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Anisotropic filamentation instability of intense laser beams in plasmas near the critical density
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The relativistic filamentation instability~RFI! of linearly polarized intense laser beams in plasmas near the
critical density is investigated. It is found that the RFI is anisotropic to transverse perturbations in this case; a
homogeneous laser beam evolves to a stratified structure parallel to the laser polarization direction, as dem-
onstrated recently with three-dimensional particle-in-cell simulations by Nishiharaet al. @Proc. SPIE3886, 90
~2000!#. A weakly relativistic theory is developed for plasmas near the critical density. It shows that the
anisotropy of the RFI results from a suppression of the instability in the laser polarization direction due to the
electrostatic response. The anisotropic RFI is also analyzed based on an envelope equation for the laser beam.
Finally, the envelope equation is solved numerically, and anisotropic filamentation and self-focusing are illus-
trated.
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I. INTRODUCTION

The study of parametric instabilities of laser light in pla
mas has attracted renewed interest owing to the adven
high-power lasers. Since such instabilities involve ma
physical processes such as anomalous absorption, fast
tron generation, generation of high amplitude plasma wa
self-focusing and filamentation, etc., they are expected
play an important role in the context of fast ignition of fusio
targets and other related applications. In earlier studies
tention was paid mainly to the case of tenuous plasma
moderate light intensities@1–7#. In recent years, theorie
have been developed to cover other parameter regime
cluding high plasma densities, relativistic light intensitie
and relativistic plasma energies@8–12#. These theories are
however, valid only for circularly polarized~CP! laser light.
The problem for linearly polarized~LP! laser light is more
complicated owing to the presence of harmonic compone
in such laser irradiated plasmas@13#. However, currently
high-power lasers are usually available with linear polari
tion.

Recently, parametric instabilities have been studied for
lasers in homogeneous plasma—near and above cri
density—using three-dimensional~3D! particle-in-cell~PIC!
simulations@14#. One of the observed features, absent for
lasers, is the anisotropic filamentation of laser light. T
growth rate of the filamentation instability in the laser pola
ization direction is found to be much weaker than in t
direction perpendicular to the polarization plane. An initia
homogeneous laser beam evolves to a stratified structure
allel to the laser polarization, which can therefore be refer
to as stratification instability. A theory is developed f
plasma at the relativistic critical density~where thek vector
of the laser light in plasma is zero! @14#. Related work was
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recently reported where parametric instabilities of LP las
were discussed in a moving frame, where thek vector of the
laser light is zero@15#. It should be pointed out that th
anisotropic filamentation instability was noted nearly
years ago by Kawet al., who found that the growth rates o
the filamentation instability caused by the ponderomot
force are different in directions along and perpendicular
the wave field@4#. Drakeet al. have included contributions
of both electromagnetic and electrostatic side band mode
their general dispersion relation of parametric instabilit
@2#. At high plasma densities, electrostatic modes are p
dominant and anisotropic filamentation is expected. Ho
ever, the relativistic nonlinearity, which is expected to be o
of the dominant factors for the observed anisotropic filam
tation instabilities in these 3D PIC simulations, was not
cluded in those theoretical studies. We note that there we
few theoretical studies@16–21# as well as experimental ob
servations@22–24# of relativistic self-focusing and filamen
tation instability. However, most of these studies are limit
to cases with tenuous plasma densities, where relativ
self-focusing and filamentation instability are all transvers
isotropic.

Motivated by the 3D PIC simulation results mention
above, this paper is devoted to both analytical and numer
investigation of the filamentation instability caused by re
tivistic effects@relativistic filamentation instability~RFI!# in
high plasma density regime. We show that the feature of
relativistic filamentation instability changes from isotropic
tenuous plasma to anisotropic in plasma near the critical d
sity @25#. In Sec. II, parametric instabilities for a LP laser a
studied analytically in the weakly relativistic approximatio
by allowing perturbations with wave vectors in the laser p
larization direction, an extension to the works by Maxet al.
@3# and McKinstrie and Bingham@7#. In particular, we show
that the RFI growth rate is anisotropic to the transverse p
turbations when the plasma is near the critical density, c
sistent with our 3D PIC simulation@14#. In very tenuous
plasmas, isotropic filamentation is recovered. In Sec. III,
-
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RFI is studied with the envelope evolution equation. T
anisotropic RFI growth rate is derived. The instabili
growth rates for modest plasma densities can be express
a similar way as those of Kawet al. when cast in terms of a
general dielectric function@4#. Section IV is devoted to nu
merical calculations based on the envelope equation, inc
ing electron density modulation. By using appropria
boundary conditions, both anisotropic filamentation insta
ity and self-focusing are illustrated. In anisotropic se
focusing, an initially symmetric laser beam evolves to a
liptic beam elongated in the polarization direction. The pa
concludes with a discussion in Sec. V.

