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Mean-field diffusion-limited aggregation: A “density” model for viscous fingering phenomena
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We explore a universal “density” formalism to describe nonequilibrium growth processes, specifically, the
immiscible viscous fingering in Hele-Shaw celissually referred to as the Saffman-Taylor probjeRor that
we develop an alternative approach to the viscous fingering phenomena, whose basic concepts have been
recently published in a Rapid Communicatidphys. Rev. B63, 04530%R) (2001)]. This approach uses the
diffusion-limited aggregatiofDLA) paradigm as a core: we introduce a mean-field DLA generalization in
stochastic and deterministic formulations. The stochastic model, a quasicontinuum DLA, simulates Monte
Carlo patterns, which demonstrate a striking resemblance to natural Hele-Shaw fingers and, for steady-state
growth regimes, follow precisely the Saffman-Taylor analytical solutions in channel and sector configurations.
The relevant deterministic theory, a complete set of differential equations for a time development of density
fields, is derived from that stochastic model. As a principal conclusion, we prove an asymptotic equivalency of
both the stochastic and deterministic mean-field DLA formulations to the classic Saffman-Taylor hydrodynam-
ics in terms of an interface evolution.
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[. INTRODUCTION The paper is organized as follows. For a background, in
Sec. Il we discuss two different approaches—the classic
Among a wide variety of natural nonequilibrium growth Saffman-Taylor hydrodynamics and a “density” formal-
processefl—9], the viscous fingering in Hele-Shaw cells has ism—to modeling the viscous fingering in Hele-Shaw cells.
attracted much attention ever since its first experimental obln Sec. Ill, we argue that density formalism, the subject to
servation about a century ago: the forcing of a liquid into aexplore, to be based on the diffusion-limited aggregation
more viscous one to recede results in the complex evolutiofPLA) paradigm; so a mean-field DLA generalization in sto-
of a moving interface between the "CIUidS, producing a rang@hastic and deterministic formulations is required. In Sec. IV,
of branched shapdd0]. In the original Hele-Shaw geom- We construct first the stochastic generalization, a quasicon-
etry, that phenomena are studied in a two-dimensional cefinuum DLA model, suggesting a kinetic hypothesis for its
limited by closely spaced parallel solid plates; interfacialSpecification. Then in Sec. V, we test the model proposed by
structures observed there range from smooth Steady_sta%tenSive statistical studies for various two-dimensional con-
“fingers" to fractal unstable “trees,” depending upon such figurations: channel, sector, and radial; we compare Monte
measurable quantities as the cell thickness, the surface tefarlo patterns with natural Hele-Shaw fingers and, for
sion, the average rate of flow, and the shear viscosity of théteady-state growth regimes, with the Saffman-Taylor ana-
most viscous liquid11—14. lytical solutions known. In Sec. VI, we introduce next the
Since Saffman and Taylor treated the simplest possibléeterministic mean-field theory as a complete set of differ-
problem of an immiscible viscous displacement inside argntial equations derived from an asymptotics of the quasi-
infinitely long linear channel in the absence of surface tencontinuum DLA; we study general properties of these equa-
sion[15], much refinement has been done in the theoreticalions, including a stability analysis, and examine their two-
consideration of the viscous fingering phenomena. Relategimensional solutions by a comparison with the Saffman-
investigations have been mainly devoted to generalizing thdaylor ones in the same spatial configurations as in Sec. V.
shape, stability analysis, and selection mechanisms fof\fter that in Sec. VII, we justify the kinetic hypothesis sug-
smooth steady-state fingers penetrating in Hele-Shaw cells @ested in the beginning of our stochastic framework. Finally,
channel[16—30, sector[31-36, and radial[37—-4Q con-  Sec. VIl makes a conclusion.
figurations. Nevertheless, there is still no universal formal-
ism, which can despribg as we_II unstable experimental re- Il. BACKGROUND
gimes when producing interfacial structures demonstrate a
fractal behavio{41-60. In other words, the stochastic na-  Before we focus on the specific problem of an interface
ture of the viscous fingerinas its essential internal prop- evolution between two immiscible liquids in a Hele-Shaw
erty) is not underpinned yet, making an alternative approaclteell, let us raise and discuss a background question: by which
to that phenomena to be of fundamental importance. So, thierms can, in principle, the dynamics of a continuum medium
challenges us for the present work. be formulated? A solution is not implied definitely since at
least two different approaches are valid. Following a regular
way, one has to determine a velocity vectdr,t) and its
*Present address: Physics Department, State University of Neime development in each point of the medium. Alternatively,
York at Binghamton, Binghamton, NY 13902-6016. Email address:one has to determine a medium dengify,t) as a function
vbogoyav@binghamton.edu of time and spatial coordinates. In this connection, the vis-
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cous fingering may be considered from the two points ofTo propose a model, one has to introduce a complete set of

view: (i) as a hydrodynamic problertthe velocity formal-
ism) or (i) as a nonequilibrium growth proce&be density
formalism); we will describe both in detail below.

A. Velocity formalism

The classic hydrodynamic theory for the immiscible vis-
cous displacement in Hele-Shaw cells was introduced by

Saffman and Taylor in 195BL5]. By this approach, a two-
dimensional field of the liquid velocity(r,t) is studied in
terms of a potential functiow,

v(r,t)=V(r,t). (D)

Then the Saffman-Taylor problem involves solving a bulk

incompressibility equation

V2y(r,t)=0 (2)

coupled with boundary conditions
Plrerwy=doklrerq 3
(V¢)n:(£> , 4

at N

where I'(t) denotes a moving liquid-liquid interfacgvith

the curvaturex) which evolution we want to tracky indi-

cates a direction normal to the interface, ahdis a dimen-
sionless surface-tension coefficient. Here, ER). sets the
velocity potentialys on the curved fronf’(t), and Eq.(4)

accounts for a continuity relation.

This Saffman-Taylor formulation, Eq$1)—(4), specifies
the interface dynamic¥(t) completely: the Laplace bulk
law [Eq. ( 2)] with the Dirichlet boundary conditiofEq. (3)]
determine the flow potentiak(r,t), and after that its normal
component at the front gives the interface velocity/Jt

differential equations for a time development of the functions
p(r,t) andu(r,t).

While the nutrient density(r,t), a passive growth field,
obeys the Laplace laW?u=0 atdp/dt=0, a mass conser-
vation in the finger/nutrient system is implied as

ap(r,t)
ot

=V2u(r,t). (7

For the formulation to be specified completely, we need to
couple Eq.(7) with a kinetic relation for the finger growth
rate,

dp(r,t)
at

=F{u(r,1),p(r,0)}, (8)

whereF denotes a functional operator pfr,t) andu(r,t),
the key aspect of the formalism. A general form of that op-
erator is determined from the Boltzmann kinetic thel@¥]:

IE(r,t)= u(r,t)p(r+et)w(r,et)dl.

r+eel(t)

(€)

Here, we consider a nonequilibrium process of the finger
growth as a two-particle interaction between the finger
[p(r+et)] and nutrient[u(r,t)] fields; the integration is
performed inside a collision sphere-eeI(t), the interac-
tion spatial region; the factaw(r,e,t) sets there the distri-
bution function of a successful collision, the interaction in-
tensity.

This density formulation, Eq$5)—(9), however, contains
the serious ga priori unknown operatof?; indeed, we can
neither predetermine nor guess the kinetic parameigjs
and w(r,et) in Eg. (9). We know only an output of the
problem: the finger density fielgl(r,t) should reproduce the
Saffman-Taylor hydrodynamicgEgs. (1)—(4)] in terms of

[Eq. (4)]. Thus, we have a Stefan, or moving-boundary-valugne interface evolutiod'(t). Thus, what can we do in such

problem.

