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Mean-field diffusion-limited aggregation: A ‘‘density’’ model for viscous fingering phenomena

Vladislav A. Bogoyavlenskiy*
Low Temperature Physics Department, Moscow State University, 119899 Moscow, Russia

~Received 25 January 2001; published 19 November 2001!

We explore a universal ‘‘density’’ formalism to describe nonequilibrium growth processes, specifically, the
immiscible viscous fingering in Hele-Shaw cells~usually referred to as the Saffman-Taylor problem!. For that
we develop an alternative approach to the viscous fingering phenomena, whose basic concepts have been
recently published in a Rapid Communication@Phys. Rev. E63, 045305~R! ~2001!#. This approach uses the
diffusion-limited aggregation~DLA ! paradigm as a core: we introduce a mean-field DLA generalization in
stochastic and deterministic formulations. The stochastic model, a quasicontinuum DLA, simulates Monte
Carlo patterns, which demonstrate a striking resemblance to natural Hele-Shaw fingers and, for steady-state
growth regimes, follow precisely the Saffman-Taylor analytical solutions in channel and sector configurations.
The relevant deterministic theory, a complete set of differential equations for a time development of density
fields, is derived from that stochastic model. As a principal conclusion, we prove an asymptotic equivalency of
both the stochastic and deterministic mean-field DLA formulations to the classic Saffman-Taylor hydrodynam-
ics in terms of an interface evolution.

DOI: 10.1103/PhysRevE.64.066303 PACS number~s!: 47.20.Hw, 47.54.1r, 61.43.Hv, 68.03.2g
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I. INTRODUCTION

Among a wide variety of natural nonequilibrium grow
processes@1–9#, the viscous fingering in Hele-Shaw cells h
attracted much attention ever since its first experimental
servation about a century ago: the forcing of a liquid into
more viscous one to recede results in the complex evolu
of a moving interface between the liquids, producing a ran
of branched shapes@10#. In the original Hele-Shaw geom
etry, that phenomena are studied in a two-dimensional
limited by closely spaced parallel solid plates; interfac
structures observed there range from smooth steady-
‘‘fingers’’ to fractal unstable ‘‘trees,’’ depending upon suc
measurable quantities as the cell thickness, the surface
sion, the average rate of flow, and the shear viscosity of
most viscous liquid@11–14#.

Since Saffman and Taylor treated the simplest poss
problem of an immiscible viscous displacement inside
infinitely long linear channel in the absence of surface t
sion @15#, much refinement has been done in the theoret
consideration of the viscous fingering phenomena. Rela
investigations have been mainly devoted to generalizing
shape, stability analysis, and selection mechanisms
smooth steady-state fingers penetrating in Hele-Shaw cel
channel@16–30#, sector@31–36#, and radial@37–40# con-
figurations. Nevertheless, there is still no universal form
ism, which can describe as well unstable experimental
gimes when producing interfacial structures demonstra
fractal behavior@41–60#. In other words, the stochastic na
ture of the viscous fingering~as its essential internal prop
erty! is not underpinned yet, making an alternative appro
to that phenomena to be of fundamental importance. So,
challenges us for the present work.

*Present address: Physics Department, State University of
York at Binghamton, Binghamton, NY 13902-6016. Email addre
vbogoyav@binghamton.edu
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The paper is organized as follows. For a background
Sec. II we discuss two different approaches—the clas
Saffman-Taylor hydrodynamics and a ‘‘density’’ forma
ism—to modeling the viscous fingering in Hele-Shaw ce
In Sec. III, we argue that density formalism, the subject
explore, to be based on the diffusion-limited aggregat
~DLA ! paradigm; so a mean-field DLA generalization in st
chastic and deterministic formulations is required. In Sec.
we construct first the stochastic generalization, a quasic
tinuum DLA model, suggesting a kinetic hypothesis for
specification. Then in Sec. V, we test the model proposed
extensive statistical studies for various two-dimensional c
figurations: channel, sector, and radial; we compare Mo
Carlo patterns with natural Hele-Shaw fingers and,
steady-state growth regimes, with the Saffman-Taylor a
lytical solutions known. In Sec. VI, we introduce next th
deterministic mean-field theory as a complete set of diff
ential equations derived from an asymptotics of the qua
continuum DLA; we study general properties of these eq
tions, including a stability analysis, and examine their tw
dimensional solutions by a comparison with the Saffma
Taylor ones in the same spatial configurations as in Sec
After that in Sec. VII, we justify the kinetic hypothesis su
gested in the beginning of our stochastic framework. Fina
Sec. VIII makes a conclusion.

II. BACKGROUND

Before we focus on the specific problem of an interfa
evolution between two immiscible liquids in a Hele-Sha
cell, let us raise and discuss a background question: by w
terms can, in principle, the dynamics of a continuum medi
be formulated? A solution is not implied definitely since
least two different approaches are valid. Following a regu
way, one has to determine a velocity vectorv(r ,t) and its
time development in each point of the medium. Alternative
one has to determine a medium densityr(r ,t) as a function
of time and spatial coordinates. In this connection, the v

w
:
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cous fingering may be considered from the two points
view: ~i! as a hydrodynamic problem~the velocity formal-
ism! or ~ii ! as a nonequilibrium growth process~the density
formalism!; we will describe both in detail below.

A. Velocity formalism

The classic hydrodynamic theory for the immiscible v
cous displacement in Hele-Shaw cells was introduced
Saffman and Taylor in 1958@15#. By this approach, a two
dimensional field of the liquid velocityv(r ,t) is studied in
terms of a potential functionc,

v~r ,t !5“c~r ,t !. ~1!

Then the Saffman-Taylor problem involves solving a bu
incompressibility equation

¹2c~r ,t !50 ~2!

coupled with boundary conditions

curPG(t)5d0kurPG(t) , ~3!

~“c!n5S ]G

]t D
n

, ~4!

where G(t) denotes a moving liquid-liquid interface~with
the curvaturek) which evolution we want to track,n indi-
cates a direction normal to the interface, andd0 is a dimen-
sionless surface-tension coefficient. Here, Eq.~3! sets the
velocity potentialc on the curved frontG(t), and Eq.~4!
accounts for a continuity relation.

This Saffman-Taylor formulation, Eqs.~1!–~4!, specifies
the interface dynamicsG(t) completely: the Laplace bulk
law @Eq. ~ 2!# with the Dirichlet boundary condition@Eq. ~3!#
determine the flow potentialc(r ,t), and after that its norma
component at the front gives the interface velocity]G/]t
@Eq. ~4!#. Thus, we have a Stefan, or moving-boundary-va
problem.

B. Density formalism

In contrast to the well-studied hydrodynamic descripti
of the immiscible viscous fingering~referred to as the
Saffman-Taylor problem!, the density formalism for tha
phenomena has not been explored enough. Nevertheles
foundation stone appears to be rather clear and is formul
as follows. Let a continuous function

r~r ,t !P@0, . . . ,r* # ~5!

define the density of a ‘‘finger’’~an equivalent of the les
viscous liquid! which grows in a ’’nutrient’’~an equivalent of
the most viscous liquid! field u(r ,t). We consider a mean
density r* /2 to determine the finger regionF(t) and the
finger frontG(t) ~an equivalent of the liquid-liquid interface!
as

r zrPF(t).
r*

2
, r zrPG(t)5

r*

2
. ~6!
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To propose a model, one has to introduce a complete se
differential equations for a time development of the functio
r(r ,t) andu(r ,t).

While the nutrient densityu(r ,t), a passive growth field
obeys the Laplace law¹2u50 at ]r/]t50, a mass conser
vation in the finger/nutrient system is implied as

]r~r ,t !

]t
5¹2u~r ,t !. ~7!

For the formulation to be specified completely, we need
couple Eq.~7! with a kinetic relation for the finger growth
rate,

]r~r ,t !

]t
5F̂$u~r ,t !,r~r ,t !%, ~8!

whereF̂ denotes a functional operator ofr(r ,t) andu(r ,t),
the key aspect of the formalism. A general form of that o
erator is determined from the Boltzmann kinetic theory@61#:

F̂~r ,t !5E
r1ePI (t)

u~r ,t !r~r1e,t !w~r ,e,t !dI. ~9!

Here, we consider a nonequilibrium process of the fin
growth as a two-particle interaction between the fing
@r(r1e,t)# and nutrient@u(r ,t)# fields; the integration is
performed inside a collision spherer1ePI (t), the interac-
tion spatial region; the factorw(r ,e,t) sets there the distri-
bution function of a successful collision, the interaction i
tensity.

This density formulation, Eqs.~5!–~9!, however, contains
the serious gap,a priori unknown operatorF̂; indeed, we can
neither predetermine nor guess the kinetic parametersI (t)
and w(r ,e,t) in Eq. ~9!. We know only an output of the
problem: the finger density fieldr(r ,t) should reproduce the
Saffman-Taylor hydrodynamics@Eqs. ~1!–~4!# in terms of
the interface evolutionG(t). Thus, what can we do in suc
deadlock? In order to solve the puzzle of unknown kineti
we plan a reversible metamorphosis in the two steps:~i! first,
we reduce the continuum deterministic formulation giv
above to a discrete stochastic one for which the parame
I (t) and w(r ,e,t) would be specified statistically and the
verified and justified by Monte Carlo simulations;~ii ! after
that, a backward discrete-continuum transition will yield t
operatorF̂ a posteriori.

