PHYSICAL REVIEW E, VOLUME 64, 066208
Wada basins and chaotic invariant sets in the Heon-Heiles system
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The Heon-Heiles Hamiltonian is investigated in the context of chaotic scattering, in the range of energies
where escaping from the scattering region is possible. Special attention is paid to the analysis of the different
nature of the orbits, and the the invariant sets, such as the stable and unstable manifolds and the chaotic saddle.
Furthermore, a discussion on the average decay time associated to the typical chaotic transients, which are
present in this problem, is presented. The main goal of this paper is to show, by using various computational
methods, that the corresponding exit basins of this open Hamiltonian are not only fractal, but they also verify
the more restrictive property of Wada. We argue that this property is verified by typical open Hamiltonian
systems with three or more escapes.
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[. INTRODUCTION dissipative system. In our case, an exit basin is the set of
initial conditions that lead to a certain exit. In particular, we
The phenomenon of chaotic scattering is usually associhave focused our attention in the analysis of exit basins of
ated with the dynamics of open Hamiltonian systems posthe Heon-Heiles Hamiltonian, which is a well-known
sessing chaotic properties. One of the basic attributes ahodel for an axisymmetrical galaxy], and it has been used
these Hamiltonian systems is the possibility of an orbit toas a paradigm in Hamiltonian nonlinear dynamics. It is a
escape from the attraction of the potential. Typically, a partwo-dimensional time-independent dynamical system and it
ticle bounces back and forth for a certain time in a boundedhas three different exits for orbits over the escape energy. It
area called thescattering region and eventually leaves it has been shown by Blehet al. [8] that when two or more
through one of the several exits, escaping towards infinityescapes are possible in Hamiltonian systems, fractal bound-
Many recent studies have focused in the analysis of thesaries typically appear. Hence, the dynamics of the system is
Hamiltonians in two dimensions, the main reason for thisin some sense unpredictable, as the boundary that separates
interest is they are being used to model a wide range obne basin from another one is not clearly defined.
phenomena in very different fields. Some applications are the Our goal in this paper is twofold. First, we have studied
analysis of the escape of stars from galafieg], the dy- the Hewon-Heiles Hamiltonian as a paradigmatic example of
namics of ions in electromagnetic traf@|, the interaction chaotic scattering, paying special attention to the invariant
between the Earth’s magnetotail and the solar Wiidand  sets related to it. Second, we have obtained numerical evi-
the study of geodesics in gravitational wayb$ to cite just  dence of the special character of the final uncertainty in this
a few. From a wide point of view, all these applications areHamiltonian, because we show that its exit basins are not
varied manifestations of chaotic scattering, which mainlyonly fractal, but they verify the stronger property of Wada
consists of the interaction of a particle with a system tha{9-14]. A basin B verifies the property of Wada if any
scatters it, in a way that the final conditions of speed andoundary point also belongs to the boundary of two other
direction depend on the initial conditions in an extremelybasins. In other words, every open neighborhood of a point
sensitive way(see Ref[6] for a detailed study of this phe- belonging to a Wada basin boundary has a nonempty inter-
nomenon. section with at least three different basins. Hence, if the ini-
For energies below a certain threshold value, which idial conditions of a particle are in the vicinity of the Wada
commonly called theescape energythe orbits are bounded basin boundary, we will not be able to be sure by which one
and the test particles cannot leave the scattering region, butdf the three exits the orbit will escape to infinity. It has been
the energy is above this threshold value, several exits magroved by[15] that the property of Wada is verified in a
appear and it is possible to escape towards infinity througlriangular configuration of three billiard balls, and it has been
anyone of them. Since we are considering a conservativelaimed that it could be a typical feature of chaotic scattering
Hamiltonian system, the total energy is conserved, and thusystems. In fact, a recent experimental evidence of the oc-
we cannot speak about attractors nor basins of attraction. Aurrence of the Wada property in chaotic scattering was re-
basin of attraction is defined as the set of points that, taken gsorted in[17]. For a higher-dimensional case of chaotic scat-
initial conditions, are attracted to a specific attractor. Whertering, seg16].
there are two different attractors in a certain region of phase In this paper, we review the necessary conditions to show
space, two basins exist, which are separated by a basthat a system indeed verifies the property of Wada, and we
boundary. This basin boundary can be a smooth curve or caapply them to the case of the Hen-Heiles Hamiltonian.
be instead a fractal curve. While we cannot talk about attracRecent result§18,19 strongly suggest that the escape prop-
tors in Hamiltonian systems, we can however deéiri ba-  erties in two-dimensional2D) Hamiltonians depend on ge-
sins in an analogous way to the basins of attraction in aneric phase-space characteristics rather than the details of
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individual potentials, and they have motivated a claim for 1 - ' -
universality. Our paper is focused in this direction, support-
ing the claim that the Wada property is a general feature of
2D Hamiltonians with three or more escapes.