II. ANISOTROPIC FILAMENTATION INSTABILITY AT
WEAKLY RELATIVISTIC LIGHT INTENSITIES

In the weakly relativistic approximation, the followin
equations describe the coupling between laser fields
electron motion:

“

2A2
1

c2

]2A

]t2
5

1

c

]

]t
“f1

vp
2

c2
nv, ~1!

]v

]t
5

]A

]t
1c¹S f2

v2

2 D2
1

2

]

]t
~v2v!, ~2!

]n

]t
1c“•~nv!50, ~3!

“

2f5
vp

2

c2
~n21!, ~4!

whereA andf are the vector and scalar potentials norm
ized bymc2/e, v is the electron velocity normalized byc, n
is the electron density normalized by the unperturbed den
N0, andvp

254pN0e2/m is the electron plasma frequency.
obtaining Eq.~1!, the Coulomb gauge“•A50 has been
used. For a LP laser fieldA05a0ŷ cos(u0), the density varia-
tion associated with the driving field can be written asn0

511n02cos(2u0)1••• and the velocity v05v01ŷ cos(u0)
1v02x̂ cos(2u0)1•••, whereu05k0x2v0t, x̂ and ŷ are the
unit vectors in the x and y directions, v015a0 , v02

5@k0cv0 /(4v0
22vp

2)#a0
2 , and n025@k0

2c2/(4v0
22vp

2)#a0
2 .

As a result, we have the dispersion relation@3#

v0
25k0

2c21vp
2F12a0

2S 3

8
2

1

2

k0
2c2

4v0
22vp

2D G . ~5!

The perturbed equations of Eqs.~1!–~4! can be written as

“

2Ã2
1

c2

]2Ã

]t2
5

1

c

]

]t
¹f̃1

vp
2

c2
~n0ṽ1ñv0!, ~6!

] ṽ

]t
5

]Ã

]t
1c“f̃2c“~ ṽ•v0!2

1

2

]

]t
@v0

2ṽ12~ ṽ•v0!v0#,

~7!
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]ñ

]t
52c“•~n0ṽ1ñv0!, ~8!

¹2f̃5
vp

2

c2
ñ. ~9!

As usual, we expandÃ, ṽ, ñ, and f̃ in the form of f̃

5(m52`
1` f̃ mexp@i(u1mu0)#, with u5k•x2vt, so that Eqs.

~6!–~9! can be written as

DmÃm5cvmkmf̃m1vp
2~ ṽm1Fm1Gm!, ~10!

vmṽm5vmÃm2ckmf̃m1ckmHm2vmRm , ~11!

vmñm5ckm•~ ṽm1Fm1Gm!, ~12!

km
2 c2f̃m52vp

2ñm , ~13!

where vm5v1mv0 , km5k1mk0x̂, Dm5vm
2 2c2km

2 , km

5ukmu, and

Fm5 1
2 n02~ ṽm121 ṽm22!,

Gm5 1
2 a0~ ñm111ñm21!ŷ,

Hm5 1
2 a0~ ṽy,m111 ṽy,m21!,

Rm5 1
8 a0

2~2ṽm1 ṽm121 ṽm22!1 1
4 a0

2

3~2ṽy,m1 ṽy,m121 ṽy,m22!ŷ,

where ṽy,m illustrates they component ofṽm . Multiplying
Eq. ~11! by km and substitutingkm• ṽm into Eq.~12!, making
use of Eq.~13! and km•Ãm50 for the Coulomb gauge, we
obtain the following expressions for the perturbation va
ables:

km• ṽm5Dp,m
21 @vp

2km•~Fm1Gm!2vm
2 km•Rm1cvmkm

2 Hm#,

ñm5Dp,m
21 @cvmkm•~Fm1Gm2Rm!1c2km

2 Hm#,

f̃m52~vp
2/km

2 c2!Dp,m
21 @cvmkm•~Fm1Gm2Rm!