III. DIFFUSION-LIMITED AGGREGATION

The basic discrete model adapted for stochastic sim
tions of nonequilibrium growth processes in Laplacian s
tems, the diffusion-limited aggregation~DLA !, was origi-
nally introduced by Witten and Sander in 1981@62#. Its rules
are very simple: a cluster of particles expands via succes
attachment of growth units being sent, one at a time, from
far source and then randomly walking on a lattice; the atta
ment occurs when a growth unit reaches a neighboring
of the pre-existing cluster@63#. Remarkably, Monte Carlo
algorithms of that kind are well-known to simulate fract
3-2
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MEAN-FIELD DIFFUSION-LIMITED AGGREGATION: . . . PHYSICAL REVIEW E 64 066303
ramified patterns that resemble the unstable viscous fin
morphologies observed in natural porous media@64–73#.

As was first noted by Paterson@74# and then universally
recognized, growth equations for the DLA model are simi
to the Saffman-Taylor ones in case of an infinitesimal surf
tension. In fact, the role of the velocity potentialc is played
for DLA by the probabilityPv of visiting a lattice site; that
probability similarly obeys the Laplace law¹2Pv50 @Eq.
~2!# whereas the normal growth velocity at a cluster front
directly proportional to thePv gradient@Eq. ~4!#. Thus, one
may conclude the DLA paradigm to reproduce the Saffm
Taylor hydrodynamic solutions in a mean-field limit@11,74–
84#, in agreement with a resemblance between contour p
of ensemble-averaged DLA clusters and natural shape
steady-state fingers penetrating in Hele-Shaw cells@85,86#.

Although fundamental capability of DLA-based alg
rithms to simulate the viscous fingering phenomena app
to be obvious, the adequate formulation of a mean-field D
theory, i.e., a valid transition from discrete growth units
continuum density fields, has been a challenge for the
two decades. The main problem stems from the existenc
a surface tension in the hydrodynamics, the coefficientd0 in
Eq. ~3!, which has no counterpart in the Witten-Sander DL
@62#. Indeed, the surface tension implies a capillary len
l c , the characteristic scale of a steady-state behavior for
Saffman-Taylor solutions@17–21#; for regular DLA patterns,
however, this scale equals a lattice spacing so it seems q
impossible to consider a ‘‘stable zone’’ on a fractal cluste

There has been a number of attempts to introduce
capillary length l c to the DLA model in a heuristic way
Modifications of growth rules and conditions proposed
that include principally the following:~i! variation of an ag-
gregation probability in order to the number of nearest cl
ter ‘‘neighbors’’ or, more generally, as a function of fro
curvature@87–91#, ~ii ! application of multiple-hit averaging
schemes, which vanish a statistical noise@75,92–97#, and
~iii ! taking into account a surface diffusion of growth un
and the thermodynamics related@98–100#. Unfortunately,
none of these DLA modifications operates with finite spa
distributions of a cluster density fieldr(r ,t), which is essen-
tial for subsequent derivation of a continuum theory.

Among miscellaneous continuum approaches introdu
for the DLA model so far@62,101–111#, the vast majority
suffers from a lack ofab initio principles. The reason is
discussed in the previous section: to construct a mean-
theory, one has to suggest a hypothesis on the aggreg
kinetics @Eq. ~9!#, which cannot be explicitly verified and
justified for a purely continuum, deterministic formulatio
But this difficulty surprisingly disappears as we construct
mean-field DLA theory on the basis of a quasicontinuu
~still stochastic! framework, the subject of Sec. IV. Then w
can apply statistical methods to verify and justify that agg
gation kinetics~Sec. V!, and can next proceed from the qu
sicontinuum DLA to the relevant deterministic mean-fie
theory ~Sec. VI!. As an advantage, such plan allows us
establish valid connections to both stochastic and determ
istic DLA originals for all steps of the derivation.
06630
er

r
e

-

ts
of

rs
A

st
of

h
he

ite

e

r

-

l

d

ld
ion

e

-

n-

IV. QUASICONTINUUM DLA MODEL

A quasicontinuum generalization of the regular on-latt
DLA algorithm is introduced as follows@112#. Let us con-
sider an integer positive numberK, the discreteness param
eter of the cluster density fieldr(r ,t); for a lattice site, the
value ofr is an element of the finite set,

r~r ,t !PF0,
1

K
,

2

K
, . . . ,

K22

K
,
K21

K
,1G , ~10!

i.e., a stairlike distribution is substituted for the continuo
function r(r ,t) in Eq. ~5!. A mass diffusion is simulated by
the flux of ‘‘walkers’’ ~growth units! transferring a constan
portion u0[1/K from a far source to the expanding clust
field. Since this quasicontinuum framework provides no
empty spectrum ofr values between the extremes 0 and 1
subdivision of wholer space into ‘‘unoccupied’’ (r50) and
‘‘occupied’’ (r51) lattice sites~as in the Witten-Sander al
gorithm! is no more appropriate. The formerly sharp clus
front ~a jump from 0 to 1! becomes an intermediate regio
over which the density fieldr(r ,t) varies ~by discrete por-
tions 1/K) between zero and a stationary eigenvaluer* . So
the quasicontinuum DLA model implies a probability o
walker aggregationP(r ,t) to be dependent not on the pre
ence~or absence! of nearest occupied sites, but rather on t
average cluster density in a neighborhood of that walker

In order to define the aggregation probabilityP(r ,t), we
transform a continuum expression for the Boltzmann co
sion integral@Eq. ~9!# to its lattice analog,

P~r ,t !5(
i

r~r1ei ,t !w~r ,ei ,t !, ~11!

where the collision sphereI (t) is considered to include the
sitesr1ei adjacent tor , and the indexi runs over different
neighbors. Here, we have already specified one kinetic
rameter by Eq.~11!, the interaction regionI (t); but the other,
the interaction intensityw(r ,ei ,t), remains undefined yet. To
suggest a hypothesis on its form, we satisfy the followi
three premises:

~i! All the neighboring sitesr1ei are equivalent for the
aggregation process, i.e., the interaction intensityw(r ,ei ,t)
[w(r ,t) does not depend on the indexi.

~ii ! Due to the linear stability of a cluster front again
infinitesimal perturbations, there is imposed a thresh
growth condition at small neighboring densities,

w~r ,t !→0 asr~r1ei ,t !→0. ~12!

~iii ! The functionw(r ,t) is an isometric invariant and
therefore, it should yield isotropic density measure.

Upon the requirements~i!–~iii ! listed above, we introduce
the interaction intensity as

w~r ,t !5(
i

r~r1ei ,t !. ~13!
3-3
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VLADISLAV A. BOGOYAVLENSKIY PHYSICAL REVIEW E 64 066303
This relation concludes our definition of the aggregat
probability P(r ,t); combining Eqs.~11! and ~13!, one ob-
tains

P~r ,t !5K (
i

r~r1ei ,t !L 2

. ~14!

Thus, the quasicontinuum DLA formulation is specifie
while a walker released from the source executes stoch
motion, at each time step a real random numberR
P(0, . . . ,1) isgenerated and compared with the aggregat
probability P(r ,t) being determined from Eq.~14!. If the
inequalityR,P(r ,t) is valid, the walker aggregates into th
lattice site and advances the cluster density at that po
r(r ,t), by the value ofu0; otherwise,R>P(r ,t), stochastic
wandering is continued until the walker aggregates e
where on the cluster. As successive walkers repeat such
cedure, the density fieldr(r ,t) is modified in time. ForK
51, this Monte Carlo algorithm coincides with the regul
Witten-Sander one@62#; the model converges to a mean-fie
DLA limit when the discreteness parameter goes to infin
K→`.

V. STATISTICAL STUDIES

In order to test the quasicontinuum DLA model intr
duced in the previous section, we take a square grir
5(x,y) of spacing a and consider there only neares
neighborhood interactions; so the corresponding on-squ
lattice aggregation probabilityP(x,y,t) is determined from
the formula

P~x,y,t !5^r~x1a,y,t !1r~x2a,y,t !1r~x,y1a,t !

1r~x,y2a,t !&2. ~15!

In this section, we will apply our model for various two
dimensional configurations: channel, sector, and radial.

A. Channel configuration

Let us start statistical studies from the classic Saffm
Taylor configuration, an infinitely long linear channel
width W @15#. A translation invariance of this problem im
plies the normal reflection condition for wandering walke
on lateral walls,y56W/2; we locate a growth nucleus at th
origin (0,0).

