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Boltzmann equation description of electron transport in an electric field
with cylindrical or spherical symmetry
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The spatially dependent description of the electron kinetics in nonuniform electric fields is of primary
importance for the modeling of gas-filled proportional counters and other plasma devices. For a typical ex-
ample, the amplification of the gain signal in the gas counters is determined by the behavior of electron
ionization processes in the cylindrically or spherically symmetric electric field around thin wire or tiny sphere
anode. In this paper, the general formalism of the Boltzmann equation in these types of the nonuniform electric
fields is presented for specifying the electron swarm dynamics affected by the field geometry. The behavior of
electrons in the cylindrical or spherical field configuration is investigated by a Monte Carlo technique to
exemplify the description, and the effects associated with the angular momentum of electrons are discussed in
terms of the ionization coefficient.
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I. INTRODUCTION

Applications of gas discharges to a variety of technolog
such as in fabrication of new materials, etching metal s
face, and neutral and ion beam sources, etc. are boomin
recent years. For supporting the design and constructio
the apparatus in these applications, the method of pla
modeling is being utilized with a fairly high reliability. In the
modeling, there are two types of theoretical approaches:
is by the Boltzmann equation analysis for electrons, and
other is the Monte Carlo method as a numerical experim
It goes without saying that the electron energy distribut
function ~EEDF! is particularly essential in determining th
ionization, excitation, and other processes in the weakly i
ized plasmas. A complete theory with the Boltzmann eq
tion has been established for describing the behavior of e
tron swarms under uniform and constant electric fields@1,2#.
However, stand-alone swarm experiments in uniform a
constant electric fields are of limited use. Radiation detec
and certain types of discharges are themselves swarm
but usually in ‘‘nonuniform’’ electric fields, and in-vogu
types of plasma sources that one would desire to model u
swarm parameters are often in a regime not well descri
by dc swarm parameters. In recognition of this situation,
behavior of electron swarms under dynamic and/or nonu
form electric fields has begun to be characterized@3–9#.
These studies have been still limited to periodically vary
fields or time-harmonic fields and begin to address h
swarm theory may be extended to nonlocal or nearly non
cal conditions typical of many plasma sources@10,11#. There
remains the need to generalize the swarm concept to ele
field conditions characterized by geometries typical of th
that would be found in practice. Curvature motion of ele
trons incorporated with the field geometry is crucial to a
count for the macroscopic quantity of electrons. For e
ample, radiation detection by gas-filled counters is conduc
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by using cylindrical or spherical electric field condition
@12,13#, and a consideration of the spherical fields must
potentially important in fabrication of spherical semicondu
tors @14#. Moreover, inductive fields are typically curvilinea
have significant spatial gradients and come with rf magn
fields that can be non-negligible.

In this paper, we present the Boltzmann equation desc
tion for the electron swarms under the influence of cylind
cally or spherically symmetric electric fields. Typical swar
parameters, in particular the drift velocity and the ionizati
coefficient, in such a nonuniform electric field are inves
gated from a formalism with the Boltzmann equation. Ne
we demonstrate a Monte Carlo simulation of electrons
specify the physical effects found in the swarm behavior
these types of nonuniform electric fields. This is a continu
tion of our work looking at swarm parameters, nonlocali
and scaling law. On one hand, cylindrically or spherica
symmetric electric field can be the simplest model case
illustrating the behavior of electrons in nonuniform field co
ditions generated around fine wires, microprotrusions fr
material surfaces, and edges of the microtrench on semi
ductor surface~which is charged up in plasma etching pr
cesses! @15#. On the other hand, cylindrically or spherical
symmetric field is an excellent test for the investigation
nonlocal phenomena. As such, we present a characteriza
of the EEDF and swarm parameters as a function of time
location from the center of a positively biased electrode.
also discuss the general treatment of the relaxation of e
tron energy in the potential around the cylindrical or sphe
cal anode.