1c2km
2 Hm#,

ṽm5Ãm2Rm1
vp

2km

km
2 Dp,m

km•~Fm1Gm2Rm!1
ckmvm

Dp,m
Hm .

whereDp,m5vm
2 2vp

2 . Note that the expressions forñm and

ṽm are recurrently related to each other throughFm , Gm ,
Hm , and Rm . Substitutingṽm and f̃m into Eq. ~10!, we
obtain the equation for the vector potential:

DmÃm5vp
2S 12

kmkm

km
2 D •~Ãm1Fm1Gm2Rm!. ~14!
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One can obtain a dispersion relation for the parametric in
bilities from this equation. Here we note that the term p
portional tokm@km•(Ãm1Fm1Gm2Rm)# was not included
in earlier studies@3,7#. It is concerned with the electrostat
perturbation ~in the polarization direction of the driving
wave!, and is responsible for the anisotropism of the fi
mentation instability. Generally, by use of Eqs.~6!, ~8!, and
~9!, one finds that the right hand sideR of Eq. ~6! or ~14! is
equal to

R5vp
2S 12

kmkm

km
2 D •~nṽ!m ,

which is valid even without invoking the weakly relativist
approximation. Taking the component of the last equation
the polarization direction, one findskm@km•(nṽ)m#/km

2

;(nv ỹ)mky
2/(k21m2k0

2), whereky is they component ofk
andk5uku. This has been identified in tenuous plasma and
dense plasma near the critical density, albeit general proo
its validity for arbitrary plasma density is still quested.
tenuous plasma withvp

2!v0
2 andk!k0, the last term can be

ignored compared to (nṽy)m . One then finds that parametr
instabilities are isotropic with respect to transverse pertur
tions. However, ifvp

2;v0
2 and k0!k, one finds parametric

instabilities are anisotropic with respect to transverse per
bations.

For calculations up to orderO(a0
2) in the weakly relativ-

istic approximation witha0
2!1, it is enough to includem

561 for Ãm and up tom562 for ṽm andñm . Note thatÃ0

is found to be of the order ofO(a0
2Ã61), and can be ne-

glected, i.e., the low frequency mode is predominantly el
trostatic. In this approximation, the density perturbation,
well as ṽ0 and ṽ62 are given by@to orderO(a0ṽ)#

ñ05
c2k2

2Dp,0
a0~ ṽy,11 ṽy,21!,

ñ615
c2k61

2

2Dp,61
a0~ ṽy,01 ṽy,62!,

ñ625
c2k62

2

2Dp,62
a0ṽy,61 ,

ṽ05
cvk

2Dp,0
a0~ ṽy,11 ṽy,21!,

ṽ625
cv62k62

2Dp,62
a0ṽy,61 ,

and they component of the right hand side of Eq.~14! is
given by

Sy,615vp
2F12a0

2S 3

8
2

1

2

k0
2c2

4v0
22vp

2D 1g6G Ãy,61

1vp
2h6Ãy,71 , ~15!
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whereÃy,61 is they component ofÃ61, and

g65F1

4 S k2c2

Dp,0
1

k62
2 c2

Dp,62
D S 12

ky
2

k61
2 D 2

1

2

k0
2c2

4v0
22vp

2

2
3

8 S 12
4ky

2

3k61
2 D Ga0

2 ,

h65F1

4

k2c2

Dp,0
S 12

ky
2

k61
2 D 1

1

2

k0
2c2

4v0
22vp

2

2
3

8 S 12
2ky

2

3k61
2 D Ga0

2 .

In deriving Eq.~15!, we have substitutedṽy,61 with Ãy,61 to
keep terms up toO(a0

2Ãy,61) only in this equation. We men
tion that, rather than generally, Eq.~15! has been derived
particularly for tenuous plasma and for dense plasma n
the critical density. A general expression valid for arbitra
plasma density is still not available. We will therefore lim
ourselves to these two particular cases in the following st
ies in this section. Using the coupled equations forÃy,61
from Eqs.~14! and ~15! and the dispersion relation for th
driving wave@Eq. ~5!#, we obtain the dispersion relation fo
the perturbed wave,

~D̃12vp
2g1!~D̃22vp

2g2!5vp
4h1h2 , ~16!

where D̃65v22c2k262(vv02k•k0c2). In the case of
low plasma density,vp!v0 , v!v0, andky<k!k0 , k6m

'm2k0
2, we recover the well-known dispersion relation@3,7#,

which describes Raman forward and backward scatter
relativistic self-modulation, and filamentation instability
tenuous plasma.