B. Density formalism

deadlock? In order to solve the puzzle of unknown kinetics,
we plan a reversible metamorphosis in the two stépdirst,
we reduce the continuum deterministic formulation given

In contrast to the well-studied hydrodynamic description@Pove to a discrete stochastic one for which the parameters

of the immiscible viscous fingerindreferred to as the
Saffman-Taylor problem the density formalism for that

I(t) andw(r,et) would be specified statistically and then
verified and justified by Monte Carlo simulation@;) after

phenomena has not been exp|0red enough_ Neverthe'eSS, ’[it?t, a backward discrete-continuum transition will y|e|d the
foundation stone appears to be rather clear and is formulatezperatorF a posteriori

as follows. Let a continuous function
p(r,t)el0, ... p*] 5

define the density of a “fingerian equivalent of the less
viscous liquid which grows in a "nutrient”(an equivalent of
the most viscous liquidfield u(r,t). We consider a mean
density p*/2 to determine the finger regio®(t) and the

finger frontI'(t) (an equivalent of the liquid-liquid interfate
as

* *

p

p
plre(b(t)>7r P|rer(t)=7- (6)

Ill. DIFFUSION-LIMITED AGGREGATION

The basic discrete model adapted for stochastic simula-
tions of nonequilibrium growth processes in Laplacian sys-
tems, the diffusion-limited aggregatiofDLA), was origi-
nally introduced by Witten and Sander in 19&P]. Its rules
are very simple: a cluster of particles expands via successive
attachment of growth units being sent, one at a time, from a
far source and then randomly walking on a lattice; the attach-
ment occurs when a growth unit reaches a neighboring site
of the pre-existing clustef63]. Remarkably, Monte Carlo
algorithms of that kind are well-known to simulate fractal
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ramified patterns that resemble the unstable viscous finger IV. QUASICONTINUUM DLA MODEL

morphologies observed in natural porous md6ié—73. A quasicontinuum generalization of the regular on-lattice

As was first noted by I_Daters@ﬁm] and then universa}lly DLA algorithm is introduced as followg112]. Let us con-
recognized, growth equations for the DLA model are similargiger an integer positive numbit; the discreteness param-
to the Saffman-Taylor ones in case of an infinitesimal surfacar of the cluster density field(r,t): for a lattice site, the

tension. In fact, the role of the velocity potentialis played 5, ofp is an element of the finite set
for DLA by the probability P, of visiting a lattice site; that

probability similarly obeys the Laplace laW?P,=0 [Eq.

(2)] whereas the normal growth velocity at a cluster front is p(r,t)e
directly proportional to thé®, gradient[Eq. (4)]. Thus, one

may conclude the DLA paradigm to reproduce the Saffman- o S ) )
Taylor hydrodynamic solutions in a mean-field lifdtl,74—  1-€- @ stairlike distribution is substituted for the continuous
84], in agreement with a resemblance between contour plot&nction p(r.t) in Eq. (5). A mass diffusion is simulated by
of ensemble-averaged DLA clusters and natural shapes dpe flux of “walkers” (growth unit§ transferring a constant

i ) L ) portion us=1/K from a far source to the expanding cluster
ste:l(:zosutg:]e ;Sg;g;gﬁ?;trggggk;m;eﬁ %hlil\_lbges%gqélgo_ field. Since this quasicontinuum framework provides non-

rithms to simulate the viscous fingering phenomena appearesmpt.y .spectrum op values b.etwe:an the ex_treTes Oand1,a
subdivision of whole space into “unoccupied” §=0) and

to be obvious, the adequate formulation of a mean-field DLA‘occupied" (p=1) lattice sites(as in the Witten-Sander al-

theo_ry, |.e.,da vqhd ft.ra|138|t|rc]>n frt())m dISCI‘(;te” growtfh unr|]ts lto orithm) is no more appropriate. The formerly sharp cluster
continuum density fields, has been a challenge for the lagf, (a jump from 0 to 1 becomes an intermediate region

two decades. The main problem stems from the existence @ ar \hich the density fielg(r,t) varies (by discrete por-

a surface tension in the hydrodynamics, the coefficdgnin  jons 1K) between zero and a stationary eigenvaptie So

Eq. (3), which has no counterpart in the Witten-Sander DLA e quasicontinuum DLA model implies a probability of

[62]. Indeed, the surface tension implies a capillary lengthyaiker aggregatiorP(r,t) to be dependent not on the pres-

I, the characteristic scale of a steady-state behavior for thence(or absenceof nearest occupied sites, but rather on the

Saffman-Taylor solutiongl7-21]; for regular DLA patterns, average cluster density in a neighborhood of that walker.

however, this scale equals a lattice spacing so it seems quite In order to define the aggregation probabilRyr,t), we

impossible to consider a “stable zone” on a fractal cluster. transform a continuum expression for the Boltzmann colli-
There has been a number of attempts to introduce theion integrallEq. (9)] to its lattice analog,

capillary lengthl, to the DLA model in a heuristic way.

Modifications of growth rules and conditions proposed for

that include principally the following(i) variation of an ag- P(r,.t)=2 p(r+e,Hw(r.gt), (13)

gregation probability in order to the number of nearest clus- '

ter “neighbors” or, more generally, as a function of front

curvature[87-91, (ii) application of multiple-hit averaging

schemes, which vanish a statistical noj§®,92—-97, and

(iii) taking into account a surface diffusion of growth units

and the thermodynamics relaté@8—100. Unfortunately,

none of these DLA modifications operates with finite spatial

distributions of a cluster density fieja(r,t), which is essen- three premises:

tial for subse_quent derivation (_)f a continuum theo_ry. (i) All the neighboring sites +e are equivalent for the
Among miscellaneous continuum approaches 'ntmd”cegggregation process, i.e., the interaction intensify,e ,t)

for the DLA model so faf62,101-11], the vast majority =w(r,t) does not depend on the index

suffers from a lack ofab initio principles. The reason iS (i) Due to the linear stability of a cluster front against

discussed in the previous section: to construct a mean-fielghfinitesimal perturbations, there is imposed a threshold

theory, one has to suggest a hypothesis on the aggregatigfiowth condition at small neighboring densities,

kinetics [Eq. (9)], which cannot be explicitly verified and

justified for a purely continuum, deterministic formulation. w(r,t)—0 asp(r+¢,t)—0. (12

But this difficulty surprisingly disappears as we construct the

me_an-fleld D.LA theory on the ba.S'S of a quasicontinuum (i) The functionw(r,t) is an isometric invariant and,

(still stochastig¢ framework, the subject of Sec. IV. Then we therefore, it should yield isotropic density measure

can apply statistical methods to verify and justify that aggre- Upon t,he requirement$)—(iii ) listed above, we intfoduce

gation kinetics(Sec. V), and can next proceed from the qua- the interaction intensity as '

sicontinuum DLA to the relevant deterministic mean-field

theory (Sec. V). As an advantage, such plan allows us to

establish valid connections to both stochastic and determin- W(I’,t)=2 p(r+e,t). (13)

istic DLA originals for all steps of the derivation. i

ol 2 K-2 K-1, 10
1R7K1"'1T1T1 ’ ( )

where the collision sphert) is considered to include the
sitesr +¢ adjacent tar, and the index runs over different
neighbors. Here, we have already specified one kinetic pa-
rameter by Eq(11), the interaction regioh(t); but the other,

the interaction intensity(r,g ,t), remains undefined yet. To
suggest a hypothesis on its form, we satisfy the following
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This relation concludes our definition of the aggregation 20
probability P(r,t); combining Egs.(11) and (13), one ob- Yo (a)
tains 5

2 0 50 100 150 200 250 X
P(r,t>=<2 p<r+a,t>> : (14
[ 20
o - Yo (b)
Thus, the quasicontinuum DLA formulation is specified: 20
while a walker released from the source executes stochastic h = s s T 55
motion, at each time step a real random numlier X

e (0,...,1) isgenerated and compared with the aggregation 20

probability P(r,t) being determined from Eq.l4). If the Yo (c)
inequalityR<P(r,t) is valid, the walker aggregates into the 20

lattice site and advances the cluster density at that point,

p(r,t), by the value ofuy; otherwise,R=P(r,t), stochastic 0 50 100 150200 250 x
wandering is continued until the walker aggregates else- 20

where on the cluster. As successive walkers repeat such pro- Yo (d)
cedure, the density field(r,t) is modified in time. ForK 20

=1, this Monte Carlo algorithm coincides with the regular

Witten-Sander ong62]; the model converges to a mean-field p 0 50 100 150 200 20X

DLA limit when the discreteness parameter goes to infinity, D —
K*)OO_ max

0 01 02 03 04 05 06 07 08 09 1.0

V. STATISTICAL STUDIES FIG._l. Quas{coptinuum DLA simulgtion on a square gp'(d?/()
of spacinga=1 inside a channel of widthV=64a. Aggregation
In order to test the quasicontinuum DLA model intro- probability P(x,y,t) is set by Eq(15); discretenes& =1, 24, 28,
duced in the previous section, we take a square grid and 2*for plots (a), (b), (c), and(d), respectively.
=(x,y) of spacinga and consider there only nearest-
neighborhood interactions; so the corresponding on-square- Tpe simplest solution to enlarde consists in the further
lattice aggregation probabilit(x,y,t) is determined from  jycrease of the parametst To elaborate such way, we have
the formula calculated a mean capillary length, the average over an en-
semble of similar clusters; results are plotted in Fig. 2. Un-
POy h=(p(x+ay.i+p(x—ayt)+p(xy+at) fortunately, we conjecture the functional dependehg¢&)
+p(x,y—a,t))2. (15)  to be too weak,
In this section, we will apply our model for various two- l(K)=logK, (16)
dimensional configurations: channel, sector, and radial.

so this way is unpromising since, e.g., steady-state fingers

inside the channel of widtiwW=64a cannot be simulated
Let us start statistical studies from the classic Saffmaneven ak =22,