II. BOLTZMAN EQUATION DESCRIPTION
OF THE CYLINDRICALLY AND SPHERICALLY

SYMMETRIC ELECTRIC FIELDS

The Boltzmann equation for electrons in the microvolum
of six-dimensional phase space,dr dv, at timet is generally
expressed as
©2001 The American Physical Society10-1
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H ]

]t
1v•

]

]r
1a•

]

]v
1JJ f ~r ,v,t !50, ~1!

wherer is the position vector of electron,v is the velocity,a
is the acceleration, andJ represents the collision operato
that includes the electron-molecule collision processes@16#.
For the cylindrical and spherical fields as in proportion
counters, it is reasonable to transform the coordinate for
position r into (r ,w,z) system for the cylindrical geometr
and (r ,u,w) for the spherical geometry; that is,

x5r cosw

y5r sin w

z5z for cylindrical, and

x5r sin u cosw

y5r sin u sin w

z5r cosu for spherical.

Taking account of the transformation formulas anda priori
symmetry of f (r ,v,t) associated with the field geometrie
we derive the Boltzmann equation in one dimension~r direc-
tion! for both the field configurations in the following sub
sections.

A. Cylindrical geometry

By the transformation of Eq.~1! to the cylindrical coordi-
nate, the second term of the right-hand side of Eq.~1! can be
written as,

v•
] f

]r
5v r

] f

]r
1vw

1

r

] f

]w
1vz

] f

]z
, ~2!

where (v r ,vw ,vz) is the set of elements for the velocit
vectorv in this coordinate. The elements are given by

v r5vx cosw1vy sinw,

vw52vx sinw1vy cosw, ~3!

vz5vz ,

where (vx ,vy ,vz) are the elements parallel tox, y, andz axes
of the velocityv that moves with the rotation ofr ~around
the origin! keeping an angle between the velocity vector a
the field line constant~see Fig. 1!. Taking account of Eq.~3!
and the symmetry of the functionf (r ,v,t) around the anode
center with respect to the velocity vector atr making a fixed
anglef to the field line, we perform the integration of E
~2! over variablesw andz. The second term in the right-han
side of Eq.~2! is replaced as

vw

1

r

] f

]w
5

1

r
@2vx sinw1vy cosw#

] f

]w
.

As the integration of each term overw leads to
06641
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0

2p

sinw
] f

]w
dw5@ f sinw#0

2p2E
0

2p

f cosw dw

502E
0

2p

f cosw dw

and

E
0

2p

cosw
] f

]w
dw5@ f cosw#0

2p1E
0

2p

f sinw dw

501E
0

2p

f sinw dw,

we have

1

r E0

2p

vw

] f

]w
dw5

1

r E0

2p

@vx cosw1vy sinw# f dw

5
1

r E0

2p

v r f dw. ~4!

FIG. 1. Distribution symmetry of velocity vector for electron
a positionr in the divergent~cylindrical or spherical! electric field.
The probability distribution of the vector must be symmetric w
respect to the field line~for cylindrical case, this is a mirror sym
metry on a plane normal to thez axis!. The broken-line circle rep-
resents an equiprobability surface for the distribution of veloc
vector at r . The velocity vector notationv0(uv0u5Avx

21vy
2) is

replaced byv(uvu5Avx
21vy

21vz
2) for the spherical field case. I

the anglef between the velocity vector atr and the field line is
taken to be constant, the distribution function keeps the same v
in spite of the change of anglew @i.e., f (r ,v0)5 f (r ,v08)
5 f (r ,v09)]. The spatial integration of Eq.~1! over w is performed
with the anglef being unchanged. As to the acceleration term
Eq. ~1!, relationships below are sustained~see Appendix!: dv r /dt
52(v'

2/r )1@eE(r )/m#5@(v0
22v r

2)/r #1@eE(r )/m# for cylin-
drical field and@(v22v r

2)/r #1@eE(r )/m# for spherical field.
0-2
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In regard to the third term in the right-hand side of Eq.~2!,
the integration overz from 2` to 1` turns out to be zero a

E
2`

1`

vz

] f

]z
dz5@vzf #2`

1`50. ~5!

Consequently, by the integration of Eq.~2! over spatial vari-
ablesw andz, we obtain

E
2`

1`E
0

2p

v•
] f ~r ,w,z!

dr
dw dz52pFv r S ]

]r
1

1

r D f ~r ,v,t !G .
~6!

