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Boltzmann equation description of electron transport in an electric field
with cylindrical or spherical symmetry
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The spatially dependent description of the electron kinetics in nonuniform electric fields is of primary
importance for the modeling of gas-filled proportional counters and other plasma devices. For a typical ex-
ample, the amplification of the gain signal in the gas counters is determined by the behavior of electron
ionization processes in the cylindrically or spherically symmetric electric field around thin wire or tiny sphere
anode. In this paper, the general formalism of the Boltzmann equation in these types of the nonuniform electric
fields is presented for specifying the electron swarm dynamics affected by the field geometry. The behavior of
electrons in the cylindrical or spherical field configuration is investigated by a Monte Carlo technique to
exemplify the description, and the effects associated with the angular momentum of electrons are discussed in
terms of the ionization coefficient.
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[. INTRODUCTION by using cylindrical or spherical electric field conditions
[12,13, and a consideration of the spherical fields must be
Applications of gas discharges to a variety of technologiegpotentially important in fabrication of spherical semiconduc-
such as in fabrication of new materials, etching metal surtors[14]. Moreover, inductive fields are typically curvilinear,
face, and neutral and ion beam sources, etc. are booming lrave significant spatial gradients and come with rf magnetic
recent years. For supporting the design and construction dfelds that can be non-negligible.
the apparatus in these applications, the method of plasma In this paper, we present the Boltzmann equation descrip-
modeling is being utilized with a fairly high reliability. In the tion for the electron swarms under the influence of cylindri-
modeling, there are two types of theoretical approaches: oneally or spherically symmetric electric fields. Typical swarm
is by the Boltzmann equation analysis for electrons, and thearameters, in particular the drift velocity and the ionization
other is the Monte Carlo method as a numerical experimentoefficient, in such a nonuniform electric field are investi-
It goes without saying that the electron energy distributiongated from a formalism with the Boltzmann equation. Next,
function (EEDF is particularly essential in determining the we demonstrate a Monte Carlo simulation of electrons to
ionization, excitation, and other processes in the weakly ionspecify the physical effects found in the swarm behavior in
ized plasmas. A complete theory with the Boltzmann equathese types of nonuniform electric fields. This is a continua-
tion has been established for describing the behavior of eledion of our work looking at swarm parameters, nonlocality,
tron swarms under uniform and constant electric fi¢ld®].  and scaling law. On one hand, cylindrically or spherically
However, stand-alone swarm experiments in uniform andymmetric electric field can be the simplest model case for
constant electric fields are of limited use. Radiation detectorglustrating the behavior of electrons in nonuniform field con-
and certain types of discharges are themselves swarmlikéjtions generated around fine wires, microprotrusions from
but usually in “nonuniform” electric fields, and in-vogue material surfaces, and edges of the microtrench on semicon-
types of plasma sources that one would desire to model usinductor surfacgwhich is charged up in plasma etching pro-
swarm parameters are often in a regime not well describedessep[15]. On the other hand, cylindrically or spherically
by dc swarm parameters. In recognition of this situation, thesymmetric field is an excellent test for the investigation of
behavior of electron swarms under dynamic and/or nonuninonlocal phenomena. As such, we present a characterization
form electric fields has begun to be characteri8e9].  of the EEDF and swarm parameters as a function of time and
These studies have been still limited to periodically varyinglocation from the center of a positively biased electrode. We
fields or time-harmonic fields and begin to address howgiso discuss the general treatment of the relaxation of elec-

swarm theory may be extended to nonlocal or nearly nonlotron energy in the potential around the cylindrical or spheri-
cal conditions typical of many plasma sour¢6,11. There 3] anode.

remains the need to generalize the swarm concept to electric
field conditions characterized by geometries typical of those
that would be found in practice. Curvature motion of elec-
trons incorporated with the field geometry is crucial to ac-
count for the macroscopic quantity of electrons. For ex-
ample, radiation detection by gas-filled counters is conducted