In Fig. 1, we present Monte Carlo results for a channe
width W564a where the discreteness parameterK is varied
in the range@1, . . . ,212#. For K51, a regular DLA cluster is
simulated@Fig. 1~a!#; increase ofK leads to a successiv
thickening of cluster branches@Fig. 1~b!#, and the last two
patterns@Figs. 1~c! and 1~d!# look like unstable viscous fin
gers observed experimentally in rectilinear Hele-Shaw c
@41–49#. Thus, our quasicontinuum generalization of DL
yields the capillary length scalel c as a monotonic function o
K, which raises the next problem: how to vary this sc
principally, to enlarge it up to values comparable with t
channel widthW, to reproduce steady-state Saffman-Tay
fingers?
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The simplest solution to enlargel c consists in the further
increase of the parameterK. To elaborate such way, we hav
calculated a mean capillary length, the average over an
semble of similar clusters; results are plotted in Fig. 2. U
fortunately, we conjecture the functional dependencel c(K)
to be too weak,

l c~K !} logK, ~16!

so this way is unpromising since, e.g., steady-state fing
inside the channel of widthW564a cannot be simulated
even asK5220.

In order to derive a more efficient mechanism to enla
l c without substantial increase of computational time~which
is directly proportional toK), let us discuss an origin

FIG. 1. Quasicontinuum DLA simulation on a square grid (x,y)
of spacinga51 inside a channel of widthW564a. Aggregation
probability P(x,y,t) is set by Eq.~15!; discretenessK51, 24, 28,
and 212 for plots ~a!, ~b!, ~c!, and~d!, respectively.

FIG. 2. Capillary lengthl c as a function of discreteness param
eterK ~see Fig. 1!. Monte Carlo data~solid circles with error bars!
are interpolated by a dependencel c(K)} log K ~dash line! conjec-
tured.
3-4
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MEAN-FIELD DIFFUSION-LIMITED AGGREGATION: . . . PHYSICAL REVIEW E 64 066303
of the length scale in the model. In fact, the sum of neig
boring cluster densities in Eq.~15! represents a lattice La
placian,

P~x,y,t !}F11
a2

4
¹2Gr~x,y,t !. ~17!

By this relation, the capillary lengthl c originates from a term
(a2/4)1/25a/2, the characteristic small scale of the squa
grid of spacinga. Hence, the replacementa2/4↔d2 in Eq.
~17! changes that microscale froma/2 to d, which modifies
the aggregation probability formula from Eq.~15! to

P~x,y,t !5^r~x1a,y,t !1r~x2a,y,t !1r~x,y1a,t !

1r~x,y2a,t !2jr~x,y,t !&2, ~18!

where the factorj and the microscaled are connected as

j542
a2

d2
⇔d5

a

A42j
. ~19!

As illustrated in Fig. 3, the variation ofj in the range
@0, . . . ,4)allows us to govern the capillary lengthl c}d very
efficiently. Inside the same channel of widthW564a, Monte
Carlo runs forj51, 2, and 3@Figs. 3~a!, 3~b!, and 3~c!,
respectively# simulate still unstable viscous fingers with r
markable effects of tip splitting, side branching, and wo
bling, related to natural Hele-Shaw structures@41–49#.
When we putj53(1/2) @Fig. 3~d!#, the capillary lengthl c

FIG. 3. j-modified quasicontinuum DLA simulation on a squa
grid (x,y) of spacinga51 inside a channel of widthW564a.
Aggregation probabilityP(x,y,t) is set by Eq.~18! with j51, 2, 3,
and 3(1/2) for plots~a!, ~b!, ~c!, and~d!, respectively; discretenes
is fixed,K5212.
06630
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increases enough to provide a steady-state front propaga
so the density fieldr(x,y,t) reproduces a single Saffman
Taylor finger@42,46#.1

For a detailed analysis of that steady-state regime,
consider a wider channel,W5100a, and apply the
j-modified quasicontinuum DLA model@Eq. ~18!# with d
52a; results are shown in Fig. 4. Here, the growth dynam
is subdivided conditionally into three stages as follows. Fi
there is a dropletlike nucleation@Fig. 4~a!# as the finger
settles at the origin. When the finger width becomes com
rable withW/2 @Fig. 4~b!#, lateral walls begin to form a tip
shape. In a final stage, the stationary growth@Fig. 4~c!#, the
steady-state front propagates through the channel with a
stant velocity whereas the tip shape of the finger is an inv
ant.

Data treatments for Fig. 4 are summarized in Fig. 5; th
we compute longitudinal@Fig. 5~a!# and transverse@Fig.
5~b!# profiles of the density fieldr(x,y,t) for the three
growth stages mentioned above. For the stationary s

1As a consequence, the quasicontinuum DLA gives us an a
rithm for an ensemble averaging of regular DLA clusters, oppo
to the multiple-hit one proposed by Tang in 1985@75#. Making a
principal difference from Tang’s purely discrete scheme, the qu
continuum DLA operates with finite spatial distributions of the de
sity field r(r ,t), whereas computational rates of these two aver
ing schemes are approximately equal.

FIG. 4. j-modified quasicontinuum DLA simulation on a squa
grid (x,y) of spacinga51 inside a channel of widthW5100a.
Aggregation probability P(x,y,t) is set by Eq. ~18! with j
53(3/4) (d52a); discretenessK5212. We present different stage
of a steady-state front propagation:~a! nucleation,~b! tip formation,
and ~c! stationary growth.
3-5



d;
at

en

n
-

in
the
or-

is

on-

for

l
re-
res
e

al

VLADISLAV A. BOGOYAVLENSKIY PHYSICAL REVIEW E 64 066303
@Fig. 4~c!#, the relevant transverse profiler̄T @continuous
curve in Fig. 5~b!# approaches a step function as is require2

a relative finger widthl measured at the midheight of th
stationary distribution gives the valuel50.554, the result of
the Saffman-Taylor problem extended for a finite surface t
sion @22–24#,

l~ l c!5
1

2
10.114S l c

WD 4/3

, ~20!

with l c'57a. At the finger tip, the contour plot of a mea
density@Fig. 5~c!# follows precisely the Saffman-Taylor ana
lytical solution @15#

x~y!2x05
W~12l!

2p
lnF1

2 S 11 cos
2py

lW D G , ~21!

wherex0 is the tip position asy50.

2A liquid flow being modeled by the finger density fieldr(r ,t)
predetermines naturally the step-type conditions:r5const within
the finger regionF(t) ~the less viscous liquid! andr50 elsewhere
~the most viscous liquid!; this will be also discussed in Sec. VI.

FIG. 5. Data treatments for Fig. 4.~a! Longitudinal profiles,
rL(x,t)[r(x,y50,t), for Fig. 4~a! ~dot curve!, Fig. 4~b! ~dot-dash
curve!, and Fig. 4~c! ~continuous curve!. ~b! Normalized transverse

profiles, r̄T(y,t)[r(x* ,y,t)/r(x* ,y50,t), in sections of a maxi-
mal finger width,x5x* , for Fig. 4~a! ~dot curve!, Fig. 4~b! ~dot-
dash curve!, and Fig. 4~c! ~continuous curve!. ~c! Contour plot of a
mean density at finger tip~open circles! for a stationary growth
stage@see Fig. 4~c!#, compared with the Saffman-Taylor analytic
solution by Eq.~21! ~continuous curve! asl50.554.
06630
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B. Sector configuration

Encouraged by a success of the quasicontinuum DLA
modeling the viscous fingering in channels, we switch to
next important two-dimensional configuration, a sect
shaped Hele-Shaw cell of angleu0 @50#. For this problem,
we will use polar spatial coordinates, the radiusr, and the
angleuP@2u0/2, . . . ,u0/2#, as well as the Cartesian bas
(x,y) for which the conversion formulas needed are

x5r cosS u1
u0

2 D , y5r sinS u1
u0

2 D . ~22!

In statistical studies, we impose the normal reflection c
dition for wandering walkers on sector walls,u56u0/2, and
locate a growth nucleus at the origin (0,0).

1. Sectoru0Ä90°

Let us consider first a sector of right angle,u0590°, as-
signed to the main quarter of the square (x,y) grid (x.0 and
y.0). In Figs. 6 and 7, we present Monte Carlo results
this 90° sector where the aggregation probabilityP(x,y,t) is
set by Eqs.~15! and~18!, respectively. Similar to the channe
configuration investigated before, our model allows us to
produce all basic properties of natural Hele-Shaw structu
@49,50#, i.e., ~i! a steady-state front propagation within th
capillary length scalel c @which increases withK andj, fol-
lowing Eqs.~16! and~19!#, and~ii ! a fractal growth on larger
scales.

FIG. 6. Quasicontinuum DLA simulation on a square grid (x,y)
of spacinga51 inside a sector of right angle,u0590° (x.0 and
y.0). Aggregation probabilityP(x,y,t) is set by Eq.~15!; dis-
cretenessK51, 24, 28, and 212 for plots ~a!, ~b!, ~c!, and ~d!,
respectively.
3-6
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To analyze that steady-state regime in detail, we ap
the j-modified quasicontinuum DLA model@Eq. ~18!#
with d52a. In Fig. 8, we show the sector growth dynami
as a finger gyration radiusr g increases; the last plot
Fig. 8~d!, illustrates an edge of the capillary scale wh
a tip shape is perturbed partially. Resembling a natu
behavior @50#, the statistical finger tends to occupy
well-resolved sector fractionlu , an invariant in the steady
state regime. Besides, the valuelu50.81 measured a
the midheight of a quasistationary azimuthal profiler̄A
is in agreement with estimationslu(90°)5(0.80560.02)
from a relation

lu~u0!5
1

2
1~0.003460.0002!u0 ~23!

adapted for experimental fingers in sector-shaped Hele-S
cells @50,85#.