Here, it should be emphasized that the integration above
been made by taking advantage of the symmetry of the fu
tion for the velocity vector at a certain angle to the field li
as shown in Fig. 1.

Next, we take the third term of Eq.~1! into account. The
accelerationa5dv/dt is seemingly given by@eE(r )#/m
along r direction @e andm are the charge and mass of ele
tron, andE(r ) is the r-dependent electric field#. However,
the motion of electron orbiting around the anode wire w
the conservation of angular momentum is not to be con
ered by this expression. In order to incorporate this ang
effect into the Boltzmann equation description, the ‘‘norm
acceleration’’ term induced by the velocity element (vw) nor-
mal to the field direction should be added as follows.

dv r

dt
52

vw
2

r
1

eE~r !

m
52

~v0
22v r

2!

r
1

eE~r !

m
, ~7!

wherev0
25v22vz

2 ~see Appendix!. It should be noted tha
the vector element inr direction is set to be positive towar
the anode. Then the integration of (dv/dt)(] f /]v) over
dw dz gives us

E
2`

1`E
0

2p dv

dt

] f

]v
dw dz52pF2

~v0
22v r

2!

r

1
eE~r !

m G ] f ~r ,v,t !

]v r
. ~8!

Finally, as the results of the integration over spatial va
ables except r , the equation for F(r ,v,t)@[r f (r ,v,t)
5(1/2)p** f (r ,v,t)r dw dz# is deduced as,

H ]

]t
1v r

]

]r
1F2

~v0
22v r

2!

r
1

eE~r !

m G ]

]v r
1JJ F~r ,v,t !50.

~9!

B. Spherical geometry

In a manner similar to the cylindrical case, the integrat
over u andw can be made based upondr5r 2 sinu du dw dr
for spherical coordinate. The second term in the left-ha
side of Eq.~1! is

v•
] f

]r
5v r

] f

]r
1vu

1

r

] f

]u
1vw

1

r sin u

] f

]w
, ~10!
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and integrating this bydV5sinu du dw, we have

E v•
] f

]r
dV54pFv r S ]

]r
1

2

r D f ~r ,v,t !G . ~11!

As to the third term in the left-hand side of Eq.~1!, the
acceleration can be described for the spherical model as~see
Appendix!,

dv r

dt
52

v'
2

r
1

eE~r !

m
, ~12!

where v'
25v22v r

2. Performing the integration of (dv/
dt)(] f /]v) over dV leads to

E dv

dt

] f

]v
dV54pF2

~v22v r
2!

r
1

eE~r !

m G ] f ~r ,v,t !

]v r
.

~13!

Thus, the final form of the one-dimensional Boltzma
equation for spherical fields is expressed by

H ]

]t
1v r

]

]r
1F2

~v22v r
2!

r
1

eE~r !

m G ]

]v r
1JJ F~r ,v,t !50,

~14!

where

F~r ,v,t ![r 2f ~r ,v,t !5@1/4p#E E f ~r ,v,t !r 2 sinu du dw.

III. DERIVATION OF THE IONIZATION COEFFICIENT

In this section, using Eqs.~9! and~14! for cylindrical and
spherical field geometries, we deduce the expression of
ionization coefficient that is essential in evaluating the el
tron multiplication factor in gas counters. The ionization c
efficient was defined originally as the multiplication rate
electron number per unit length along the field direction
Townsend at the turn of the 20th century. On this coeffici
we have discussed from a view point of the arrival-tim
spectra~ATS! method in a previous paper@17#. In the ATS
method, the ionization coefficient is regarded as the low
order parameter of the time derivative expansion ofN(r ,t)
and is given by @1/N(r )#@]N(r )/]r #. Here, N(r ,t)
5*F(r ,v,t)dv and N(r )5*N(r ,t)dt. However, as men-
tioned in the paper, this definition is not appropriate to d
scribe the electron multiplication factor in nonuniform ele
tric fields such as in the proportional counters. In order
capture the number of electrons passing through a p
~normal to the field line! at an arbitrary positionr, we have to
consider the electron flux,G(r ,t)[Vd(r ,t)N(r ,t) @Vd(r ,t)
is the drift velocity toward the anode#, not the electron num-
ber densityN(r ,t) that observed indr at t; then the total
number of electrons is obtained by integratingG(r ,t) over
entire timet. Ultimately, the ionization coefficient as a func
tion of positionr must be physically defined by

a~r !5
1

G~r !

