed instability of thelomain of interest. We observed primary resonancés
HWS, we show a similar Floquet multiplier plot in Fig. 13. =, (q,) with extended EW'’s, parametric resonand@s

As in the previous plot, we observe weak parametric reso=2¢ with localized EE’s, and combination resonances
nances of the upper EW band at current valyes0.38, mQ=w+ w,(qg,) with a localized EE and a delocalized EW
which do not evolve into a global instability. Again, the ob- participating. We also observed a combination resonance
served instability is driven by a combination resonance athat leads to a switching from a small breatene resistive
y=0.175. Since the HWS is an extended state, all Floquetertical junction to a larger onéthree resistive vertical junc-
multipliers are also extended. The combination resonance igons) together with a possible symmetry lowering of the
due to the collision of two Floquet multipliers belonging to breather.
the two EW branchesv.(q) with g= [we remind the The primary resonances with extended EW'’s lead to sin-
reader that the EW spectrum of the HWS is different fromgularities in the breather tails. This allows one to develop a
that of the superconducting state and may be obtained bypectroscopy of EW’s by monitoring,. versusy. Such a
putting y=1 in Eq. (13)]. Note that indeed for the present spectroscopy may be experimentally realized, e.g., with the
case, the frequency of the HWS at the instability equals 2.7&elp of a well-known Josephson junction detector technique
while the value of the combination_(7)+ w(7)=2.69. [11,22,23. It could be important for obtaining a coherent
For current valuesy~0.18 the HWS is becomingtable source of high-frequency radiation, since in such a reso-
again. However, aroung=0.17, another even stronger in- nance, the whole breather tail starts to coherently oscillate

VIIl. CONCLUSION
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with large amplitudes. The resistive breather center serves ahow up with similar properties, and perhaps with additional

a region of energy input via a dc bias. types of resonances as well. This may be due to the fact that
Our studies show that the main control paraméiterad-  the structure of the phase space is very complex, being sepa-

dition to the dc biajsis the self-inductancg, . For smallg, rated in many different regions of attraction of different at-

values the breather frequency is located between the twiactors. Itis this complexity that makes the understanding of

branches of EW'sw. (q). One may perform spectroscopy bre_ather properties both a fascinating and complicated under-

of EW’s of the upper branch, or observe parametric instabiltaking.

ity of a breather due to localized modes. Moreover,3as

increases, resonant steps in th®¥ characteristics may be ACKNOWLEDGMENTS

observed. For intermediatg, >1 values, the breather fre- .
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EE’s, which may result in an unusual sensitivity of the
switching outcome on small fluctuations. Large values

stabilize the breather states, make resonances impossib
and lead to a standard retrapping mechanism for breath

switching to the superconducting ground state. This is likely 0163.

the situation for the reported experimental data in Ref.

However, lowers, values allow for the appearance of the APPENDIX A: POWER OF AC LIBRATIONS
above-listed resonancéand perhaps even other still unob- AT THE EDGE OF A JJL

served resonancesVe believe that our findings will helpto a6 e derive the time-average power of ac librations at
make the proper parameter choice when designing other lagre edge of a JJL. This characteristic is proportional to the

ders for experiments. o . X
P average kinetic energ§?/2). In order to obtain an expres-

Note that throughout our studies, we alwalecreasdhe sion for the kinetic energy, we have to determine the dynam-
dc biasy. Let us consider a breather state No. 1, which; s of the junction at the JJL edge. For this, we write the

becomes unstable upon lowering the dc bias at a certaily . X
value y,. Let this be a case where the system will switch toSyStem of Eqs(25) in a matrix form
another stable breather state No. 2. This breather state is in ~ -
fact keeping its stability not only upon further lowering of Av=0. (A1)
the dc bias, but also upon a reversifigcreasing of the dc .

bias. Thus, we find that there exist dc bias windows in whichH€re,v is an unknown vector

both the starting breather state No. 1 and the breather state

No. 2 are stable. Even though their dc spatial struct(cés o= ( Av) (A2)
Fig. 2 may be identical, the average voltage dréasd fre- Ay’

guencieg are in general different. Further increasing of the

dc bias while staying on the breather state No. 2 will lead taand A is a 2x2 matrix

an instability and switching ag,> v,. In case the switching

brings the system back to the breather state No. 1, we are . a;(N) ap(N)

faced with the well-known two-state hysteresis phenomenon A(N)= ayn(\) A )\)) : (A3)

in Josephson junction systems. However, we also observed

cases when the switching due to an instability of breatheyyere ap(\)=A—(2/8,)coshn, ap(\)=—(2/8,)(1
state No. Aupon increasing the dc bipkrings the system to —e™N), anu(\)=—(1/8.7)(1—¢€), and a,(\)=B. A
yet anotherstate, which differs from breather state No. 1, nonzero solution exists if the determinant Af vanishes:
e.g., simply to the HWS. In such a case, the hysteretic be- .. . ] :
havior is of a more complex nature. To keep the discussio§l€A(Ao) =0. The parametex, was determined in Sec. IV

of our studies as clear as possible we did not present data f629)-

increasingcurrent. The components of the vectorsatisfy the condition
Another observation is that the expected values of the

retrapping current based on a pure dc analy/s§ are too a2

low to match the observed values at which the breather A== An (Ad)

an
switches to the superconducting ground state. Only for very

large B, values do we observe agreement. For all othefTo determine the componen¥sandH separately, we have to

cases, the breather switches to the superconducting state Viapose an additional condition at the breather center. This

an instability driven by parametric resonance with localizedcondition is not known exactly due to the complex dynamics