Data treatments for Fig. 8 are summarized in Fig.
there we compute radial@Fig. 9~a!# and azimuthal@Fig. 9~b!#
profiles of the density fieldr(r ,u,t). To describe the
contour plot of a mean finger density@Fig. 9~c!#, we perform
a conformal transformation of the linear Saffman-Tay
problem @15# to polar coordinates (r ,u); see Appendix A.
As a result, the dependence derived@Eqs. ~A2! and
~A3!, continuous curve in Fig. 9~c!# describes precisely
that mean contour @open circles in Fig. 9~c!# as

FIG. 7. j-modified quasicontinuum DLA simulation on a squa
grid (x,y) of spacinga51 inside a sector of right angle,u0590°
(x.0 andy.0). Aggregation probabilityP(x,y,t) is set by Eq.
~18! with j51, 2, 3, and 3(1/2) for plots~a!, ~b!, ~c!, and ~d!,
respectively; discreteness is fixed,K5212.
06630
ly
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lu50.81, so the classic Saffman-Taylor family o
solutions @Eq. ~21!# appears to have a valid extensio
for sectors.3

2. Sectorsu0Ä45°, 135°, and 180°

In order to advance our comprehension of the visco
fingering in the sector configuration, let us consider so
more angles:u0545°, 135°, and 180°. On the square (x,y)
grid, we define these sectors as (x.y and y.0), (x.2y
andy.0), and (y.0), respectively.

In Fig. 10, we present steady-state fingers grown by
j-modified quasicontinuum DLA@Eq. ~18!# with d52a. A
surprising result is that all the fingers simulated tend to
cupy still fixed sector fractionslu,1 even asu05180°.
This disproves a speculative suggestion about the existe
of a ‘‘critical’’ point u0* '144° so that the relative angula

3This is in contradiction with the other theory developed in Re
@31–33# according to which the sector family of solutions diffe
significantly from the Saffman-Taylor conformal transformation
Eq. ~A1!. Nevertheless, a recent investigation of mean occupa
distributions for off-lattice DLA clusters grown in the sector co
figuration reports the results supporting our conclusion; see Figs
and 20 of Ref.@86#.

FIG. 8. j-modified quasicontinuum DLA simulation on a squa
grid (x,y) of spacinga51 inside a sector of right angle,u0590°
(x.0 andy.0). Aggregation probabilityP(x,y,t) is set by Eq.
~18! with j53(3/4) (d52a); discretenessK5212. We present suc-
cessive pictures of a steady-state front propagation as a finge
ration radius increases:r g540a, 60a, 80a, and 100a for plots ~a!,
~b!, ~c!, and~d!, respectively.
3-7
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width lu(u0) equals 1 foru0.u0* @113,114#.4 Thus, we have
to revise and correct the linear connectionlu(u0) by Eq.
~23! which is appropriate only for small and moderate sec
angles,u0&90°.

As argued in Appendix B, the relative angular widthlu as
a function ofu0 would be approximated by the formula (u0
values are assumed in radians!

lu~u0!5
1

2
1

u0

pS 42p1
u0

2 D . ~24!

The validity of this approximation is demonstrated in F
11—the functionlu(u0) proposed fits very well both exper
mental @50# and Monte Carlo~Figs. 8 and 10! data; more-
over, this describes the Hele-Shaw experiments even b
than by Eq. ~23! which has been originally introduce

4If one extrapolates the linear functionlu(u0) by Eq. ~23! for
largeru0 values, it will be expected to reach 1 asu0* '144°. How-
ever, any direct evidence of that suggestion is absent while
angular range for the steady-state front propagation in sectors
been reported to have an experimental limit,u0

max.90° @50#.

FIG. 9. Data treatments for Fig. 8.~a! Radial profiles,rR(r ,t)
[r(r ,u50°,t), for Fig. 8~a! ~dot curve!, Fig. 8~b! ~dash curve!,
Fig. 8~c! ~dot-dash curve!, and Fig. 8~d! ~continuous curve!. ~b!

Normalized azimuthal profile,r̄A(u)[r(r * ,u)/r(r * ,u50°), in a
quasistationary section,r * 550a, for Fig. 8~c!. ~c! Contour plot of a
mean density~open circles! for a finger of gyration radiusr g

580a @see Fig. 8~c!#, compared with the Saffman-Taylor conform
transformation by Eqs.~A2! and ~A3! ~continuous curve! as lu

50.81. Angleu is measured in respect to a bisector ray (x5y, x
.0) in counterclockwise direction.
06630
r
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@50,85#. It is worth to mention that finger contour plots fo
low precisely the relevant Saffman-Taylor conformal tran
formations@Eq. ~A1!# aslu is determined from Eq.~24! for
all the sectorsu0P@45°, . . . ,180°# examined.

C. Radial configuration

Finally, let us consider the quasicontinuum DLA model
a radial ~sometimes referred to as circular! configuration, a
limit of the previous sector problem,u0→360°. In statistical
studies, we locate a growth nucleus at the origin (0,0) of
square (x,y) grid; there are no external walls for wanderin
walkers to reflect.

e
as

FIG. 10. j-modified quasicontinuum DLA simulation on
square grid (x,y) of spacinga51 inside sectorsu0545° (x.y and
y.0), 135° (x.2y andy.0), and 180° (y.0) for plots~a!, ~b!,
and~c!, respectively. Aggregation probabilityP(x,y,t) is set by Eq.
~18! with j53(3/4) (d52a); discreteness is fixed,K5212.

FIG. 11. Relative angular widthlu as a function of sector angle
u0 ~in degrees!. We combine experimental data~open squares with
error bars! for sectorsu0520°, 45°, and 60°~see Ref.@50#! with
Monte Carlo ones~solid circles! taken from Figs. 8 and 10 foru0

545°, 90°, 135°, and 180°; we plot also a linear interpolation
Eq. ~23! ~dash line! and an approximation by Eq.~24! proposed
~continuous curve!.
3-8
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MEAN-FIELD DIFFUSION-LIMITED AGGREGATION: . . . PHYSICAL REVIEW E 64 066303
In Figs. 12 and 13, we show the radial growth dynam
as a capillary length scalel c}d varies by the factor of two:
the aggregation probabilityP(x,y,t) is set by Eq.~15! (d
5a/2) and Eq.~18! (d5a), respectively. One can resolv
Monte Carlo patterns obtained to resemble the well-kno
behavior of natural structures in radial Hele-Shaw cells@51–
60#, i.e., a steady-state front propagation at small gyrat
radii, r g& l c @Figs. 12~a!, 13~a!, and 13~b!#, then a destabili-
zation phase at an edge of the capillary scale,r g. l c @Figs.
12~b!, 13~c!, and 13~d!#, which subsequently initiates a frac
tal growth asr g* l c @Figs. 12~c! and 12~d!#.

Data treatments for Figs. 12 and 13 are summarized
Fig. 14; there we compute azimuthal@Figs. 14~a! and 14~c!#
and averaged radial@Figs. 14~b! and 14~d!# profiles of the
density fieldr(r ,u,t). Azimuthal distributionsrA do not re-
veal any angular dependence for the steady-state reg
@continuous curves in Figs. 14~a! and 14~c!#, except of an
insignificant statistical noise, i.e., corresponding Mon
Carlo patterns@Figs. 12~a!, 13~a!, and 13~b!# are isotropic.5

In fractal regions, the radial profiler̄R obeys a power-law
relation @dot curve in Fig. 14~b!#

r̄R~r !}r df22, ~25!

5The growth of isotropic patterns on the anisotropic~square! grid
appears to be an encouraging result: the quasicontinuum D
model does not ‘‘feel’’ the underlying lattice, in contrast to th
regular Witten-Sander DLA@62# and its miscellaneous modifica
tions @63#; this will be analyzed in Secs. VI and VII in more deta

FIG. 12. Quasicontinuum DLA simulation on a square g
(x,y) of spacinga51 in a radial configuration. Aggregation prob
ability P(x,y,t) is set by Eq.~15! (d5a/2); discretenessK5212.
We present successive pictures as a gyration radius increaser g

520a, 40a, 60a, and 80a for plots ~a!, ~b!, ~c!, and ~d!, respec-
tively.
06630
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where the valuedf5(1.760.05) calculated, the fractal di
mension, is the same as measured experimentally for na
viscous fingers in radial Hele-Shaw cells@53,54#.

VI. MEAN-FIELD EQUATIONS

Following our research plan, in this section, we proce
from the quasicontinuum DLA model to a determinist
mean-field theory, the purely continuum formulation. F
that purpose, we need to substitute a relevant differential
in the Boltzmann kinetic terms@Eq. ~9!# for Monte Carlo
growth algorithms.

Fortunately, such discrete-continuum transition has
ready been realized phenomenologically in the previous s
tion when we discussed the length scale origin in the qu
continuum DLA—one may substitute the Laplacian for t
average density field in a lattice neighborhood@Eq. ~17!#.
Thus, a deterministic analog of Eq.~14!, the functional op-
eratorF̂ in Eq. ~8!, is obtained as

]r~r ,t !