]G~r !

]r FG~r ![E Vd~r ,t !N~r ,t !dtG .
~15!
0-3
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However, it is worthy of note thata(r ) defined above is
equivalent to that given by@1/N(r )#@]N(r )/]r # if the ‘‘uni-
form’’ field condition with a hydrodynamic regime@1# is the
case.

To proceed to the deduction ofa(r ) from Eq. ~9! or Eq.
~14!, the distribution functionF(r ,v,t) shall be written as
F(r ,v,t)5g(r ,v,t)N(r ,t), whereg(r ,v,t) is the normalized
velocity distribution function„i.e., *g(r ,v,t)dv51…. Ac-
cording to this expression, Eq.~9! is rewritten by

]g

]t
N1g

]N

]t
1v r S ]g

]r
N1g

]N

]r D1F2
~v0

22v r
2!

r

1
eE~r !

m G ]g

]v r
N1J~gN!50. ~16!

Taking the symmetry of velocity space associated with
field geometries into account, the operator]/]v r is given by

]

]v r
5cosf

]

]v0
1

sin2 f

v0

]

]@cosf#
, ~17!

wherev r5v0 cosf andf is the polar angle in the velocity
space as shown in Fig. 1. By using this formula, the integ
tion overdv5v0 df dv0 dvz is performed as

E v0
2

]g~r ,v!

]v r
dv522E v rg~r ,v!dv. ~18!

At the same time,

E v r
2 @]g~r ,v!/]v r # dv522E v r g~r ,v!dv

holds as well, and then the integration overdv with respect
to the third term in Eq.~9! turns out to be zero. Therefore, w
have the continuity equation of electron number in a we
known form as,

]N~r ,t !

]t
1

]

]r
@Vd~r ,t !N~r ,t !#5Ria~r ,t !N~r ,t !. ~19!

Here, Ria(r ,t) is the effective ionization frequency@i.e.,
Ria(r ,t)[Ri(r ,t)2Ra(r ,t); Ri(r ,t) is the ionization fre-
quency atr and t, andRa(r ,t) is the attachment frequency#.
By the integration of Eq.~19! over timet from zero to infin-
ity, the first term of the left-hand side of Eq.~19! vanishes in
an effective drift region of electrons. Here, the effective d
region means the discharge space between the starting
of the initial electrons and the anode surface. Finally, con
ering the definition of the ionization coefficient in Eq.~15!,
we obtain

a~r !5
Ria~r !

Vd~r !
5

Ng*vqia~v !g~r ,v!dv

*v rg~r ,v!dv
, ~20!

where Ng is the number density of background gas m
ecules,qia is qi2qa ~qi andqa are ionization and attachmen
cross sections!. Also for the spherical field model, the dedu
tion of the equations same as Eqs.~16!–~20! can be made
06641
e
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-

t
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-

with the replacement ofv0 by v. It should be noted that the
formalism of the continuity equation of electron number a
the ionization coefficient, inr direction, in the cylindrical or
spherical field geometry is completely identical to that in t
parallel~nondivergent! field condition, even though the origi
nal equation before the integration@i.e., Eq.~9! or Eq. ~14!#
is different from the common Boltzmann equation for on
dimensional parallel fields.

IV. MODEL OF A MONTE CARLO METHOD

In Sec. II, we have deduced the one-dimensional Bo
mann equation of electrons in the electric field with cylind
cal or spherical symmetry@i.e., Eqs.~9! and ~14!#. Unfortu-
nately, it is difficult to solve the differential equations~9! and
~14! by any numerical means since these equations dep
on both velocity vectorv and positionr. However, it must be
important to know the Boltzmann equation for these types
field geometry because the conventional analyses have
stituted a simple one-dimensional Boltzmann equation~ig-
noring the effects by the divergent electric fields! for the
‘‘intrinsic’’ expression of the equation. Disregarding the e
fects associated with the field geometry may cause an inc
sistency in the methodology to describe the macrosco
electron behavior. As a typical example, the ionization co
ficient has been deduced properly from Eqs.~9! and ~14! in
the preceding Sec. III. Specifically, the deduction also
cludes the consideration of volumetric factorsr and r 2.

