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Influence of noise on scalings for in-out intermittency
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We study the effects of noise on a recently discovered form of intermittency, referred to as in-out intermit-
tency. This type of intermittency, which reduces to on-off in systems with a skew product structure, has been
found in the dynamics of maps,~ODE! and~PDE! simulations that have symmetries. It shows itself in the form
of trajectories that spend a long time near a symmetric state interspersed with short bursts away from symme-
try. In contrast to on-off intermittency, there are clearly distinct mechanisms of approach towards and away
from the symmetric state, and this needs to be taken into account in order to properly model the long time
statistics. We do this by using a diffusion-type equation with a delay integral boundary condition. This model
is validated by considering the statistics of a two-dimensional map with and without the addition of noise.
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I. INTRODUCTION

Many dynamical systems of interest possess symme
that force the invariance of certain subspaces. A great de
effort has recently gone into the study of such systems
particular, studying the behavior of the attractors near th
invariant subspaces on varying a parameter@1–8#. This has
included the study of systems with both normal and n
normal parameters@9,10#.

Such systems show a variety of phenomena in their
namics. In particular, systems with normal parameters
are of skew product type~namely, those where the transver
dynamics does not affect the dynamics tangential to the s
space! may show on-off intermittency, which occurs as t
result of the transversal instability of an attractor, usua
chaotic, in the invariant subspace whose trajectories ge
bitrarily close to the invariant subspace, while making oc
sional large deviations away from it@3–5#. On-off intermit-
tency may be modeled by a biased random walk of
logarithmic distance from the invariant subspace@3–5#.

On the other hand, systems with non-normal parame
that do not have skew product structure may show ot
dynamical phenomena in addition to those present in s
product systems. These include a type of intermittency
ferred to as in-out intermittency@10#; similar effects were
noticed independently in a number of models@11,12#. Ex-
amples have been recently found in~PDE! models of surface
waves@13# and in a problem of chaos control in the confin
ment of magnetic field lines in toroidal fusion chambers@14#.
In the original formulation of in-out intermittency, droppin
the condition that a chaotic attractor is necessary in the
variant subspace turned out to be an important ingred
@10#, and this has subsequently been shown to lead to fur
phenomena@15#.

This type of intermittency is best characterized by co
trasting it with on-off intermittency. Briefly, letMI be the
invariant subspace andA the attractor that exhibits eithe
on-off or in-out intermittency. If the intersectionÃ5AùMI
is a minimal attractor then we have on-off intermittenc
whereas~in the more general case! if Ã is not necessarily a
1063-651X/2001/64~6!/066204~12!/$20.00 64 0662
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minimal attractor, then we have in-out intermittency. In t
latter case, there may be different isolated invariant sets iÃ
associated with attraction and repulsion transverse toÃ,
hence, the name ‘‘in out.’’ Another difference is that, as o
posed to on-off intermittency, in the case of in-out interm
tency the minimal attractors in the invariant subspaces do
necessarily need to be chaotic, and hence, the trajecto
may instead shadow a periodic orbit in their ‘‘out’’ phas
@10#. A schematic representation of this scenario is depic
in Fig. 1.

There is now a good understanding of the statistical pr
erties of on-off intermittency@5,16–18# and some properties

FIG. 1. Schematic diagram showing a typical trajectory tha
in-out intermittent to an invariant submanifoldMI , showing the
‘‘in’’ and ‘‘out’’ phases. The invariant submanifoldMI contains an
invariant set that decomposes into a transversely attracting ch
saddleAi and a transversely unstable periodic orbitAo that is an
attractor withinMI . The ‘‘out’’ phase is defined by the trajector
being within the isolating neighborhoodUo of Ao. In this case, the
‘‘in’’ phase is modeled by a random walk in the logarithmic di
tance fromMI whereas the ‘‘out’’ phase shows uniform exponent
growth away fromMI , shadowing the unstable manifold ofAo.
©2001 The American Physical Society04-1
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of in-out @10# intermittency where they differ. Numerica
support has also been obtained for both on off@6,19,20# ~for
experimental evidence see@21,22#! and in out@23,24#.