Taylor configuration, an infinitely long linear channel of  In order to derive a more efficient mechanism to enlarge

width W [15]. A translation invariance of this problem im- |, without substantial increase of computational tifmdrich

plies the normal reflection condition for wandering walkersis directly proportional toK), let us discuss an origin

on lateral wallsy= =W/2; we locate a growth nucleus at the

A. Channel configuration

origin (0,0). 25 reveey ' ' '

In Fig. 1, we present Monte Carlo results for a channel of
width W= 64a where the discreteness parame{eis varied 20}F -3
in the rangd 1, . . . ,2?]. ForK=1, a regular DLA cluster is I,_—‘E'
simulated[Fig. 1(a)]; increase ofK leads to a successive 1015 i ___E-—"' ]
thickening of cluster branchd$ig. 1(b)], and the last two s o
patterng Figs. 1c) and Xd)] look like unstable viscous fin- 10 -3 A
gers observed experimentally in rectilinear Hele-Shaw cells

[41-49. Thus, our quasicontinuum generalization of DLA 10° 10* K 10° 106

yields the capillary length scalg as a monotonic function of

K, which raises the next problem: how to vary this scale FiG. 2. Capillary lengtH, as a function of discreteness param-
principally, to enlarge it up to values comparable with theeterK (see Fig. 1 Monte Carlo datdsolid circles with error bajs
channel widthw, to reproduce steady-state Saffman-Taylorare interpolated by a dependerigéK)=logK (dash ling conjec-
fingers? tured.
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FIG. 3. ¢é-modified quasicontinuum DLA simulation on a square

grid (x,y) of spacinga=1 inside a channel of widttWw=64a.
Aggregation probabilityP(x,y,t) is set by Eq(18) with (=1, 2, 3,
and 3(1/2) for plotga), (b), (c), and(d), respectively; discreteness
is fixed, K= 212

PHYSICAL REVIEW E 64 066303

(a)
-20
-40
0 50 100 150 200 250 X
(b)
150 200 250 X
(c)
0 50 100 150 200 250 X
e
P .
0 01 02 03 04 05 06 0.7 08 09 1.0

FIG. 4. £&-modified quasicontinuum DLA simulation on a square
grid (x,y) of spacinga=1 inside a channel of widthw=100a.
Aggregation probability P(x,y,t) is set by Eq.(18) with &
=3(3/4) (5= 2a); discretenesk =22 We present different stages
of a steady-state front propagatida) nucleation(b) tip formation,
and(c) stationary growth.

of the length scale in the model. In fact, the sum of neigh-

boring cluster densities in Eq15) represents a lattice La-
placian,

2

P(X,y,t)| 1+ azvz p(X,y,1). (17)

By this relation, the capillary length originates from a term

increases enough to provide a steady-state front propagation
so the density fielgp(Xx,y,t) reproduces a single Saffman-
Taylor finger[42,46.1

For a detailed analysis of that steady-state regime, we
consider a wider channelW=100a, and apply the
&-modified quasicontinuum DLA moddEq. (18)] with &

(a%4)Y?=a/2, the characteristic small scale of the square=2a; results are shown in Fig. 4. Here, the growth dynamics

grid of spacinga. Hence, the replacement/4— 6 in Eq.
(17) changes that microscale froai2 to &, which modifies
the aggregation probability formula from E(.5) to

P(x,y,t)={(p(x+a,y,t)+p(x—a,y,t)+p(x,y+a,t)
+p(xy—at)—&p(xy.1))? (18)
where the factog and the microscalé are connected as

a2
524_ EC'&:

(19

Vg

As illustrated in Fig. 3, the variation of in the range
[0, ... ,4)allows us to govern the capillary lendtk: & very
efficiently. Inside the same channel of widi#= 64a, Monte
Carlo runs foré=1, 2, and 3[Figs. 3a), 3(b), and 3c),

is subdivided conditionally into three stages as follows. First,
there is a dropletlike nucleatiofFig. 4(a)] as the finger
settles at the origin. When the finger width becomes compa-
rable withW/2 [Fig. 4(b)], lateral walls begin to form a tip
shape. In a final stage, the stationary groy¥iy. 4(c)], the
steady-state front propagates through the channel with a con-
stant velocity whereas the tip shape of the finger is an invari-
ant.

Data treatments for Fig. 4 are summarized in Fig. 5; there
we compute longitudina[Fig. 5@] and transverségFig.
5(b)] profiles of the density fieldp(x,y,t) for the three
growth stages mentioned above. For the stationary stage

1As a consequence, the quasicontinuum DLA gives us an algo-
rithm for an ensemble averaging of regular DLA clusters, opposite
to the multiple-hit one proposed by Tang in 198%]. Making a

respectively simulate still unstable viscous fingers with re- principal difference from Tang’s purely discrete scheme, the quasi-
markable effects of tip splitting, side branching, and wob-continuum DLA operates with finite spatial distributions of the den-

bling, related to natural Hele-Shaw structurg$l—49.
When we puté=3(1/2) [Fig. 3(d)], the capillary length

sity field p(r,t), whereas computational rates of these two averag-
ing schemes are approximately equal.
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A
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Y (c) Yy
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(d)

60 60

40 40

20 20
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P
" A A A pnax
-60 40 x=Xx, -20 0 0 01 02 03 04 05 06 07 08 09 10
FIG. 5. Data treatments for Fig. 4a) Longitudinal profiles, FIG. 6. Quasicontinuum DLA simulation on a square gpigly)

pL(x,t)=p(x,y=04), for Fig. 4a) (dot curve, Fig. 4b) (dot-dash  of spacinga=1 inside a sector of right angl@,=90° (x>0 and
curve), and Fig. 4c) (continuous curve (b) Normalized transverse Y>0). Aggregation probabilityP(x,y,t) is set by Eq.(15); dis-
profiles, p(y,t) =p(x*y,t)/p(x* ,y=04), in sections of a maxi- CretenesK=1, 24, 28, and 22 for plots (a), (b), (c), and (d),
mal finger width,x=x*, for Fig. 4a) (dot curve, Fig. 4b) (dot-  respectively.

dash curvg and Fig. 4c) (continuous curve (¢) Contour plot of a

mean density at finger tigopen circleg for a stationary growth B. Sector configuration

stage[see Fig. 4c)], compared with the Saffman-Taylor analytical

solution by Eq.(21) (continuous curveas\ = 0.554 Encouraged by a success of the quasicontinuum DLA in

modeling the viscous fingering in channels, we switch to the
) — . next important two-dimensional configuration, a sector-
[Fig. 4(c)], the relevant transverse profiler [continuous  ghaped Hele-Shaw cell of angl [50]. For this problem,
curve in Fig. §b)] approaches a step function as is requited; we will use polar spatial coordinates, the radiysand the
a relative finger widthh measured at the midheight of that gngle g [ - 6,/2, . .. 6,/2], as well as the Cartesian basis
stationary distribution gives the value=0.554, the result of  (x vy for which the conversion formulas needed are
the Saffman-Taylor problem extended for a finite surface ten-
sion[22-24, S(
X=T CO

0o
J’__
0 2

6+ 2| y=rs
5| y=rsin

) (22
1 [ 4/3
)\(IC):§+O.114<V—\°/) , (20)
In statistical studies, we impose the normal reflection con-
dition for wandering walkers on sector walls+ + 6,/2, and

with I.~57a. At the finger tip, the contour plot of a mean |ocate a growth nucleus at the origin (0,0).
density[Fig. 5(c)] follows precisely the Saffman-Taylor ana-

lytical solution[15] 1. Sectorf,=90°
2y Let us consider first a sector of right anglg,=90°, as-
1+ cos—) } (21) signed to the main quarter of the squaxey) grid (x>0 and
AW y>0). In Figs. 6 and 7, we present Monte Carlo results for
this 90° sector where the aggregation probabHifx,y,t) is
wherex, is the tip position agy=0. set by Eqs(15) and(18), respectively. Similar to the channel
configuration investigated before, our model allows us to re-
produce all basic properties of natural Hele-Shaw structures
2A Jiquid flow being modeled by the finger density fieidr,t)  [49,50, i.e., (i) a steady-state front propagation within the
predetermines naturally the step-type conditioms:const within  capillary length scalé. [which increases with and ¢, fol-
the finger regionb(t) (the less viscous liquidandp=0 elsewhere lowing Eqgs.(16) and(19)], and(ii) a fractal growth on larger
(the most viscous liquid this will be also discussed in Sec. VI. scales.

W(1-N\)

X(y)=xo=—7 3
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FIG. 7. ¢&-modified quasicontinuum DLA simulation on a square  FIG. 8. £&-modified quasicontinuum DLA simulation on a square
grid (x,y) of spacinga=1 inside a sector of right angl&,=90° grid (x,y) of spacinga=1 inside a sector of right angl@,=90°
(x>0 andy>0). Aggregation probabilitP(x,y,t) is set by Eq. (x>0 andy>0). Aggregation probabilityP(x,y,t) is set by Eq.