II. BOLTZMAN EQUATION DESCRIPTION
OF THE CYLINDRICALLY AND SPHERICALLY
SYMMETRIC ELECTRIC FIELDS

The Boltzmann equation for electrons in the microvolume
of six-dimensional phase spaak,dv, at timet is generally
*Email address: date@cme.hokudai.ac.jp expressed as
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GtV ta o (r,v,t)=0, ()
wherer is the position vector of electrom,is the velocity,a o divergent field lines
is the acceleration, and represents the collision operator ] A |
that includes the electron-molecule collision proce$dés i
For the cylindrical and spherical fields as in proportional
counters, it is reasonable to transform the coordinate for the v 5
positionr into (r,¢,z) system for the cylindrical geometry :
and (,0,¢) for the spherical geometry; that is, X
Temee p el \
X=T COS ¢ S r
=r sin Vo | o ‘
y=rsine (or V)‘\ Vr ;
z=2 for cylindrical, and N
Vol BNt
X=Trsin 6 cos ¢ \ Q
. . ,I/ ¢ \\\ X.
y=r sin 0 sin ¢ o : I } >
z=r cos for spherical.

. . o Cylindrical (or Spherical) anode T eee-
Taking account of the transformation formulas angriori

symmetry off(r,v,t) associated with the field geometries, FIG. 1. Distribution symmetry of velocity vector for electron at
we derive the Boltzmann equation in one dimengiodirec-  a positionr in the divergen{cylindrical or sphericalelectric field.
tion) for both the field configurations in the following sub- The probability distribution of the vector must be symmetric with
sections. respect to the field linéfor cylindrical case, this is a mirror sym-
metry on a plane normal to theaxis). The broken-line circle rep-
resents an equiprobability surface for the distribution of velocity
vector atr. The velocity vector notatiowy(|vy| = Vv, 2+ vyz) is

By the transformation of Eq1) to the cylindrical coordi-  replaced by(|v|=yv,?+v,?+v,?) for the spherical field case. If
nate, the second term of the right-hand side of #yjcan be  the angle¢ between the velocity vector atand the field line is

A. Cylindrical geometry

written as, taken to be constant, the distribution function keeps the same value
in spite of the change of angler [i.e., f(r,vg)=1(r,vy')
a of 1 of of =f(r,vo")]. The spatial integration of Eq1) over ¢ is performed
Veor T tUer Jp tu @ ith the angles being unchanged. As to the acceleration term of

Eq. (1), relationships below are sustainézbe Appendix dv, /dt
where @,,v,,v,) is the set of elements for the velocity =—(v, */r)+[eE(r)/m]=[(vo’—v,*)/r]+[eE(r)/m] for cylin-

vectorv in this coordinate. The elements are given by drical field and[ (v*~v,?)/r]+[eE(r)/m] for spherical field.
. . 2 (?f 2
vy =0y COS@+uy Sing, f sincp—dcpz[fsingo]g”—f f cose de
0 de 0
v,=—UxSiNp+v,COSp, (3

2

=0- f fcosep de

UVz=Ugz, 0
and

where @, ,vy,v,) are the elements parallel Xy, andz axes

of the velocityv that moves with the rotation af (around 2m of 5 2m

the origin keeping an angle between the velocity vector and f COSQD%d@:[f cose]g"+ fo fsinpde

the field line constanfsee Fig. 1. Taking account of Eq(3)

and the symmetry of the functioi(r,v,t) around the anode 27

center with respect to the velocity vectorranaking a fixed =0+ f fsingde,

angle ¢ to the field line, we perform the integration of Eq. 0

(2) over variablesp andz. The second term in the right-hand \ye have

side of Eq.(2) is replaced as

1 (2mn of 1 (2w _
19f 1 of —f v—d¢=—f [vxCOsp+uvysing]f de

. rJo ‘p(7(p rJo
— —=—| —vySINg+v,COSp | —.
U<pr Py I'[ Ux PTUy (P](7(P

2
. . =— f v, fde. (4)
As the integration of each term overleads to rJo
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In regard to the third term in the right-hand side of E2), and integrating this bylQ) =sin 6d#de, we have
the integration over from —o to +oo turns out to be zero as