Both of these types of intermittency rely on the presen
of invariant subspaces. In real systems, however, invar
subspaces are only expected to occur approximately; e
as a result of the lack of precise symmetry or due to
presence of noise. This has motivated a number of studie
the effects of noise on the statistics of on-off intermitten
@25–30#. Our aim here is to make an analogous study of
effects of noise in the case of in-out intermittency, by ma
ing a continuum version of the Markov model considered
@10# in order to highlight the similarities and differences. W
do this by considering an analog of the drift-diffusion mod
employed by@5,17,25,26# for on-off intermittency.

The structure of the paper is as follows. In Sec. II w
derive and analyze a model of in-out intermittency that c
sists of a drift-diffusion equation with delay integral boun
ary conditions, based on extracting the important informat
from a dynamical model. We also discuss how to estim
parameters in the drift-diffusion model. Section III adap
these to include additive noise in the transverse variable
well as in the tangential variable. We predict transitions
the dynamics on adding noise to the tangential variab
Section IV discusses the estimation of the parameters in
model and obtains scalings and transitions on changing
noise amplitude. These predictions are tested on a pl
mapping given in@10#. Finally, Sec. V gives a discussion an
interpretation of the results.

II. MODELING IN-OUT INTERMITTENCY

A. The dynamical model of in-out intermittency

Suppose that we have a dynamical system that evolve
Rn, such that some subspaceMI @dim(MI),n# of Rn is dy-
namically invariant. For definiteness, we consider a dyna
cal system generated by iterating some smooth mapf :Rn

→Rn, in which casef (MI)#MI . If there is a minimal Mil-
nor attractorA for this system such thatAùMI5A0 is not a
minimal Milnor attractor for the system restricted toMI ,
then we say the attractor is in-out intermittent@10#. ~Recall
that A is a Milnor attractor if it has a basin with positiv
Lebesgue measure, such that any smaller invariant set h
basin with smaller measure. An attractor is minimal if
contains no proper subsets that are attractors.!

Suppose now thatg(t) is a typical trajectory in the basin
of A, such that thev-limit set of g(t) is the attractorA. We
assume thatAo'Ã is a Milnor attractor contained withinÃ
for f uMI

. We assume also that the only transversely stable

in Ã is someAi'Ã that is a repeller forf uMI
. Each of the

invariant setsAi ,o is assumed to support invariant measu
m i andmo that govern the behavior of typical trajectories
A on the approach toAi ,o.

We assume thatAi is transversely attracting on averag
@i.e., its largest transverse Lyapunov exponent~L.E.! with
respect tom i is lT

i ,0# andAo is repelling on average~i.e.,
its largest transverse L.E. with respect tomo is positive!. We
refer to Ai as the ‘‘in’’ dynamics andAo as the ‘‘out’’ dy-
06620
e
nt
er
e
of

e
-

l

-

n
te

as

s.
he
he
ar

on

i-

s a

et

s

namics for obvious reasons; see Fig. 1 for a schematic
resentation.

1. Identifying the ‘‘in’’ and ‘‘out’’ phases

Suppose now that we have a projectionP:Rn→MI and a
neighborhoodUo,MI containingAo, such thatf (Uo).Uo

~i.e. it is absorbing forf uMI
) @31,32#. We identify a pointx in

the phase space as being on the ‘‘out’’ phase ifP(x)PUo

and as being on the ‘‘in’’ phase otherwise. Note that there
an arbitrary choice of neighborhoodUo and projectionP;
however, we will be interested in statistical properties of t
‘‘out’’ phases that are independent of these.

