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Emergence of a dominant unit in a network of chaotic units with a delayed connection change
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We study here a model of globally coupled units with adaptive interaction weights that has a delay in the
updating rule. Simulations show that the model with such delayed synaptic change exhibits dynamical self
organization of network structure. With suitably chosen parameters, “dominant” unit emerges spontaneously,
in the sense that the connections from such a unit to almost all of the other units are especially strengthened.
Such weight structure facilitates the coherent activity among units.
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[. INTRODUCTION Ohira and Satd11] have recently proposed a simple
model to induce a regular spiking pattern using delay. There
There have been many studies on coupled chaotic oscikre also studies that show delay could lead to the suppression
lators. Many interesting behaviors such as synchronizatioef complex dynamic$12,13. Our paper here can be consid-
[1,2], clustering[2,3], and chaotic itinerancy2] are ob- €red as one such example exhibiting an effect of delay to-
served. In most of such studies, the coupling between oscilvard order.
lators are identical, while in some studies, random deletion
of connection4] or random modification of the connection Il. MODEL
strengthd 5] are considered. )
In this paper, we present a study on the system with thg} We employ a globally coupled madBCM) [2] with plas-
I

temporal change of connection strengths, which has hard c cou_plings as a mpdel of spontaneous ne_twprk structure
been considered so far in this research field, though ther@rmation. Each unitin th(_a system Is the log_'St'C map. The
seem to be many natural systems that can be modeled &Hputxn at the time stem is given as follows:

such a system, i.e., neural system, ecological network, social
network, and so on.

Ito and Kanekd6] recently proposed this type of coupled k js the parameter representing the nonlinearity of the map,

chaotic oscillator model. The striking finding from the simu- which can take the value between 0 and 4. With units of this
lation of this model is that with an external input unit, such atype, we consider the following network model:

network model self-organizes into the layered structures. In

Xn+1= KXy (1=Xp).

this model, an external constant input was needed to be X =kyh(1—yh),
manually placed to trigger the formation of network struc-

ture, and then this input unit becomes a “root” of the layered . . N
network. It can be said that this external input induces some y'n=(1—c)x'n+cjzl elx! .

impurity to the system. Due to this impurity, the interaction

between units must be more or less disturbed. We suppo i i .

that this disturbance is the essential factor of the formation oﬁe{e’xn and i’.” ellre t'?fh oni.tput ind Iilh'e fkt}ate vagablef (t)rfl the
the network structure. If this speculation is true, another typém! |, respectively, at tne ime Step IV 1S the number ot the

of disturbance may reproduce the similar type of spontanel-m'ts’ andc is the parameter that represents the s_tr_ength of
ous network structure formation the influence of other units on the dynamics of uniThe

. IJ . . ..
Here, we introduce delay to the connection change as thé1ableen is the strength of the connection from ufito

method to disturb the dynamics of the system. In biological™Mt !- , ,
information processing, delay is an important factor, and the Many types of dynamics for the connection strengths can
effect of delay on dynamical systems is perceived as a sourc¥ considered. As seemingly the most simple one, we espe-
of more complexity 7—10]. As mentioned later, our numeri- Cially consider the dynamics described by

cal solution indeed shows that delay contributes to the phase ~

of more complex dynamics. When the network structure is el = En
concerned, however, the delay induces a peculiar dynamical no N
order. Z en
j=1
| I H H
*Email address:ito@complex.c.u-tokyo.ac.jp el = [1+COSW(X£‘_T_X”)]8”J (for %))
TEmail address:ohira@csl.sony.co.jp "1 o (for i=j).
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Parameterr is the delay time. This dynamics represents the (a)
strengthening of connection between units whose state vari-
ables are of similar values. So this can be thought of as a
possible extension of Hebb’s rule, which is widely used in

neural network studie$l4]. Though the “normalization” os }_______ O Lo
over all units is included only to avoid the divergence of : : : :
state variables, it can be recognized as a simple represente i i i i

tion of the global competition among the coupling strength.

In the simulations shown below, as an initial condition, all
the coupling strengths'’ are set to be identical, and the state ¢
variablesx; are drawn from a random number between 0
and 1.