In the following, we are interested mainly in the pu
filamentation instability withk•k050. In this case, the dis
persion relation can be simplified to

v25
k2c2

4v0
2 @k2c21~g11g2!vp

2# ~17!

assumingv!kc, wherek5(ky
21kz

2)1/2 andkx50. At a low
plasma density, one finds g6'@23/41k0

2c2/(4v0
2

2vp
2)#a0

2/2, since (12ky
2/k0

2)'1 and assumingv2!vp
2 and

k2c2!vp
2 . It shows that the RFI growth rate in they direc-

tion is the same as in thez-direction, i.e. the filamentation is
isotropic in this case. The maximum growth rate is@3#
Gmax5(vp

2/4v0)a0
2q when k2c25a0

2qvp
2/2, consistent with

previous assumptions forv2 and k2c2. Here q53/4
2k0

2c2/(4v0
22vp

2);1/2.
For the case of near critical plasma densityvp;v0, we

havek0!k andk61
2 'k2. We again assume thatv2!vp

2 and

c2k2!vp
2 , so thatg6'2@ 3

8 (124ky
2/3k2)#a0

2 . For a given
k, the instability growth rate is a function ofky /k. If the
perturbation is only in the laser polarization~y! direction,
9-3
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i.e.,kz50 andk5ky , it is obvious that there is no instabilit
sinceg65a0

2/8, and we always havev2.0. On the other
hand, if the perturbation is only in thez direction, i.e.,ky

50 andk5kz , we haveg652(3/8)a0
2 and there is insta-

bility for c2kz
2,(3/4)a0

2vp
2 . The maximum instability

growth rate is found to beGmax5(3/16)a0
2vp

2/v0 when
kz

2c25(3/8)a0
2vp

2 , consistent with previous assumptions f
v2 and k2c2. Therefore, the filamentation instability deve
ops in the direction perpendicular to the laser polarizati
although it is suppressed in the direction of laser polari
tion. This anisotropic property of the RFI growth rate wi
respect to transverse wave numbers of the perturbation
agreement with that observed in 3D PIC simulations@14#. In
addition, in plasmas near the critical density, sincek0'0 and
the group velocity reduces to zero, perturbations in thx
direction are almost the same as in thez direction, i.e., rela-
tivistic modulational instability~RMI! becomes equivalent to
RFI in this case. This is also found in 3D PIC simulatio
@14#. One can verify this as well by calculating the RM
growth rate from Eq.~16!.

III. FILAMENTATION INSTABILITY ANALYSIS WITH
THE ENVELOPE EQUATION

One can also analyze the anisotropic RFI with the en
lope equation obtained from the slowly varying envelo
approximation. In the weakly relativistic approximation, Eq
~1!–~4! lead to

1

c2

]2A

]t2
2“

2A5
iv0

c
e“f2

v0
2

c2
~12e!A, ~18!

“•~e“f!5 i
v0

c
“e•A, ~19!

where

e512~vp
2/v0

2!nF12ua2uS 3

8
2

1

2

k0
2c2

4v0
22vp

2D G ,

n is the slowly varying electron density normalized to t
unperturbed density, anda is the amplitude of the electro
quiver velocity at the fundamental frequency. Equation~19!
describes the response of plasma to the laser field owin
inhomogeneity in plasma density and/or laser intens
which is just the well-known relation“•E52e21

“e•E.
Here the electric fieldE5 iA2(c/v0)“f, which is normal-
ized by mv0c/e. Equations~18! and ~19! are equivalent to
@26,27#

1

c2

]2E

]t2
2“

2E2“~e21
“e•E!52

v0
2

c2
~12e!E. ~20!

We now study the RFI by use of the envelope evolut
equation. LetA5 1

2 ŷa(t,x,y,z)exp(ik0x2iv0t)1c.c. andf
5 1

2 w(t,x,y,z)exp(ik0x2iv0t)1c.c., where a and w vary
06640
,
-

in

-

.

to
,

slowly as compared to exp(2iv0t), andŷ is the unit vector in
the y direction. Assuming thatu]a/]tu!uv0au, from Eqs.
~18! and ~19! we obtain

2i
v0

c2

]a

]t
12ik0

]a

]x
1“

2a1 i
v0

c
e

]w

]y
1S v0

2

c2
e2k0

2D a50,

~21!