For concreteness~and to correspond with examples stu
ied later! we assume that the dynamics onAo is periodic and
the dynamics onAi is chaotic~with many ergodic measure
supported onAi). However, in principle, the same type o
model applies as long as at least one ofAi or Ao is chaotic.
We are interested in modeling the asymptotic fluctuation
the distance of some typical trajectoryg(t) from MI . Sup-
pose we have a function

y~ t !5pg~ t !, ~1!

where p:Rn→R is a smooth function such thatp21(0)
5MI . Then we sayp projects the phase space onto th
transverse variable y. Clearly, we have lim inft→`uy(t)u50
but lim suptuy(t)u.0. Moreover, such a transverse variab
will, because of invariance ofMI , spend arbitrarily long
times neary50; the so-called laminar phases. The object
this paper is to give a statistical description of the behav
of a genericy(t) measuring the distance fromMI for in-out
intermittent dynamics.

B. A Fokker-Planck model for in-out intermittency

1. In terms of a logarithmic transverse variable z

We start with a transverse variabley5p(g) and setz5
2 lnuyu; we model the behavior ofz as follows. During the
‘‘in’’ phase, we model the behavior as though it is a line
skew product forced by the chaotic ‘‘in’’ dynamics and w
assume, by an appropriate scaling, thatuyu,1 for all time.
We model the behavior as a drift-diffusion process inz>0
with drift 2lT

i .0 per unit time and diffusionb2 per unit
time subject to reflection boundary conditions atz50. We
assume that the trajectory leaks onto the ‘‘out’’ phase a
rate e.0 per unit time~this is given by the most positive
tangential L.E. ofm i).

On the ‘‘out’’ phases, we assume that there is a fix
linear expansion forced by the periodic ‘‘out’’ dynamic
This translates to a deterministic growth in thez variable at a
rate 2lT

o,0. Oncez reaches 0, we assume that the traje
tory is forced to reinject to the ‘‘in’’ dynamics. For conve
nience, from here on we define

c5lT
o ,

l5lT
i ,
4-2
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and note thatc.0, whereasl may be positive or negative in
what follows.

Let the probability density at timet of the distribution of
z values in (z,z1dz) on the ‘‘in’’ phase be given by
P(z,t)dz and those on the ‘‘out’’ phase be given b
R(z,t) dz. Our model translates to a forward Kolmogoro
equation forP of the form

]P

]t
5

]G

]z
2eP, ~2!

where the second term on the right-hand side represent
leakage into the ‘‘out’’ phase and

G~z,t !5b2/2
]P

]z
1lP ~3!

represents the flux of trajectories at (z,t). The dynamics for
R on the ‘‘out’’ phases is simply given by the hyperbol
equation

S ]

]t
2c

]

]zDR5eP. ~4!

This equation may be solved exactly to give

R~z,t !5
e

cEz

`

PS x,t2
x2z

c Ddx, ~5!

which is unique up to the addition of an arbitrary functio
j(x1ct). The total probability of being in the ‘‘in’’ or
‘‘out’’ chain is then given by

F i~ t !5E
0

`

P~z,t !dz, Fo~ t !5E
0

`

R~z,t !dz, ~6!

respectively. We assume also that

G~0,t !1cR~0,t !50 ~7!

at z50, which corresponds to reinjecting trajectories rea
ing z50 of the ‘‘out’’ chain back into the ‘‘in’’ chain. If we
define the total overall probability of being in the ‘‘in’’ an
‘‘out’’ chains by

F~ t !5F i~ t !1Fo~ t !, ~8!

then we have

]F

]t
5E

0

`S ]P

]t
1

]R

]t Ddz

5E
0

`S ]G

]z
2eP1c

]R

]z
1ePDdz

5G~0,t !1cR~0,t !

50, ~9!

implying thatF(t) is a constant. We therefore stipulate th
by normalization
06620
the

-

t

F~ t !51 ~10!

for all t. Thus, the Fokker-Planck model of in-out interm
tency ~in the absence of noise! is the closed system consis
ing of the linear equation~2! for P(z,t) on zP@0,̀ ) subject
to the delay integral boundary condition~7! and normaliza-
tion condition~10!.