Ill. SIMULATION RESULTS

First, we present phase diagrarfsee Fig. 1 plotted
against parameteisandc, for two different values ofr.

In general, the phase diagram of GCM is parted into fol-
lowing four phase$2]: (i) a coherent phase, where all units
oscillate synchronously(ii) an ordered phase, where units
split into a few clusters in which the units oscillate synchro-
nously;(iii) a partially ordered phase, consisting of both syn-
chronized clusters and desynchronized units; @nga de-
synchronized phase, without synchronization between any
two units.

Figure Xa) is the case withr=0, i.e., no delay is intro-
duced to the connection change. Being different from the 08 1..____. )
conventional GCM, there is no partially ordered phase, since :
the introduction of the connection change strongly stabilizes i
clustering among units. Especially, there is a wide regime of !
ordered phase withN/2 clusters.

In each phase, the network structure is described as beg
low: In the coherent phase, all connections have almost the
same strengths, namely, W 1). The subtraction of one in 04 e
the denominator is due to the rule that the self-connection is ‘
always zero. In the ordered phase, after the transient, only
connections between units that belong to the same cluste
remain and the connection between units of the different
clusters converges to zero. The strength of the connection it
almost the same within a cluster, and its value is, noting the
size of the cluster abl., approximately 1/.—1). In the 0 usar”
desynchronized phase, the network structure is highly disor-
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dered and temporal change is very violent. There seems to b

no significant structure. To summarize, in the case with k

=0, the network evolves to either a temporally fixed cluster-

ing structure or a violently altering random structure. FIG. 1. Phase diagrams against paramekeasid c. Letters in

Figure 1b) is when parameter is set to be one. This the figure represent; C: coherent phase, O: ordered phage, P: par-
introduction of delay to the connection change alters thdilly ordered phase, D: desynchronized phase. Numbers in the or-
phase diagram drastically. The ordered phase with more thaif"€d phase ofa are typical numbers of clusters in that regime
two clusters is almost perfectly suppressed, and a partiall hen.N' the whole number of units, is 10a) A case with Va”at.)le
ordered phase appears with wide ranges of parameter value$.Up"nE Strderégtlh and no delap) A case with variable coupling
The effect of delay is to introduce a disturbance to the sys§ fength and defay time one.
tem by connecting the past state to the present one, and thisate variables and connection strength seems not to be dif-
is strong enough to make almost all the clustering patternferent from the case without delay.
with more than two clusters unstable, and turn an ordered In the partially ordered phase, the movement of units ex-
phase with a relatively large number of clusters into the parhibits chaotic itineracy, which is characterized by the dy-
tially ordered phase. In the other three phases, namely, caramic change of the effective degrees of freed@h In a
herent, ordered, and desynchronized phase, the dynamics @dnventional GCM, this phase is observed for relatively nar-
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¢l
il |

FIG. 2. (a) Snapshot of the connection matrix. The size of the Unitindex
square plotted-n ith row andjth column is proportional to the
value ofe;;, andej;=1 when the square size is equal to the grid
size. This snapshot is taken from the time series shown in Fig. 3 al

the 1200th step(b) One example of the graph representation of the 0= 5000 10000 15000 20000 25000 80000
network structure. Numbers written in circles represent unit indice, .
while lines between circles correspond to the connection betweer, Time steps

units. This graph is drawn according to the same connection matrix
as shown in(@), with unit 8 as a starting unit, while another choice
of a starting unit alters the graph structure. A detailed method t
draw this graph is written in Ref2].

FIG. 4. An example of the time series Bf' ;! , whose values
Oare represented by vertical lines.

