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Influence of noise on scalings for in-out intermittency
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We study the effects of noise on a recently discovered form of intermittency, referred to as in-out intermit-
tency. This type of intermittency, which reduces to on-off in systems with a skew product structure, has been
found in the dynamics of map&)DE) and(PDE) simulations that have symmetries. It shows itself in the form
of trajectories that spend a long time near a symmetric state interspersed with short bursts away from symme-
try. In contrast to on-off intermittency, there are clearly distinct mechanisms of approach towards and away
from the symmetric state, and this needs to be taken into account in order to properly model the long time
statistics. We do this by using a diffusion-type equation with a delay integral boundary condition. This model
is validated by considering the statistics of a two-dimensional map with and without the addition of noise.
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[. INTRODUCTION minimal attractor, then we have in-out intermittency. In the

Many dynamical systems of interest possess symmetridatter case, there may be different isolated invariant sefs in
that force the invariance of certain subspaces. A great deal ¢fssociated with attraction and repulsion transverséhto
effort has recently gone into the study of such systems, ihence, the name “in out.” Another difference is that, as op-
particular, studying the behavior of the attractors near theiposed to on-off intermittency, in the case of in-out intermit-
invariant subspaces on varying a paramgler8]. This has tency the minimal attractors in the invariant subspaces do not
included the study of systems with both normal and nonhecessarily need to be chaotic, and hence, the trajectories
normal parameter9,10. may instead shadow a periodic orbit in their “out” phases

Such systems show a variety of phenomena in their dy_[lo]._ A schematic representation of this scenario is depicted
namics. In particular, systems with normal parameters thaf Fig. 1. . -
are of skew product typ@amely, those where the transverse 1 Ner€ i now a good understanding of the statistical prop-

. : . erties of on-off intermittency5,16—18 and some properties
dynamics does not affect the dynamics tangential to the sub-
spacé may show on-off intermittency, which occurs as the
result of the transversal instability of an attractor, usually
chaotic, in the invariant subspace whose trajectories get ar-
bitrarily close to the invariant subspace, while making occa-
sional large deviations away from[i8—5]. On-off intermit-
tency may be modeled by a biased random walk of the
logarithmic distance from the invariant subspé8e5]|.

On the other hand, systems with non-normal parameters
that do not have skew product structure may show other
dynamical phenomena in addition to those present in skew
product systems. These include a type of intermittency re-
ferred to as in-out intermittencll0]; similar effects were
noticed independently in a number of modgld,12. Ex-
amples have been recently found(PDE) models of surface
waves[13] and in a problem of chaos control in the confine-
ment of magnetic field lines in toroidal fusion chambjelr4)].

In the original formulation of in-out intermittency, dropping
the condition that a chaotic attractor is necessary in the in-
variant subspace turned out to be an important ingredient FIG. 1. Schematic diagram showing a typical trajectory that is

[10], and this has subsequently been shown to lead to furthdf-out intermittent to an invariant submanifo, , showing the
phenomen&15]. “in” and “out” phases. The invariant submanifol®l, contains an

This type of intermittency is best characterized by con-invariant set that decomposes into a transversely attracting chaotic
trasting it with on-off intermittency. Briefly, leM, be the saddleA' and a transversely unstable periodic orft that is an

invariant subspace and the attractor that exhibits either attractor vyithinM_|. The rout” phase is odefineod by the trajectory
. . . . e~ being within the isolating neighborhodd’® of A°. In this case, the

pn-off Qr,'n'OUt intermittency. If the 'merseCt'oﬁ_Am_Ml “in” phase is modeled by a random walk in the logarithmic dis-

is a minimal attractor then we have on-off intermittency, tance fromM, whereas the “out” phase shows uniform exponential

wheread(in the more general casé A is not necessarily a growth away fromM,, shadowing the unstable manifold Af.

Nonlinear
reinjection
phase
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of in-out [10] intermittency where they differ. Numerical namics for obvious reasons; see Fig. 1 for a schematic rep-
support has also been obtained for both on[6f19,2Q (for resentation.
experimental evidence s¢21,22) and in out[23,24.

Both of these types of intermittency rely on the presence 1. Identifying the “in” and “out” phases

of invariant subspaces. In real systems, however, invariant Suppose now that we have a projectidnR"—M, and a
subspaces are only expected to occur approximately; eith‘?feighborhoodJOCM, containingA®, such thatf (U°) D U°

as a result of the lack of precise symmetry or due to the; o it is absorbing foff 31 .37. We identifv a poini in
presence of noise. This has motivated a number of studies %f ' g fof|,) [31,32, fyap

H “ ” 0o
the effects of noise on the statistics of on-off intermittency he phase space as being on the “out” phasH (i) = U

- - d as being on the “in” phase otherwise. Note that there is
[25—30. Our aim here is to make an analogous study of th n . . X o s i
effects of noise in the case of in-out intermittency, by mak-2" arbitrary choice of neighborhodd® and projectionI;

ing a continuum version of the Markov model considered inhowever, we will be interested in statistical properties of the
[10] in order to highlight the similarities and differences. We ouFt phases that are éndependent Ogth‘?ie- | d
do this by considering an analog of the drift-diffusion model. or concretenes@nd to correspond with examples stud-
employed by[5,17,25,28 for on-off intermittency ied late) we assume that the dynamics Af is periodic and