]t
5u~r ,t !^r~r ,t !1d2¹2r~r ,t !&2, ~26!

whered is a length microscale. This kinetic relation coupl
with Eq. ~7!, to provide a mass conservation in the finge
nutrient system. Surprisingly, the mean-field equations in
duced coincide closely with the ones originally proposed
Witten and Sander@62#; we have only changed the kineti
law exponent from one to two.

A

FIG. 13. j-modified quasicontinuum DLA simulation on
square grid (x,y) of spacinga51 in a radial configuration. Aggre-
gation probabilityP(x,y,t) is set by Eq.~18! with j53 (d5a);
discretenessK5212. We present successive pictures as a gyrat
radius increases:r g520a, 40a, 60a, and 80a for plots ~a!, ~b!, ~c!,
and ~d!, respectively.
3-9
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A. 1D planar configuration

In order to investigate general properties of the mean-fi
equations~7! and ~26!, let us consider first the problem of
one-dimensional~1D! planar displacement. Physically, this
related to a narrow rectilinear Hele-Shaw cell as its widthW
is an infinitesimal value in comparison with the capilla
lengthl c ; then a liquid-liquid interface is stable, and the le
viscous liquid recedes the most viscous one with a cons
rate.

To formulate this 1D planar problem, we reduce the
dius vectorr in Eqs.~7! and~26! to a single coordinate (x);
then bulk equations are

]r

]t
5

]2u

]x2
, ~27!

]r

]t
5uK r1d2

]2r

]x2L 2

. ~28!

We define the finger@r(x,t)# and nutrient@u(x,t)# fields at
x.0 whereas the originx50 is a growth nucleus,

FIG. 14. Data treatments for Figs. 12@plots ~a! and~b!# and 13
@plots ~c! and ~d!#. ~a! and ~c! Azimuthal profiles,rA(u,t)[r(r
5r * ,u,t), in steady-state sections~continuous curves!, r * 510a
and 25a for plots ~a! and~c!, respectively, and in unstable sectio
~dot curves!, r * 520a and 50a for plots~a! and~c!, respectively.~b!

and ~d! Averaged radial profiles,r̄R(r )[(1/2p)*2p
p r(r ,u)du, for

patterns of a maximal gyration radius,r g580a, plots~b! and~d! for
Figs. 12~d! and 13~d!, respectively; here, we mark different spati
regions separated by vertical dash lines as ‘‘S’’ ~steady-state front
propagation!, ‘‘ F ’’ ~fractal growth!, and ‘‘G’’ ~gyration zone!; a dot

curve in plot~b! represents a power-law relationr̄R(r )}r df22 with
df51.7. Angle u is measured in respect to anx-positive ray (y
50, x.0) in counterclockwise direction.
06630
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rux505r0 , uux5050. ~29!

For the formulation to be specified completely, we put t
finger density to zero and fix a nutrient flux at infinity,

rux→`50,
]u

]xU
x→`

5u0 . ~30!

Numerical studies of the 1D planar problem reveal t
following: ~i! solutionsr(x,t) and u(x,t) are stable abso
lutely for all d values and over the whole range of a pa
metric set (r0 ,u0); ~ii ! the finger growth dynamics does no
depend on the nutrient flux at infinityu0; in a stationary
stage, nor does the dynamics depend on the initial den
r0; ~iii ! after initial transients, the finger fieldr(x,t) has a
sharp steplike profile, which propagates with a constant
locity. Thus, we conclude 1D planar fingers to represen
soliton family.

This solitonic behavior is illustrated in Fig. 15; there w
show a time development of the finger fieldr(x,t) modeled
by Eqs. ~27!–~30! with d51. Starting from the nucleusr
5r0, first there is a stage of initial transients as the fing
density approaches an eigenvaluer* @Figs. 15~a! and 15~b!#.
After that a stationary stage emerges@Figs. 15~c! and 15~d!#;
the spatial region related (r.r* ) expands steadily in the
x-positive direction whereas a falloff shape at the finger fro
is time independent. So, the stationary dynamics reprodu
qualitatively a natural 1D viscous displacement as one a
ciates the liquid-liquid interfaceG(t) with the conditionr
5r* /2 @Eq. ~6!#.

FIG. 15. Deterministic mean-field DLA in a 1D planar config
ration@Eqs.~27!–~30!# (d51, r050.1). We present successive pi
tures@plots ~a!, ~b!, ~c!, and~d!# for a finger density fieldr(x,t) as
time t increases;r* marks a stationary solution ast→`.
3-10
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MEAN-FIELD DIFFUSION-LIMITED AGGREGATION: . . . PHYSICAL REVIEW E 64 066303
Then, let us analyze in detail the finger front, a kine
length scale over which the density functionr varies be-
tweenr* and zero; the relevant eigenequation is derived
~see Appendix C!

~r2r* !~r1d2r9!35r9~r1d2r9!22r8~r81d2r-!,
~31!

where the functionr and its derivativesr8, r9, andr- are
determined in respect to a variablez[x2vt (v5const is a
front velocity!. The finger falloff shape calculated from th
eigenequation is presented in Fig. 16. As seen from the
ure, the front intermediate includes mostly a 3d neighbor-
hood of a median,xP( x̄23d, . . . ,x̄13d): the finger den-
sity varies there by'94% of r*; later we will refer to this
intermediate region as ‘‘thed-boundary layer.’’6

B. 1D radial configuration

The next deterministic problem we consider is a 1D rad
displacement when the mean-field equations~7! and~26! are
reduced again to a single spatial coordinate, the radiur.
While this configuration does not have any natural equi
lent, its investigation is necessary for the subsequent con
eration of two-dimensional problems such as channel
sector ones.

6Although the finger density functionr(r ,t) is associated with a
material density throughout the paper~see, e.g., footnote 2!, one
should nevertheless avoid a complete equivalency. In fact, the
terial density of a liquid drops to zero at its boundary in a jump w
whereas the density functionr(r ,t), a mathematical approximation
varies continuously~see Figs. 5, 9, and 15!. So the intermediate a
the finger front, thed-boundary layer~see Fig. 16!, should not be
understood as a region where two liquids dissolve~or mix! in each
other over a diffusion length scaled, i.e., as if the process of a
miscible viscous fingering was modeled. Instead, existence of
d-boundary layer is just a consequence of the continuity ofr(r ,t)
andu(r ,t) functions; physically the microscaled is responsible for
a stability of two-dimensional solutions, as will be clarified in Se
VI E.

FIG. 16. Finger front regionr(z)5r(x2 x̄) by Eq. ~31! for
deterministic mean-field DLA in a 1D planar configuration~see Fig.
15!. We plot normalized finger densityr/r* as a function of (x

2 x̄)/d where x̄ denotes a front median,r( x̄)5r*/2; the

d-boundary layer,xP( x̄23d, . . . ,x̄13d), is marked by vertical
dash lines.
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Assuming only a radial dependence in Eqs.~7! and ~26!
written in polar coordinates (r ,u), we obtain bulk equations
as

]r

]t
5

]2u

]r 2
1

1

r

]u

]r
, ~32!

]r

]t
5uK r1d2S ]2r

]r 2
1

1

r

]r

]r D L 2

. ~33!

We define the finger@r(r ,t)# and nutrient@u(r ,t)# fields at
r .0, whereas the originr→0 is a growth nucleus,

rur→05r0 , uur→050. ~34!

Conditions at infinity imposed are

rur→`50, r
]u

]r U
r→`

5u0 . ~35!

Similar to the planar configuration, numerical studies
veal solutions of the 1D radial problem,r(r ,t) andu(r ,t), to
be stable absolutely7 for all d values and over whole range o
parametersr0 and u0; besides, the finger growth dynamic
depends neither on the nutrient flux at infinityu0 nor on the

a-
,

e

.

7This does not automatically imply the absolute stability for
radial configuration in two spatial dimensions, for which one has
consider alsou perturbations neglected here.

FIG. 17. Deterministic mean-field DLA in a 1D radial configu
ration@Eqs.~32!–~35!# (d51, r050.1). We present successive pi
tures@plots ~a!, ~b!, ~c!, and~d!# for a finger density fieldr(r ,t) as
time t increases;r* marks a quasistationary solution ast→`.
3-11
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VLADISLAV A. BOGOYAVLENSKIY PHYSICAL REVIEW E 64 066303
initial density r0 in a quasistationary stage. Far from th
origin, the quasistationary finger density approaches
same eigenvaluer* and the finger fieldr(r ,t) has the same
steplike time-independent profile as in the 1D planar pr
lem ~Fig. 15!. The only difference is related to the region
small radii,r &10d, where a (1/r ) singularity of the Laplac-
ian @in Eqs. ~32! and ~33!# yields a density increment. Thi
behavior is illustrated in Fig. 17 which shows a time dev
opment of the finger fieldr(r ,t) modeled by Eqs.~32!–~35!
with d51. Relevant structure of the (1/r ) singularity is pre-
sented in Fig. 18; as the initial densityr0 increases, tha
singularity increments~continuous curves! converge to the
asymptotics~dash curve!

r2r*

r*
}

d

r
. ~36!