2. In terms of the transverse variable y

The drift-diffusion model in the variablez may be trans-
lated into one for the original transverse variabley5e2z as
follows: Let the probability density at timet of the distribu-
tion of y values in (y,y1dy) on the ‘‘in’’ phase be given by
Q(y,t) dy and those on the ‘‘out’’ phase be given b
S(y,t) dy. Note that~assumingy.0),

P5Udy

dzUQ5yQ, R5Udy

dzUS5yS, ~11!

and so the system governingQ(y,t) andS(y,t) is given by

]Q

]t
5

b2

2

]

]y S y
]

]y
~yQ! D2l

]

]y
~yQ!2eQ, ~12!

S5
e

cyE0

y

QS w,t1
ln y2 ln w

c Ddw, ~13!

with the boundary conditions given by

15E
0

1

@Q~y,t !1S~y,t !#dy, ~14!

05
b2

2 Fy
]

]y
~yQ!G2lyQ1S at y50. ~15!

Observe that in terms of these variables, we have

F i5E
0

1

Q~y,t !dy, Fo5E
0

1

S~y,t !dy. ~16!

Moreover, we find

]F i

]t
5G~0,t !2eF i . ~17!

C. Stationary distributions; noise free

Steady solutionsP(z,t)5p(z) of ~2! will satisfy

b2

2
pzz1lpz2ep50 ~18!

with boundary conditions given by Eqs.~7! and ~10!. This
may easily be solved to give a solution

p~z!5Aem2z1A1em1z, ~19!

where
4-3
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m65
2l6Al212eb2

b2
. ~20!

Note that ife.0, thenAl212eb2.ulu and som2,0 and
m1.0 always, as long ase.0. A similar result was found
for the Markov model of in-out intermittency discussed
@10#. We therefore write

m5m2 , A5A2 , ~21!

and note that the only solutions of Eq.~18! with finite mass
are such thatA150. Calculating the stationary mass in th
‘‘out’’ chain, we have

r ~z!5Bemz, ~22!

where2cmB5eA and soB52(e/cm)A. This means that

F i5
A

m
, Fo5

B

m
. ~23!

Normalizing so that the total mass is unity, we have

15
A

m
1

B

m
, ~24!

which gives

A5
cm2

cm2e
, B5

em

e2cm
, ~25!

thus ensuring that the boundary condition is also satisfie

G~0,t !1cR~0,t !5S b2m2

2
1lm2e DAemt50. ~26!

These steady exponential distributions correspond to a
braic distributions for theQ(y) andS(y). In Sec. IV A, we
discuss how the free parameters in this model may be
mated from the dynamical data.

D. Contrasts with on-off intermittency

Note that one could take a simpler dynamical model in
form of a drift-diffusion equation but with no differentiatio
into ‘‘in’’ and ‘‘out’’ phases. This is equivalent to assumin
thate50 in the model~i.e., reducing it to an on-off process!
and leads to an exponential probability distribution of t
form

p~z!5Ae2(l/2b2)z. ~27!

However, estimation of the constantsl, b presents a prob
lem as we will discuss in Sec. IV B.

For in-out intermittency, the ‘‘out’’ phase is distinct from
other invariant sets that we may choose within the invari
subspace in the following sense. There are constantsE,F
.0 such that if any trajectory enters the ‘‘out’’ phase a
distanced from the invariant subspace, then there is a mi
mum residence time in the ‘‘out’’ phase given by
06620
e-

ti-

e

t

-

E2F ln d. ~28!

In particular, the minimum ‘‘out’’ phase residence time go
to infinity asd→0.

III. A MODEL FOR IN-OUT INTERMITTENCY WITH
ADDITIVE NOISE

The model of Sec. II may now be easily generalized
model in-out intermittency in the presence of unbiased ad
tive noise. At first we will investigate the case where t
noise is added only to the transverse variables and later
amine the case of noise added to tangential variables. It
pears that noise in the transverse variables affects scalin
a regular manner; whereas noise in the tangential varia
may lead to transitions as ‘‘in’’ and ‘‘out’’ phases merge.