. | . . . .
The structure of the paper is as follows. In Sec. Il Wethe dynamics or\' is chaotic(with many ergodic measures

i . . .
derive and analyze a model of in-out intermittency that conSUPPorted om’). However, in principle, the same type of

sists of a drift-diffusion equation with delay integral bound- M0del applies as long as at least onerofor A is chaotic.
ary conditions, based on extracting the important information/V€ @re interested in modeling the asymptotic fluctuation of
from a dynamical model. We also discuss how to estimatdn€ distance of some typical trajectogyt) from M, . Sup-
parameters in the drift-diffusion model. Section Il adaptsP0S€ We have a function

these to include additive noise in the transverse variable as

well as in the tangential variable. We predict transitions in y(t)=my(t), 1)
the dynamics on adding noise to the tangential variables.

Section IV discusses the estimation of the parameters in thehere m:R"—R is a smooth function such that~*(0)
model and obtains scalings and transitions on changing the M,. Then we saymr projects the phase space onto the
noise amplitude. These predictions are tested on a plan#&ansverse variable yClearly, we have liminf...|y(t)|=0
mapping given if10]. Finally, Sec. V gives a discussion and but lim sup|y(t)|>0. Moreover, such a transverse variable

interpretation of the results. will, because of invariance oM, spend arbitrarily long
times neary=0; the so-called laminar phases. The object of
Il. MODELING IN-OUT INTERMITTENCY this paper_is to give a s_tatistical _description of thg behavior
of a genericy(t) measuring the distance froM, for in-out
A. The dynamical model of in-out intermittency intermittent dynamics.

Suppose that we have a dynamical system that evolves on
R", such that some subspabg [dim(M;)<n] of R" is dy- B. A Fokker-Planck model for in-out intermittency
namically invariant. For definiteness, we consider a dynami-

cal system generated by iterating some smooth & 1. In terms of a logarithmic transverse variable z

—R", in which casef (M|)CM, . If there is a minimal Mil- We start with a transverse variabje= w(y) and setz=
nor attractorA for this system such th& MM, =Ag isnota  —In|y|; we model the behavior af as follows. During the
minimal Milnor attractor for the system restricted &, , “in” phase, we model the behavior as though it is a linear

then we say the attractor is in-out intermitt¢t0]. (Recall  skew product forced by the chaotic “in” dynamics and we
that A is a Milnor attractor if it has a basin with positive assume, by an appropriate scaling, thdt<1 for all time.
Lebesgue measure, such that any smaller invariant set hasie model the behavior as a drift-diffusion process#0
basin with smaller measure. An attractor is minimal if it with drift —\:>0 per unit time and diffusion3? per unit
contains no proper subsets that are attragtors. time subject to reflection boundary conditionszat0. We
Suppose now tha(t) is a typical trajectory in the basin assume that the trajectory leaks onto the “out” phase at a
of A, such that theo-limit set of y(t) is the attractoA. We  rate >0 per unit time(this is given by the most positive
assume thaf°S A is a Milnor attractor contained withiA tangential L.E. ofy;).
for f|M|. We assume also that the only transversely stable set On the “out” phases, we assume that there is a fixed
linear expansion forced by the periodic “out” dynamics.
This translates to a deterministic growth in theariable at a
Sate —\9<0. Oncez reaches 0, we assume that the trajec-
tory is forced to reinject to the “in” dynamics. For conve-
nience, from here on we define

in A is someA' G A that is a repeller foff|y, . Each of the

invariant setsA'*° is assumed to support invariant measure
w' and u° that govern the behavior of typical trajectories in
A on the approach t&\"°.

We assume thad\' is transversely attracting on average
[i.e., its largest transverse Lyapunov exponén€E.) with

SO ) i ) c=\7,
respect tou' is \;<<0] andA° is repelling on averagé.e., T
its largest transverse L.E. with respectu® is positive. We :
refer toA' as the “in” dynamics andA° as the “out” dy- N=M\1,
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and note that>0, whereas. may be positive or negative in d(t)=1 (10)
what follows.

Let the probability density at timeof the distribution of  for all t. Thus, the Fokker-Planck model of in-out intermit-
z values in g,z+dz) on the “in” phase be given by tency(in the absence of noisés the closed system consist-
P(z,t)dz and those on the “out” phase be given by ing of the linear equatiof2) for P(z,t) onze[0,°) subject

R(z,t) dz. Our model translates to a forward Kolmogorov to the delay integral boundary conditié@ and normaliza-

equation forP of the form tion condition(10).
P aI' 2. In terms of the transverse variable y
5, P 2