The organization of this paper is as follows. In Sec. I, we
study the model and the nature of the orbits. In Sec. Ill, we
plot the exit basins for different initial conditions. In Sec. IV,
the invariant sets of the system and their dimensions are, |,
calculated, in particular, the nonattracting chaotic set formed
by the orbits that will stay in the bounded region for all
times, positive and negative, and its stable and unstable
manifolds. We also pay attention to the average decay time -ost
In Sec. V, we review the conditions that a Wada basin must

satisfy, and apply them to our case. In particular, we calcu- m

0.5

late the only period-1 accessible boundary orbit, and we
show that its unstable manifold intersects all basins. In Sec. -1 05 0 05 1
VI, we summarize our main conclusions. X

FIG. 1. Isopotential curves for the Hen-Heiles potential. They
Il. DESCRIPTION OF THE MODEL are closed for energies undeg£1/6, but they show three exits if
the energy is higher than this threshold value.
The Henon-Heiles system was first studied by the astrono-
mers Heon and Heiles in 196f], in the context of analyz- o), exit 2, the left exit g— —,x— —<), and exit 3,
ing if there exists two or three constants of motion in the . .
the right exit (y— —oo,x— +).

galactic dynamics. A system with a galactic potential that is . . )
axisymmetrical and time independent, possesses a 6D phase '€ zl-fmon-;-lenes potential has four terms. The first two
space. As there are six variables, we can find five indeperf€Msx” andy* form a potential well, which is responsible
dent conservative integrals, some of them being isolating anfP" the OSC'”at'?”S of the particle, while the third and fourth
other nonisolatingwhich are physically meaninglessThe termsx?y and 3y® are responsible for the existence of the
question that Fieon and Heiles tried to answer is which part exits. In fact, the third termx’y creates exits 2 and 3. How-

of this 6D phase space is filled by the trajectories of a stagver, it does not affect exit 1. If it disappears, tHgp—

after very long times. By that time, it was obvious that bothandE;— and we obtain a Hamiltonian where only exit 1 is
the total energyE; and thez component of the angular mo- possible. On the other hand, the fourth term ($#3)s only
mentumL, were isolating integrals, while another two were responsible for exit 1. Without itF;— 0, exit 1 disappears
usually nonisolating. Therefore, the real target became tand we find a chaotic scattering problem with only two sym-
find a third conserved quantity. In order to solve this prob-metric escapes, exits 2 and 3.

lem, Henon and Heiles proposed a 2D potential. Their result To calculate each escape energy, it is necessary to find the
was that a third isolating integral may be found for only value of the energy in the maxima of the potential. We obtain
some few initial conditions. In fact, the'lHen-Heiles Hamil-  the same value for all three exits. There is a triangular sym-
tonian is one of the first examples used to show how verymetry, andE,;=E,=E;=1/6=0.1666. As we are interested
simple systems might possess highly complicated dynamicsn the general behavior of the two-dimensional time-

and since then, it has been extensively studied as a paradigndependent Hamiltonians with escapes, we have only con-

for 2D time-independent Hamiltonians. sidered values of the energy above this escape energy.
The Henon-Heiles Hamiltonian has a3 rotation sym- In general, the particles wander to and fro for a certain
metry, and it is written as time in the scattering region until they cross one of the three

frontiers and escape to infinity, as it is shown in Figa)2
1. 1 1 The time they spend in the bounded region is naeschpe
H= - (x2+y?) + - (xX2+y?) +x2y— =3, (1)  time These frontiers are extremely unstable periodic orbits,
2 2 3 known as Lyapunov orbits[2] [see Fig. 2c)]. These
Lyapunov orbits exist for all energies over,. When any
This Hamiltonian has been extensively studied for theorbit crosses one of them in the outer direction, that is, its
range of energy values below the escape energy, where orbNglocity components pointing outwards, then the particle is
are bounded and a variety of chaotic and periodic motion$orced to escape to infinity and it never comes back. As the
exist. On the other hand, if the energy is higher than thisystem has three exits, there are three of these orbits.
threshold value, the escape enekgy, the trajectories may As it can be easily understood, the higher the energy, the
escape from the bounded region and go on to infinity througlshorter escape times are found. However, even if the energy
three different exits. This fact can be clearly seen in Fig. 1js high enough to allow escapinge., if E>E,.), there are
where its isopotential lines are plotted. Due to its symmetryseveral orbits that remain in the scattering region forever,
properties, the exits are separated by an angié2adians, being some of them periodic, some aperiodic, and some qua-
and for the sake of clarity we call exit 1 the upper exit ( siperiodic[see Fig. 2b) for the latter cask
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FIG. 2. Different kinds of orbits(a) A typical
> 0 ] escaping orbit, choosing exit 1b) A quasiperi-
ol ] 1024 | ] odic orbit. (c) A Lyapunov orbit (LO1 for E
' =0.25).
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X X X
ll. EXIT BASINS IN THE HE NON-HEILES is possible to have an exit basin diagram where the variables
HAMILTONIAN are x,y), and where the #/3 rotation symmetry is mani-