(18) with ¢é=1, 2, 3, and 3(1/2) for plotga), (b), (c), and (d), (18) with £=3(3/4) (6=2a); discretenesk =2 We present suc-
respectively; discreteness is fixd€l= 212 cessive pictures of a steady-state front propagation as a finger gy-
ration radius increasesy=40a, 60a, 80a, and 10@ for plots (a),
(b), (c), and(d), respectively.

To analyze that steady-state regime in detail, we apply

the ¢-modified quasicontinuum DLA mode[Eq. (18)]

with 6=2a. In Fig. 8, we show the sector growth dynamics\ —0.81, so the classic Saffman-Taylor family of

as a finger gyration radius, increases; the last plot, goytions [Eq. (21)] appears to have a valid extension
Fig. 8d), illustrates an edge of the capillary scale when¢,. coctord

a tip shape is perturbed partially. Resembling a natural
behavior [50], the statistical finger tends to occupy a
well-resolved sector fractioh,, an invariant in the steady-

state regime. Besides, the valug,=0.81 measured at 2. Sectorsfly=45°, 1359 and 180°

the midheight of a quasistationary azimuthal profilg In order to advance our comprehension of the viscous
is in agreement with estimations,(90°)=(0.805£0.02) fingering in the sector configuration, let us consider some
from a relation more anglest,=45°, 135°, and 180°. On the square()

grid, we define these sectors asy andy>0), (x>-y
L andy>0), and (>0), respectively.
_ In Fig. 10, we present steady-state fingers grown by the
Mol 6o) = §+(O'0034t 0.0002 6, 23 é-modified quasicontinuum DLAE(Q. (18)] with §=2a. A
surprising result is that all the fingers simulated tend to oc-
cupy still fixed sector fractiona ,<1 even aséf,=180°.
adapted for experimental fingers in sector-shaped Hele-Shayhis disproves a speculative suggestion about the existence

cells[50,85). _ _ o of a “critical” point 63~ 144° so that the relative angular
Data treatments for Fig. 8 are summarized in Fig. 9;

there we compute radi@Fig. 9a)] and azimuthalFig. 9b)]

profiles of the densny_ fleldp(r,ﬁ,t_). To describe the 3This is in contradiction with the other theory developed in Refs.
contour plot of a mean finger densftlyig. %(c)], we perform  31_33 according to which the sector family of solutions differs
a conformal transformation of the linear Saffman-Taylor significantly from the Saffman-Taylor conformal transformation by
problem[15] to polar coordinatesr(6); see Appendix A. Eq. (A1). Nevertheless, a recent investigation of mean occupancy
As a result, the dependence derivgtigs. (A2) and distributions for off-lattice DLA clusters grown in the sector con-

(A3), continuous curve in Fig. (8)] describes precisely figuration reports the results supporting our conclusion; see Figs. 19
that mean contour[open circles in Fig. @)] as and 20 of Ref[86].

066303-7



VLADISLAV A. BOGOYAVLENSKIY PHYSICAL REVIEW E 64 066303

(b)

(@)

(b)

>

£

P .

0 01 02 03 04 05 06 07 08 09 10

FIG. 10. é&-modified quasicontinuum DLA simulation on a
FIG. 9. Data treatments for Fig. 8) Radial profiles,pg(r,t) square gridX,y) of spacinga=1 inside sectorg,=45° (x>y and
=p(r,6=0°1), for Fig. 8a) (dot curve, Fig. 8b) (dash curvg  Y>0), 135° k>—y andy>0), and 180° y>0) for plots(a), (b),
Fig. 8(c) (dot-dash curve and Fig. &d) (continuous curve (b) ~ and(c), respectively. Aggregation probabilif(x,y.t) is set by Eq.
Normalized azimuthal profilepa(8)=p(r*,6)/p(r*,6=0°), ina (18 with £=3(3/4) (9=2a); discreteness is fixedk =212,
guasistationary section? =50a, for Fig. §c). (c) Contour plot of a ) ) _
mean density(open circles for a finger of gyration radius, [50,89. It is worth to mention that finger contour plots fol-
=80a [see Fig. &)], compared with the Saffman-Taylor conformal low precisely the relevant Saffman-Taylor conformal trans-
transformation by Eqs(A2) and (A3) (continuous curveas\, formations[Eq.(Al)] as\, is determined from Eq.24) for
=0.81. Angled is measured in respect to a bisector ray=f/, x all the sectorg),e[45°, ...,1809 examined.
>0) in counterclockwise direction.

. % 4 C. Radial configuration
width A 4( o) equals 1 fordy> 65 [113,114." Thus, we have

(23) which is appropriate only for small and moderate sectoi@ 'adial (sometimes referred to as circularonfiguration, a
angles,f,=<90°. limit of the previous sector problenf,— 360°. In statistical

As argued in Appendix B, the relative angular widthas ~ Studies, we quate a growth nucleus at the origin (0,0) of the
a function ofé, would be approximated by the formul#  Sauare ,y) grid; there are no external walls for wandering
values are assumed in radians walkers to reflect.

o (24)

0
4—71'—|—f0

1
No(6p) = >t
77( 2

The validity of this approximation is demonstrated in Fig.
11—the function\ 4( 6,) proposed fits very well both experi-
mental[50] and Monte CarloFigs. 8 and 1D data; more-
over, this describes the Hele-Shaw experiments even better 0 20
than by Eq.(23) which has been originally introduced

b (deg) 180 270
FIG. 11. Relative angular width, as a function of sector angle
0 (in degrees We combine experimental datapen squares with
4If one extrapolates the linear function,(6,) by Eq. (23) for error bar$ for sectorsf,=20°, 45°, and 60%see Ref[50]) with

larger 6, values, it will be expected to reach 1 86~144°. How-  Monte Carlo onegsolid circles taken from Figs. 8 and 10 fof,
ever, any direct evidence of that suggestion is absent while the=45°, 90°, 135°, and 180°; we plot also a linear interpolation by
angular range for the steady-state front propagation in sectors h&. (23) (dash ling@ and an approximation by Ed24) proposed
been reported to have an experimental limff®*=90° [50]. (continuous curve
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FIG. 12. Quasicontinuum DLA simulation on a square grid FIG. 13. &-modified quasicontinuum DLA simulation on a
(x,y) of spacinga=1 in a radial configuration. Aggregation prob- square grid X,y) of spacinga=1 in a radial configuration. Aggre-
ability P(x,y,t) is set by Eq.(15) (d=a/2); discretenes& =22, gation probabilityP(x,y,t) is set by Eq.(18) with ¢=3 (5=a);

We present successive pictures as a gyration radius incregses: discretenes¥ =22 We present successive pictures as a gyration
=20a, 40a, 60a, and 8@ for plots (a), (b), (c), and(d), respec-  radius increasesy,=20a, 40a, 60a, and 8@ for plots (a), (b), (c),
tively. and (d), respectively.

ety of e the valush— (170,09 calclte, th factal o
the aggregation probabilitP(x,y 1) is set by Eq.(15) (& " mension, is the same as measured experimentally for natural
=a/2) and Eq.(18) (6=a), respectively. One can resolve viscous fingers in radial Hele-Shaw celfs3,54.
Monte Carlo patterns obtained to resemble the well-known
behavior of natural structures in radial Hele-Shaw déls—
60], i.e., a steady-state front propagation at small gyration
radii, r y=I [Figs. 12a), 13(a), and 13b)], then a destabili-
zation phase at an edge of the capillary scajes|. [Figs.
12(b), 13(c), and 13d)], which subsequently initiates a frac-
tal growth asrg=I [Figs. 12c) and 12d)].