“e•~“1 ik0x̂!w1eS“212ik0

]

]x
2k0

2Dw5 i
v0

c

]e

]y
a,

~22!

where“25]2/]x21“'
2 and“'

2 5]2/]y21]2/]z2, and x̂ is
the unit vector point to thex direction. Note that we have no
invoked the paraxial approximation by keeping the term o
second order derivative with respective tox ~i.e., ]2/]x2)
@28#, since it is in the same order of magnitude as“'

2 when
the plasma density is close to the critical density@29#. Then,
assuming that the unperturbed wave amplitude is homo
neous in space and time, we perform a perturbation anal
following Zakharov @30#. Let a5A exp(ic) and w
5w1exp(ic), with A5a01a1exp(ik•x2 ivt) and c5c0
1c1exp(ik•x2 ivt), wherea0 is a constant independent o
time and space;c0 is independent of space, but can be d
pendent on time, andk5kxx̂1kyŷ1kzẑ is the wave number
of transverse perturbations. We find the relativistic filame
tation and modulational instability growth rate

G5
c2

2v0
kF2v0

2

c2 S a0
2 de0

da0
2D S 12

ky
2

k'
2 1~k01kx!

2D 2k2G 1/2

,

~23!

wherek'5(ky
21kz

2)1/2, k5(k'
2 1kx

2)1/2, ande05eua5a0
. For

the modulation instability in the longitudinal direction, th
real frequency is given byv5k0kxc

2/v0, as found in other
ways @3#. For the pure filamentation instability whenkx50,
the RFI shown by Eq.~23! illustrates an anisotropic featur
similar to that described by Eq.~17! given in Sec. II. Note
that some small corrections in Eq.~17! are caused by highe
side bands, which cannot be taken into account starting w
envelope equations. In very tenuous plasma withk0

5e0
1/2v0 /c'v0 /c@k' , a weakly anisotropic effect is

found. From Eq.~23!, the maximum growth rate for a per
turbation in thez direction is found to beGmax5v0a0

2e08/2
whenkz

25(v0
2/c2)a0

2e08 , wheree085de0 /da0
2}vp

2/v0
2 . Simi-

larly, the maximum growth rate for a perturbation in they
direction is Gmax5v0a0

2e08(112a0
2e08/e0)21/2/2 when ky

2

5(v0
2/c2)a0

2e08(112a0
2e08/e0)21. Note that these expres

sions are essentially identical to those of Kawet al. @4#, who
described the instability in terms of spatial growth rates.
dense plasma near the critical density withk0'0, the aniso-
tropic effect is strong. In this case, if there is a transve
perturbation perpendicular to the polarization~i.e.,ky50 and
kzÞ0), we obtain the normal filamentation instability
whereas if the perturbation is along the polarization direct
~i.e., kyÞ0 andkz50), there is no filamentation instability
9-4
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Also in this case, Eq.~23! shows that the relativistic modu
lational instability in thex direction is almost equivalent to
the RFI in thez direction.

In deriving this instability growth rate, we only accou
for the nonlinearity owing to the relativistic effect, i.e., no
linearity due to density modification is not considered
settingn51 in e0. This limitation is removed in the numeri
cal calculation given in next Sec. III. In the weakly relati
istic approximation, using the dielectric constant giv
above, we have

de0

da0
2

5
vp

2

v0
2 S 3

8
2

1

2

k0
2c2

4v0
22vp

2D .

Generally, however, it is is difficult to express the dielect
constant at an arbitrary intensity for linearly polarized lig
in plasma. In some limited parameter regime, it was sho
that e0512a0

21(p2/8)(vp
2/v0

2) when a0@1 and 1/e0@1
@31–34#. In many cases, it can be approximated by@27# e0

512(vp
2/v0

2)/g0 with g05(11a0
2/2)1/2. In this case, one

has

de0

da0
2

5
vp

2

v0
2

1

4g0
3

.

Figure 1~a! shows the RFI growth rate, obtained with E
~23!, and the last expression forde0 /da0

2, as a function of
u5tan21(ky /k'), for varying plasma densities. At a low
plasma density, the RFI growth rate is isotropic. With
increase of the plasma density, the RFI in they direction is
reduced both in growth rate andk-vector space, as shown i
Fig. 1~b!. Close to the critical plasma densityvp

2/v0
25g0,

the instability for perturbations in they direction is com-
pletely suppressed. Note that the magnitude of the instab
growth rate (G/v0,0.1) indicates that the approximatio
u]a/]tu!uv0au used above is applicable.