EE’s. Moreover, the HWS also undergoes an instability thain the resistive breather center. Nevertheless, the ac librations

is due to combination resonances with extended EW’s.  in the breather tails are weakly depending on it. Here, we use
In this paper we always started with a breather configurathe simplest normalization condition

tion as in Fig. 2b), at large current values. It may be ex-

pected that the results for other starting configurations will |A,|12+]ALP=1. (A5)
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Substituting Eq(A4) into Eq. (A5), we obtain . 1 ~
KN+ BN (t) k= — m(vxgﬂﬂ—xm, (B3)
. |ap|?
T el T 1
21 e KB K= (Vi + =KD, (B4)
_ 7BL
A = 820871 AG
v T \/|a21|4+|a22|2|a21|2' (A6) whereB, (t) = — (1/4)a®+ A,(t). Introducing the variables
Due to the up-down symmetry in the breather tail, the dy- Z,=Kp, ZE= \/;KE ~ZE= \/777<2 (BS)
namics of Josephson phases at the edge of the JJL may be
written in the form we find the system of equations

Re(a,,8,,)eRe*0" cog Im(\g)n+ Ot]

) 1 -
z%+ Bg(t)z‘;=—Az + (VZh_,—VZ"_)),

" Vool + 82801 Lf
IM(a5857) €0 sinf Im(\g)n+ Qt] 1 1
7 a2 . (A7) Z+BN)zh=— — (-2 - Vz,, (B6)
VIag*+]azd %z nooomeen B " " g "

h |agy|2eRe®0" cog Im(Ag)n+ Qt] ) .
Pn= 2 > : “h . BhySh_ h_=h
J]a,|%+]a z,+Bp()z,= (zp—zp) + Vz
|21+ [az] Wt Bz = g (It

We finally obtain the expression for the average kinetic , i o
energy(for n<0) These equations describeHamiltoniansystem, namely,

1.2 Q%ayay/’eReto?n ; _n
E((Pn >: 4 2 PNE (A8) n a-» [l
4(|ag|*+|ag,|laz?) Pn
APPENDIX B: LINEAR STABILITY OF THE BREATHER 5 _ ﬁ (B7)
IN JJL " iz,

The stability of periodic motion is analyzed with the help S 5 h ~h )
i . where z, =(z.,z7,23), Pn=(pPh.Pn.Pp), and the Hamil-
of the Floquet theon|17,24). Linearizing the systen{8) n” s n/+ Pn n+'PnsPnls

around a time-periodic breather solution, we obtain tonlanH(zn ,pn ,t) is
v v h ~h . 2 w2 ~p2 1 2 ph,h? | BHSh?
e+t ael+Al(t) el _,8 (Aei+Ven 1 —Ven_y), H=§E [Py +pn +Ph ]+§2 [Byzs +Bhz +Bizh ]
L n n
1 ~ h ~h
h v, _h_=h 20—z + z,
6n+aen+A (t)en 17,8|_(V6”+6” €), (Bl 2,3|_ En: ( n-1) E (
“ho <h, Rhoyh_ T v ~h +L [N -7 -2+ (B8)
En+a6n+An(t)€n:ﬁ(V5n+ Sh—"eh, PN n-1"4n-1 n
whereA,(t) are time-periodic coefficients determined by the Since the particular Hamiltonian may be represented in a
given breather state. general quadratic form, the symplectic product of two differ-
The substitution ent trajectories{pn(t),z,(t)} and {p,’'(t),z.(t)} does not
change in timg17
e K g ¢17]
h h
— o (12)at I .,
B o (B2) =3 [Bi(2o(1) ~ (24 (1)]. (B9)
K

allows one to eliminate the dissipation Rewriting our set of equations in the form

) 1 ) - 55— azHéﬁ *H 5
v v v v _ 7 = 0py+ —=——=952,,
Kkpt+Bp(t)«p, L(AKn—I-VKn,l Vikn_1), n p? " Pz,
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5p i Sp +a2H5* (B10)
- === —=; 0Z,,
Pn 92,9p, Pn ﬁZﬁ n
and using the notation
0 E
7=\ g ol (B11)
whereE is the identity matrix, we obtain
5p 5p
( _”) S f), (B12)
57, 0z,

whereV?H is the Hessianof H.
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unstable state is realized by collisions of eigenvalues on the
unit circle and departing from it.