Data treatments for Figs. 12 and 13 are summarized i
Fig. 14; there we compute azimutH&ligs. 14a) and 14c)]

VI. MEAN-FIELD EQUATIONS

Following our research plan, in this section, we proceed
from the quasicontinuum DLA model to a deterministic
mean-field theory, the purely continuum formulation. For
that purpose, we need to substitute a relevant differential law
in the Boltzmann kinetic term§Eq. (9)] for Monte Carlo
IE;rowth algorithms.

e , Fortunately, such discrete-continuum transition has al-
and averaged radigFigs. 14b) and 14d)] profiles of the o,y heen realized phenomenologically in the previous sec-
density fieldp(r, 6,t). Azimuthal distributionsp, do notre- 5 when we discussed the length scale origin in the quasi-
veal any angular dependence for the steady-state regimeiinyum DLA—one may substitute the Laplacian for the
.[co.ntlr.u'Jous curves in Figs. 1 .and 140)], except of an average density field in a lattice neighborhddeh. (17)].
insignificant statistical noise, i.e., corresponding Monternys “a deterministic analog of E€L4), the functional op-
Carlo patterngFigs. 12a), 13(a), anﬂ 13b)] are isotropic. eratorE in Eq. (8), is obtained as

In fractal regions, the radial profilpgr obeys a power-law o

relation[dot curve in Fig. 14b)]

ap(r,t) oo )
_(r) rdi—2 (25) ot :U(r,t)<p(l’,t)+5 \ p(l’,t)> )
PRrUr) = )

(26)

where§ is a length microscale. This kinetic relation couples
5The growth of isotropic patterns on the anisotrofsiquare grid ~ With Eq. (7), to provide a mass conservation in the finger/
appears to be an encouraging result: the quasicontinuum DLAUtrient system. Surprisingly, the mean-field equations intro-
model does not “feel” the underlying lattice, in contrast to the duced coincide closely with the ones originally proposed by
regular Witten-Sander DLA62] and its miscellaneous modifica- Witten and Sandef62]; we have only changed the kinetic
tions[63]; this will be analyzed in Secs. VI and VIl in more detail. law exponent from one to two.
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FIG. 14. Data treatments for Figs. I@lots (a) and(b)] and 13
[plots (c) and (d)]. (& and (c) Azimuthal profiles,pa(6,t)=p(r
=r*,0,t), in steady-state sectiongontinuous curves r* =10a
and 2% for plots (a) and(c), respectively, and in unstable sections
(dot curves, r* =20a and 5@ for plots(a) and(c), respectively(b)
and (d) Averaged radial profilespr(r)=(1/27) [T _p(r,0)d6, for _
patterns of a maximal gyration radiug,=80a, plots(b) and(d) for plx=0=po,
Figs. 12d) and 13d), respectively; here, we mark different spatial
regions separated by vertical dash lines & f(steady-state front
propagation, “F" (fractal growth), and “G” (gyration zong a dot

curve in plot(b) represents a power-law relatiaﬁk(r)ocrdf’2 with

FIG. 15. Deterministic mean-field DLA in a 1D planar configu-
ration[EQgs.(27)—(30)] (6=1, py=0.1). We present successive pic-
tures[plots (a), (b), (c), and(d)] for a finger density fielgh(x,t) as
time t increasesp* marks a stationary solution as- .

U[x—0=0. (29

For the formulation to be specified completely, we put the
finger density to zero and fix a nutrient flux at infinity,

Ju
di=1.7. Angle 6 is measured in respect to arpositive ray § plyw=0, =Up. (30)
=0, x>0) in counterclockwise direction. IX X0
A. 1D planar configuration Numerical studies of the 1D planar problem reveal the

In order to investigate general properties of the mean—fielﬁionow'ng: (i) solutionsp(x,t) and u(x,t) are stable abso-
equationg7) and(26), let us consider first the problem of a UtGIY for all 6 valugs and over the whole range of a para-
one-dimensional1D) planar displacement. Physically, this is MELrc Set o, Uo); (i) the finger growth dynamics does not
related to a narrow rectilinear Hele-Shaw cell as its wth  depend on the nutrient flux at infinityo; in a stationary
is an infinitesimal value in comparison with the capillary St2g€, nor does the dynamics depend on the initial density
lengthl,.; then a liquid-liquid interface is stable, and the lessPo; (i) after initial transients, the finger field(x,t) has a

viscous liquid recedes the most viscous one with a constart"@'P Steplike profile, which propagates with a constant ve-
rate. locity. Thus, we conclude 1D planar fingers to represent a

To formulate this 1D planar problem, we reduce the ra-Seliton family. o o
dius vectorr in Egs.(7) and(26) to a single coordinatex{; This solitonic behavior is illustrated in Fig. 15; there we

then bulk equations are show a time development of the finger figldx,t) modeled
by Egs.(27)—(30) with §=1. Starting from the nucleug
ap U =py, first there is a stage of initial transients as the finger

a2 (270 density approaches an eigenvapife[Figs. 15a) and 15b)].

IX After that a stationary stage emerd€sgs. 15c) and 15d)];

)\ 2 the spatial region relatedo&p*) expands steadily in the

iﬁ —ul ot 526770 29) x-positive direction whereas a falloff shape at the finger front

gt o\ P X2 is time independent. So, the stationary dynamics reproduces
qualitatively a natural 1D viscous displacement as one asso-

We define the fingefp(x,t)] and nutrienfu(x,t)] fields at  ciates the liquid-liquid interfacé’(t) with the conditionp

x>0 whereas the origin=0 is a growth nucleus, =p* /2 [Eq. (6)].
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FIG. 16. Finger front regiorp(z)=p(x—x) by Eq. (31) for CO 20 40 50 30 7
deterministic mean-field DLA in a 1D planar configuratieee Fig.
15). We plot normalized finger density/p* as a function of X P
—x)/5 where x denotes a front medianp(x)=p*/2; the 1 ()
S-boundary layerxe (x— 386, ... x+35), is marked by vertical
dash lines. 0
0 20 40 60 80 7
Then, let us analyze in detail the finger front, a kinetic p
length scale over which the density functipnvaries be- ——-p* d
tweenp* and zero; the relevant eigenequation is derived as ly\ ( )
(see Appendix €
% 20 40 60 80 7

(p=p*)(p+8°p")3=p"(p+6%")=2p" (p' + 6%"),

(31 FIG. 17. Deterministic mean-field DLA in a 1D radial configu-
ration[EQgs.(32)—(35)] (6=1, py=0.1). We present successive pic-
tures[plots (a), (b), (c), and(d)] for a finger density fielg(r,t) as

where the functiorp and its derivativep’, p”, andp” are . ) M o i
time t Increasesp marks a quasistationary solution tas «.

determined in respect to a variakdleex—uvt (v=const is a
front velocity). The finger falloff shape calculated from that
eigenequation is presented in Fig. 16. As seen from the ﬁ%vr
ure, the front intermediate includes mostly & 8eighbor-

hood of a medianx e (;—35, X+ 36): the finger den-
sity varies there by=94% of p*; later we will refer to this gp Pu 1éu

Assuming only a radial dependence in E@8. and (26)
itten in polar coordinatesr (6), we obtain bulk equations

H H H “ - [ J— + P 2

intermediate region as “thé-boundary layer. g2t (32
B. 1D radial configuration Ip , &Zp 1 dp 2

The next deterministic problem we consider is a 1D radial ot ulet o2 trarl ) (33

displacement when the mean-field equatiéf)sand(26) are
redyced.agaln .to a .smgle spatial coordinate, the radu_Js We define the fingefp(r,t)] and nutrienfu(r,t)] fields at
While this configuration does not have any natural equivai — 5 \whereas the origin—0 is a growth nucleus

lent, its investigation is necessary for the subsequent consid- ' '
eration of two-dimensional problems such as channel and pli—o=po, Ul;_o=0. (34)
sector ones.

Conditions at infinity imposed are

SAlthough the finger density functiop(r,t) is associated with a au
material density throughout the papeee, e.g., footnote)2one pli—»=0, rE =Ug- (35
should nevertheless avoid a complete equivalency. In fact, the ma- r—
terial density of a liquid drops to zero at its boundary in a jump way,

whereas the density functigr(r,t), a mathematical approximation, . .
varies continuouslysee Figs. 5, 9, and 15So the intermediate at veal solutions of the 1D radial problem(r,t) andu(r,t), to
the finger front, thes-boundary layer(see Fig. 16 should not be be stable absolutefyor all § values and over whole range of

understood as a region where two liquids dissdlwemix) in each ~ Parametero and uo; besides, the finger growth dynamics
other over a diffusion length scalé, i.e., as if the process of a depends neither on the nutrient flux at infinity nor on the
miscible viscous fingering was modeled. Instead, existence of the

S-boundary layer is just a consequence of the continuity(oft)

andu(r,t) functions; physically the microscal&is responsible for "This does not automatically imply the absolute stability for a
a stability of two-dimensional solutions, as will be clarified in Sec. radial configuration in two spatial dimensions, for which one has to
VIE. consider als®@ perturbations neglected here.

Similar to the planar configuration, numerical studies re-
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FIG. 18. (1f) singularity for deterministic mean-field DLA in a
1D radial configuration(see Fig. 1¥. We plot normalized density
increments p—p*)/p* as functions of/ § for different initial con-
ditions: pg=0.1, 1, and Zcontinuous curves with, values shown
2UR
—p*) p* o lr.

initial density pg In a quasistationary stage. Far from the
origin, the quasistationary finger density approaches th
same eigenvalup* and the finger fieldo(r,t) has the same

steplike time-independent profile as in the 1D planar prob-

lem (Fig. 15. The only difference is related to the region of
small radii,r <106, where a (1f) singularity of the Laplac-
ian [in Egs.(32) and(33)] yields a density increment. This
behavior is illustrated in Fig. 17 which shows a time devel-
opment of the finger fielg(r,t) modeled by Eqs(32)—(35)
with §=1. Relevant structure of the ()/singularity is pre-
sented in Fig. 18; as the initial densipp increases, that
singularity incrementgcontinuous curvesconverge to the
asymptoticgdash curve

(36)

C. Channel configuration

After preliminary studies of the deterministic mean-field
DLA in 1D geometry, let us advance to two spatial dimen-

sions and examine our theory for the classic Saffman-Taylor

configuration of a long linear channgl5], which has been
already investigated by statistical methods in Sec. ¥is.