IV. NUMERICAL RESULTS

In the numerical calculations, we solve Eq.~20! instead of
solving the coupled equations~18! and ~19!. In the slowly
varying envelope approximation, assuming E
5 1

2 ŷae(t,x,y,z)exp(ik0x2iv0t)1c.c. andu]ae /]tu!uv0aeu,
Eq. ~20! can be reduced to

2i S ]

]t
1

k0c

vp

]

]xDae1
]2ae

]x2
1“'

2 ae1
]

]y S ae

] lne

]y D
1~12n/g!ae

50, ~24!

where ae is the complex amplitude of the electric field;t
5vp

2t/v0; coordinatesx, y, andz are normalized byc/vp ;
and e512(vp

2/v0
2)(11 in/v0)21n/g, with g5(1

1uaeu2/2)1/2. Here a free parametern, allowing for colli-
sional absorption, is introduced to avoid possible vanish
e, since we shall deal with plasma near a critical density. I
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clear in Eq.~24! that the term (]/]y)@ae] ln e/]y# causes a
transversely anisotropic RFI. The numerical calculation
conducted with the coordinate transform from (t,x,y,z) to
(t,j,y,z) with j5x2(k0c/vp)t. In this case, the first three
terms on the left hand side of Eq.~24! are reduced to
(2i ]/]t1]2/]j2)ae . Thus, within this mathematical trans
formation, thej coordinate is equivalent to thez coordinate,
both of which are perpendicular to the laser polarization
rection. If the plasma is at the critical density~or k050), the
j ~or x) andz coordinates are exactly equivalent@14#. Under
this consideration, we only keep one of these two coor
nates, say thez coordinate, in the following numerical calcu
lation. This corresponds to neglecting the longitudinal be
profile and suppressing the longitudinal perturbation. Th
the resulting equation is

2i
]ae

]t
1“'

2 ae1
]

]y S ae

] ln e

]y D1~12n/g!ae50. ~25!

Although obtained under a different physical considerati
this appears in the same form as derived within the para
approximation. In the numerical solution, the electron de

FIG. 1. ~a! RFI growth rate~normalized byv0
21) as a function

of angular directionu5tan21(ky /k') for a051, k'50.4vp /c, and
kx50 at various densities.~b! RFI growth rate as a function o
wave numbers of transverse perturbations~normalized byvp /c) for
a051 and n0 /nc50.9. The filled squares and dots are obtain
from numerical simulations forn0 /nc50.9 for perturbations in the
y andz directions, respectively.
9-5
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sity is now allowed to change with time, and is given byn
5Max(0,11“'

2 g) or its modified version @16# n51
1“'

2 (g1a ln n), wherea5Te /mc2. Note that without the
transversely anisotropic term (]/]y)@ae] ln e/]y#, Eq. ~25! is
the same evolution equation that is used to study s
focusing in tenuous plasma@16–22#.

Equation ~25! is solved with the algorithm of the
alternating-direction implicit method@35#. A rectangular
simulation box is used in they-z plane, and the amplitude
ae(t,y,z) is represented as a set of valuesaeu i , j

n

defined at time stepnDt and space coordinates (iDy, j Dz),
whereDt is the time step of integration,Dy andDz are the
mesh size iny and z directions, i 50,1, . . . ,I 21 and
j 50,1, . . . ,J21.

A periodic boundary condition is used to simulate the a
isotropic filamentation instability, whereaeu i 50,j

n 5aeu i 5I , j
n

and aeu i , j 50
n 5aeu i , j 5J

n . The initial transverse profile of the
laser beam amplitude is set to beae5a01da@cos(kyy)
1cos(kzz)#, which represents a perturbation~with amplitude
da) both in y and z directions superimposed on a homog
neous distribution~of amplitudea0). In the following simu-
lation, we typically takeda50.005. The initial perturbation
amplitude only affects the code-running time to grow to
certain level; it does not change the physical results. On
other hand, other parameters such asa0 , ky , kz , andvp

2/v0
2

(5n0 /nc) are relevant to the final results. Figure 2 sho
snapshots of the amplitude profile fora050.5 andn0 /nc
50.5. It is found that the initial homogeneous distributi
evolves into separated filaments, each with a maximum
plitude over 3. The filament spots are elliptically elongated
the laser polarization~y! direction. Figure 3 illustrates the
simulation results forn0 /nc50.9. In contrast to the previou
case, the filamentation instability develops much faster in
z direction than in they direction, and the initially homoge
neous distribution evolves to a stratified structure paralle
the laser polarization direction. Detailed time evolution
the filamentation process is displayed for this example
Figs. 3~c!–3~f!. The above examples support the theory p
posed in Secs. II and III that the RFI is anisotropic in t
transverse perturbation when the plasma density is nea

FIG. 2. Snapshots of the amplitude distribution in transve
space fora050.5, n0 /nc50.5, da50.005, andky5kz58p/100 at
~a! t5100 and~b! t5180.
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critical density. In three-dimensional geometry, since the
pendence of the laser amplitude on thex coordinate is similar
to the z coordinate in this case, one expects that the la
beam develops into many light stripes along the polarizat
direction. Actually, this has been observed in 3D P
simulations@14#.