C. Channel configuration

After preliminary studies of the deterministic mean-fie
DLA in 1D geometry, let us advance to two spatial dime
sions and examine our theory for the classic Saffman-Ta
configuration of a long linear channel@15#, which has been
already investigated by statistical methods in Sec. V A~Figs.
1–5!.

To formulate the channel problem, we consider a recti
ear (x,y) Hele-Shaw cell of widthW; then bulk equations for
the finger@r(x,y,t)# and nutrient@u(x,y,t)# fields are

]r

]t
5

]2u

]x2
1

]2u

]y2
, ~37!

]r

]t
5uK r1d2S ]2r

]x2
1

]2r

]y2D L 2

. ~38!

We locate a growth nucleus at the origin,

rux5y505r0 , uux5y5050. ~39!

On lateral wallsy56W/2, we impose the Neuman conditio
~a spatial restriction! for the finger fieldr, and the Dirichlet

FIG. 18. (1/r ) singularity for deterministic mean-field DLA in a
1D radial configuration~see Fig. 17!. We plot normalized density
increments (r2r* )/r* as functions ofr /d for different initial con-
ditions:r050.1, 1, and 2~continuous curves withr0 values shown
at!; a dash curve represents an asymptotic dependencer
2r*)/ r* }d/r .
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condition~a deterministic analog of the normal reflection f
wandering walkers in the quasicontinuum DLA model! for
the nutrient fieldu,

ruy56W/250,
]u

]yU
y56W/2

50. ~40!

At infinity, we put the finger density to zero and fix th
nutrient flux,

rux→`50,
]u

]xU
x→`

5u0 . ~41!

In order to provide an illustrative correspondence
Monte Carlo results obtained by the quasicontinuum D
simulation for a steady-state growth regime~Figs. 4 and 5!,
we take the same input parameters for numerical mode
by Eqs. ~37!–~41! as in Fig. 4, i.e., the channel widthW
5100 and the microscaled52. In Figs. 19 and 20, we show
a time development of the finger fieldr(x,y,t) and summa-
rize data treatments, respectively. On a basis of the 1D p
lems studied before, one would comment longitudinal@Fig.
20~a!# and transverse@Fig. 20~b!# profiles computed as fol-
lows. A ‘‘kink’’ region on the longitudinal profilesrL at
smallx values is due to the (1/r ) singularity~see Fig. 18! as
the finger field is in a nucleation stage@Fig. 19~a!#, when a
radial approximation is valid. In a stationary stage@Fig.
19~c!#, the finger field propagates through the channel wit
constant velocity whereas a time-independent falloff sh
of the relevant longitudinal profile@continuous curve in Fig.
20~a!# obeys Eq.~31!; hence the longitudinal front region

(

FIG. 19. Deterministic mean-field DLA in a channel configur
tion @Eqs. ~37!–~41!# (W5100, d52, an analog of Fig. 4!. We
present different stages of a steady-state front propagation:~a!
nucleation,~b! tip formation, and~c! stationary growth.
3-12
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MEAN-FIELD DIFFUSION-LIMITED AGGREGATION: . . . PHYSICAL REVIEW E 64 066303
represents thed-boundary layer ~see Fig. 16!. Similar
d-boundary layers are formed at falloffs of a stationary tra
verse profiler̄T @continuous curve in Fig. 20~b!# so this pro-
file will converge to a step function as the microscaled goes
to zero~see footnote 2!.

Comparing the Monte Carlo and numerical results
tween each other~Figs. 4 and 19, 5 and 20!, one can resolve
corresponding shapes, profiles, and mean contours to d
just insignificantly, by a statistical noise; therefore, the q
sicontinuum DLA and its deterministic analog coincide a
ymptotically asK→`. Remarkably, both the stochastic an
deterministic models simulate a steady-state Saffman-Ta
finger @see contour plots in Figs. 5~c! and 20~c!#; thus, we
conclude our formulation, Eqs.~37!–~41!, to be a valid
equivalent of the classic Saffman-Taylor hydrodynam
@15#.

D. Sector configuration

Finally, let us apply the deterministic mean-field DLA fo
the other important case in two spatial dimensions, the se
configuration, in order to establish a connection to Mo
Carlo results presented in Sec. V B~Figs. 6–11!.

To formulate the sector problem, we consider an angu
Hele-Shaw cell@50# and switch the Cartesian relations~37!–

FIG. 20. Data treatments for Fig. 19.~a! Longitudinal profiles,
rL(x,t)[r(x,y50,t), for Fig. 19~a! ~dot curve!, Fig. 19~b! ~dot-
dash curve!, and Fig. 19~c! ~continuous curve!. ~b! Normalized

transverse profiles,r̄T(y,t)[r(x* ,y,t)/r(x* ,y50,t), in sections
of a maximal finger width,x5x* , for Fig. 19~a! ~dot curve!, Fig.
19~b! ~dot-dash curve!, and Fig. 19~c! ~continuous curve!. ~c! Con-
tour plot of a mean density at finger tip~open circles! for a station-
ary growth stage@see Fig. 19~c!#, compared with the Saffman
Taylor analytical solution by Eq.~21! ~continuous curve! as l
50.554.
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~41! to polar coordinates (r ,u); then bulk equations for the
finger @r(r ,u,t)# and nutrient@u(r ,u,t)# fields are

]r

]t
5

]2u

]r 2
1

1

r

]u

]r
1

1

r 2

]2u

]u2
, ~42!

]r

]t
5uK r1d2S ]2r

]r 2
1

1

r

]r

]r
1

1

r 2

]2r

]u2D L 2

. ~43!

Locating a growth nucleus at the origin, we set

rur→05r0 , uur→050. ~44!

On sector walls,u56u0/2, we impose the Neuman cond
tion for the finger fieldr, and the Dirichlet condition for the
nutrient fieldu ~vectorn denotes the unit normal to a wall!,

ruu56u0/250, ~n•“u!uu56u0/250. ~45!

As in Eqs.~41!, we put the finger density to zero and fix th
nutrient flux at infinity,

rur→`50, r
]u

]r U
r→`

5u0 . ~46!

For numerical modeling, we take the sector of right ang
u0590°, which has been already investigated by statist
methods. In Figs. 21 and 22, we show a time developmen
the finger fieldr(r ,u,t) and summarize data treatments, r
spectively. Similar to the channel configuration, one wou

FIG. 21. Deterministic mean-field DLA in a sector configuratio
@Eqs.~42!–~46!# (u0590°, d52, an analog of Fig. 8!. We present
successive pictures of a steady-state front propagation as a fi
gyration radius increases:r g540, 60, 80, and 100 for plots~a!, ~b!,
~c!, and~d!, respectively.
3-13
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comment radial@Fig. 22~a!# and azimuthal@Fig. 22~b!# pro-
files computed as follows. On the radial profilesrR , a
‘‘kink’’ region at small r values and subsequent smooth d
crease of the finger density to a quasistationary eigenv
are due to the (1/r ) singularity in Eqs.~42! and ~43!, as in
the 1D radial problem~see Figs. 17 and 18!. Both quasista-
tionary radial and azimuthal profiles obey Eq.~31! at their
falloffs whered-boundary layers are therefore formed~see
Fig. 16!. A bimodal behavior of the azimuthal profiler̄A , the
local minimum atu50°, is caused by a secondary (1/r )
singularity, which takes place close to sector walls; since
singularity increments are directly proportional tod @Eq.
~36!#, this bimodal profile will converge to a step function
the microscaled goes to zero~see footnote 2!.

As in the channel configuration, the finger shape~Fig. 21!
together with its mean contour and profiles~Fig. 22! look
like counterparts of corresponding Monte Carlo results~Figs.
8 and 9, respectively! obtained by the quasicontinuum DL
simulation for a steady-state growth regime, with only ins
nificant discrepancy by a statistical noise. This yields o
more verification for an asymptotic coincidence of the s
chastic and deterministic models; also we conclude the q
sicontinuum DLA algorithm to simulate actually isotrop
patterns@first it was noticed and discussed in Sec. V C#—the
on-square-lattice data in Fig. 9 coincide with the off-latti

FIG. 22. Data treatments for Fig. 21.~a! Radial profiles,
rR(r ,t)[r(r ,u50°,t), for Fig. 21~a! ~dot curve!, Fig. 21~b! ~dash
curve!, Fig. 21~c! ~dot-dash curve!, and Fig. 21~d! ~continuous

curve!. ~b! Normalized azimuthal profile,r̄A(u)[r(r * ,u)/r(r * ,u
50°), in aquasistationary section,r * 550, for Fig. 21~c!. ~c! Con-
tour plot of a mean density~open circles! for a finger of gyration
radiusr g580 @see Fig. 21~c!#, compared with the Saffman-Taylo
conformal transformation by Eqs.~A2! and~A3! ~continuous curve!
aslu50.81.
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ones in Fig. 22. Besides, the contour plot of a mean fin
density@Fig. 22~c!# follows precisely the relevant Saffman
Taylor conformal transformation@Eqs. ~A2! and ~A3!# with
lu50.81 as for the quasicontinuum DLA@Fig. 9~c!#, so the
conformal extension proposed is justified by the determin
tic mean-field theory as well.