In order to illustrate the kinetics of electrons in the no
uniform electric fields and to confirm the validity of Eq
~15! and ~20!, we perform a Monte Carlo simulation as
numerical experiment. In this simulation, the effects of t
orbiting motion of electrons~with the angular momentum!
on the transport parameters are the focus of attention. Fig
2 shows the field models used in this study. The elect
dynamics in the cylindrical or spherical field model@Fig.
2~a!# is compared with that in the parallel plane geome
having the same spatial dependence of field strength a
the field line @Fig. 2~b!#, aiming to see the effects of th
angular momentum of electrons in the ‘‘divergent’’ electr
fields. Initial electrons are released at a certain distance f
the anode, and the motion of them involving the collisi
events with background gas molecules and the drift tow
the anode is followed up to the anode surface by a Mo
Carlo technique.

Table I shows the condition of the simulation. The Mon
Carlo technique used here is based upon the free-flight-t
method@18#, in which the time step for the technique is s

FIG. 2. Field geometry models:~a! for spherical or cylindrical
~divergent! configuration, and~b! for parallel plane.
0-4
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TABLE I. Simulation condition.

Field model
Geometry k/r or k/r 2 ~k/z or k/z2!

Radius of cylindrical or spherical anode (r 0) 0.1–0.5 mm
Gas Ar-like and Cl2-like models
Anode voltage 500–900 V
Gas pressure 1.0 Torr

Condition for the initial electrons
Number of the electrons 20000–60000
Released position 9.9 or 9.5 mm from the anode surf
Direction at random
Energy Maxwellian distribution with a mean

energy ranging from 0.1 to 10 eV
Parameters for the Monte Carlo simulation~free-flight-time mehtod@18#!

Time step (Dt) ,0.5 psec
Simulation time 50–200 nsec
Bin’s width for spatial sampling~Dr or Dz! 0.1 mm
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r a
small enough to trace the electron trajectory accurately~Dt is
typically less than 10212sec!. The electrons see a cylindrica
or spherical electrode that is positively biased and its ce
is located at the origin with radius 0.1–0.5 mm. Initial ele
trons are released at a point on a shell about the anode~typi-
cally 1.0 cm point from the anode center! with a Maxwellian
distribution at a mean energy of 0.1–10 eV, and the sin
particle simulation~including the second electron gener
tion! is iterated for a number of the initial electrons. To ma
comparison with the cylindrical or spherical model analys
simulations in parallel plane fields with the same field pro
along the field line~corresponding to the respective mode!
are carried out as well. Field distortion by the space charg
assumed to be negligible. Sampling is made using a la
number of test electrons~greater than 20 000!, which are
followed for several hundreds of nanoseconds. We can
nore the motion of the background gas molecules compa
with that of electrons. The positive bias voltage is vari
from 500 to 900 V and it is assumed that the anode abso
arriving electrons without reflection. Secondary electron g
eration at the cathode through photons and/or ions is
included.

Two types of model gases, a Cl2-like model and an Ar-like
model, are the focus of the simulation. A set of cross secti
for the Cl2-like model is same as is shown in a previo
paper@19#. The total cross section of this model is set to
a constant value of 10215cm2 for generality, there is no im-
pact otherwise from this assumption. A set of cross secti
for the Ar-like model is given by the following functions:

qi~ ionization!:

~0.5310216!A«215.76

3expS 2
«

200D cm2 for «>15.76 eV,
06641
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qex~excitation!:

~0.3310216!A«211.55

3expS 2
«

150D cm2 for «>11.55 eV,

qm(momentum transfer):

~1.0310215!F ~1.023.66!A«20.001

3expS 2
«

0.4D G cm2 for «,0.2 eV,

~1.0310215!S 10

« D 21.177 184

cm2 for 0.2 eV<«,10 eV,

~1.0310215!S 10

« D 0.7

cm2 for 10 eV<«,

where the ionization and the excitation threshold energies
chosen to be 15.76 and 11.55 eV, respectively.