f AT [
+o  If Ve — =4T| U,
f_wvzzdz=[vzf]f§=0. (5) o

f(r,v,t)|. (11

J 2
_+_
a r

As to the third term in the left-hand side of E@.), the
Consequently, by the integration of E®) over spatial vari- acceleration can be described for the spherical mod&dess

ables¢ andz, we obtain Appendix,
dv v,2 eEr)
+e 2w 9f(r ¢,z g 1 o7
f f V~(—¢)d<de=27T[vr Z 42l T (12
—» Jo dr a r

6)  where v,2=v2—v,2 Performing the integration ofd/

Here, it should be emphasized that the integration above hegst)(af/av) overd( leads to

been made by taking advantage of the symmetry of the func- dv of (v2=v,%) eE(r)]af(r,v,t)

tion for the velocity vector at a certain angle to the field line f at 5d9=477 - r + m } 90 .

as shown in Fig. 1. ' (13)
Next, we take the third term of Eql) into account. The

accelerationa=dv/dt is seemingly given by eE(r)]/m Thus, the final form of the one-dimensional Boltzmann

alongr direction[e andm are the charge and mass of elec- equation for spherical fields is expressed by
tron, andE(r) is the r-dependent electric fie][d However, ) )

the motion of electron orbiting around the anode wire with {i ﬁ+ (v7=v,%) n eE(r)}iJrJ
the conservation of angular momentum is not to be consid-| Jt or r m |dv,
ered by this expression. In order to incorporate this angular (14
effect into the Boltzmann equation description, the “normal
acceleration” term induced by the velocity element) nor-
mal to the field direction should be added as follows.

F(r,v,t)=0,

where

F(r,v,t)zrzf(r,v,t)=[1/4w]f f f(r,v,t)r’sinddéde.

dv v,2 eE(r vol—v,%) eEr
d_tr:_l_'_ ():_(O r)+ ()’ (7)
r m r m IIl. DERIVATION OF THE IONIZATION COEFFICIENT
wherev?=v2—v,? (see Appendix It should be noted that  |n this section, using Eq¢9) and(14) for cylindrical and

the vector element in direction is set to be positive toward spherical field geometries, we deduce the expression of the
the anode. Then the integration oéiwWdt)(df/dv) over ionization coefficient that is essential in evaluating the elec-

de dz gives us tron multiplication factor in gas counters. The ionization co-

efficient was defined originally as the multiplication rate of

f““f” dv of do dz—2 (vo’—v,%) electron number per unit length along the field direction by

. Jo dt av ¢az=em r Townsend at the turn of the 20th century. On this coefficient

eE(r)
+
m

we have discussed from a view point of the arrival-time
af(r,v,t) g  SPectra(ATS) method in a previous pap¢t7]. In the ATS
v, (8) method, the ionization coefficient is regarded as the lowest
order parameter of the time derivative expansiorNgf,t)
Finally, as the results of the integration over spatial vari-and is given by [1/N(r)][dN(r)/dor]. Here, N(r,t)
ables exceptr, the equation forF(r,v,t)[=r f(r,v,t) =[F(r,v,t)dv and N(r)=[N(r,t)dt. However, as men-
=(1/2)mf [f(r,v,t)rde dZz] is deduced as, tioned in the paper, this definition is not appropriate to de-
scribe the electron multiplication factor in nonuniform elec-
tric fields such as in the proportional counters. In order to
F(r.v.)=0. capture the number of electrons passing through a plane
(99  (normal to the field lingat an arbitrary position, we have to
consider the electron fluxX; (r,t)=Vy(r,t)N(r,t) [V4(r,t)
is the drift velocity toward the anodlenot the electron num-
ber densityN(r,t) that observed irdr at t; then the total
In a manner similar to the cylindrical case, the integrationnumber of electrons is obtained by integratifi¢r,t) over
over § and ¢ can be made based updn=r?sin #dédedr  entire timet. Ultimately, the ionization coefficient as a func-
for spherical coordinate. The second term in the left-handion of positionr must be physically defined by
side of Eq.(2) is