E. Stability of two-dimensional solutions

Numerical investigations of the mean-field equations~7!
and ~26! in channels and sectors report, among others
rather surprising conclusion: there exists a stability len
scale so that two-dimensional solutions are steady-state
within such scale. Thus, our deterministic continuum the
seems to keep basic properties of its stochastic quasi
tinuum framework, i.e., a stable behavior within the capilla
length l c and then a developing destabilization on larg
scales~see, e.g., Figs. 3, 7, and 13!.

As a matter of fact, this seeming paradox may be und
stood and explained qualitatively as follows. While th
mean-field determinism gives us an opportunity to derive
‘‘ideal’’ solution, in numerical modeling, however, one has
consider unavoidable residual errors, which emerge du
two reasons:~i! a discrete numerical scheme being appli
substitutes finite ratios for derivatives so errors of an inc
sistency appear, and~ii ! all intermediate calculations produc
a random computational noise, the analog of a statist
one.8 Hence, the large-scale instability origin in Eqs.~7! and
~26!, the noise and errors, is the same as in the quasic
tinuum DLA simulation, only mechanisms related are diffe
ent: either statistical or numerical.

A detailed stability analysis reveals thed-boundary layer
~Fig. 16! to be the very region responsible for a damping
statistical or numerical perturbations; its damping capacit
proportional tod, i.e., the capillary lengthl c}d may be in-
troduced to the deterministic mean-field theory as we9

Quantitatively, a noise amplitude needed to drive tw

8In a computer representation, variables and constants are
corded with a fixed accuracy; so each elementary operation suc
addition, subtraction, multiplication, division, raising to a powe
etc., deals with the necessity to round resulting numbers.

9This introduction of the capillary length scalel c , a function of
numerical noise and errors, raises an asymptotic selection prob
as follows. The capillary lengthl c is responsible, except for a two
dimensional stability, principally for the selection of a physical s
lution among a mathematically possible one-parameter family; c
responding parameters are the relative finger widthl @Eq. ~21!# and
the relative angular widthlu @Eq. ~A1!# in channel and sector con
figurations, respectively. At smalll c values, l approaches 1/2
whereaslu obeys Eq.~24!; the increase ofl c yields increments to
both l andlu , depending onl c in a power-law way@22–24#. The
parametersl andlu selected should therefore increase substanti
as one removes numerical noise and errors from the mean-
equations. So which two-dimensional solutions are modeled by E
~7! and ~26! in a zero-noise limit? Unfortunately, such asympto
selection problem is obscure since it requires pure analytical m
ods being just in a development stage. We expect to clarify
point in a forthcoming publication.
3-14
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MEAN-FIELD DIFFUSION-LIMITED AGGREGATION: . . . PHYSICAL REVIEW E 64 066303
dimensional solutions unstable vanish exponentially as
microscaled decreases, making a phenomenological co
terpart with the dependencel c(K)} logK @Eq. ~16!# derived
statistically for the quasicontinuum DLA model~see Fig. 2!.
Thus, stability properties of our solutions reproduce the o
for the Saffman-Taylor hydrodynamics in case of a fin
surface tension@17–21#; similarly, that hydrodynamic solu
tions are characterized by a finite-amplitude nonlinear in
bility whose threshold decreases as an exponential func
of the surface tension coefficientd0,10 the squared dimen
sionless ratio of the capillary lengthl c to a macroscale im-
posed externally~e.g., the widthW of a rectilinear Hele-
Shaw cell!.

VII. DISCUSSION

To review principal results obtained in the two previo
sections, we have comprehensively investigated the qu
continuum DLA model~Sec. V! and its deterministic mean
field analog~Sec. VI! for various spatial configurations i
two dimensions such as channel, sector, and radial o
Monte Carlo patterns simulated by the quasicontinuum D
demonstrate a striking resemblance to natural Hele-S
structures~see Figs. 1, 3, 4, 6, 7, 8, 10, 12, and 13! and, a
remarkable achievement, follow precisely the Saffma
Taylor analytical solutions for steady-state growth regim
~see Figs. 5 and 9!. This allows us to conclude the releva
deterministic mean-field formulation introduced, Eqs.~7!
and ~26!, to be a valid density equivalent of the class
Saffman-Taylor hydrodynamics, Eqs.~1!–~4!, in terms of the
liquid-liquid interface evolutionG(t) @Eq. ~6!# ~see Figs. 19–
22!. Nevertheless, one important question still remains op
is our mean-field theory the only true or, maybe, there ex
an extended family of possible theories?

In order to clarify the question posed, one has to co
back to the beginning of our stochastic framework~Sec. IV!
where a kinetic hypothesis on the two-particle interact
intensity has been suggested@Eq. ~13!#. There we assumed
that interaction intensityw(r ,t) to be a linear function of
neighboring density field; however, any power-law depe
dence

w~r ,t !5K (
i

r~r1ei ,t !L a

~47!

with an exponenta.0 satisfies the required conditions of~i!
neighborhood equivalency,~ii ! growth threshold, and~iii !
isometric invariance as well as the linear connection fixed
Eq. ~13!, so why do we emphasize the pointa51? This
needs a detailed investigation.11

10Related results from a structural stability analysis and numer
studies, compared with experimental data, are summarized in F
3, 6, and 7 of Ref.@21#.

11It would be better, undoubtedly, to consider a more general
pendencew5w(r) than given by Eq.~47!; nevertheless, our re
striction is adequate since the power-law family chosen represe
complete functional cover of possible formulations~in terms of the
Taylor polynomial decomposition!.
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Testing thea-extended quasicontinuum DLA model@Eq.
~47!#, we apply corresponding Monte Carlo algorithms for
two-dimensional radial configuration. Similar to statistic
studies in case ofa51 @see Figs. 12 and 13 in Sec. V C#, we
take a square gridr5(x,y) of spacinga on which the aggre-
gation probabilityP(x,y,t) formula is modified from Eq.
~15! to its a variant,

P~x,y,t !5^r~x1a,y,t !1r~x2a,y,t !1r~x,y1a,t !

1r~x,y2a,t !&a11. ~48!

Simulations by Eq.~48! for different a values report a dras
tic influence of the underlying lattice on resulting shap
there definitely appear preferential growth directions ifa
Þ1. As one can resolve from Figs. 23 (a51/2) and 24@a
51(1/2)#, Monte Carlo patterns witha,1 are oriented
along thex andy axes whereas the choice ofa.1 leads to
the xy diagonal orientation. While this lattice effect notice
in itself, is not surprising for DLA-based algorithms, whic
usually produce strongly anisotropic clusters,12 it settles se-
rious arguments to disprove a capability of thea-extended
quasicontinuum DLA to simulate the viscous fingering
regular Hele-Shaw cells. Indeed, our mean-field theory

al
s.

e-

s a12For a comprehensive analysis of reasons why the cluster an
ropy systematically appears in on-lattice DLA simulations, s
Refs.@83,115–120#.

FIG. 23. a-extended quasicontinuum DLA simulation on
square grid (x,y) of spacinga51 in a radial configuration. Aggre-
gation probabilityP(x,y,t) is set by Eq.~48! with a51/2; discrete-
nessK5212. We present successive pictures as a gyration rad
increases:r g520a, 40a, 60a, and 80a for plots ~a!, ~b!, ~c!, and
~d!, respectively.
3-15
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aimed to describe a viscous liquid flow as isotropic,13 the
result achieved only witha51 when off-lattice circular
shapes grow in the radial configuration~Figs. 12 and 13!.

Although statistical studies of thea-extended quasicon
tinuum DLA model are rather illustrative, they provide just
qualitative test. For further theoretical clarifications, one h
to examine corresponding mean-field equations that are
~7! coupled with thea variant of Eq.~26!,

]r~r ,t !

]t
5u~r ,t !^r~r ,t !1d2¹2r~r ,t !&a11. ~49!

It is obvious that steady-state deterministic solutionsr(r ,t)
andu(r ,t) cannot depend on features of a numerical sche
being applied, since there should be no correlation betw
the structure of a numerical grid and the spatial symmetry
a deterministic problem. Hence, the previous lattice ar
ments concerning the anisotropy of resulting shapes are

13In principle, natural examples of anisotropic viscous morpho
gies are widely known@121–132#; all these experimental structure
however, are related to physical systems where the anisotrop
either superimposed~e.g., by specific configurations of Hele-Sha
cells! or introduced as an internal property of the viscous liqu
itself ~e.g., in experiments with liquid crystals!. None of the com-
plex factors mentioned above is considered in the model so
could expect to simulate regular isotropic patterns by Eq.~48!
@premise~iii ! in Sec. IV#.

FIG. 24. a-extended quasicontinuum DLA simulation on
square grid (x,y) of spacinga51 in a radial configuration. Aggre
gation probabilityP(x,y,t) is set by Eq.~48! with a51(1/2); dis-
cretenessK5212. We present successive pictures as a gyration
dius increases:r g520a, 40a, 60a, and 80a for plots ~a!, ~b!, ~c!,
and ~d!, respectively.
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appropriate here,14 so we need to derive a more fundamen
criterion than the isotropy/anisotropy to justify the speci
casea51.