As we have mentioned before, in Hamiltonian systemsfeSt This choice of initial conditions is shown in Figlb}

we cannot talk about attractors or basins of attraction. Howand the exit basin diagram resulting from it is plotted in Fig.
ever, if our system has several escapes, we may define ex|t Apart ;romx ﬁnd y, we have ];']XEd the initial dsholotmg
basins in a similar way to the basins of attraction in d|5$|pa- Irection for eachX,y) in a way that it is perpendicular to
tive systems, saying that an exit basin is the set of |n|t|alhe radial line that goes fror0,0) to (xy), in the counter-
conditions that lead to a certain exit. This means that we arglockws_e SEnse. Thus. the Pomcmfacg of section .'S a
able to construct an exit basin diagram for our system tha"aP defined by the points of the trajectones that verify this
gives us information about how the system might behavé&ondition, which is expressed byv=0 (xx+yy=0) and
according to its initial conditions. In order to obtain the exit (r><v) pointing in the positive sense afaxis (xy—yx
basin diagram for the Hwn-Heiles Hamiltonian, we must
calculate each trajectory solving the differential equations of

motion for a fine grid of initial conditions. We follow each o Initial conditons \Elil_l \

orbit until it escapes from the scattering region crossing one *¥  ©,6)and (yy) \ ‘

of the three exits. If it escapes through exit 1, its initial con-  osf ./ \

ditions will belong to the exit 1 basin, and the same applies q,} // X 54 N\

for exits 2 and 3. In order to visualize it, we plot each initial ‘ 4 y=vcos B N
condition with a different color, according to the exit they s 4 0y) N
have used to escape to infinity. The color code we have cho-> o°r \ 1
sen is black for exit 1, dark gray for exit 2, and pale gray for 02b 7 N
exit 3. White represents the initial conditions that are not sl |
allowed for that particular value of the energy. I Yorin

As we are studying a two-dimensional time-independent -06 S 1
Hamiltonian, the phase space depends ®yy,&,y) and a -o's-//, o \\\ ]
conserved quantity, which is the energy. For this reason, the , , X
phase space is three dimensional, and consequently, we mu: -0.5 . 0.3 !
fix three variables to define a trajectory. Throughout this pa-
per, we will use a Poincarsurface of section to show our !

L . . b) Initial conditions : .
results, and the initial velocity is generically expressed by 0.8 (x,y) / 4

0.6F / . 5

B B 2 ‘/’ / ! \
= Vx?+y?= \/ZE—xiz—yiz—inzyi+§yi3. 2 0ar Sy v \ \,\ =
(x.3) ]
AN

is very convenient to do it in a way that includes a Lyapunov .2}
orbit. As will be seen in Sec. V, in order to demonstrate that |
the Henon-Heiles Hamiltonian verifies the property of Wada,

Among the many ways of choosing the initial conditions, it = ° (j

it is necessary to find an accessible unstable periodic @bit - T —— i
saddle point and plot its associated manifolds. The n.s// - \
Lyapunov orbits verify all these conditions. A boundary point - )

P is accessibldrom a basirB if it is possible to draw a finite -1 -0 g 0.5 !
curve from an interior point irB to P in a way that it con-

tains no boundary points bt FIG. 3. Different choices for the initial conditions when plotting

The two different choices of initial conditions used to plot the exit basin diagramsa) Plotting (y,6) and (y,y). (b) Plotting
the exit basin diagrams are sketched in Fidga) and 3b). It (x,y) and tangential shooting.
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1.2
0.65
FIG. 4. Exit basin diagram with 10001000
initial conditions §,y) and E=0.25. The initial
- 0.1 E conditions are plotted black if the orbit escapes
; i through exit 1, dark gray for exit 2, and pale gray
e for exit 3. The Lyapunov orbits are remarked with
, arrows.
-0.45 Al
: A
LO3
-1
-1.2 -0.6 0 0.6 1.2

>0). With this choice of initial conditions, all the maximum, while it decreases whémgets higher, results that
three Lyapunov orbits(LO) are represented in the exit were first obtained if20]. The fractal regions that occupy
basin diagrani{Fig. 4) and their positions are LO1, §0,), most of the phase space for low energies, get narrower when
LO2, [~Yio(N2/2),~yLo(V2/2)] and LO3:[y,o(v2/2), Eincreases and are difficult to recognize v 1, although
—yLo(\/E/z)]_ The valuey, o, which is the distance between the fractality is maintained for all valyes &. The fractal
the origin of coordinated0,0) and the position of each dimension of the invariant sets of the ht-Heiles Hamil-
Lyapunov orbit, depends on the energy and is calculated ndonian will be thoroughly analyzed in the next section.
merically (see Sec. ¥

In order to simplify the verification of the Wada property IV. INVARIANT SETS
in Sec. V, we have also calculated the exit basins for a dif- . o ]
ferent choice of initial conditions. They are the ones sketched Systems where chaotic motion is nonattracting are very
in Fig. 3a), where we can see that the fixed initial conditionsCommon, and the Hen-Heiles Hamiltonian for energies
are now x=0y=(Ymn.Y>YL0) and 6=(0,2m). 6 is the above the escape energy is a good e?<ample pf this phenom—
shooting angle, or in other words, the angle thatorms ~ €non- Tr_\e invariant sgts relat_ed to thenide-Heiles Hamll-
with the positivey axis, in the counterclockwise sense. The {onian give us much information about the dynamical prop-

Poincafemap is defined by the plane=0 andx>0, and for erties o_f the_ system. We have computed the nonattracting
- . L o chaotic invariant set, its stable and unstable manifold, and we
this choice of initial conditions, Eq.(2) becomesuv;