J J
—+u,—-+

(vo*—v,?) N eE(r)
ot U

r m

i +J
du,

B. Spherical geometry

1 aT(r)

N=——— |I'(nh=| V r,tNr,t)dt}.
v-ﬁ=vrj—:+vﬁim 1 of 10 (=T “ar (r) f a1 HN(

ar r a6 ¢rsino e’ (15)
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However, it is worthy of note that(r) defined above is
equivalent to that given byL/N(r)][dN(r)/ar] if the “uni- |—‘ ‘ -+

form” field condition with a hydrodynamic regimiel] is the E=kirlor kir ‘
case. ‘
To proceed to the deduction af(r) from Eg. (9) or Eq. andde r ‘ E': 22or K/

(14), the distribution functionF(r,v,t) shall be written as
F(r,v,t)=g(r,v,t)N(r,t), whereg(r,v,t) is the normalized
velocity distribution function(i.e., fg(r,v,t)dv=1). Ac- (a) spherical or cylindrical () parallel plane
cording to this expression, E¢Q) is rewritten by

anode

FIG. 2. Field geometry modelga) for spherical or cylindrical

9 " oN . a9 - P N (Uoz_ Urz) (divergenj configuration, andb) for parallel plane.
= — = i _
gt o T 9 r with the replacement af , by v. It should be noted that the
eE(r)] dg formalism of the continuity equation of electron number and
+ —N-+J(gN)=0. (16)  the ionization coefficient, im direction, in the cylindrical or
vy spherical field geometry is completely identical to that in the

eoarallel(nondiverger)tfield condition, even though the origi-
hal equation before the integratipie., Eq.(9) or Eq. (14)]

is different from the common Boltzmann equation for one-
g sit¢ 9 dimensional parallel fields.

d
—= —_—t— 1
v, cos ¢ dvg vg d[cose]’ (7

Taking the symmetry of velocity space associated with th
field geometries into account, the operaédfv, is given by

IV. MODEL OF A MONTE CARLO METHOD

wherev,=vycos¢ and ¢ is the polar angle in the velocity

e : i : In Sec. Il, we have deduced the one-dimensional Boltz-
space as shown in Fig. 1. By using this formula, the integra- . . o . o
. = : mann equation of electrons in the electric field with cylindri-
tion overdv=v,d¢ dvydv, is performed as

cal or spherical symmetrjj.e., Egs.(9) and(14)]. Unfortu-
ag(r,v) nately, it is difficult to solve the differential equatio® and
f Vo> 2 dv= —Zf v,g(r,v)dv. (18) (14) by any numerical means since these equations depend
r on both velocity vectov and positiorr. However, it must be
important to know the Boltzmann equation for these types of
field geometry because the conventional analyses have sub-
stituted a simple one-dimensional Boltzmann equatigp
f vrz[ag(r,v)/avr]dv:—zf v, g(r,v)dv noring the effects by the divergent electric figldsr the
“intrinsic” expression of the equation. Disregarding the ef-
holds as well, and then the integration owkr with respect  fects associated with the field geometry may cause an incon-
to the third term in Eq(9) turns out to be zero. Therefore, we sistency in the methodology to describe the macroscopic
have the continuity equation of electron number in a well-€lectron behavior. As a typical example, the ionization coef-