All of the obtained relations for eigenvaluéand eigen-
vectorg may be rewritten for the originab,(t) variables
(call the corresponding Floquet eigenvalyes First of all,
we expect that most of the eigenvalues will be located on a
circle of radius(31). Further, it follows that ifu is an eigen-
value there™ “To/ ., u*, ande™ *To/u* are eigenvalues too.
So, all scenarios of collisions of the eigenvalues are similar
to the Hamiltonian case. For a periodic motion to be stable,
we need all eigenvalueg to have absolute values less or
equal to one, i.e., the complex numbersshould reside in-
side the unit circle in the complex plane. Since the radius
R(a)=<1, it needs further finite variation of the control pa-
rameters (after a collision to enforce an eigenvalue to

Let us consider the following map by integrating the Eqs.iayerse the finite distance to the unit circle and to exit it.

(B12) over one periodr,, of the initial solution:

8pn(Tp) 8pn(0)
=U(Ty) .

- - (B13)
62,(Ty) 62,(0)

Since the formZ is symplectic(B9), U(T,) is symplectic
too. As a result, we find that the eigenvaluedJqfT,) have
to fulfill the condition that ifv is an eigenvalue then i/ v*,

Thus, not every collision will lead to an instability. However,
the decrease of the dissipation parametemay tune the
system closer to the Hamiltonian case, making its states
more sensitive to any occurring collisions. Note that due to
the periodicity of the breather state, there is always one ei-
genvaluew =1, whose eigenvector is tangent to the breather
orbit. Consequently, we always find another eigenvalue
=e~ “To that is located on the positive real axis inside the

and 1b* are also eigenvalues. Note that for a marginallyunit circle. During all numerical computations of Floquet
stable periodic motion of a Hamiltonian system, the Floquekigenvalues and eigenvectors, the above properties were
eigenvalues are located on the unit circle. Switching to an tested and complete agreement was found.

[1] S. Strogatz,Nonlinear Dynamics and Chaos: with Applica- [15] G. Grimaldi, G. Filatrella, S. Pace, and U. Gambardella, Phys.

tions to Physics,
(Addison-Wesley, Reading, MA, 1994

[2] A. J. Sievers and J. B. PagBynamical Properties of Solids

VIl Phonon PhysicgElsevier, Amsterdam, 1995
[3] S. Aubry, Physica DL03 201 (1997).
[4] S. Flach and C. R. Willis, Phys. Rep95, 181 (1998.

[5] B. Swanson, J. Brozik, S. Love, G. Strouse, A. Shreve, A.

Bishop, W. Z. Wang, and M. Salkola, Phys. Rev. L&,
3288(1999.

[6] U. Schwarz, L. Q. English, and A. J. Sievers, Phys. Rev. Lett.

83, 223(1999.
[7] E. Trias, J. J. Mazo, and T. P. Orlando, Phys. Rev. L&it.
741 (2000.

[8] P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y.

Zolotaryuk, Phys. Rev. LetB4, 745 (2000.
[9] P. Binder, D. Abraimov, and A. V. Ustinov, Phys. Rev6E,
2858(2000.

[10] E. Trias, J. J. Mazo, A. Brinkman, and T. P. Orlando, Physica

D 156, 98 (200D.

[11] K. K. Likharev, Dynamics of Josephson Junctions and Circuits

(Gordon and Breach, New York, 1986

[12] P. Caputo, M. V. Fistul, A. V. Ustinov, B. A. Malomed, and S.

Flach, Phys. Rev. B9, 14 050(1999.
[13] S. Flach and M. Spicci, J. Phys.: Condens. Mattér 321
(1999.

Biology, Chemistry and Engineering

Lett. A 223 463(1996.

[16] A. Barone and G. Paternd2hysics and Applications of the
Josephson Effe¢wiley, New York, 1982.

[17] V. I. Arnold, Mathematical Methods of Classical Mechanics
(Springer, Berlin, 198p

[18] Recently, similar resonant steps lisV curves were observed
experimentally by M. Schuster, P. Binder, and A. V. Ustinov
(to be published

[19] Similar switchings with an increasing number of resistive junc-
tions have been obtained in RE20] for a rather different set
of dynamic equations. Such switchings have not been found in
extensive numerical simulations in R¢fl0]. We think that
this difference is due to the different step size of the dc bias
used. We found that one has to use sufficiently small step sizes
in order to observe these switchings.

[20] R. T. Giles and F. V. Kusmartsev, Phys. Lett. 287, 289
(2002).

[21] Note that the frequencies of these two localized EE's can be

nicely predicted taking into account the dynamics of two cells

around the resistive breather center. This will be published

elsewhere.

[22] S. P. Benz and C. J. Burroughs, Appl. Phys. L&8&, 2162
(1992.

[23] V. P. Koshelets, S. V. Shitov, A. V. Shchukin, L. V. Filip-
penko, J. Mygind, and A. V. Ustinov, Phys. Rev.58, 5572
(1997.

[14] J. R. Phillips, H. S. J. van der Zant, J. White, and T. P.[24] S. Watanabe, H. S. J. van der Zant, S. H. Strogatz, and T. P.

Ornaldo, Phys. Rev. B7, 5219(1993.

Orlando, Physica @7, 429(1996.

066601-14