The drift-diffusion model in the variable may be trans-
. o ) —
where the second term on the right-hand side represents t¢%ted |n.to one for the olr|'g|nal trqnsver§e varlawe_e as
leakage into the “out” phase and ollows: Let the probability density at timeof the distribu-

tion of y values in {/,y+dy) on the “in” phase be given by

JP Q(y,t)dy and those on the “out” phase be given by
F(z,t)=,82/25+)\P (3 (y,t) dy. Note that(assumingy>0),
represents the flux of trajectories att). The dynamics for pP= dy Q=yQ, R= dy S=ysS, (11)
R on the “out” phases is simply given by the hyperbolic dz dz
equation ) o
and so the system governit@(y,t) and S(y,t) is given by
J a)
(——C— R=eP. (4) Q pra| 4 d
ot Jz 7 Ty N\ — _
Fra &y(yay(yQ)> hay(yQ) €eQ, (12
This equation may be solved exactly to give
y Iny—Inw
€= X—2Z S=—| Q|lw,t+ —|dw, (13
R(z,t)=—f P| x,t— ——|dx, (5) CyJo
cl, c
ith the bound diti i b
which is unique up to the addition of an arbitrary function W © boundary condiiions given by
&(x+ct). The total probability of being in the “in” or 1
“out” chain is then given by 1= fo [Q(y,t) +S(y,t)]dy, (14)
<I>‘(t)=f P(z,t)dz, <1>°(t)=f R(ztdz,  (6) B[ o
0 0 027 yw(yQ)}—)\yQJrS at y=0. (15

respectively. We assume also that
Observe that in terms of these variables, we have
I'(0t)+cR(0t)=0 (7)

1 1
atz=0, which corresponds to reinjecting trajectories reach- P'= fo Qly,dy, @°= J; S(y,t)dy. (16)
ing z=0 of the “out” chain back into the “in” chain. If we
define the total overall probability of being in the “in” and Moreover, we find
“out” chains by
I

B (1) = B (1) + DO(1), ® %=F(O,t)—e<bi. an

then we have
C. Stationary distributions; noise free

b =[P JR
o fo EJF ot dz Steady solution®(z,t)=p(z) of (2) will satisfy
» B
:J (£—€P+C§+EP)C|Z ?pzz"_)\pz_ ep=0 (18
o\ 0z Jz
=T(04)+cR(0}) with boundary conditions given by Eqé7) and (10). This

may easily be solved to give a solution
=0, €)
p(z)=Ae -2+ A, et~ (19
implying that®(t) is a constant. We therefore stipulate that
by normalization where
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— N+ J\%+2ep? E—Find. (28
M+= > . (20
B In particular, the minimum “out” phase residence time goes

Note that ife>0, then\?+2¢8%>|\| and sou_<0 and to infinity asd—0.

n >0 always, as long ae>0. A similar result was found

for the Markov model of in-out intermittency discussed in Ill. A MODEL FOR IN-OUT INTERMITTENCY WITH
[10]. We therefore write ADDITIVE NOISE
u=p_, A=A_, (21) The model of Sec. Il may now be easily generalized to

model in-out intermittency in the presence of unbiased addi-

and note that the only solutions of E@.8) with finite mass tive noise. At first we will investigate the case where the

are such thaf\, =0. Calculating the stationary mass in the noise is added only to the transverse variables and later ex-
“out” chain, we have amine the case of noise added to tangential variables. It ap-

pears that noise in the transverse variables affects scalings in
r(z)=Be*?, (220  a regular manner; whereas noise in the tangential variables

. may lead to transitions as “in” and “out” phases merge.
where—cuB= €A and soB= —(e/cu)A. This means that

A B A. Additive noise in the transverse variables
I — —
@ _;’ q)o_;' (23 In presence of additive noise in the transverse variables,
we use a similar approach to that of Ashwin and Stitts
Normalizing so that the total mass is unity, we have and Venkataramanét al. [17] to obtain a Fokker-Planck
model of the form
A B
1=atw @9 s aQy B_2_< &(Qy))+a_2 °Q
o at ay T 2ay\Y oy |2 gy Q.
which gives (29)
C,uz (57 . L . .
= , = , (250 Which is similar to Eq/(12) apart from the diffusion term at
Cu—e €—Cu a rated?/2 corresponding to the additive noise.

thus ensuring that the boundary condition is also satisfied 1. Steady state with additive noise

B u? We obtain a steady-state probability density distribution

F(O,t)+cR(0,t)=( 5 Fhu- E)Ae“tzo- (260 in the in-out case, by calculating the contributions from both
in” and “out” chains separately.
These steady exponential distributions correspond to alge- For the contribution from the “in” chain we proceed by
braic distributions for th&Q(y) andS(y). In Sec. IVA, we looking at the steady-state counterpart of E2p) obtained
discuss how the free parameters in this model may be estby demandingQ(y,t)=q(y),
mated from the dynamical data.

diya) p* d [ diyg) o°d*q
D. Contrasts with on-off intermittency - Mdy T dy y dy Ty dy2 —€9=0, (30
Note that one could take a simpler dynamical model in the
form of a drift-diffusion equation but with no differentiation which may be written in the form
into “in” and “out” phases. This is equivalent to assuming
thate=0 in the modeli.e., reducing it to an on-off process 1 d2q dq B2
and leads to an exponentlal probability distribution of the —(,82y2+ 2) (2,82 Yy —)\—e>q 0.
form dy? y
(3D
p(2)=Ae” M2z (27)