A. Additive noise in the transverse variables

In presence of additive noise in the transverse variab
we use a similar approach to that of Ashwin and Stone@25#
and Venkataramaniet al. @17# to obtain a Fokker-Planck
model of the form

]Q

]t
52l

]~Qy!

]y
1

b2

2

]

]y S y
]~Qy!

]y D1
s2

2

] 2Q

]y2
2eQ,

~29!

which is similar to Eq.~12! apart from the diffusion term a
a rates2/2 corresponding to the additive noise.

1. Steady state with additive noise

We obtain a steady-state probability density distributi
in the in-out case, by calculating the contributions from bo
‘‘in’’ and ‘‘out’’ chains separately.

For the contribution from the ‘‘in’’ chain we proceed b
looking at the steady-state counterpart of Eq.~29! obtained
by demandingQ(y,t)5q(y),

2l
d~yq!

dy
1

b2

2

d

dy S y
d~yq!

dy D1
s2

2

d2q

dy2
2eq50, ~30!

which may be written in the form

1

2
~b2y21s2!

d 2q

dy2
1S 3

2
b22l D y

dq

dy
1S b2

2
2l2e Dq50.

~31!

To solve this equation, we recall that the case withe50,
corresponding to on-off intermittency, is solvable explicit
~see@17#! with the solution

q~y!5A~b2y21s2!j21/2, ~32!

wherej52l/b2. In the case of in-out intermittency withe
Þ0, we proceed by employing the~singular ats50) change
of variable
4-4
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x52
b2

s2
y2, ~33!

to rewrite Eq.~31! in the form

x~12x!
d2q

dx2
1F1

2
2xS 11

b22l

b2 D Gdq

dx
2

b222l22e

4b2
q

50. ~34!

This equation may be solved in terms of hypergeome
functions

q5A~b,s,l,e!F (a1 ,a2,1/2,x) , ~35!

where

a65
b22l6Al212b2e

2b2
5

11m6

2
, ~36!

with m6 as before, and

F (a,b,c,z)5
G~c!

G~b!G~c2b!
E

0

1tb21~12t !c2b21

~12tz!a
dt. ~37!

If uxu@1, x,0 and Re(a2b)52Al212b2e.0, this
solution may be approximated by using

F (a1 ,a2,1/2,x)'~12x!2a2
G~1/2!G@Al212b2e!/~2b2!]

G~a1!G~1/22a2!

5K~12x!2a2, ~38!

for some constantK. This then gives

q~y!'A~s21b2y2!2~12m!/2, ~39!

where A5A(b,s,l,e) is the normalization constant, an
m5m2 as before, is valid for smalluyu.

For the ‘‘out’’ chain, the steady-state probability dens
distribution may be obtained from Eq.~13! by employing the
steady-state form ofQ in the integral in this expression t
computes(y)

s~y!5
e

cyE0

y

q~w!dw. ~40!

The overall steady-state probability density distribution
then given by the sum of these two contributionsq(y)
1s(y).

2. Scaling of the mean first crossing time

To begin with, we recall that for unbiased noise on t
variabley, the mean is clearly

E~y!50. ~41!
06620
c

To determine the mean crossing time throughy50, we re-
quireA, which may be computed assuming there are no-fl
boundary conditions aty561 ~with linear behavior up to
this point!, to give

E
uyu,1

P~y!dy51. ~42!

Away from a blowout bifurcation point, it is not so eas
to obtain an explicit expression forA and thus for the vari-
ancevar(y). However, in the low-noise limits!b we may
approximate the stationary density~39! by the continuous
function

q~y!'H As212m for uyu,s/b,

A~by!212m for s/b,uyu,1,
~43!

ands(y) is calculated from Eq.~40! as

s~y!'
eA

c

3H s212m for uyu,s/b

1

2m F ~by!212m2
s2m~11m!

by G for uyu.s/b

~44!

In order to compare these results with those in the case o
off, we proceed by computing the value of the normalizati
constantA. This is given by computing Eq.~42! with P(y)
5q(y)1s(y) and gives, for this approximation,

A5cm2bF ~e2cm!~b2m2s2m!