— ZE—y7+ 213y} ) o have also calculated the dimensions of each set depending on
= V2E—yi+(2/3)y;. As the radicand must be positive, the o energy. Finally, we have studied the average decay time,
range of allowed values of; is bounded from below and 5 remarkable quantity that gives us an idea of how fast orbits

must 29 biggersthaymin, wherey i, is the real solution of  escape from the scattering region, which is very much related
2E—y;+(2/3)y;y=0. The exit basin diagram for the choice g the dimension of the invariant sqtl].

of initial conditions {y, ) is shown in Fig. %a). The figure
shows a clear mirror symmetry, and if,) escapes through
exit 2, (y,2mw— ) will escape through exit 3 and vice versa.
Each initial value of¢ has a related value of initial vertical ~ The nonattracting chaotic setalso known aschaotic
velocity y; expressed by, =u;cosé. Therefore, we can plot Saddleor strange saddieis formed by a set of Lebesgue
the exit diagram using the choicg,{) as initial conditions measure zero of orbits that will never escape from the scat-

instead of ¢, #). We have done this in Fig(B). However, in tering region for botft—eo or t— — [12]. Its stable mani-

this case. there is no symmetrv at all. becaused 9 fold contains the orbits that will never escape-i «, while
IS case, IS Sy y ’ usefeams( the unstable manifold is formed by the ones that will never

+m) and two different values of) correspond to ong;.  escape ift— —c. The orbits that constitute the chaotic set
Only the Lyapunov orbit related to exit(LO1) is included  gre unstable periodic orbits, of any period, or aperiodic. Fur-
in Figs. 3@ and 3b). Its coordinates will be ¥i0,6  thermore, this set is formed by the intersection of its stable
=m/2) and (/. o,Y;=0), wherey, o depends on the energy, and unstable manifolds, each of them being a fractal set with
and it is the same value as in Fig. 4. dimension between two and three in the three-dimensional
The obtained basin boundaries are clearly fractal. Wephase space. As these two manifolds are invariant sets, also
have computed several exit basin diagrams varying the valugeir intersection is invariant, and for that reason, all orbits
of the energy, and it is evident that fer= 1/6 the fractality is  that start in one point belonging to the chaotic set, will never

A. Chaotic set and invariant manifolds
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2n

3m/2

S |
/2
FIG. 5. Exit basin diagrams with 1000
0 %1000 initial conditions and=0.25, wherey
@) v =Ymin.Y>YL0) and #=(0,2). The initial con-

ditions are plotted black if their orbits escape
through exit 1, dark gray for exit 2 and pale gray
for exit 3. Only LO1 is defined with these initial
conditions, and it is shown twice i@ because of
the symmetry of the systernfa) Initial conditions

(y,6). (b) Initial conditions (y,y).

leave the set. In fact, the stable and unstable manifolds of théerated until a certain iteration The election of the correct
chaotic set are composed of the whole set of stable and uwalue oft is not difficult, it is sufficient to find a time where
stable manifolds of each unstable point in the chaotic set. most orbits have already escaped. The closer an initial point
The fractal basin boundary coincides with the stableis to the stable manifold, the longer it will take to escape, and
manifold of the chaotic set, and consequently is constituted will follow the unstable manifold to exit. Therefore, the
by the orbits that do not escape from the scattering region, nimitial points that remain in the neighborhood for a certain
matter how long we wait. If an orbit is born by the boundary, iterationt form the stable manifold. Their iterations form
the trajectory advances slowly following the stable manifoldthe unstable manifold, and the iterations that are more or less
towards a saddle point of the chaotic set, spends a long timia the middle between the firéstable manifold and the last
in its vicinity and it escapes to infinity following the unstable (unstable manifoldwill form the chaotic set. Furthermore,
manifold. For that reason, the trajectories that are born closthe chaotic set does not depend critically on the iteration
to the fractal boundary are the ones that spend a longer timehosen to draw it. The proper interior maximyRiM) triple
in the scattering region. In order to obtain the stable andnethod[23] is a more accurate algorithm to calculate the
unstable manifold of the chaotic invariant set, as well as thehaotic set, but we do not need such a high precision, so the
chaotic set itself, we have used the “sprinkler algorithm,” sprinkler algorithm is enough for our purposes. This method
which was first introduced if22]. The main idea consists of gives nice results for the stable manifold and the strange
sprinkling a large number of initial conditions from a region saddle, but for the unstable manifold it is better to change the
that contains the strange saddle. We have used a grid &ign of every differential equation and draw the stable mani-
2000% 2000 points in the phase space. Then, every point i$old of the dynamical system. The result will be the unstable
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1+ ,%/ o1
c) /é;x«;\
// 5;* \\ FIG. 6. Stable manifold, unstable manifold,
- ///: ‘,\\\ and strange saddle f&&=0.25. The initial con-
or /@/ 277 e \{% ] Qitions_are &,y) and tangential shooting, with a
Wi e e 44 fine grid of 2000<2000 dots. The arrows show
S R f b the three Lyapunov Orbit¢ O1, LO2, and LO3.
1 LO2 ) LO3
12 12 0 12
X