To solve this equation, we recall that the case withO,
However, estimation of the constarts 8 presents a prob- corresponding to on-off intermittency, is solvable explicitly

lem as we will discuss in Sec. IV B. (see[17]) with the solution
For in-out intermittency, the “out” phase is distinct from
other invariant sets that we may choose within the invariant qy)=A(B%y*+ 0?12 (32

subspace in the following sense. There are constarfs

>0 such that if any trajectory enters the “out” phase at awhere&=2\/B2. In the case of in-out intermittency with
distanced from the invariant subspace, then there is a mini-#0, we proceed by employing tiieingular ato=0) change
mum residence time in the “out” phase given by of variable
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2 To determine the mean crossing time throyghO, we re-
X=— —2y2, (33 quire A, which may be computed assuming there are no-flux
g boundary conditions ag==*1 (with linear behavior up to

) ) this poind, to give
to rewrite Eq.(31) in the form

1 B?—\
E_X< 1+ ’82 )

=0. (39

d? d 2_\-2 J P(y)dy=1. (42)
x(l—x)d—j+ d u lyl<1
X

dx 432 g

Away from a blowout bifurcation point, it is not so easy
to obtain an explicit expression f@ and thus for the vari-

ancevar(y). However, in the low-noise limitr< 8 we may

Lr:ztiﬁg:ation may be solved in terms of hypergeometricy,, o imate the stationary densitg9) by the continuous

function
A=A(B.0 N )F (a, a_1i2%) (39 Ao~k for |y|<alp,
)~ _1- (43)
where aty A(By) 1+ for o/B<l|y|<1,
BN+ W21 28% 1+ . . ands(y) is calculated from Eq(40) as
o+ = = ,
- 23 2 A
sy)~—
with . as before, and
o tm for |y|<alB,
I'(c) jltb‘l(l—t)“b‘l x{ 1 o H(1+ p)
F = dt. (3 i “lep_ = M
(a,b,c,2) F(b)F(C_b) 0 (1—tZ)a ( 7) v (By) M By for |y|>0’/ﬂ
(44)

If |x|>1, x<0 and Re&—b)=2\\?+28%>0, this

solution may be approximated by using In order to compare these results with those in the case of on

> > ) off, we proceed by computing the value of the normalization
—a_ (ARTIVN+2B%€)/(257)] constantA. This is given by computing Eq42) with P(y)

F ~(1—-x)"¢
(e a1z~ (17X) I(a)l'(12-a-) =q(y)+s(y) and gives, for this approximation,
=K(1-x)"", (38)
A=cu’B|(e—cu)(B~#—a *)
for some constari. This then gives
-1
a(y)~A(a?+ p2y?)~1-mrz, (39 —a‘“#(eln%(1+u)+(c+ e)l’“” . (45
where A=A(B,0,\,€) is the normalization constant, and o ) )
w=p_ as before, is valid for smaly|. In the limit e—0, this expression reduces to the on-off case
For the “out” chain, the steady-state probability density
distribution may be obtained from E(L3) by employing the A mpB 46
steady-state form o) in the integral in this expression to - o M1+ p)— B H (46)
computes(y)

equivalent to that found if25]. Using the approximation
s(y)= ifyq(w)dw. (40) that the stationary distributiong(y) ands(y) are approxi-
CyJo mately constant foty|<o, the instantaneous flux from
>0 toy<0 can then be estimated as
The overall steady-state probability density distribution is

then given by the sum of these two contributiogéy) 1
+s(y). F=50la(0)+s(0)], (47)

2. Scaling of the mean first crossing time where, as if25], we have assumed that with unbiased addi-

To begin with, we recall that for unbiased noise on thetive noise approximately half of all initial points if0,0]

variabley, the mean is clearly will cross over within the next time unit. We may compute
F, by using the above solutiorig3) and (44) together with
E(y)=0. (41) Eq. (45), to obtain
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0.015 T T T T T T T T T

(e—cu)(B H—0oH)

F= (T_"‘,U,ZB(C-F 6){2

0.010

g
—0'“,u(elnE(l—F,u,)—i—(C—Fe),u)H, (48) & 0005 i
which in the limit e—0 reduces to the on-off formula Mt N
W‘WW PR shal/ i) st % -
-0.005
1 oM oa [ ' ' ' e ' ' ]
1 Bu__ 49 ]
2 gTHM1l—p)+ B 5 02 j
. L . % 0.0 A
This allows the calculation, in the in-out case, of the mean < /T'
first crossing time given b = 1/F analogous t¢25], i.e., 02| .
o ol i TFFFFFFIFII
“wpiero | Mo uingthrn §§ 5558535533
Non—normal parameter r
+(c+e)u?}. (50)
FIG. 2. L.E.\; in the tangential direction and; in the trans-

verse direction for the mafb4) with s= —0.3 and varying. Initial
conditions chosen to evolve to the attractoMn, i.e., withy=0.
Observe the “periodic window” coincides with transverse instabil-
_ ity of the attractor inM, . In this region, one can find in-out inter-
2 1/(B\* . .
M=—[1+—[lZ|] -1 ] (52) mittent attractors for the full map that are not containedvip.
g Note that the attractor with transverse L.E. approximately.005

B M
) ) . remains as a chaotic saddle during the periodic window; this saddle
Furthermore, if we are close to_marginal stability on thecgntrols the in phase.