After a sufficient length of time steps are elapsed, a con-

row ranges of parameter values. Here, by the introduction Orflection malrix appears similar to the state shown in Hig. 3
9 P X ' oY In this figure, taken at the 20 000th time step, almost all the

delay, partially ordered phase appears in a much wider re- . . : .
gime in the parameter space. Hence, it can be said that thCé)nnecnon r_e5|des n (_)nly one column, reflec_tmg_an_emgr-
delav produces a richer d nahical béhavior gence of a single dominant unit. One connection is cited in
AI{h%u h the d namicsyof units exhibit S'UCh a com IeXthe other column because of the characteristics of our model
9 dynamics ot PI€X hat the self connection is meant to be 0. In Figh)3the
movement, the situation is different as we turn our attention : . .
to the dynamics of the connection strength in this regime.graph representation of the network structure is shown again,

. ) illustrating the prominent dominan f unit 11. In this st
Snapshots of the strength of the connection matrigest ustrating the prominent dominance of u s stage,

qiff tii i h in Fios. 2 and 3. H the concentration of the coupling strength to one column is
merent ime Steps aré shown In FIgs. 2 and 5. Here, we usfetelatively stable so that such a state may sustain for thou-
parameter valuek=3.7, c=0.25, andr=1.

. ) . sands of time steps.
Figure Za)_ls a snapshot taken at the 120.0th time step. Considering the apparent tendency that the connection
One may easily see that the stronger connections are Conceﬁ'rength would gather to a few columns, we calculated the

ELat‘?t‘;'l n ;’;\few columnst. Thth's f|gur$, thf fllleit?tesqq?:es "Nsummation of the connection strength over each column at
e1th column represents the connection oM MEUMIL 10— o 50h time step, i.e3N ;e , which represents, in a sense,

the other units, so Fig.(a represents the situation that the the strength of the influence of the uinion the other units.

conne.ctlons from a few units to almost .a|| the other unl'f‘s aniNe plotted the time series of this value averaged for every
selectively strengthened. These few units emerged as “core

) - .2 27100 steps(Fig. 4 is the plot. The frequent changes of the
g(rb)dgrr?em:;;mupr;gso?{htgzrsémctléﬁecgetr?tzt?:gvgrtl:]'el?\eﬁﬁbrgominant core unit in the ea_rlier stage, anc_i the stable lasting
stru;:ture drawn according to the method used8h is of the domlna_mce by a particular core unit for up to about
shown T,he dominance of units 8 and 17 over the rest of thé0 000 steps in the I_ater stage may be seen.
units rﬁay be seen Now, let us cons!der the mfluenqe of the appearance of

' such a dominant unit on the dynamics of state variables. As
described above, in the parameter regime we now consider,
system exhibits the chaotic itineracy that accompanies the
dynamic temporal change of the effective degrees of free-
dom. One method to evaluate the effective degrees of free-
dom is to calculate the number of clusters with low resolu-
tion [2]. Figure 5 is the calculated number of clusters with
three different resolutions. Prominent decline of the effective
degrees of freedom is observed in two periods, namely, from
the 5000th step to the 8000th step, and after the 18 000th
step. Note that these periods corresponds to the appearance
of the dominant unit, as is shown in Fig. 4.

FIG. 3. (@ Snapshot of the connection matrix, taken from the  1he decline of the effective degrees of freedom implies
time series shown in Fig. 3 at the 20 000th st One example of the coherent movement among units. To investigate whether
the graph representation of the network structure, drawn accordinguch coherent movement really happens, we computed the
to the same connection matrix as shown(@, with unit 11 as a  distribution ofx|, around the mean valug,' ;x,/N, at each
starting unit. step. The distribution is calculated for three different periods,

(a) (b)
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FIG. 5. The effective degrees of freedom calculated with three 1 08 06 .04 02 0 02 04 06 08 1
different resolutions, i.e., 0.0001, 0,001, and 0.01. This plot is ob- Distance from the mean
tained using the data of the same session as used in Fig. 3.

0.025 T T T T T T T T T

say, 0th—5000th step, 5000th—10000th step, and 20000th—
25000th step. Note that the first period corresponds to the
frequent change of the dominant unit, and the latter two pe- 002 b i
riods to the stable lasting of the dominance. The results are
shown in Figs. @), 6(b), and &c), respectively. All of these
three figures show the peak at the center. However, the peak
is much keener and the width of the distribution is thinner for
the last two figures, which imply that the coherent activity
among units do emerge.