manifold of the former system. As we mentioned previously,eration for different values of. We calculate the fraction of
the dimension of these fractal sets is between two and thre@itial conditions that lead to uncertain final statége).
and so we can only plot its intersection with a Poincaap. There exists a power law betwedie) and e, f(e)xe?,
Obviously, these plots will depend on the choice of initial wherea is the uncertainty exponent. The uncertainty dimen-
conditions defined in Fig. 3. In fact, Fig. 6 shows the Poin-sion D, of the fractal set embedded in the initial conditions
caresurface of section of the stable manifold, unstable maniis obtained from the relatio,=D —«, whereD is the
fold, and chaotic set foE=0.25, which corresponds to the dimension of the phase space. If we plof(g) against Ire,
exit basin diagram in Fig. 4see initial conditions defined in the slope will be equal t® — D,, and we may finally obtain
Fig. 3b), Sec. Il). In a similar way, Eig. 7 shows the same D, from this value, as may be seen from
structures forlE=0.25, but the Poincarmap and the initial
conditions coincide with the ones defined in Figa)3 The f(€)ce® Po=Inf(e)=(D—Dg)In e+k. ()
exit basin diagram related to them is the one in Fidp).5

In Figs. 6 and 7, we can see that the stable manifold and
the unstable manifold of the chaotic set are symmetric tdt is typical to use a fine grid of values gfand 6 to calculate
each other. This is reasonable, as theéteHeiles potential the uncertainty dimension. However, this makes the algo-
is conservative and invariant under time-reversal transformarfthm very slow, and in order to solve this problem, we have
tions (t— —t,v— —v). If we compare each figure with its fixedy=0 and variedd. We have realized that there are no
corresponding exit diagraffiFig. 6 with Fig. 4, Fig. 7 with  significant changes in the results as the fractality is similar in
Fig. 5(b)] we can see that the stable manifold really coin-all regions of phase space, while the computing time is re-
cides with the fractal basin boundaries. It is also interestingluced substantially. The evolution of the exit basins when
to emphasize that the chaotic set is the intersection of &e energy is increased is shown in Figa)8The test particle
stable and an unstable manifold that are never tangent, angl always launched fromx=0,y=0), and the range of the
therefore, every saddle point is hyperbolic. The Lyapunowhooting angles ig e (0,2). The decreasing uncertainty di-
orbits are unstable periodic orbits, and therefore, must bemension of each invariant set for increasing energies is illus-
long to the chaotic set. We have clearly marked them in thérated in Fig. 8b), and we may compare it with the decreas-
figures with arrows. As it was commented in Sec. llI, there ising fractal structures of Fig. (8. As it has just been
only one Lyapunov orbit in Fig. 6, while Fig. 7 contains the explained, the computation of the uncertainty dimension was
three of them. done for only a “1D slice” of initial conditiongthe vertical

In order to measure the fractality of these invariant setsline y=0 of Fig. 5a)], and for that reasoDye (0,1). Ac-
we have computed the uncertainty dimendi4] for differ-  cording to[26], Ds=Dy+N—1=Dgy+ 2, whereN is the di-
ent values of the energy. Obviously, this quantity is indepenmension of the phase spade= 3 in our casgandDg is the
dent of the initial conditions used to compute it. The way tofractal dimension of the stable manifold associated to the
do it is the following. We calculate the exit for certain initial chaotic set. As the stable and unstable manifolds are sym-
condition (y,#). Then, we compute the exit for the initial metric, their fractal dimension is the sarbe=D. Since
conditions §/+ €,0) and (y— €, 0) for a smalle, and if all of  the invariant chaotic set is the intersection of its stable and
them coincide, then this point is labeled as “certain.” If they unstable manifold, hence, its dimension is expressed by
do not, it will be labeled as “uncertain.” We repeat this op- =Dgt+Dy—N=2Dy+1.

¢
7 N : :
7 N, o FIG. 7. Stable manifold, unstable manifold,
. P and strange saddle fd&=0.25. The initial con-
> 0 0 i s e B9 1 i . . ) .
W\ - ditions are y,y), with a fine grid of 2000
\\\\J‘* X 2000 dots. The arrows show the only Lyapunov
Orbit (LOY).
1 L - L - L
-0.7 0.5 17 =07 05 17 -07 0.5 17
Y Y Y
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2n

Escape time

0.167 0.417 0.667 0.917 1.167 1.417 o

3 (o]
v §5 1o B
o]
Qo
. o
25 o o
5 OOOOOooooooooooo
. . . .
E L 0.1666 1.1666 2.1666 3.1666
g Energy
i FIG. 9. (a) Fraction of remaining orbits in the scattering region
151 in a function of the time foE=0.25, 0.5, and 4continuous ling
and exponential approximation for all of thefdashed ling (b)
Evolution of the average decay timewith the energy. It increases
3167 0417 0.667 0917 1167 117 indefinitely whenE—E.=1/6 from above, and tends to 0 when

Energy E—oo.