At the same time,

known form as, ficient has been deduced properly from E@.and (14) in
the preceding Sec. lll. Specifically, the deduction also in-
IN(r,t) 4 cludes the consideration of volumetric factorandr?.
o T o Ve ON(LO]=Ria(r,ON(r, ). (19 In order to illustrate the kinetics of electrons in the non-

uniform electric fields and to confirm the validity of Egs.
Here, R4(r,t) is the effective ionization frequencli.e., (15 and (20), we perform a Monte Carlo simulation as a
Ria(r,t)=Ri(r,t) —R4(r,t); Ri(r,t) is the ionization fre- numerical experiment. In this simulation, the effects of the
quency atr andt, andR,(r,t) is the attachment frequengy orbiting motion of electrongwith the angular momentum
By the integration of Eq(19) over timet from zero to infin-  on the transport parameters are the focus of attention. Figure
ity, the first term of the left-hand side of E(L9) vanishes in 2 shows the field models used in this study. The electron
an effective drift region of electrons. Here, the effective driftdynamics in the cylindrical or spherical field modétig.
region means the discharge space between the starting poi2f@)] is compared with that in the parallel plane geometry
of the initial electrons and the anode surface. Finally, considhaving the same spatial dependence of field strength along
ering the definition of the ionization coefficient in E45), the field line[Fig. 2(b)], aiming to see the effects of the
we obtain angular momentum of electrons in the “divergent” electric
fields. Initial electrons are released at a certain distance from
the anode, and the motion of them involving the collision
events with background gas molecules and the drift toward
the anode is followed up to the anode surface by a Monte
where Ny is the number density of background gas mol-Carlo technique.
eculesg;, is q;—q, (g; andg, are ionization and attachment ~ Table | shows the condition of the simulation. The Monte
cross sectionsAlso for the spherical field model, the deduc- Carlo technique used here is based upon the free-flight-time
tion of the equations same as E@$6)—(20) can be made method[18], in which the time step for the technique is set

_ Ria(r)  Ngfvgia(v)g(r,v)dv
=V~ Togrmdv

(20
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TABLE |. Simulation condition.

Field model
Geometry kit or kir? (k/z or kiz?)
Radius of cylindrical or spherical anodegj 0.1-0.5 mm
Gas Ar-like and GHlike models
Anode voltage 500-900 V
Gas pressure 1.0 Torr
Condition for the initial electrons
Number of the electrons 20000-60000
Released position 9.9 or 9.5 mm from the anode surface
Direction at random
Energy Maxwellian distribution with a mean

energy ranging from 0.1 to 10 eV
Parameters for the Monte Carlo simulatidree-flight-time mehtod18])

Time step Qt) <0.5 psec
Simulation time 50-200 nsec
Bin's width for spatial samplingAr or Az) 0.1 mm
small enough to trace the electron trajectory accurdtktyis ey €XCitation:
typically less than 10'%seq. The electrons see a cylindrical
or spherical electrode that is positively biased and its center (0.3X107%%) e —11.55
is located at the origin with radius 0.1-0.5 mm. Initial elec- e
trons are released at a point on a shell about the aftgpie X ex;{ — H)) cm? for £=11.55 eV,

cally 1.0 cm point from the anode centevith a Maxwellian
distr_ibutio_n at a mean energy of 0.1-10 eV, and the Singl?}m(momentumtransfer):

particle simulation(including the second electron genera-
tion) is iterated for a number of the initial electrons. To make

comparison with the cylindrical or spherical model analysis,(1.0X 1079 (1.0-3.66) s —0.001
simulations in parallel plane fields with the same field profile

along the field line(corresponding to the respective madel ><exp( ) )

are carried out as well. Field distortion by the space charge is ~oal| cm for e<0.2 eV,

0.
assumed to be negligible. Sampling is made using a large
number of test electrongyreater than 20000 which are —1.177 184
followed for several hundreds of nanoseconds. We can ig{1.0X 1015)(;) cn? for 0.2 eV=e<10 eV,
nore the motion of the background gas molecules compared
with that of electrons. The positive bias voltage is varied (
€