In the case of a higher laser intensity, anisotropic filam
tation occurs at higher density. Figures 4~a! and 4~b! show
the cases whena051 andn0 /nc50.5 and 0.9, respectively
Compared with Fig. 3 for the same densities, one finds
the anisotropic effect is stronger at lower intensity. This
because, with higher intensity, the effective plasma densit
reduced due to the relativistic effect. Figures 4~c! and 4~d!
demonstrate that the anisotropic effect will occur in ov
dense plasma if the laser intensity is high enough to rela
istically induce transparency.

In PIC simulations and in actual experiments, the filame
tation instability is determined mainly by the the perturbati
modes corresponding to the maximum growth rate, si
many modes are present at the same time due to noise. I

e

FIG. 3. Amplitude distribution in transverse space fora050.5,
n0 /nc50.9, and ky5kz58p/100. ~a! Snapshot att5100. ~b!
Snapshot att5180. ~c! Time-space plot in they direction cut atz
550. ~d! Time-space plot in thez direction cut aty550. ~e! Snap-
shots in they direction cut atz550. ~f! Snapshots in thez direction
cut aty550.
9-6
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present simulation of the evolution equation, perturbatio
are input as initial conditions, allowing one to study the d
velopment of the filamentation instability for given perturb
tion wave numbers. In Fig. 5, we plot snapshots of the a
plitude profile for a051 and n0 /nc50.9 at an increased
perturbation wave numberky5kz58p/60. Compared with
Fig. 4~b!, a stronger anisotropic effect is observed in th
case. It reveals that the anisotropy of the RFI depends
only on the plasma density but also on perturbation w
numbers. The calculated instability growth rate is in agr
ment with analytical theory, as shown in Fig. 1~b!. Figures
5~c! and 5~d! illustrate the time evolution of the filamenta
tion. It is found that after a certain time, sharply peak
amplitude and density distributions are produced, as sh
in Figs. 5~e! and 5~f!. Aroundt575, these peaks break, an
a collapselike instability occurs@36,37#. We find that this
numerical collapselike instability is directly connected to t
occurrence of a vanishing dielectric constante in some re-
gions, which results in a sudden increase in the field am
tude. By introducing collisional damping in the dielectr
constant, this instability can be removed for large enougn
(;0.05 in this case!. A similar behavior is also found for a
laser beam with a finite transverse size, as discussed in
following.

We point out that the field energy can be changed gra

FIG. 4. Snapshots of the amplitude distribution in transve
space. Frames~a! and ~b! are fora051.0, andky5kz58p/100 at
t580 for n0 /nc50.5 and 0.9, respectively. Frames~c! and ~d! are
for a055.0 andky5kz58p/100 att590 for n0 /nc51.5 and 3.0,
respectively.
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ally even before the occurrence of collapselike instabil
According to the envelope equation~24!, for either periodic
boundary conditions or boundary conditions such thatuaeu
vanishes for infiniteuyu or uzu, one finds that

dP

dt
52

i

2E ] ln e

]y S ae

]ae*

]y
2ae*

]ae

]y Ddydz,

whereP5* uaeu2dydz; ae* is the complex conjugate ofae .
This shows that the transverse field energy is usually
conserved due to the anisotropic term. This is not surpris
sinceae includes electrostatic fields in addition to the las
field, implying an energy exchange with electrons during
evolution. Moreover, one may note that the energy contai
in the longitudinal field is not accounted for inP. This field,
pointing in the laser propagation direction, coexists with t
transverse field when]ae /]yÞ0. The transverse field en
ergy is conserved only when]ae /]y50 everywhere, i.e.,

e

FIG. 5. Amplitude and electron density distributions in tran
verse space fora051.0, n0 /nc50.9, andky5kz58p/60. ~a! Snap-
shot of amplitude att570. ~b! Snapshot of electron density att
570. ~c! Time-space plot of the amplitude in thez direction cut at
y530. ~d! Time-space plot of the electron density in thez direction
cut aty530. ~e! Snapshots of the amplitude in thez direction cut at
y530. ~f! Snapshots of the electron density in thez direction cut at
y530.
9-7
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there is no longitudinal field and no electrostatic field ex
tation by the transverse electric field component in the la
polarization direction. Usually, the total transverse field e
ergy decreases when the transverse size of filaments or b
decreases, and vice versa.