FIG. 8. (a) Evolution of the exit basin diagram for different grpit may spend a long timghe escape timeorbiting in the
values of the energy. The initial conditions are{0y=0) andé  scattering region, in the vicinity of the chaotic set, before
€(0,2m). Exit 1 is plotted in black, exit 2 in dark gray, and exit 3 crossing one of the three exits and escaping to infinity. Dur-
in pale gray(b) Fractal dimension of the invariant sets for diff_erent ing this time, its dynamics could be confused with the one of
values of the energ)Ds=Dy for the stable and unstable manifold, 5 cp4ntic attractor. It is usually stated that in a nonattracting
D for the nonattracting chaotic set. chaotic system, the number of orbits that remain in the scat-

It is remarkable that the dimension of these three invariantering region after a timé decreases exponentially. Iffs
sets tends to three, that is, the full dimension of the phasghe exponential decreasing rate, theerage decay time or
space, when the energy tends to its minimum valije average transient lifetimes expressed by
=1/6. This means that for that critical value, there is a total
fractalization of the phase space, and the chaotic set becomes } _ Iimiln( &) 4
“dense” in the limit. Consequently, in this limit there are no oot N;
smooth sets of initial conditionsee Fig. 8)] and the only
defined structures that can be recognized are
Kolmogorov-Arnold-MosertKAM )-tori of quasiperiodic or-
bits, that disappear whelB~0.195. When the energy is in- N.=N.e~ U7 (5)
creased, the different smooth sets appear and tend to grow, v
while the fractal structures that coincide with the boundarys,, high values of timet, whereN, is the total number of
between basins decrease. As it was noticef®0), the frac-  jhitia| orbits andN, is the number of orbits remaining in the

tality remains in the Heon-Heiles system for akt, while in  gcattering region at time It is common, however, that the

many other 2D Hamiltonians it disappears when the energy, siem spends a transient titebefore any orbit escapes. In
reaches a certain value. In our case, the dimension of thfﬁat case, Eq(5) becomes

stable and unstable manifold tends to 2.2 wiken o, and

thengd consequently,

therefore Dg=Dye(2.2,3) (being D=2 nonfractality N,=Nge ("to/?) (6)
while the dimension of the chaotic set tends to 1.4 wken
increases, an®¢ e (1.4,3) (whereD =1 is nonfractality. wheret, is the time at which orbits start to escape. It is

remarkable that this approximation is very precise for tigh

while for low times, it is clearly unacceptable. In Figa8
One of the main consequences of nonattracting chaotize have plotted using a continuous line the fraction of re-

sets is the phenomenon of transient chf®§,24,23. An maining orbits {;/Ng) in function of the timet for E

B. Average decay time
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=0.25,0.5 and 4. The initial conditions are 2000 orbits withwherem is the slope and the intercept in the linear regres-
(x,¥)=(0,0) and shooting angle=(0,2w) [see vertical line sion. Therefore, we can obtain and t, from the simple
y=0 in Fig. 5a)]. These fractions are constant and equal toexpressions= 1/m andt,= —c/m, and use them to plot the
one while no orbits escape from the system. Suddenly, theypproximations shown in Fig.(8).

start to decrease and are formed by several differentiable |n Fig. 9(b), we have plotted- for different values of the
components separated by “peaks,” while a smooth exponenenergyE. As expected, the main features of this dependence
tial decay would be expected in a nonfractal system. Theye thatr is infinitely high for E=1/6, when test particles
explanation of this peculiar behavior must be searched in thg,,nce around slowly and indefinitely, and decays to 0 when

escape time diagram, where the escape time plotted for g tengs to infinity and the test particles move and escape
each initial 6 (see Ref[20]). Every smoothnonfracta) re- extremely fast.

gion of initial conditiongsee Fig. $a)] shows a minimum in
the escape time for an initial condition more or less in the
center of the region, while the escape time tends to infinity in
both extremes, as we reach its fractal boundary. However,

each smooth region has a different minimum escape time The main goal of this paper is to show that the exit basins
te;, where the regions with more initial conditions are the of the Haon-Heiles Hamiltonian and other related chaotic
ones with shorter escape times. As the system has triangul@gatering problems are not only fractal, but they also verify
symmetry, there are always three smooth regions with the, . property of Wada. Although it is hard to imagine, it is

tsr?metﬁvith each of nge\;vnhcorphpo'?;d of horbltts th"’_‘t,escapepossible to have three or more regions sharing the same
rougn the same exit. When the timeeaches the minimum boundary. Usually, three regions in two dimensions, for ex-

escape timde, for the smooth region with the lowest time ample, three countries, may only coincide in one point, but

escape, the orbits in that area of initial conditions start tqopologically, this is not necessarily true for open sets. If we

escape and, consequently, the number of total remaining O{élk about basins, a basB verifies the property of Wada if

bits in the system decreases, creating the compohehthe - - . L
y 9 P any initial condition that is on the boundary of one basin is

curves in Fig. @). In this component, it is important to | il | h £ th
remark that only orbits that started from this particular region®/SC Simultaneously on the boundary of thfee morg ba-