0.7
from 500 to 900 V and it is assumed that the anode absorbg4.0x 10~ 1) cn? for 10 eV<eg,

arriving electrons without reflection. Secondary electron gen-

eration at the cathode through photons and/or ions is NQfhere the ionization and the excitation threshold energies are

included. _ chosen to be 15.76 and 11.55 eV, respectively.
Two types of model gases, a.£ike model and an Ar-like

model, are the focus of the simulation. A set of cross sections
for the Cl-like model is same as is shown in a previous

paper[19]. The total cross section of this model is set to be In Fig. 3@, we show a set of typical snapshots of spa-
a constant value of 10°cn? for generality, there is no im- tially resolved electron number for the spherical field condi-
pact otherwise from this assumption. A set of cross sectionion. The total number of electrons over the spherical shell

for the Ar-like model is given by the following functions: ~ volume, which can be obtained by integrating the distribu-
tion overr (from the anode surface positiog to «) at each
sampling time in Fig. &), increases for a time and then

V. SIMULATION RESULTS AND DISCUSSION

g; (ionization: decreases monotonically owing to the absorption of electrons
into the anode. A remarkable feature of the electron number
(0.5x10 19 \e—15.76 distribution is the lack of variation of the spatial profile after
several tens of nanoseconds. This suggests that the electrons
& might be in a steady state or, namelyhydrodynamicequi-
xexr{ 200) on? for £>15.76 eV, librium state, keeping the same spatial distribution after a
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Ar-like model, S700V, R0=0.5mm, EO=1.0eV == P500V
10000~ Ar-like Mode! —— 500V @
] t (nsec) @ 1x10103 E1x1010 5
= 3 E
10 & 1 =
1000 20 = 1 r &=
w ] 30 Z 1x10° - E1x10° 5
S o Bl E .
s 40 5 N ] &> S
S 1004 50 < 108:h‘-‘= M 71 108 =
o ; 60 =2 Py TN x0T =
i E 2
G ] 70 z ] < i =
S 104 80 2 1074 L ixi0? S
= ] 90 2 ] | i <
=) 1 I =
= ] 100 e 1 i 2
1 = R
1 S 1x108— ——t——————————1x10° §
T T 2 0 0 0.2 0.4 0.6 0.8 1 -
’ : r or z (cm)
Anode surface (r,=0.05cm) r (cm) (@)
@ N
5 Ar-like Model
1000 =10 | | t
< t (nsec) I ——  Alpha(z)-P500V
c N —
@ 100 -_ 10 [__| s A Alpha(r)-C500V
= — 2 <20
§ 30 =] T
N E — fray | ’
“ 10 —— 0 B ', )
I . N S e °© \
g, 50 e 10 =
> g | \\q
= ] (&l 4 .
3 s \
= ; |
<
: B e W B — ,
0.1+ T T T T T T T T _g 0 0.2 0.4 0.6 0.8 1
0: 1.0 2.0 ? r or z {cm)
Anode surface (r,=0.05¢cm) r (cm)
(b) 0.01cm: Anode surface

(b)

FIG. 4. Comparison of the parameters in cylindrical and parallel
field models:(a) for the drift velocity V4 and the ionization fre-
qguencyR;, and(b) for the ionization coefficien=R; /V4. Radius
of cylindrical anode is 0.1 mm, and the anode voltage for both
models is 500 V. Initial electrons start at 1.0 cm with a Maxwellian
certain time. Spatial distribution of the mean energy of elecdistribution at 0.1 eV mean energy.
trons in Fig. 3b) shows evidence of the steady-state phase of

electrons. These characteristics were recognized for a variefy, .o petween the parameters for both field models represents
of initial conditions of electron energy from 0.1 to 10 eV and the effect of electron motion with angular momentum around
also for the cylindrical and parallel fie[d 7] configurations. the anode, which may be described by the additional term
The entire results imply that the electron transport param- ith _(Uoé_v 2/r in the left-hand side of Eq(9). It is