2s2mmS e ln
s

b
~11m!1~c1e!m D G21

. ~45!

In the limit e→0, this expression reduces to the on-off ca

A5
mb

s2m~11m!2b2m
~46!

equivalent to that found in@25#. Using the approximation
that the stationary distributionsq(y) and s(y) are approxi-
mately constant foruyu,s, the instantaneous flux fromy
.0 to y,0 can then be estimated as

F5
1

2
s@q~0!1s~0!#, ~47!

where, as in@25#, we have assumed that with unbiased ad
tive noise approximately half of all initial points in@0,s#
will cross over within the next time unit. We may compu
F, by using the above solutions~43! and ~44! together with
Eq. ~45!, to obtain
4-5
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F5s2mm2b~c1e!H 2F ~e2cm!~b2m2s2m!

2s2mmS e ln
s

b
~11m!1~c1e!m D G J , ~48!

which in the limit e→0 reduces to the on-off formula

F5
1

2

s2mbm

s2m~12m!1b2m
. ~49!

This allows the calculation, in the in-out case, of the me
first crossing time given byM51/F analogous to@25#, i.e.,

M5
2

m2b~e1c!
H ~e2cm!F S b

s D 2m

21G2em ln
s

b
~11m!

1~c1e!m2J . ~50!

Considering the case wheree is asymptotically small~i.e.,
small leakage of the ‘‘in’’ dynamics! we have

M5
2

b F11
1

m S S b

s D 2m

21D1O~e,m!G . ~51!

Furthermore, if we are close to marginal stability on t
‘‘in’’ chain, l50, we havem52A2e/b and so in the limit
e→0, we recover the expression in@25#, namely,

M'
2

b
1

2

bm S S b

s D 2m

21D1O~Ae!, ~52!

with an orderAe correction. Similarly, expressions may b
obtained for other limiting cases; we give one such sca
with the numerical results in a later section.

We have attempted to find the scaling of the mean lam
length with noise intensity, analogous to@26# for on-off in-
termittency. However, the need to distinguish between
dynamics of the ‘‘in’’ and ‘‘out’’ phases means that we ca
not easily reduce the problem to a single ordinary differen
equation with the consequence that we have so far not b
able to obtain an expression as compact as that for on
However, in principle, the Fokker-Planck model~29! con-
tains all the necessary information to compute this.

B. Added noise in tangential variables

It has been noted@29# that the addition of noise to tangen
tial variables in the case of on-off intermittency has only
minor effect on the dynamics. This may be understood if
attractor withinMI is stochastically stable, i.e., if the prob
ability density with noise limits to the probability density o
the natural measure in the case of no noise. In the cas
in-out intermittency, on the other hand, there will be
threshold of noise amplitude beyond which the fine struct
in the invariant subspace is destroyed.

To be more precise, suppose we have a dynamical
nario as described in Sec. II A and the ‘‘out’’ dynamicsAo
06620
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has a basin such that the largest neighborhood ofAo con-
tained in the basin has radiusr.0, and the dynamics is
uniformly contracting ontoAo in the tangential direction at a
rateh,0. We may model the approach toAo along its weak
stable manifold by a mapxn115ehxn wherex corresponds
to the distance fromAo. Perturbing this map by~i.i.d.! noise
jn that is uniformly distributed in@2sA3,sA3# ~such that
the variance iss) we obtain an iterated function system
the formxn115ehxn1jn . We may see that fluctuations wi
drive xn to exceedr.0 if

s.r~12eh!/A3. ~53!

Consequently, we expect that the ‘‘out’’ phase and ‘‘in
phase may no longer be distinguished once the noise
reached the order of this threshold.

IV. NUMERICAL RESULTS AND SCALINGS

In order to test our model of in-out intermittency~with
and without noise! we consider a simple model mapping
the plane introduced in@10#

f ~x,y!5@rx~12x!1sxy2,1.82e2xy2y3#, ~54!

which has two parametersr P@0,4# andsPR. We may view
this as a map ofR2 to itself that leavesMI5R3$0% invari-
ant. If s50, the map has the form of a skew product over t
dynamics inx, i.e., it can be written as

f ~x,y!5@h~x!,g~x,y!#, ~55!