In order to catch a key aspect of that criterion, let
consider the stationary finger densityr* as a function of the
microscaled and the exponenta; the relevant eigenequation
the a variant of Eq.~31!, is written as

~r2r* !~r1d2r9!a125r9~r1d2r9!

2~a11!r8~r81d2r-!. ~50!

Its trivial dimensional analysis reveals the following relatio
~see Fig. 25 for numerical results in the 1D planar config
ration!:

r* }d22/~a11!, ~51!

which yields a length-density conservation

dr* 5const asa51. ~52!

For a propagating finger fieldr(r ,t), physical sense of the
(dr* ) conservation becomes clear as one reminds the is
of a front intermediate, thed-boundary layer~Fig. 16!. The
microscaled multiplied by the eigenvaluer* estimates a
layer volume, which is inversely proportional to the prop

-

is

ne
14The isotropic Laplacian-type function (r1d2¹2r) in Eq. ~49!

raised to any power (a11) will preserve its isotropy.

-

FIG. 25. Product (dr* ) as a function of microscaled for
a-extended deterministic mean-field DLA in a 1D planar config
ration @Eqs.~27!–~30! where Eq.~49! substitutes for Eq.~28!#. We
plot numerical results fora51/4 ~bars!, 1/2 ~up triangles!, 1
~circles!, 1(1/2) ~down triangles!, and 2~diamonds!; corresponding
continuous curves~with a values shown at! represent a theoretica
relationr* }d22/(a11).
3-16
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MEAN-FIELD DIFFUSION-LIMITED AGGREGATION: . . . PHYSICAL REVIEW E 64 066303
gation velocity]G/]t of the finger being a solitonic wave. A
a consequence, the (dr* ) conservation fora51 implies the
finger growth rate to be a constant at variations ofd,15 i.e.,
the interface dynamicsG(t) is determined principally by ex
ternal conditions whereas the microscaled represents an in
dependent length parameter of the theory.16 Thus, we con-
clude only the golden meana51 and therefore, only the
quadratic kinetic law of aggregation as given by Eq.~26!, to
be essentially physical, in contrast to other possible form
lations that are just abstract mathematical substitutions.

VIII. CONCLUSION

The present paper’s contribution to physics of nonequi
rium growth processes consists in the exploration of a u
versal ‘‘density’’ formalism for stochastic and determinist
modeling the immiscible viscous fingering in Hele-Sha
cells ~usually referred to as the Saffman-Taylor problem!.
The stochastic model simulates Monte Carlo patterns, wh
resemble natural Hele-Shaw fingers and, for steady-s
growth regimes, follow precisely the Saffman-Taylor analy
cal solutions in channel and sector configurations. The
evant deterministic theory, a complete set of differen
equations for a time development of density fields, is prov
to be equivalent to the classic Saffman-Taylor hydrodyna
ics in terms of an interface evolution. This advances curr
status of the Saffman-Taylor problem substantially, allow
us to study and describe the viscous fingering phenom
over the whole range of experimental regimes: from ste
state to unstable fractal where the classic hydrodynam
fails.
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APPENDIX A: CONFORMAL TRANSFORMATION
OF SAFFMAN-TAYLOR SOLUTIONS

TO POLAR COORDINATES

Let us consider the classic Saffman-Taylor family of s
lutions, x5x(y,x0 ,l,W) @Eq. ~21!#, which describes the
contour of a steady-state viscous finger penetrating in a
tilinear Hele-Shaw cell@15#. As we switch to the sector con
figurationr 5r (u,r g ,lu ,u0), the polar angleu multiplied by

15The velocity balance by Eq.~52! broken in case ofaÞ1 ex-
plains satisfactorily the anisotropy effect, which is observed
on-square-lattice patterns~Figs. 23 and 24! simulated by thea
-extended quasicontinuum DLA; see Appendix D.

16This makes an explicit relationship with the classic Saffma
Taylor hydrodynamics, Eqs.~1!–~4!; similarly, one can hardly
imagine for the liquid-liquid interface velocity]G/]t ~imposed by
external conditions in a Hele-Shaw cell! any direct dependence o
the surface tension coefficientd0 ~being a material function!.
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the gyration radiusr g becomes an equivalent of the ordina
y, whereas the relative angular widthlu and the sector angle
u0 substitute for parametersl andW, respectively. Then the
left term in Eq.~21! (x2x0) transforms to its radial equiva
lent (r 2r g), allowing us to derive the finger contour in pola
coordinates as

r ~u!2r g

r g
5

u0~12lu!

2p
lnF1

2 S 11 cos
2pu

luu0
D G , ~A1!

where anglesu andu0 are measured in radians.
Coming back to the Cartesian basis (x,y), we combine

this conformal transformation with the conversion formul
by Eqs.~22!; for a right sectoru05p/2, one obtains

x~u!5
r g~cosu2 sinu!

A2
K 11

~12lu!

4
lnF1

2 S 11 cos
4u

lu
D G L ,

~A2!

y~u!5
r g~cosu1 sinu!

A2
K 11

~12lu!

4
lnF1

2 S 11 cos
4u

lu
D G L ,

~A3!

where uP„2(p/4)lu , . . . ,(p/4)lu… is used as a running
variable.

APPENDIX B: RELATIVE ANGULAR WIDTH lu„u0…

Let us analyze the relative angular widthlu of a steady-
state viscous finger penetrating in a sector-shaped Hele-S
cell of angleu0P(0, . . . ,2p) @50#. In order to derive the
dependencelu5lu(u0), we consider the following:

~i! The functionlu(u0) approaches 1/2 for an infinites
mally narrow sector,u0→0 @31–35#.

~ii ! lu(u0) should yield a linear connection@Eq. ~23!# for
small and moderate sector angles,u0&p/2 @50,85#.

~iii ! The limit of a radial configurationu0→2p predeter-
mines the asymptotic conditionlu(2p)51.

To satisfy the requirements above, we propose a o
parameter family of curves,

lu~u0!5
1

2
1

u0

4p1A~u022p!
, ~B1!

where 0,A,2 is a free coefficient. The best fit of this re
lation to both experimental@50# and Monte Carlo~Figs. 8
and 10! data is achieved asA5p/2, yielding the function
lu(u0) as given by Eq.~24!.17

r

- 17As a matter of fact, Eq.~B1! is not superimposed so one ma
introduce instead another parametric family for the fit, as well
one may find a number of reasons to criticize our choice. We do
therefore claim Eqs.~B1! and~24! to be the only true, but rather to
provide an approximation.
3-17
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APPENDIX C: EIGENEQUATION
FOR 1D PLANAR PROBLEM

Let us consider the 1D-spatial finger density fieldr(x,t)
to be a solitonic wave which propagates in thex-positive
direction with a constant velocityv,

r~x,t !5r~x2vt !. ~C1!

Then we introduce a variablez[x2vt in order to rewrite
Eqs.~27! and ~28! as

r852
u9

v
, ~C2!

r852
u

v
~r1d2r9!2, ~C3!

where derivativesr8, r9, andu9 are determined in respect t
z.

As one setsr(z)5r* to be a stationary solution atz→
2` ~far behind the finger front!, Eq. ~C2! becomes inte-
grable,

r2r* 52
u8

v
. ~C4!

An expression for the term (2u8/v) can be obtained inde
pendently from Eq.~C3! by its differentiation,

2
u8

v
5F r8

~r1d2r9!2G 8. ~C5!

Finally, a combination of Eqs.~C4! and ~C5! yields the
eigenequation as given by Eq.~31!.
er

,

e,

-
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APPENDIX D: ON-LATTICE ANISOTROPY
FOR a-EXTENDED QUASICONTINUUM DLA MODEL

From a power-law relation by Eq.~51! between the eigen
value r* and the microscaled, their product (dr* ) is
strongly dependent ond in case ofaÞ1 ~see Fig. 25!. So
what does it mean for an on-lattice aggregation? While
microscaled in a given polar directionu is calculated as the
distance between two lattice sites divided by the numbe
jumps needed to make a path~one has to approximate
lattice line by a train of steps!, an anisotropic angular depen
denced5d(u) is superimposed.18 We should therefore ob
serve a preferred growth in lattice directions where the fu
tion (dr* ) reaches its minimum, i.e., the propagatio
velocity ]G/]t is in the maximum.

In statistical studies of thea-extended quasicontinuum
DLA model ~see Figs. 23 and 24!, we considered neares
neighborhood interactions for the on-square-lattice (x,y) ag-
gregation@Eq. ~48!#; hence in directions of main axes,^10&,

^01&, ^1̄0&, and ^01̄&, the microscaled equals the lattice

spacinga, whereas in diagonal directions,^11&, ^1̄1̄&, ^1̄1&,
and ^11̄&, the microscaled equalsa/A2. As a result, the
preferred growth for Monte Carlo patterns ofa51/2 ~Fig.
23! anda51(1/2) ~Fig. 24! was observed along thex andy
axes and thexy diagonals, respectively, in full agreeme
with the discussion above.

18Although this direction-dependent definition of the microscaled
is somewhat different from the one introduced in terms of a latt
Laplacian@Sec. V A#, both the definitions yield similar measures
nd
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