. .

eters are in an equilibrium state, being uniquely determine rr T o o
by the local fieldqstrength after a rele?[ivel)?shgrt period Ofnoted that the ionization coefficient in the cylindrical field is
' much greater than that in the parallel field in the vicinity of

time under this type of nonuniform field condition. : ) : .
Figure 4 shows the comparison between the parameters i€ @node surface. This gap is mainly caused by the differ-
cylindrical and parallel field models. One-dimensional field®Nce between the drift velocities in both the models. In the
strength is varied equally for both the models. The drift ve-cYlindrical field geometry, the drift velocity of electrons
locity [V4(r) or V4(z)] and the ionization frequendyR;(r) along the field line is reduced effectively by the spiral motion
or Ri(z)] were calculated by accumulating [=uv,cosd¢] of them around the anode. Similarly to Fig. 4, we present the
andvq;(v) for all electrons at each location and by averag-comparison of the parameters in spherical and parallel mod-
ing them per electron over entire time. The ionization coef-€ls for Ch-like gas in Fig. 5. The same effect on the ioniza-
ficient was given bya=R;/V, following the definition of tion coefficient is recognized in Fig (3.
Eq. (20). Here,R; is identical toR;, for Ar-like gas because As is well known in the study on gas-filled radiation de-
there is no attachment collision process, and the entire timtectors[20], the ionization coefficient leads to the derivation
means the period fron=0 up to the time when the rear end of the gas gain or the multiplication factor of electrons in
electron in the swarm is absorbed into the anode. The differproportional counters as

FIG. 3. Spatially resolved quantities for Ar-like model gas at
700-V bias voltage of spherical anod8.5 mm radius (a) for
electron number an¢b) for mean energy of electrons. Initial elec-
trons with a Maxwellian distributiofiat 1.0 eV mean energyvere
released at=1.0 cm.
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Cl2-like Model ——— P500v B
oce ——— 500V INnG= | «a(r)dr, (21
1x10'93 F1x1010 A

(cm/s)

whereA andB represent the boundary of discharge region in
the field. If the minimum boundari is set to be the anode
radius, the gairs becomes equivalent to the total number of
electrons arrived at the anode surface arising from an initial
electron at a positio® far from the anode. In Table I, the
mean value of the gaifper initial electronis listed for vari-
ous conditions, and we can see that the field of cylindrical or
spherical geometry enhances the gain significantly. It is note-
worthy that the electron motion with the angular momentum
1108 ) I I I I N | 1108 encourages the energy transfiéirough the collision evenks

0 0.2 0.4 0.6 0.8 1 to the background gases.

1x10%3 E1x109

X108 g L 1x108
1 4_:.\.1 2, ;

1x107H V w@i;—mo’

1x1054 =1x10°

v

Ria(r) or Ria(z) (1/s)

Drift velocity, Vd(r) or Vd(z)

~
&

VI. SUMMARY AND CONCLUSIONS

Cl2-like Model In this study, we have shown the Boltzmann equation per-
| | l tinent to describe the electron transport in the electric fields
—— Alpha(z)-P500V with cylindrical or spherical symmetry. Then, the typical
—— Alpha (r)-8500V transport parameter, the ionization coefficient, has been in-
vestigated in connection with the multiplication factor of gas
1 counters. In order to illustrate the physical effects implicated
\ in the Boltzmann equation, we have demonstrated a Monte
\\ Carlo simulation of electrons in the divergent electric fields.
The present study leads to the following conclusions:
%-’L (1) A modification of the acceleration term in the Boltz-
mann equatior{one-dimensional in spatés necessary for
describing electron swarms in the field with cylindrical or
—t—— spherical symmetry. The additional acceleration term arises
0.8 L from the velocity element of electrons normal to the field
direction. The Monte Carlo simulation results support the
0.05¢m: Anode surface Boltzmann equation description.
(b) (2) The ionization coefficient derived from the one-
dimensional Boltzmann equation for the cylindrical or