Let us now simulate the self-focusing of laser beams, w
boundary conditions such thatuaeu vanishes asuyu or uzu goes
to infinity. An initially Gaussian beam profile is used:ae

5a0exp@2(y21z2)/2r0
2#, which is cylindrically symmetric.

The normalized threshold power for self-focusing is ab
P5*ae

2rdr>8, i.e., a0
2r0

2>16 according to Refs
@17,38,39#. Figure 6 shows snapshots of the amplitude pro
and electron density for initiala051.0, n0 /nc50.9, andr0
510.0c/vp . The cylindrically symmetric beam evolves int
an elliptic structure elongated in the laser polarization dir
tion. Meanwhile, the corresponding electron density pro

FIG. 6. Evolution of amplitude and electron density when t
laser beam is transversely in a Gaussian profile initially witha0

51.0, n0 /nc50.9, andr0510.0. Frames~a! and~b! are snapshots
of the amplitude and electron density, respectively, att535.
Frames~c! and ~d! show they andz profiles of the amplitude and
electron density as cut atz50 and y50, respectively, att535.
Frame~e! is the time evolution of the beam power for differentn.
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is also anisotropic, and electron cavitation appears in a m
reduced space. Normally, the higher the background pla
density, the larger the ellipticity of the beam spot. In th
example, collapselike instability is also observed aftert
535 if n50, leading to an unphysical result, e.g., the irreg
lar structure of the amplitude profile and the sharp increas
the amplitude and energy, as shown in Fig. 6~e!. Although
beam collapse is possible in a medium with cubic nonline
ity @36,37#, there is no beam collapse for symmetric se
focusing in plasma because the effect of electron cavita
removes the nonlinearity inside the beam core. As a res
stable self-focusing of laser beams in plasma is possible e
if its power is many times the critical power@16#. In the
present case, we find that the collapselike instability is
merically connected with a vanishing dielectric constant
some region. Similar to the case of a homogeneous b
discussed previously, the singularity in the vanishing diel
tric constant can be removed by introducing a finite co
sional frequency, as shown by the time evolution of t
power in Fig. 6~e!. On the other hand, since strong mod
conversion and particle acceleration are expected after
occurrence of a vanishing dielectric constant and collapse
instability, our model would not be valid beyond this stag
even if we introduce a collisional frequency. Finally, if th
plasma density is much less than the critical density, sy
metric self-focusing is reproduced whenever the beam po
is above the self-focusing threshold, and no collapselike
stability is observed, as expected.

V. CONCLUSIONS AND DISCUSSIONS

The relativistic filamentation instability~RFI! has been
studied both analytically and numerically. We show that t
electrostatic response of electrons in the laser polarization~y!
direction tends to prevent the growth of a perturbation in t
direction for plasma densities near the critical density. Ho
ever, a RFI in thez direction can develop with the sam
growth rate as the relativistic modulation instability~in the
propagationx direction!, if the effective plasma density
n0 /g0 is close to the critical density. As a result, a homog
neous laser beam will evolve into a stratified structure pa
lel to the laser polarization. For the same reason, a cylin
cally symmetric laser beam will evolve into an elliptic form
in the beam cross section elongated in the laser polariza
direction. The analytical theory is in agreement with the n
merical calculations based on the envelope equation and
our recent 3D PIC simulation results@14#.

Our model for the numerical calculation is based on
envelope equation, which can be reduced to a parabolic
equation. The equation has been solved only for the tra
verse section of the laser beam, which excludes the coup
with the longitudinal modulation instability. This is one o
the main limitations of the present model. Future work cou
be devoted to directly solving Eq.~24! in three-dimensional
space or even Eq.~20! as done in Ref.@40#, though without
invoking the cylindrical symmetry for the transverse bea
section.

Our model does not include magnetic field generation
9-8
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sulting from a laser driven current of fast electrons and
Weibel instability. Their effects on the laser filamentati
instability are not yet clear. However, since 3D simulatio
show a robust anisotropic filamentation with all the facto
included, it is expected that the effects of magnetic field a
fast electrons are only of peripheral importance to the an
tropic filamentation instability, at least in the early stage. T
anisotropic filamentation instability and self-focusing of l
ser beams could result in anisotropic angular distributions
fast electrons and corresponding bremsstrahlung emiss
n
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Since the anisotropy is very strong at a high plasma den
it could be looked for in future experiments.
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