“in” chain, A=0, we haveu=— \/2—6/,8 and so in the limit
€—0, we recover the expression [i25], namely, has a basin such that the largest neighborhood%ton-
5 9 —u tained in the basin has radiys>0, and the dynamics is
M ~ ,E + ,8_( (E) -1 +O(\/E), (52) uniformly contracting ont@\° in the tangential direction at a
s\ o

rate <<0. We may model the approachAG§ along its weak

stable manifold by a mag,,.;=€"x, wherex corresponds
with an ordery/e correction. Similarly, expressions may be g the distance fromA°. Perturbing this map byi.i.d.) noise
obtained for other limiting cases; we gi\{e one such scalin%n that is uniformly distributed irf — o/3,0y3] (such that
with the numerical results in a later section. the variance isr) we obtain an iterated function system of

We ha_\ve att_empted to find the scaling of the mean I_amina{he formx, . ;= e”x,+ &,. We may see that fluctuations will
length with noise intensity, analogous [6] for on-off in-  iive x.. to exceedp>0 if
n

termittency. However, the need to distinguish between the
dynamics of the “in” and “out” phases means that we can- cr>p(1—e’7)/\/§. (53

not easily reduce the problem to a single ordinary differential

equation with the consequence that we have so far not beefionsequently, we expect that the “out” phase and “in”
able to obtain an expression as compact as that for on ofphase may no longer be distinguished once the noise has
However, in principle, the Fokker-Planck mod@9) con-  reached the order of this threshold.

tains all the necessary information to compute this.

Considering the case wheeeis asymptotically smalli.e.,
small leakage of the “in” dynamigswe have

+0(e,p)

IV. NUMERICAL RESULTS AND SCALINGS
B. Added noise in tangential variables . i . .
In order to test our model of in-out intermitten€with

tial variables in the case of on-off intermittency has only athe plane introduced ifl0]

minor effect on the dynamics. This may be understood if the

attractor withinM, is stochastically stable, i.e., if the prob- f(x,y)=[rx(1—x)+sxy?,1.82 Xy—y3], (54)
ability density with noise limits to the probability density of

the natural measure in the case of no noise. In the case @fhich has two parameters=[0,4] andse R. We may view
in-out intermittency, on the other hand, there will be athis as a map oR? to itself that leavesVl, =R x {0} invari-
threshold of noise amplitude beyond which the fine structureant. If s=0, the map has the form of a skew product over the

in the invariant subspace is destroyed. dynamics inx, i.e., it can be written as
To be more precise, suppose we have a dynamical sce-
nario as described in Sec. Il A and the “out” dynami&$ f(x,y)=[h(x),g(x,y)], (55
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FIG. 3. Example of time series generated by
iterating(54) from a randomly chosen initial con-
dition, after transient effects have died out. The
bottom plot showsy in a logarithmic scale, and
the top second and the middle plots shoandy
on linear scales. Parameter values are fixed at
(r,s)=(3.886 15;-0.3).

iteration n

with rameters as follows. We take a trajectory such that the tran-

sient has decayed and we may identify parts of the trajectory
h(x)=rx(1-x) and g(x,y)=1.82*y—y3 (56) as “in” or “out” phase by choice of a suitabl&®. For the

map (54) with r=3.8800045 and=—0.3, we may define

wherexe M, . If we fix r and varys, we see that the latter the trajectory X,,y,) as being in the “out” phase if

two parameters do not affect the map restrictetoand so ) L -

are normal parameters for the system restrictefo min{jx,—pil i=1,...,13<107",

An example of the behavior of the transverse and tangen-

tial L.E.’s around a window of periodicity for which the map j.e., if it approaches the period 12 attractdp; :i

(54) shows in-out intermittency is depicted in Fig. 2. We =1, ... 12 for y=0 to within 10 *. Using this criterion,

have also shown in Fig a typical time series corresponding we have depicted in Fig. 4 the values of the transverse vari-

to the in-out intermittent behavior produced by this map. Thegpley at the entrance and exit of the “out” phases identified

top panel clearly demonstrates windows of periodic lockingby this procedure. Note that the exit point is more or less
(corresponding to the “out” phasgsnterspersed by chaotic

windows (corresponding to the “in” and *“reinjection”

in
phases One may also clearly see from the bottom panel the
exponential growth in the amplitude of the transverse vari-
abley during the “out” phases.