0.015 —

0.01 | —

Probability distribution

IV. SUMMARY AND DISCUSSION

0.005 -1
We studied on GCM with variable coupling strength. The
rule of coupling change is one that may be regarded as an
extension of Hebb'’s rule, which is widely used in the neural 0 O s T
. . . -1 -08 -08 -04 -02 0 02 04 06 08 1
network studies. In this model, without delay, we observed Distance from the mean
only clustering or random network, corresponding to the
clustering and chaotic dynamics of state variables, respec- 0,035 (©)
tively. When we introduce delay in the coupling updating
rule, the system exhibits another type of dynamics, called
chaotic itinerancyCl), which is associated with the temporal 002 - _
change of the effective degree of freedom. Corresponding to
this dynamics, a different type of organization of network
structure, i.e., network with radiative connection from only
one unit to almost all the other units in the system, emerges.
Such network structure facilitates the coherent activity
among units, which is confirmed by the decline of the effec-
tive degrees of freedom of the dynamics of state variables,
and the distribution of values of state variables around the
mean of them. The unit that sends connections to almost all 0.005 | .
the other units, called the dominant unit, is not fixed in time
and changes unit to unit.
As is widely known, the introduction of delay to dynami- T At e o e
cal systems evokes more complex dynamics. Here in our Distance from the mean
system, delay may be regarded as playing the similar role to
trigger the emergence of Cl. Without delay, the system ex-
hibits either clustering or chaotic dynamics, since the Heb-
bian type of coupling updating rule strongly stabilized the FIG. 6. Distribution ofx, around the mean valuéa) Between
clusters once they were formed, and the nonlinearity stronghe Oth and 5000th stepgh) Between the 5000th and 10 000th
enough to destabilize the clustering pushes the system tgeps.(c) Between the 20 000th and 25 000th steps.

0.015 —

0.01 b

Probability distribution
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highly chaotic dynamics and there is no room for the forma-state variables. This dynamics is characterized by the tempo-
tion of a stable and ordered network structure. By the introtal change of the effective degrees of freedom. When the
duction of delay, the phase with the marginal characteristicglegree of freedom is low, units are somewhat clustered,
between clustering and chaos, i.e., the partially orderegvhile with the high degrees of freedom, values of state vari-
phase with Cl, appears. In our simulation, only in this phaseaples are spread. Now, let us suppose that the system with
network structure that has both order and fleXIblllty at OnCQhe re'ative'y IOW degree of freedom Sudden'y gets the h|gh
can emerge. We propose that chaotic itinerancy is an inevigegrees of freedom. Since units are clustered in the past, only
table feature for any dynamical system to form a structured, fe\ units have values near the previous ones, which means
and flexible network. _ that only a few units are near the previous position of almost
In our paper, we use the delay as the method to introducgy ¢ the ynits. This situation causes selective strengthening
the instability to the dynamics and force the system 1o €Xf connections from such a few units to the other units. This

hibit the ch_aot|c ftinerancy. I'ndeed, the specific vaI_ue-uﬁ is the mechanism that the dominant unit appears. The dy-
not essential for the formation of the above-mentioned net-

namic change of the effective degrees of freedom triggers the
work structure. Any value ofr pushes the system to the emergence of the dominant units. Once the dominance of one
partially ordered phase with CI. If there is another way to 9 '

introduce instability to the system, it will do, but the intro- unit gets sufficiently large, this unit starts to attract more and

duction of delay seems to be the most simple way, and cod"°"® units around it, since, in this state, almost all of the
sidering the natural system, delay exists ubiquitously, its utiUnits obey the quite similar rule, so the dynamics of every
lization is a convenient way to evoke complexity. unit has to be similar to each other. This results in almost
Also, we note that there is a dynamical interplay betweerfomplete dominance by the only one unit. However, this
the coherence of weight structure and the coherence of aglominant state cannot last long. In fact, our numerical simu-
tivities of units. As mentioned above, delay in the connectiorlation shows sudden substitution of a core unit. The study on
change gives rise to the complex behavior in the dynamics dhe stability of dominant state is one of future works.
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