1-5).

To formulate the channel problem, we consider a rectilin-

ear (X,y) Hele-Shaw cell of widthw; then bulk equations for
the finger{ p(x,y,t)] and nutrienfu(x,y,t)] fields are

ap u  Fu -
at  ax% gy?’
2
ap [P Fp
E—U<p+5(ﬁ (9—y2 . (38)
We locate a growth nucleus at the origin,
P|x:y:O:p0a u|x:y:0:O- (39

On lateral wallsy= +=W/2, we impose the Neuman condition
(a spatial restrictionfor the finger fieldp, and the Dirichlet

a dash curve represents an asymptotic dependempce (

PHYSICAL REVIEW E 64 066303
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FIG. 19. Deterministic mean-field DLA in a channel configura-
tion [Egs. (37)—(41)] (W=100, §=2, an analog of Fig. 4 We
present different stages of a steady-state front propagat@n:
nucleation,(b) tip formation, and(c) stationary growth.

condition(a deterministic analog of the normal reflection for
wandering walkers in the quasicontinuum DLA modfr
the nutrient fieldu,

au

ply=+w2=0, e

0.

y=*W/2

(40)

At infinity, we put the finger density to zero and fix the
nutrient flux,

au

™ (41

p|X—>30:0!

In order to provide an illustrative correspondence to
Monte Carlo results obtained by the quasicontinuum DLA
simulation for a steady-state growth regirftégs. 4 and 5
we take the same input parameters for numerical modeling
by Egs.(37)—(41) as in Fig. 4, i.e., the channel widt/
=100 and the microscalé=2. In Figs. 19 and 20, we show
a time development of the finger fieldx,y,t) and summa-
rize data treatments, respectively. On a basis of the 1D prob-
lems studied before, one would comment longitudirag.
20(a)] and transversgFig. 20b)] profiles computed as fol-
lows. A “kink” region on the longitudinal profilesp, at
smallx values is due to the (d) singularity(see Fig. 18as
the finger field is in a nucleation stajeig. 19a)], when a
radial approximation is valid. In a stationary staffég.
19(c)], the finger field propagates through the channel with a
constant velocity whereas a time-independent falloff shape
of the relevant longitudinal profilecontinuous curve in Fig.
20(a)] obeys Eq.(31); hence the longitudinal front region
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FIG. 20. Data treatments for Fig. 1) Longitudinal profiles, FIG. 21. Deterministic mean-field DLA in a sector configuration

pL(X,t)=p(x,y=0}), for Fig. 19a) (dot curve, Fig. 19b) (dot-  [EQs.(42—(46)] (6,=90°, =2, an analog of Fig. )8 We present
dash curvg and Fig. 19c) (continuous curve (b) Normalized — successive pictures of a steady-state front propagation as a finger
transverse profilespr(y,t)=p(x*,y,t)/p(x*,y=04), in sections gyration radius incrgases§:40, 60, 80, and 100 for plot®), (b),
of a maximal finger widthx=x*, for Fig. 19a) (dot curve, Fig. (c), and(d), respectively.

19(b) (dot-dash curvg and Fig. 19c) (continuous curve (c) Con- ) )

tour plot of a mean density at finger tippen circles for a station- ~ (41) to polar coordinatesr(6); then bulk equations for the
ary growth stagesee Fig. 1€&)], compared with the Saffman- finger[p(r,6,t)] and nutrienfu(r,6,t)] fields are

Taylor analytical solution by Eq(21) (continuous curveas A

=0.554. ap Fu 1ldou 1 éu

ot g2 rar ¢2 562’

Pp 1ap 1 p\\?
L p)>. (43

(42)

represents thes-boundary layer(see Fig. 1& Similar
S-boundary layers are formed at falloffs of a stationary trans- J < ,
“ p+

P
verse profilepo [continuous curve in Fig. 2B)] so this pro- ot Y
file will converge to a step function as the microscélgoes
to zero(see footnote _ Locating a growth nucleus at the origin, we set
Comparing the Monte Carlo and numerical results be-
tween each othefFigs. 4 and 19, 5 and 20one can resolve pli—o=po, Ul,_o=0. (44)
corresponding shapes, profiles, and mean contours to differ
just insignificantly, by a statistical noise; therefore, the qua-On sector wallsg= = 6,/2, we impose the Neuman condi-
sicontinuum DLA and its deterministic analog coincide as-tion for the finger fieldp, and the Dirichlet condition for the
ymptotically asKk — . Remarkably, both the stochastic and nutrient fieldu (vectorn denotes the unit normal to a wall
deterministic models simulate a steady-state Saffman-Taylor
finger [see contour plots in Figs.(® and 2dc)]; thus, we plo=x9y2=0, (N-VU)[y=s2=0. (45
conclude our formulation, Eq937)—(41), to be a valid ) _ ) )
equivalent of the classic Saffman-Taylor hydrodynamicsAs in Egs.(41), we put the finger density to zero and fix the
[15]. nutrient flux at infinity,

w2 T g

au

rEr =Up. (46)

D. Sector configuration P|Hoo:0,

— 00

Finally, let us apply the deterministic mean-field DLA for
the other important case in two spatial dimensions, the sector For numerical modeling, we take the sector of right angle,
configuration, in order to establish a connection to Montef,=90°, which has been already investigated by statistical

Carlo results presented in Sec. Bigs. 6—1). methods. In Figs. 21 and 22, we show a time development of
To formulate the sector problem, we consider an angulathe finger fieldp(r,,t) and summarize data treatments, re-
Hele-Shaw cel[50] and switch the Cartesian relatio(®7)— spectively. Similar to the channel configuration, one would
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ones in Fig. 22. Besides, the contour plot of a mean finger
(b) density[Fig. 22c)] follows precisely the relevant Saffman-
Taylor conformal transformatiofEgs. (A2) and (A3)] with
\y=0.81 as for the quasicontinuum DL#ig. 9c)], so the
conformal extension proposed is justified by the determinis-
tic mean-field theory as well.

~~
Q

o
RS

E. Stability of two-dimensional solutions

Numerical investigations of the mean-field equatidis
and (26) in channels and sectors report, among others, a
rather surprising conclusion: there exists a stability length
scale so that two-dimensional solutions are steady-state only
within such scale. Thus, our deterministic continuum theory
seems to keep basic properties of its stochastic quasicon-
tinuum framework, i.e., a stable behavior within the capillary
length I, and then a developing destabilization on larger
scales(see, e.g., Figs. 3, 7, and)13

As a matter of fact, this seeming paradox may be under-
stood and explained qualitatively as follows. While the
mean-field determinism gives us an opportunity to derive an
“ideal” solution, in numerical modeling, however, one has to
consider unavoidable residual errors, which emerge due to
two reasonsii) a discrete numerical scheme being applied

FIG. 22. Data treatments for Fig. 21a) Radial profiles, substitutes finite ratios for derivatives so errors of an incon-
pr(r.t)=p(r,0=0°,t), for Fig. 21(a) (dot curve, Fig. 21(b) (dash  sjstency appear, ar(d) all intermediate calculations produce
curve, Fig. 21(c) (dot-dash curve and Fig. 21d) (continuous 5 random computational noise, the analog of a statistical
curve). (b) Normalized azimuthal profilepa(6)=p(r*,0)/p(r*,6  one® Hence, the large-scale instability origin in E¢#) and
=0°), in aquasistationary section} =50, for Fig. 21c). (c) Con-  (26), the noise and errors, is the same as in the quasicon-

tour plot of a mean densitjopen circles for a finger of gyration  tinyum DLA simulation, only mechanisms related are differ-
radiusr,=80 [see Fig. 2lc)], compared with the Saffman-Taylor gant: either statistical or numerical.