To study the effects of noise on in-out intermittency, it is
informative to compare it with the analogous studies of on
off. To do this, we chose two sets of values for the control
parameters ands (namelyr=3.880 004 5,s= —0.3 andr
=3.827 86,s=0) in the map(54), corresponding to in-out
and on-off intermittencies, respectively. We perturbed the
map with uniform noise 01f0,{] for the x dynamics and
[—¢, ] for they dynamics. We have considered the two
cases above where the noise is impodewn the tangential 0
variablex and(Il) on the transverse variable 10

10" : : :
I

-10

10 r

Entry and exit points of out phases
=

0 250 500 750 1000
Event number #

A. Estimating the parameters for the noise-free model ] )
FIG. 4. A plot ofy at the entrance at theth period, showing the

Observe that the noise-free model for in-out intermit-yajue at the start of the “out” phasdower poiny and that at the
tency, after a suitable non-dimensionalization of the transgxit from the “out” phase(upper point for in-out intermittency,
verse variable has four parametexs; 8, €, ¢ with an ar-  piotted against event number. Observe that exit never occurs closer
bitrary choice for application of the boundary condition atthan a certain distance from the invariant manifoldyat0. The
y=1 after a suitable rescaling gf We estimate these pa- events appear to be independent and uniformly distributed in time.
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+—— Entry point /
| — Exit point /

Histogram count

el

Distance to the invariant submanifold y

FIG. 5. A histogram of the entrance to the “out” phases and the

exit from the “out” phases for in-out intermittency for the trajec-
tory considered in Fig. 4.

PHYSICAL REVIEW BE54 066204

2. Estimating ¢

This is simply the largest transverse L.E. fgt, and may
in some cases be obtained analytically. It may also be esti-
mated numerically as the average growth rateydfduring
the “out” phases. For the example of in-out intermittency
discussed above, we may comput® be

0.1434
o 0.01195-10°,

c~ (59
which is the transverse L.E. of the attracting period 12 orbit
in M, .

3. Estimating\ and 8

These parameters may be obtained by examining the av-
erage rate of growth during “in” phases. More precisely, we
pick a thresholdz;,= —In(yy,) which is large and timer
>0, and then examine all instances where the trajectory

constant while the entrance point is distributed in a mannegtarts in the “in” phase at(ty) =z, and remains in the

consistent with exponential distribution o= —Inly| (see
Fig. 5.

1. Estimatinge

Since our paper implies that probabili decays from
the “in” phase at a rates per unit time, this corresponds to
an exponential distribution of lengths of the “in” phases
with the average length of “in” phase beingel/Hence,

€= L_Iy ( 7)
where one may easily approximate the quantity
L;={Average length of “in” phask (58

For the map(54) with r=3.8800045 and=—0.3, we es-
timate L;~5600+200 and soe~0.00018-5x10 °; see
Fig. 6.

— Exponential fit P(L'}~exp(-L'/1), 1=5560

Probability distribution P(L’)

10000 100000

Length of in phase L

1000

“in” phase for at least a timeT.

Note thatT needs to be chosen so ti&t) does not get
too small[i.e., y(t) does not get too largefor to<t<t,
+T and one needs to be careful to avoid limiting the trajec-
tory in such a way that may condition the mean or variance
we are trying to measure, for example, by choosing the
threshold iny to be too large, or by choosingto be so long
that one will enter the nonlinear range.

Subject to this, we may approximale as the average
value of

{In[y(to+T)]—In[y(to) 1}/ T (60)

over this ensemble of “in” phases. Similarly3 may be
found as the standard deviation of this quantity from its
mean value, per unit time. For the example of in-out inter-
mittency in map (54) discussed above, we used up to
20000 000 points of the trajectory, with=100 and an en-
semble of in-phase segments of the same trajectory with
Z,~30 to find that

A~—0.0042, B~0.0135. (61

where there is an expected maximum error of approximately
5% (see Fig. 7.

4. Check: An independent estimate of p

Recall that the ratio of the times spent in the “in” to the
“out” phases may be obtained from the stationary distribu-
tions in the form

® A

cu
Rio= s~ 5~

=——. (62
€
Using our knowledge o andc, we may easily obtaim and
check this against the theoretical predicti@®), given ap-
proximations of the quantitie®' ={asymptotic proportion of
time spent on the “in” phaseand ®°={asymptotic propor-

FIG. 6. The histogram of the lengths of the “in” phases for the tion of time spent on the “out” phage-1—P'. For the case

trajectory considered in Fig. 4. This was used to calcuéafsom
the inverse of the average length of the “in” phases

of in-out intermittency considered above, the above esti-
mates of the parameters imply that
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800 o [T : : : —
10 6,=10"
A=—0.0042 +/- 0.0002, $=0.0135 ; y
§ 10°
B 600 | g
5 T
S Z10° |
o
g 400 | S
5 2
£ 2B 2107 |
T 2
200 E 4 — Analytical ¢(y)
10 E| —- Numerical results for g(y)+s(y)
9> N 1z 40)=0/0) ™™
%
10‘5 . l . J . \ .
0 T T T T T -10 9 8 7 6 5 ) 3
006 -0.04 -0.02 000 002 004 006 1007 100 100 100 107 107 100 10
Parameter A

FIG. 8. Histogram of the PDF'g(y) on the in phase ans(y)
FIG. 7. Histogram of the distribution of calculated values\of on the out phase as a function of the transverse variafdetrans-
and estimation of\ and B from the in phases for the trajectory verse added noisery=10’8 for the examples of in-out intermit-

considered in Fig. 4see text for details tency in Eg.(54) discussed in the text. Note that the analytical
solution joins the two regiongy| < o and|y|> /B by means of an
u~—0.0451, internal boundary layer. Note that any algebraic scalingy©f)

~y“ implies the same scaling fa(y).
which allow us to obtain a numerical estimate f&,

~3.02 with an estimated maximum error of 15%. We have also plotted in Fig. 9 the influence of different
Using instead the measured ratio of average length ofgjyes of the noise level on the transverse variabjein the

|n to “OUt’_’ phases, we obtain an estimate quiOZZ'SG o PDF of Q(y), for both in-out and on-off cases, and discuss
with an estimated maximum error of approximately 10%.y .~ pehavior in the figure caption.