FIG. 2. L.E.l1 in the tangential direction andlT in the trans-
verse direction for the map~54! with s520.3 and varyingr. Initial
conditions chosen to evolve to the attractor inMI , i.e., with y50.
Observe the ‘‘periodic window’’ coincides with transverse instab
ity of the attractor inMI . In this region, one can find in-out inter
mittent attractors for the full map that are not contained inMI .
Note that the attractor with transverse L.E. approximately20.005
remains as a chaotic saddle during the periodic window; this sa
controls the in phase.
4-6
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FIG. 3. Example of time series generated
iterating~54! from a randomly chosen initial con
dition, after transient effects have died out. Th
bottom plot showsy in a logarithmic scale, and
the top second and the middle plots showx andy
on linear scales. Parameter values are fixed
(r ,s)5(3.886 15,20.3).
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h~x!5rx~12x! and g~x,y!51.82e2xy2y3, ~56!

wherexPMI . If we fix r and varys, we see that the latte
two parameters do not affect the map restricted toMI and so
are normal parameters for the system restricted toMI .

An example of the behavior of the transverse and tang
tial L.E.’s around a window of periodicity for which the ma
~54! shows in-out intermittency is depicted in Fig. 2. W
have also shown in Fig. 3 a typical time series correspondin
to the in-out intermittent behavior produced by this map. T
top panel clearly demonstrates windows of periodic lock
~corresponding to the ‘‘out’’ phases!, interspersed by chaoti
windows ~corresponding to the ‘‘in’’ and ‘‘reinjection’’
phases!. One may also clearly see from the bottom panel
exponential growth in the amplitude of the transverse v
abley during the ‘‘out’’ phases.

To study the effects of noise on in-out intermittency, it
informative to compare it with the analogous studies of
off. To do this, we chose two sets of values for the cont
parametersr ands ~namelyr 53.880 004 5,s520.3 andr
53.827 86, s50) in the map~54!, corresponding to in-ou
and on-off intermittencies, respectively. We perturbed
map with uniform noise on@0,z# for the x dynamics and
@2z,z# for the y dynamics. We have considered the tw
cases above where the noise is imposed~I! on the tangential
variablex and ~II ! on the transverse variabley.

A. Estimating the parameters for the noise-free model

Observe that the noise-free model for in-out interm
tency, after a suitable non-dimensionalization of the tra
verse variable has four parameters;l, b, e, c with an ar-
bitrary choice for application of the boundary condition
y51 after a suitable rescaling ofy. We estimate these pa
06620
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rameters as follows. We take a trajectory such that the tr
sient has decayed and we may identify parts of the trajec
as ‘‘in’’ or ‘‘out’’ phase by choice of a suitableU0. For the
map ~54! with r 53.880 004 5 ands520.3, we may define
the trajectory (xn ,yn) as being in the ‘‘out’’ phase if

min$uxn2pi u : i 51, . . . ,12%,1024,

i.e., if it approaches the period 12 attractor$pi : i
51, . . . ,12% for y50 to within 1024. Using this criterion,
we have depicted in Fig. 4 the values of the transverse v
abley at the entrance and exit of the ‘‘out’’ phases identifi
by this procedure. Note that the exit point is more or le

FIG. 4. A plot ofy at the entrance at thenth period, showing the
value at the start of the ‘‘out’’ phase~lower point! and that at the
exit from the ‘‘out’’ phase~upper point! for in-out intermittency,
plotted against event number. Observe that exit never occurs c
than a certain distance from the invariant manifold aty50. The
events appear to be independent and uniformly distributed in ti
4-7
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constant while the entrance point is distributed in a man
consistent with exponential distribution inz52 lnuyu ~see
Fig. 5!.