conformal transformation by EqéA2) and(A3) (continuous curve A detailed stability analysis reveals tieboundary layer

ash,=0.81. (Fig. 16 to be the very region responsible for a damping of
statistical or numerical perturbations; its damping capacity is
comment radia[Fig. 22a)] and azimutha[Fig. 22b)] pro-  proportional toé, i.e., the capillary length.= 5 may be in-
files computed as follows. On the radial profilpg, a troduced to the deterministic mean-field theory as Well.
“kink” region at small r values and subsequent smooth de-Quantitatively, a noise amplitude needed to drive two-
crease of the finger density to a quasistationary eigenvalue
are due to the (1) singularity in Eqgs.(42) and (43), as in
the 1D radial problentsee Figs. 17 and 18Both quasista-  &n a computer representation, variables and constants are re-
tionary radial and azimuthal profiles obey HG1) at their  corded with a fixed accuracy; so each elementary operation such as
falloffs where é-boundary layers are therefore forméke  addition, subtraction, multiplication, division, raising to a power,
Fig. 16). A bimodal behavior of the azimuthal profitg,, the  etc., deals with the necessity to round resulting numbers.
local minimum atf#=0°, is caused by a secondary L/ gThis. introdyction of the capilllary length scdlg, a funcFion of
singularity, which takes place close to sector walls; since thafumerical noise anql errors, raises an asyr_nptotlc selection problem
singularity increments are directly proportional ®[Eq. @S follows. The capillary length is responsible, except for a two-
(36)], this bimodal profile will converge to a step function as dimensional stability, principally for the selection of a physical so-
the microscale’ goes to zerdsee footnote P lution among a mathematically poss.lble'one-pa.rameter family; cor-
As in the channel configuration, the finger shapig, 21)  '<SPonding parameters are the relative finger widffq. (21)] and

her with its mean contour and profilésig. 22 look t_he rel_atlve angular _\Nldth,, [Eq. (A1)] in channel and sector con-

Itic|)<gee(§0unterparts of corresponding Monte Carlo res(figs figurations, respectively. At small. values, X approaches 1/2

. . ; . whereas\ , obeys Eq.(24); the increase of. yields increments to
8 and 9, respectivelyobtained by the quasicontinuum DLA .\ and\,, depending or, in a power-law way22—24. The

simulation for a steady-state growth regime, with only insig-parametera andx , selected should therefore increase substantially
nificant discrepancy by a statistical noise. This yields 0N one removes numerical noise and errors from the mean-field
more verification for an asymptotic coincidence of the sto-gquations. So which two-dimensional solutions are modeled by Egs.
chastic and deterministic models; also we conclude the quaz) and (26) in a zero-noise limit? Unfortunately, such asymptotic
sicontinuum DLA algorithm to simulate actually isotropic selection problem is obscure since it requires pure analytical meth-
patterndfirst it was noticed and discussed in Sec. ¥-@he  ods being just in a development stage. We expect to clarify this
on-square-lattice data in Fig. 9 coincide with the off-lattice point in a forthcoming publication.
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dimensional solutions unstable vanish exponentially as the 80 80
microscaled decreases, making a phenomenological coun- (@) (b)
terpart with the dependend¢g(K)=logK [Eq. (16)] derived 40 40
statistically for the quasicontinuum DLA modglee Fig. 2 Yo ’ Yo
Thus, stability properties of our solutions reproduce the ones
for the Saffman-Taylor hydrodynamics in case of a finite 40 40
surface tensiofil7—21; similarly, that hydrodynamic solu-
tions are characterized by a finite-amplitude nonI|r_1ear insta- 030 3% 4053530
bility whose threshold decreases as an exponential function X X
of the surface tension coefficient,'® the squared dimen-
sionless ratio of the capillary length to a macroscale im- 80
posed externally(e.g., the widthW of a rectilinear Hele-
Shaw cell. 40
VII. DISCUSSION Yo

To review principal results obtained in the two previous .

sections, we have comprehensively investigated the quasi-  _gg

-80 -40 0

continuum DLA model(Sec. VJ and its deterministic mean- X

field analog(Sec. V) for various spatial configurations in
two dimensions such as channel, sector, and radial ones. % _——__
Monte Carlo patterns simulated by the quasicontinuum DLA T T 08 06 05 ¢ 0z 08 05 15
demonstrate a striking resemblance to natural Hele-Shaw
structures(see Figs. 1, 3, 4, 6, 7, 8, 10, 12, and) B3d, a FIG. 23. a-extended quasicontinuum DLA simulation on a
remarkable achievement, follow precisely the Saffman-square gridx,y) of spacinga=1 in a radial configuration. Aggre-
Taylor analytical solutions for steady-state growth regimesgation probabilityP(x,y,t) is set by Eq(48) with a=1/2; discrete-
(see Figs. 5 and)9This allows us to conclude the relevant nessK=2%. We present successive pictures as a gyration radius
deterministic mean-field formulation introduced, Eqg)  increasesr,=20a, 40a, 60a, and 8@ for plots (a), (b), (c), and
and (26), to be a valid density equivalent of the classic (d), respectively.
Saffman-Taylor hydrodynamics, Eq4)—(4), in terms of the
liquid-liquid interface evolutiod’(t) [Eq. (6)] (see Figs. 19— Testing thea-extended quasicontinuum DLA modétq.
22). Nevertheless, one important question still remains open47)], we apply corresponding Monte Carlo algorithms for a
is our mean-field theory the only true or, maybe, there existéwo-dimensional radial configuration. Similar to statistical
an extended family of possible theories? studies in case a¥=1 [see Figs. 12 and 13 in Sec. \|,Gve

In order to clarify the question posed, one has to comeake a square grid=(X,y) of spacinga on which the aggre-
back to the beginning of our stochastic framew(8lec. V)  gation probability P(x,y,t) formula is modified from Eq.
where a kinetic hypothesis on the two-particle interaction(15) to its « variant,
intensity has been suggestgelq. (13)]. There we assumed
that interaction intensityv(r,t) to be a linear function of _ _
neighboring density field; however, any power-law depen- POGY.D=(p(x+ay. Dt p(x—ay.b+p(xytat
dence +p(x,y—a,t))*tt, (48)

w(r, )= < Z p(r+g ’t)> (47 simulations by Eq(48) for different « values report a dras-
tic influence of the underlying lattice on resulting shapes:

with an exponentv>0 satisfies the required conditions(of there definitely appear preferential growth directionsxif
neighborhood equivalencyji) growth threshold, andiii) ~ # 1. AS one can resolve from Figs. 2&€ 1/2) and 24 «
isometric invariance as well as the linear connection fixed by=1(1/2)], Monte Carlo patterns withw<<1 are oriented
Eq. (13), so why do we emphasize the poiat=1? This along thex andy axes whereas the choice af>1 leads to
needs a detailed investigatioh. the xy diagonal orientation. While this lattice effect noticed,
in itself, is not surprising for DLA-based algorithms, which
usually produce strongly anisotropic clust&rst settles se-

10Related results from a structural stability analysis and numericalioUS arguments to disprove a capability of theextended
studies, compared with experimental data, are summarized in Figfluasicontinuum DLA to simulate the viscous fingering in
3, 6, and 7 of Ref[21]. regular Hele-Shaw cells. Indeed, our mean-field theory is
4t would be better, undoubtedly, to consider a more general de-
pendencev=w(p) than given by Eq(47); nevertheless, our re-
striction is adequate since the power-law family chosen represents a*?For a comprehensive analysis of reasons why the cluster anisot-
complete functional cover of possible formulatidits terms of the  ropy systematically appears in on-lattice DLA simulations, see
Taylor polynomial decomposition Refs.[83,115-120
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FIG. 25. Product §p*) as a function of microscaled for

FIG. 24. a-extended quasicontinuum DLA simulation on a g-extended deterministic mean-field DLA in a 1D planar configu-
square grid X,y) of spacinga=1 in a radial configuration. Aggre- ration[Eqs.(27)—(30) where Eq.(49) substitutes for Eq(28)]. We
gation probabilityP(x,y,t) is set by Eq(48) with a=1(1/2); dis-  plot numerical results fore=1/4 (bar9, 1/2 (up triangle$, 1
cretenesK =2'2 We present successive pictures as a gyration rafcircles, 1(1/2) (down triangley and 2(diamonds; corresponding

dius increases.,=20a, 40a, 60a, and 8@ for plots (a), (b), (C),  continuous curve$with « values shown atrepresent a theoretical
and (d), respectively. relation p* o 5~ 2(a+1).

aimed to describe a viscous liquid flow as isotroiche  appropriate her& so we need to derive a more fundamental
result achieved only witha=1 when off-lattice circular criterion than the isotropy/anisotropy to justify the specific
shapes grow in the radial configurati@figs. 12 and 18 casea=1.