These two estimates &, clearly agree to within estimated
maximum error.

Note that the neighborhodd® of the “out” dynamicsA°®
must be chosen such that tb€N M, is forward invariant. It 1. Noise on tangential variable
may be chosen as small as desired, though if it is very small
then we will not recognize “out” phases unless they come
very close toM, .

D. Length of the average laminar phase as a function of noise

' We calculated for the mafb4) the scaling of the length
of the average laminar phases, as a function of the noise level

B. Lack of fit to a Fokker-Planck model of on-off
intermittency

It is interesting to note that it is not possible to fit in-out ,» 10"
intermittent dynamical data by an on-off model. This is be- 3
cause the on-off model requires only two parameters, the
transverse L.EA=0 and its variance per unit time?. If we 107
examine the attractor iM;, we may compute a positive 107"
L.E. (c above, but the variance would be zero. Alterna-
tively, we may compute the “in” phases as discussed above
and obtain both a and aB?>0, but in that case\.<0.
Thus, either choice will be invalid.

Alternatively, one could computk/B2 from the scaling
of the probability density near=0, but then it is not clear
how to make a sensible choice foror 8, and therefore, we
may determine only one of the parameters in the model. 100 107 108 100 100 100 107 100 107

A

C. Probability distribution for the case with noise

Fi 8 sh h | f th disti £ cal FIG. 9. Histogram of the PDR)(y) as a function of the trans-
igure 8 shows the results of three distinct ways of ca ‘verse variabley for transverse added noise for the examples of

culating the asymptotic probability distribution function o ot and in-out intermittency in Eq54) discussed in the text.
(PDF) of q(y); resp.s(y), for a fixed noise levelin this  opserve that there is a power-law scaling across a wide range of
case{,=10"°): from the direct integration of Eq31) using  that changes to a constant smooth denitgteay for very smally.

the estimate values of the parameteysc, \, andg; from  The turning point corresponds, as expected, to the noise level im-
the full analytical solution(31) and finally from the direct posed; the response of on-off and in-out intermittency to the addi-
numerical measure of the PDF QX(y). tion of transverse noise can be seen to be similar.
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400

] ‘in’ phases
.................................................................... ‘out’ phases
»»»»»» ——— laminar phases

g

—— On—off, noise on x

06 . On—off, noise on y

04 7" In—out, noise on x

g

——— In—out, noise on y
02+

Average size of ‘in’, ‘out’ and laminar
[
3
.

L L L
7 0 3 27 24 21 -7

- L o 10 10 10 10 10" 10" 10% 10
10 10 10 Noise level o,
Noise level ¢

Average laminar phase (normalized to no noise)

—-12

10

FIG. 11. Comparison of the average length of the laminar phase,
in” phase and “out” phase as a function of the noise levelfor
addition of transverse noise in the variagleparameter values are
r=3.8800045 and=—0.3.

FIG. 10. The difference between on-off and in-out intermittency |,
shows itself qualitatively in the behavior of the average laminar
phase size as a function of the noise legel V3o for noise addi-
tion to the tangential variabbe This illustrates the case for tangen-
tial and transverse added noise to m&d). The noise onx is
uniformly distributed in the rangg0,Z], while that ony is in the 2. Noise on transverse variable
range[ — ¢y, +{y]. The parameter values are=3.880 0045, and For the noise on the transverse variable, on off and in out
s=-0.3. The Qecay fqr noise onin the in-out case corresponds 10 pehave quite similarly in terms of the average laminar
thex_ perturbation getting Igrge enough to destroy_t_he basin of at'phases, showing a smoother decay than the @aseith the
t_ractlop of the “out”_ dynar_mcs; by contrast, the at_:ldltlon of tangen- dramatic drop occurring around 1, which is closer to the
;t;lgz(r)liiéfson-off intermittency only makes a difference at mUChthreshold level. As can be seen from Fig. 11, the “out”

: chains, initially dominant, decay rapidly, while the “in”

chains are on average of the same size for a wide band of

£. Our results are depicted in Fig. 10. As can be seen, in thigoise levelsr, up to values of about I8. Note also that the
case, there is a significant difference between the on-off andctual percentage of time spent in the “in” chains actually
in-out cases. While both show very similar behaviors for lowincreases at high noise levels before decaying to zero, while
noise levels, at higher noise levels, the behaviors show sonfg€ time spent in the “out” chains decreases monotonically.
distinct differences. In particular, average laminar sizes cor-
responding to the in-out case drop off rather suddenly, 3. Average mean crossing time through=0
whereas for the on-off case, there is an increase in the size ope may similarly analyze for the model the average

of the average laminar phases before it too drops off sudmean crossing tim#1 throughy=0 in presence of noise on
denly. This Corresponds well with the discussion in SeC.y [Case(”)] For positive transverse LE)\G_> O), that is for

Il B, where we argued that in the case of in out, a sudderharameter values away from the blowout point, one expects
change in dynamics would be expected at a certain noisfyr the case of on off a typical growth given 5]

level. For the map considered here, we observe that the local

basin of the “out” dynamics is of the order 16, which

from Eq.(53) would suggest a noise threshold that is at most M~
10°6.