are escaping. After a certain time, the system reaches thanS- In other words, every open neighborhood of a peint
minimum escape time, , for the smooth region with the Delonging to a Wada basin boundary has a nonempty inter-
second lowest time escape, and thus the curve inBarthe ~ Section with at least three different basins. The first example
addition of the decreasing curve associated to the orbits th&f & system with this property was given by Yoneyama in
started in the first smooth region, plus the decreasing curvé917[27], who attributed it to Wada, from whom it took the
due to the orbits that started in the second smooth region aritame. The “Lakes of Wada” are a useful example of how to
have just begun to escape. For this reason, the curves in Figonstruct three regions that verify this condition, and they
9(a) change their slope dramatically ip,. In the same way, are widely explained if9]. Logically, the boundaries of
whent=t, 3, the orbits that started in a certain third smooththese sets must verify unusual topological properties. Topo-
region reach an exit, and the curvesdrare now the addition logically, the Wada property is associated to the concept of
of three different curves. This structure is repeadddnfini-  indecomposable continuurf®,28—3Q. Such indecompos-
tum, as there are infinite smooth intervals of initial condi- able sets are compact, metric, and connected sets with the
tions embedded in the fractal boundary. However, after eachtrange property that when one attempts to divide them into
addition, as the smooth regions that are being added own leg&o pieces, they split up into infinitely many pieces. There-
and less orbits, the change in the slope is less prominent, angre, if a dynamical system verifies the property of Wada, the
for that reason, after a few “peaks” the curves seem to beynpredictability is even stronger than if it only had fractal
more and more regular. Wheimncreases and more and more hasin boundaries. If a trajectory starts close to any point in
curves are added, the exponential approximation becomaRe boundary, it will not be possible to predict its future
quite precise. This fact is clearly shown in FigaP where  pehavior, as its initial conditions could belong to any of the
we have plotted the exponential approximatiofshed three basins. This particular property is verified by several
lines) over each of the three curves. Surprisingly, the casegynamical systems, such as the forced damped pendulum or
with the lowest energy are the ones with worst approximathe Henon map for certain values of the parame{&40].
tion for low times, but best exponential fittings. Certainly, the  The study of 2D Hamiltonians recently has attracted the
approximation for the curve related #®=0.25 is almost interest of numerous scientists from different disciplines. It
indistinguishable from the real one after 20. has been shown that the existence of fractal basin boundaries
In order to calculater, the usual method is based on js typical in them[8], and Pooret al.[15] proved that they
counting how many orbits remain for different values of time are indeed Wada in a billiard problem. In this sense, we have
t. As the relation betweeN, andN, must be exponential, it obtained numerical evidence that confirms that the Wada
is possible to linearize E{6) in the decreasing reginfafter  property is verified by the Hen-Heiles Hamiltonian, and
to) and obtain we conjecture that it is a general property of other related
two-dimensional time-independent Hamiltonians with es-
| No t—tp capes, very widely used in the modelization of astrophysical
n—= =mt+c, (7)
Ny 7 systems.

V. BASINS OF WADA
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0.3 - i
0
FIG. 10. The unstable manifold of the only
5 accessible unstable periodic orlfitO1) crosses
all the basins in this zoom of Fig(l). Therefore,
the Heon-Heiles Hamiltonian verifies the prop-
03 erty of Wada.
-0.6 :
-0.3 0.2 0.7 1.2
Y
A. Computational conditions to verify the Wada property B. Verification of the Wada property

N . . o In order to do all the computations and show the results in
_Although it might be easy to wsugllze from an mt_wtwe the simplest way, we make the choice of initial conditions
point of view whether or not_ a dyna_mlca_l system verifies the y,y), although the conclusions are extensible to any other
V\_/a_da property, the numerical verification presents SeVeTI&hoice. Therefore, the initial conditions are the ones defined
difficulties that must be solved, as the topology behind thig, Fig. 3@, and the exit basin diagram is the one shown in
proper_ty is not trivial. A thorough analysis of this {sgbject WaSFig. 5h). Recall that for this particular choice, only the
done in[9,10, and some computational conditions were Lyapunov orbit related to exit {the upper ongis plotted
found to assure that a basin is Wada, which for the sake C{fsee Fig. B0)]. As it has been sufficiently explained, an ac-
clarity we sketch in the following: cessible unstable periodic orbit is needed. The period-1
Lyapunov orbit related to exit 1 fulfills this condition, and
hence, we compute it with very high precision. As can be
seen in Fig. 2, LO1 is symmetric with respect to thaxis.
For that reason, we know that just whers O the trajectory
must be perpendicular to theaxis (tangent slope zejpand

so the initial value foy is known without any ambiguity and
equal to 0. As the phase space variables gtg)( the LO1

. coordinates arey o= f(E), y=0. Therefore, it would be
the boundary .Of t.he thfee. regions. . . necessary to find the relation betwegnr, and the value of
(?) The periodic OI’bIlP'IS the only accessible orblt. from the energy, but for our purposes, it is enough to have it for a
basinB. In case there exists more than one accessible perfariain energy. We have computed it fae=0.25, and the
odic orbit, every unstable manifold must intersect all basinqesu“ isy, o= 1.024 611 462 679. We have computed it with

a. Main condition Let P be an unstable periodic orbit,
accessible from a basB It must be verified that its unstable
manifold intersects every basin.

b. Secondary condition$f such a saddle point exists, the
basinB verifies the property of Wada if any of the following
next points are true:

(1) The stable manifold of the saddle poidtis dense in

(Theorem 1 of10]). _ twelve digits, since the algorithm used later to calculate its
(3) The periodic orbiP generates a basin céllheorem 2 staple and unstable manifolds requires very high precision.
of [10])). Several authors have used quadruple precision for calculat-

ing LO in very similar Hamiltoniang2], but our aim is to

The basin cellswere first introduced by Nusse and Yorke g ) .
draw part of its unstable manifold, and for this purpose,