Although statistical studies of the-extended quasicon- In order to catch a key aspect of that criterion, let us
tinuum DLA model are rather illustrative, they provide just a consider the stationary finger densjty as a function of the
qualitative test. For further theoretical clarifications, one hasnicroscales and the exponent; the relevant eigenequation,
to examine corresponding mean-field equations that are E¢he « variant of Eq.(31), is written as

(7) coupled with thea variant of Eq.(26), , . ,
(p=p*)(p+8%p")* 2=p"(p+6%")

dp(r.t) —(a+1)p'(p'+6%"). (50

—r = (p(r )+ 82V2p(r,0))**t. (49

Its trivial dimensional analysis reveals the following relation

. . N . see Fig. 25 for numerical results in the 1D planar configu-
It is obvious that steady-state deterministic solutips,t) gation)' g P g

andu(r,t) cannot depend on features of a numerical scheme
being applied, since there should be no correlation between p* o5 2l atl) (51)
the structure of a numerical grid and the spatial symmetry of

a deterministic problem. Hence, the previous lattice arguwhich yields a length-density conservation

ments concerning the anisotropy of resulting shapes are in-
Sp* =const asy=1. (52

3In principle, natural examples of anisotropic viscous morpholo- F*or a propaga_tlng finger fiela(r,t), physical Se.nse of th.e
gies are widely known121-133; all these experimental structures, (6p™) con;ervanon becomes clear as one rgmmds the issue
however, are related to physical systems where the anisotropy &f & front intermediate, thé-boundary layerFig. 16. The
either superimposetk.g., by specific configurations of Hele-Shaw Microscaleé multiplied by the elgenvalqe;* estimates a
cell or introduced as an internal property of the viscous liquidlayer volume, which is inversely proportional to the propa-
itself (e.g., in experiments with liquid crystalsNone of the com-
plex factors mentioned above is considered in the model so one
could expect to simulate regular isotropic patterns by E®) The isotropic Laplacian-type functiorp ¢ 6°V?p) in Eq. (49)
[premise(iii) in Sec. 1V]. raised to any powerd+1) will preserve its isotropy.
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gation velocitygI'/ gt of the finger being a solitonic wave. As the gyration radius, becomes an equivalent of the ordinate
a consequence, thé4*) conservation fow=1 implies the vy, whereas the relative angular width and the sector angle
finger growth rate to be a constant at variationssgf i.e., 6, substitute for parameteds and W, respectively. Then the
the interface dynamicE(t) is determined principally by ex- left term in Eq.(21) (x—X,) transforms to its radial equiva-
ternal conditions whereas the microscaleepresents an in- lent (r —rg), allowing us to derive the finger contour in polar
dependent length parameter of the thé8rfhus, we con-  coordinates as

clude only the golden meaa=1 and therefore, only the

quadratic kinetic law of aggregation as given by E2f), to ((0)—ry O(1-Xg) [1 270
be essentially physical, in contrast to other possible formu- ; = 5 In > 1+ cos)\ i (A1)
lations that are just abstract mathematical substitutions. 9 i 70

VIIl. CONCLUSION where angles) and 6, are measured in radians.

Coming back to the Cartesian basis)), we combine

The present paper’s contribution to physics of nonequilibthis conformal transformation with the conversion formulas
rium growth processes consists in the exploration of a uniby Eqgs.(22); for a right sectord,= 7/2, one obtains
versal “density” formalism for stochastic and deterministic
modeling the immiscible viscous fingering in Hele-Shaw
cells (usually referred to as the Saffman-Taylor problem ) Inl =
The stochastic model simulates Monte Carlo patterns, which J2 4 12
resemble natural Hele-Shaw fingers and, for steady-state (A2)
growth regimes, follow precisely the Saffman-Taylor analyti-
cal solutions in channel and sector configurations. The rel- . 1 1
evant deterministic theory, a complete set of differentialy gy — fo(CoSO+ sm0)<1+( _M)In —
equations for a time development of density fields, is prove V2 4 12 ]
to be equivalent to the classic Saffman-Taylor hydrodynam- (A3)
ics in terms of an interface evolution. This advances current
status of the Saffman-Taylor problem substantially, allowingwhere g (— (w/4)\,, . .. ,(w/4)\,) is used as a running
us to study and describe the viscous fingering phenomengyriaple.
over the whole range of experimental regimes: from steady

state to unstable fractal where the classic hydrodynamics
fails. APPENDIX B: RELATIVE ANGULAR WIDTH N\ y(8;)

_ ry(cosf— sino) < . (1—Xy) '1(

P

Let us analyze the relative angular width of a steady-
ACKNOWLEDGMENTS state viscous finger penetrating in a sector-shaped Hele-Shaw

| would like to thank sincerely Dr. Natasha Chernova, Dr.Ce” of angle HBE O, ....2m) [SQ]' In order to_de.rive the
Nikolay Andreev, Dr. Maxim Lobanov, and Miss Elena Bibik dePendence =X ,(6o), we consider the following: ~
for fruitful discussions and helpful comments. | am also (1) The functionk ,(6,) approaches 1/2 for an infinitesi-

grateful to LTPD Computer CentéMoscow State Univer- Mally narrow sectorfj,— 0 [31-35. .
sity) for computing resources provided. (i) N 4(6o) should yield a linear connectidikq. (23)] for
small and moderate sector anglég= =/2 [50,85|.

(iii) The limit of a radial configuratiomy— 27 predeter-
mines the asymptotic conditian,(27)=1.

To satisfy the requirements above, we propose a one-
parameter family of curves,

APPENDIX A: CONFORMAL TRANSFORMATION
OF SAFFMAN-TAYLOR SOLUTIONS
TO POLAR COORDINATES

Let us consider the classic Saffman-Taylor family of so-
lutions, x=x(Y,Xg,\,W) [Eqg. (21)], which describes the 1 6,
contour of a steady-state viscous finger penetrating in a rec- No(Oo) =5+ Tt A(Og=2m) (BY)
tilinear Hele-Shaw cel[15]. As we switch to the sector con- 0

figurationr=r(6,r,,\y,6,), the polar angle# multiplied by
E where 0<A<2 is a free coefficient. The best fit of this re-

lation to both experimentdl50] and Monte Carlo(Figs. 8

15The velocity balance by Eq52) broken in case oi#1 ex- ~and 10 data is achieved ad=/2, yielding the function
plains satisfactorily the anisotropy effect, which is observed for\s(6o) as given by Eq(24).*
on-square-lattice patterndigs. 23 and 2% simulated by thea
-extended quasicontinuum DLA; see Appendix D.

This makes an explicit relationship with the classic Saffman- ’As a matter of fact, Eq(B1) is not superimposed so one may
Taylor hydrodynamics, Eqgs(1)—(4); similarly, one can hardly introduce instead another parametric family for the fit, as well as
imagine for the liquid-liquid interface velocityl'/dt (imposed by  one may find a number of reasons to criticize our choice. We do not
external conditions in a Hele-Shaw gediny direct dependence on therefore claim Eq9B1) and(24) to be the only true, but rather to
the surface tension coefficiedy (being a material function provide an approximation.
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APPENDIX C: EIGENEQUATION
FOR 1D PLANAR PROBLEM

Let us consider the 1D-spatial finger density fiplgk,t)
to be a solitonic wave which propagates in tkpositive
direction with a constant velocity,

p(X,t)=p(x—vt). (Cy

Then we introduce a variable=x—uvt in order to rewrite
Eqgs.(27) and(28) as

p,:__! (CZ)

’ u 2 1m\2
p=—;@+5p), (€3
where derivativep’, p”, andu” are determined in respect to
z

As one set(z)=p* to be a stationary solution at—
—oo (far behind the finger front Eq. (C2) becomes inte-
grable,

(CH

An expression for the term—<u’/v) can be obtained inde-
pendently from Eq(C3) by its differentiation,

!

! !

LA
(P+ 52P”)2

u

v

(CH

Finally, a combination of Eqs(C4) and (C5 yields the
eigenequation as given by E@®1).
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APPENDIX D: ON-LATTICE ANISOTROPY
FOR a-EXTENDED QUASICONTINUUM DLA MODEL

From a power-law relation by E@51) between the eigen-
value p* and the microscale’, their product ¢p*) is
strongly dependent o# in case ofa# 1 (see Fig. 2h So
what does it mean for an on-lattice aggregation? While the
microscaled in a given polar directior® is calculated as the
distance between two lattice sites divided by the number of
jumps needed to make a patbhne has to approximate a
lattice line by a train of stepsan anisotropic angular depen-
dences=5(6) is superimposedf We should therefore ob-
serve a preferred growth in lattice directions where the func-
tion (8p*) reaches its minimum, i.e., the propagation
velocity 9I'/dt is in the maximum.

In statistical studies of thex-extended quasicontinuum
DLA model (see Figs. 23 and 24we considered nearest-
neighborhood interactions for the on-square-latticg/) ag-
gregation[Eq. (48)]; hence in directions of main axed,0),
(01), (10), and(01), the microscales equals the lattice
spacinga, whereas in diagonal direction&l 1), (11), (11),
and (11), the microscales equalsa/+2. As a result, the
preferred growth for Monte Carlo patterns af=1/2 (Fig.

23) and a=1(1/2) (Fig. 24 was observed along theandy
axes and thexy diagonals, respectively, in full agreement
with the discussion above.

8Although this direction-dependent definition of the microscle
is somewhat different from the one introduced in terms of a lattice
Laplacian[Sec. V A}, both the definitions yield similar measures.
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