V. SIMULATION RESULTS AND DISCUSSION

In Fig. 3~a!, we show a set of typical snapshots of sp
tially resolved electron number for the spherical field con
tion. The total number of electrons over the spherical sh
volume, which can be obtained by integrating the distrib
tion overr ~from the anode surface positionr 0 to `! at each
sampling time in Fig. 3~a!, increases for a time and the
decreases monotonically owing to the absorption of electr
into the anode. A remarkable feature of the electron num
distribution is the lack of variation of the spatial profile aft
several tens of nanoseconds. This suggests that the elec
might be in a steady state or, namely, ahydrodynamicequi-
librium state, keeping the same spatial distribution afte
0-5
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H. DATE AND M. SHIMOZUMA PHYSICAL REVIEW E 64 066410
certain time. Spatial distribution of the mean energy of el
trons in Fig. 3~b! shows evidence of the steady-state phase
electrons. These characteristics were recognized for a va
of initial conditions of electron energy from 0.1 to 10 eV an
also for the cylindrical and parallel field@17# configurations.
The entire results imply that the electron transport para
eters are in an equilibrium state, being uniquely determi
by the local field strength, after a relatively short period
time under this type of nonuniform field condition.

Figure 4 shows the comparison between the paramete
cylindrical and parallel field models. One-dimensional fie
strength is varied equally for both the models. The drift v
locity @Vd(r ) or Vd(z)# and the ionization frequency@Ri(r )
or Ri(z)# were calculated by accumulatingv r @5v0 cosf#
andvqi(v) for all electrons at each location and by avera
ing them per electron over entire time. The ionization co
ficient was given bya5Ri /Vd following the definition of
Eq. ~20!. Here,Ri is identical toRia for Ar-like gas because
there is no attachment collision process, and the entire t
means the period fromt50 up to the time when the rear en
electron in the swarm is absorbed into the anode. The dif

FIG. 3. Spatially resolved quantities for Ar-like model gas
700-V bias voltage of spherical anode~0.5 mm radius!. ~a! for
electron number and~b! for mean energy of electrons. Initial elec
trons with a Maxwellian distribution~at 1.0 eV mean energy! were
released atr 51.0 cm.
06641
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ence between the parameters for both field models repres
the effect of electron motion with angular momentum arou
the anode, which may be described by the additional te
with 2(v0

22v r
2)/r in the left-hand side of Eq.~9!. It is

noted that the ionization coefficient in the cylindrical field
much greater than that in the parallel field in the vicinity
the anode surface. This gap is mainly caused by the dif
ence between the drift velocities in both the models. In
cylindrical field geometry, the drift velocity of electron
along the field line is reduced effectively by the spiral moti
of them around the anode. Similarly to Fig. 4, we present
comparison of the parameters in spherical and parallel m
els for Cl2-like gas in Fig. 5. The same effect on the ioniz
tion coefficient is recognized in Fig. 5~b!.

As is well known in the study on gas-filled radiation d
tectors@20#, the ionization coefficient leads to the derivatio
of the gas gain or the multiplication factor of electrons
proportional counters as

t
FIG. 4. Comparison of the parameters in cylindrical and para

field models:~a! for the drift velocity Vd and the ionization fre-
quencyRi , and~b! for the ionization coefficienta5Ri /Vd . Radius
of cylindrical anode is 0.1 mm, and the anode voltage for b
models is 500 V. Initial electrons start at 1.0 cm with a Maxwelli
distribution at 0.1 eV mean energy.
0-6
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FIG. 5. Comparison of the parameters in spherical and par
field models:~a! for the drift velocityVd and the effective ioniza-
tion frequency Ria , and ~b! for the ionization coefficienta
5Ria /Vd . Radius of spherical anode is 0.5 mm, and the an
voltage for both models is 500 V. Initial electrons start at 1.0
with a Maxwellian distribution at 0.1 eV mean energy.
n

06641
ln G5E
A

B

a~r !dr, ~21!

whereA andB represent the boundary of discharge region
the field. If the minimum boundaryA is set to be the anode
radius, the gainG becomes equivalent to the total number
electrons arrived at the anode surface arising from an in
electron at a positionB far from the anode. In Table II, the
mean value of the gain~per initial electron! is listed for vari-
ous conditions, and we can see that the field of cylindrica
spherical geometry enhances the gain significantly. It is no
worthy that the electron motion with the angular momentu
encourages the energy transfer~through the collision events!
to the background gases.