[10]. However, before introducing the concept of a basin L ) . )
cell, it is necessary to defineteapping region A trapping double precision is enough. This orbit is accessible by con-

region A is a compact region formed by initial conditions struction, as we are sure that if instead of the value for

that, after iterations, become a different regivthat belongs LO1 we hady o+e, (with the samey=0) the particle

to A and is smaller thai\. Formally, A is a trapping region would clearly belong to basin 1, escaping through exit 1, and
=F(A)CA and F(A)#A. Therefore, if the particle enters Not even being able to enter the scattering redee Fig.
the trapping region, it will never be able to escape from it. A5(b)]. For the same reason, if instead p£0, we hady
basin cell is a trapping region constructed in a way that its=¢ , the particle would be shot towards outside of the scat-
boundary is made out ofi pieces of stable and unstable tering region, and therefore it would never return.
manifolds of an-periodic orbit that also lies on the boundary  In order to draw the stable and the unstable manifol® of
of the trapping region. (LO1), we use the algorithm explained[i@1] based on plot-
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ting several iterations of points very closeRan the direc- VI. CONCLUSIONS
tion of the eigenvectors. We show in Fig. 10, that thenete hi h died in detail the d . f
Heiles Hamiltonian verifies the first and basic hypothesis, ash InHt IS paper, we have §tu ned n etail the dynamics o
the unstable manifold of an accessible periodic orbit indeed® Heon-Heiles Hamiltonian in the range of energy values
crosses all three basins. However, although this fact is 4igher than the escape enery=1/6, where consequently,
strong point in favor of our assumption, we should checkeXits are presen'_c. We h_ave ana_lyzed the different _nature of
conditions 1, 2, or 3. Unfortunately, this is not an easy task!N€ orbits and paid special attention to the computation of the
as it is computationally very difficult to authenticate any of €xit basin diagrams, which show a rich pattern of fractal
them. First of all, it is hard to confirm that the unstable structures. As an important ingredient of our paper, the in-
manifold is densgcondition 1) using computational tools, variant sets associated to the system have received consider-
and it is already shown with a similar systen[ir5]. On the  able attention. In particular, computations of the stable and
other hand, it is even more complicated to assure that ouwnstable manifolds, and the chaotic saddle, which is the in-
periodic orbit is the only one accessible from basifc@n-  tersection of the invariant manifolds, have been carried out.
dition 2). We can find as many periodic orbits as we want,Since they are fractal sets, we have calculated the corre-
but we will never be absolutely sure that we have not lossponding fractal dimensions for different values of the en-
any in the numerical search, specially for very high periodsergy. Moreover, we have calculated the average decay time,
Finally, it is not possible to build a basin cell with the invari- a5 a useful tool to characterize how fast orbits escape from
ant manifolds oP, as we are not working with attractors and the scattering region. We have found that the number of or-
the manifolds do not cross as we would like to. The “attrac-pjts that remain in the bounded region depends on time in a
tors” are now in the infinity, wherg/=< andy=o. What  very particular way, showing a curve formed by infinite de-
we see is that the unstable manifold twice intersects the samgeasing intervals, each of them depending on every smooth
branch of the stable manifold, but never the other one, angart of a basin, and it decreases exponentia”y 0n|y when the
this is a necessary condition to create a basin cell. In sumime t gets large enough. The main conclusion of this paper
mary, this is only possible for dissipative systems. has been to show that the  hten-Heiles system possesses

~ Both conditions 1 and 2 are possible, and we have deyjda basins, meaning that any initial condition that is on the
cided to work with the latter, showing that LO1 is the only youndary of a basin, is also simultaneously on the boundary
unsfcable periodic orbit that is also accessible frqm the exit bt the other two basins. Furthermore, a detailed summary of
basin. We use an argument based 82|, where it is proved  he conditions to be verified for a system to have the Wada
that if aII_the periodic p0|_nts in the boundary of' a pasm_ areproperty is presented. We believe it may be useful as a gen-
hyperbolic, and there exists an accessible periodic point of5| procedure for conservative and dissipative systems. Fi-
minimum periodg, then every accessible point in the basin 51y we would like to point out that interesting aspects of
boundary either is a periodic point of minimum perigdris s problem are still open, such as a detailed analysis of the
in the stable manifold .of such a periodic point. From her?’abrupt transition at the escape energy, and a simpler formu-
we may assume that in our boundary, only period-1 orbit§ation of the conditions to be verified for a Hamiltonian sys-

may be found. This theorem provides us with a very poweriem to possess the Wada property, even for higher dimen-
ful tool to verify condition 2, as there are no big problems in gjons.

finding period-1 orbits in the boundary of basin 1. A few
periodic orbits forE=0.25 have been found, although none
of them were in the boundary. Therefore, we have obtained
enough numerical evidence to affirm that basin 1, formed by
the initial conditions of the orbits that escape towakds We would like to thank James A. Yorke, George Conto-
— o, satisfies the property of Wada. For the other two basinspoulos, Erik Kostelich, and Elbert E. Macau for the fruitful
the same reasoning can be followed, as thexdtieHeiles talks we have had with them during the development of this
Hamiltonian has a 2/3 symmetry. The only difference research. This work has been supported by the Spanish
would be to change the initial conditions in a way that theDGES under Project No. PB96-0123 and by the Spanish
new y axis forms a 2r/3 angle with the former one, and Ministry of Science and Technology under Project No.
therefore contains a different Lyapunov orbit. BFM2000-0967.
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