FIG. 5. Comparison of the parameters in spherical and parallepPherical field has an identical form to that in nondivergent

field models:(a) for the drift velocity V4 and the effective ioniza-  field geometry, in spite of the difference in the original equa-
tion frequency R;,, and (b) for the ionization coefficienta tion. In addition, it should be noted that the coefficient for

=R, /V4. Radius of spherical anode is 0.5 mm, and the anodeevaluating the multiplication factor of electron number in the
voltage for both models is 500 V. Initial electrons start at 1.0 cmnonuniform electric fields is correctly given by the flux con-
with a Maxwellian distribution at 0.1 eV mean energy. sideration of electrons, not by the spatial electron density.
(3) The electron swarm behavior involving the collision
processes with background gases and the drift motion is

(1/cm)
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I -
|

_
o
" )

(=)

|
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(==
o 4
a3

0.4 0.6
f rorz (om

TABLE Il. Comparison of the gain.

(Ar-like gas model

Cylindrical (ro=0.5mm) Parallel plane

G=463.4 G=244.1 V,=500V
Cylindrical (ro=0.1 mm) Parallel Plane

G=1098.9 G=874.7 V,=500V
Spherical (,=0.5mm) Parallel plane

G=40.9 G=29.8 V,=500V
G=94.38 G=65.0 V,=700V
(Cl,-like gas model

Spherical (;=0.5mm) Parallel plane

G=131.0 G=93.4 V,=500V
G=1218.7 G=676.4 V,=900V

066410-7



H. DATE AND M. SHIMOZUMA PHYSICAL REVIEW E 64 066410

strongly influenced by the angular momentum of electrondor the spherical coordinates.
near the source of divergent electric fields. It is suggested According to the Newton’s second law of motion in a
that the local equilibrium of EEDF under ther Ir 142 type  cylindrical and a spherical field potential, the acceleration in
of field geometry can be led in a short period of time. ther direction is given by

As an extension, it is possible to infer that the effects of

angular momentum of electrons may be added into the ac a,=f—rpi=— N(.¢,2) (A3)
celeration term in the Boltzmann equation of electrons also ' ar
for some types of magnetic field conditions. -
P g for cylindrical and
ACKNOWLEDGMENTS . INV(r,6,0)
_ _ a,=f—r[ 6%+ p?sirfg]=— (r.0.¢ (A4)
The authors are indebted to Professor H. Tagashira, Pro- 4

fessor T. Yamamoto, Professor K. Kitamori, Professor K.

Kondo, and to Dr. P. L. G. Ventzek for valuable discussionsfor spherical fields, respectively. Then, letting the velocity

element toward the origin be positive in the radial direction,

we obtain
APPENDIX
2
. . E
As to the third term of the left-hand side of Ed), we %:r: Ve eE(r) (A5)
can transform it to the expression in cylindrical or spherical dt r m
coordinates as follows: for cylindrical and
dv df dv, 9f dvy, of dv, of do, v2+v,2 eEr)
AR T TR T T TS —L=i=— ? 4 (A6)
dt gv dt dvy, dt dv, dt dv, dt r m
_ v, of dv, f  do, Jf for spherical configurations.

T dt v, dt v, Tt o, (D) Other terms associated wittlv,,/dt and dv,/dt or
o ) dv,/dt and dv,/dt can be eliminated by the integration
for the cylindrical coordinates, and over the spatial variables excapowing to the symmetry of
the functionf in velocity space. Here, it should be noted that
_dvf of |, duy ‘9_f dv, I (A2) the integration is carried out keeping the velocity vector to

S dt 5r dt oy dt E make a same angle with respect to the field lisee Fig. L
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