VI. SUMMARY AND CONCLUSIONS

In this study, we have shown the Boltzmann equation p
tinent to describe the electron transport in the electric fie
with cylindrical or spherical symmetry. Then, the typic
transport parameter, the ionization coefficient, has been
vestigated in connection with the multiplication factor of g
counters. In order to illustrate the physical effects implica
in the Boltzmann equation, we have demonstrated a Mo
Carlo simulation of electrons in the divergent electric field

The present study leads to the following conclusions:
~1! A modification of the acceleration term in the Boltz

mann equation~one-dimensional in space! is necessary for
describing electron swarms in the field with cylindrical
spherical symmetry. The additional acceleration term ari
from the velocity element of electrons normal to the fie
direction. The Monte Carlo simulation results support t
Boltzmann equation description.

~2! The ionization coefficient derived from the one
dimensional Boltzmann equation for the cylindrical
spherical field has an identical form to that in nondiverge
field geometry, in spite of the difference in the original equ
tion. In addition, it should be noted that the coefficient f
evaluating the multiplication factor of electron number in t
nonuniform electric fields is correctly given by the flux co
sideration of electrons, not by the spatial electron density

~3! The electron swarm behavior involving the collisio

el

e

processes with background gases and the drift motion is
TABLE II. Comparison of the gain.

~Ar-like gas model!
Cylindrical (r 050.5 mm) Parallel plane
G5463.4 G5244.1 Va5500 V
Cylindrical (r 050.1 mm) Parallel Plane
G51098.9 G5874.7 Va5500 V
Spherical (r 050.5 mm) Parallel plane
G540.9 G529.8 Va5500 V
G594.8 G565.0 Va5700 V
~Cl2-like gas model!
Spherical (r 050.5 mm) Parallel plane
G5131.0 G593.4 Va5500 V
G51218.7 G5676.4 Va5900 V
0-7
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strongly influenced by the angular momentum of electro
near the source of divergent electric fields. It is sugges
that the local equilibrium of EEDF under the 1/r or 1/r 2 type
of field geometry can be led in a short period of time.

As an extension, it is possible to infer that the effects
angular momentum of electrons may be added into the
celeration term in the Boltzmann equation of electrons a
for some types of magnetic field conditions.
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APPENDIX

As to the third term of the left-hand side of Eq.~1!, we
can transform it to the expression in cylindrical or spheri
coordinates as follows:

dv

dt
•

] f

]v
5

dvx

dt

] f

]vx
1

dvy

dt

] f

]vy
1

dvz

dt

] f

]vz

5
dv r

dt

] f

]v r
1

dvw

dt

] f

]vw
1

dvz

dt

] f

]vz
~A1!

for the cylindrical coordinates, and

5
dv r

dt

] f

]v r
1

dvu

dt

] f

]vu
1

dvw

dt

] f

]vw
~A2!
ys

ys

T.

, J

e

ch

t,

. E

06641
s
d

f
c

o

o-
.
.

l

for the spherical coordinates.
According to the Newton’s second law of motion in

cylindrical and a spherical field potential, the acceleration
the r direction is given by

ar5 r̈ 2r ẇ252
]V~r ,w,z!

]r
~A3!

for cylindrical and

ar5 r̈ 2r @ u̇21ẇ2 sin2u#52
]V~r ,u,w!

]r
~A4!

for spherical fields, respectively. Then, letting the veloc
element toward the origin be positive in the radial directio
we obtain

dv r

dt
5 r̈ 52

vw
2

r
1

eE~r !

m
~A5!

for cylindrical and

dv r

dt
5 r̈ 52

vu
21vw

2

r
1

eE~r !

m
~A6!

for spherical configurations.
Other terms associated withdvw /dt and dvz /dt or

dvw /dt and dvu /dt can be eliminated by the integratio
over the spatial variables exceptr owing to the symmetry of
the functionf in velocity space. Here, it should be noted th
the integration is carried out keeping the velocity vector
make a same angle with respect to the field line~see Fig. 1!.
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