Also shown on this figure are the results for the case of
on-off intermittency for the same map at a different param-
eter value(see captiopn One would expect a decrease in the
average length of laminar phases untiis of the same order
of the threshold defining the laminar phases, which in this
case is~10 3. This is to be contrasted with the in-out case, 2Ino
where the drop off is more sudden and occurs at much lower M~ — T+O(1)' (64)
noise levels(i.e., ~10 ). This level of noise seems to be
enough to disrupt the periodic attractor in the invariant sub-
manifold and it is interesting to note that the noise level atin the in-out case, we find the scaling for smat|, may be
which this occurs is of the same order of magnitude as thapproximated from the expansion of E&O) in o, consid-
size of the parameter window of periodicity. eringAt=0, in the form

1+¢

o {4+ 0(1). (63)

For the on-off casdg25] predicts that at blowout point the
scaling has the asymptotic form { 0)
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FIG. 12. Mean crossing times of variabjethrough zero, as a 2102t E
function of noise leveb, with noise added on the transverse vari- ‘:
abley, for three caseshnt<OAt=0\;>0. Parameter values are % 107 E ;
r=3.8800045,r=1.82, a=—1, ands=—0.3. The parametep 2
is varied to obtain normal variations o . % 10° E ;
o)
M~C;+C,Ino+CzIn2c+0(In? o). (65) E 0¢ f
=]
[=]
We verified this for the case of in out in the map above, by 2 w"™ L
using the same parameter values, except for the normal pa- T o mercases
rameter b, which was chosen such that+=In(1.82) 10 & - . - o s
+b(x),=0, in order to enable us to calculate numerically 10 10 10 10 10 10
the dependence of the average mean crossingNiritfegough Laminar size n

y=0 for the blO,WQUt point ‘TZO)_' In Fig. 12, we verify . FIG. 13. Scalings of the probability distribution of laminar
the above predictions of the scaling for the mean crossingy,,qes fora) on-off and(b) in-out intermittency with noise added
time M for the three cases7<0, Ay=0 and\1>0. Note, i the transverse direction. The noise perturbationy are uniform

in particular, the cas&>0, which in contrast with the on- [—oy,+a,]. Parameter values afe) (r,s)=(3.82786,0) and
off case needs the term in’ler to be includedsee Ashwin (b (r,s)=(3.880004 5-0.3). Observe that the on-off statistics
and Stond25] for the on-off version of Fig. 12 limit do not show the presence of the inflexion point clearly visible

in the in-out statistics.
4. Probability distributions of laminar phases

We have as yet been unable to compute a closed forrmould be derived in the form of coupled Fokker-Planck equa-
approximation for the probability distribution of the laminar tions. Such models are then well adapted to model the addi-
phases for in-out intermittency for the Fokker-Planck modeljion of further noise.
but Fig. 13 suggests that the scalings are analogous to those Although in-out intermittency has a number of similarities
obtained in[10] for the discrete Markov model. Note the to on off, we see that there are differences in their statistical
presence of an inflection point and “shoulder” in the in-out properties. In particular, the addition of noise “tangential”
distribution corresponding to a relatively high number ofto the dynamics may lead, at least in our examples, to sig-
long laminar phases. This shoulder appears to persist on ad#icant changes in behavior at much lower noise levels than
dition of noise. By contrast, the distribution for on-off lami- for on off.

nar phases does not show such a shoulder. We have demonstrated how, given an in-out intermittent
signal, it is not possible to sensibly fit the parameters to
V. DISCUSSION on-off intermittency from the dynamical data available.

There is clearly a lot more one could examine in such mod-
We have proposed a continuum model of the statistics oéls, for example, the scalings of the variance and mean first
the transverse variable for in-out intermittency in the form ofcrossing times with the various model parameters and noise
a Fokker-Planck model with delay integral boundary condi-level; there is work presently in progress that aims to under-
tions to model the deterministic propagation of probabilitystand the variation of such scalings on change of system
density near the unstable manifold of the “out” phase. Thisparameters.
presupposes that the “out” dynamics are periodic in the in- Implicit in our paper here is the assumption that the in-out
variant manifold, but if they are not then similar models intermittent attractor supports a natural ergodic invariant
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measure, such that almost all points attracted to the attractics; if noise is also on the “out” phase the delay integral
will display the same stationary statistical behavior. Al-boundary condition will need to be replaced with a second
though we do not doubt this for the models considered so faoupled drift diffusion equation.
it does seem possible that in-out intermittency may give rise
in certain circumstances to behavior that is not ergodic, and
one needs to bear in mind the possible existence of such ACKNOWLEDGMENT
behavior.
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sidered the effect of noise on the “in” phase of the dynam-N14408.
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