1. Estimatinge

Since our paper implies that probabilityF i decays from
the ‘‘in’’ phase at a ratee per unit time, this corresponds t
an exponential distribution of lengths of the ‘‘in’’ phase
with the average length of ‘‘in’’ phase being 1/e. Hence,

e5
1

Li
, ~57!

where one may easily approximate the quantity

Li5$Average length of ‘‘in’’ phase%. ~58!

For the map~54! with r 53.880 004 5 ands520.3, we es-
timate Li;56006200 and soe;0.000 186531026; see
Fig. 6.

FIG. 5. A histogram of the entrance to the ‘‘out’’ phases and
exit from the ‘‘out’’ phases for in-out intermittency for the trajec
tory considered in Fig. 4.

FIG. 6. The histogram of the lengths of the ‘‘in’’ phases for t
trajectory considered in Fig. 4. This was used to calculatee from
the inverse of the average length of the ‘‘in’’ phasest.
06620
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2. Estimating c

This is simply the largest transverse L.E. forAo, and may
in some cases be obtained analytically. It may also be e
mated numerically as the average growth rate ofuyu during
the ‘‘out’’ phases. For the example of in-out intermittenc
discussed above, we may computec to be

c;
0.1434

12
50.011 9561025, ~59!

which is the transverse L.E. of the attracting period 12 or
in MI .

3. Estimatingl and b

These parameters may be obtained by examining the
erage rate of growth during ‘‘in’’ phases. More precisely, w
pick a thresholdzth52 ln(yth) which is large and timeT
.0, and then examine all instances where the traject
starts in the ‘‘in’’ phase atz(t0)5zth and remains in the
‘‘in’’ phase for at least a timeT.

Note thatT needs to be chosen so thatz(t) does not get
too small @i.e., y(t) does not get too large# for t0,t,t0
1T and one needs to be careful to avoid limiting the traje
tory in such a way that may condition the mean or varian
we are trying to measure, for example, by choosing
threshold iny to be too large, or by choosingT to be so long
that one will enter the nonlinear range.

Subject to this, we may approximatel as the average
value of

$ ln@y~ t01T!#2 ln@y~ t0!#%/T ~60!

over this ensemble of ‘‘in’’ phases. Similarly,b may be
found as the standard deviation of this quantity from
mean value, per unit time. For the example of in-out int
mittency in map ~54! discussed above, we used up
20 000 000 points of the trajectory, withT5100 and an en-
semble of in-phase segments of the same trajectory w
zth;30 to find that

l;20.0042, b;0.0135. ~61!

where there is an expected maximum error of approxima
5% ~see Fig. 7!.

4. Check: An independent estimate of µ

Recall that the ratio of the times spent in the ‘‘in’’ to th
‘‘out’’ phases may be obtained from the stationary distrib
tions in the form

Rio5
F i

Fo
5

A

B
52

cm

e
. ~62!

Using our knowledge ofe andc, we may easily obtainm and
check this against the theoretical prediction~20!, given ap-
proximations of the quantitiesF i5$asymptotic proportion of
time spent on the ‘‘in’’ phase% andFo5$asymptotic propor-
tion of time spent on the ‘‘out’’ phase%512Pi . For the case
of in-out intermittency considered above, the above e
mates of the parameters imply that

e
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m;20.0451,

which allow us to obtain a numerical estimate forRio
;3.02 with an estimated maximum error of 15%.

Using instead the measured ratio of average length
‘‘in’’ to ‘‘out’’ phases, we obtain an estimate forRio52.56
with an estimated maximum error of approximately 10
These two estimates ofRio clearly agree to within estimate
maximum error.

Note that the neighborhoodU0 of the ‘‘out’’ dynamicsA0

must be chosen such that theU0ùMI is forward invariant. It
may be chosen as small as desired, though if it is very sm
then we will not recognize ‘‘out’’ phases unless they com
very close toMI .

B. Lack of fit to a Fokker-Planck model of on-off
intermittency

It is interesting to note that it is not possible to fit in-o
intermittent dynamical data by an on-off model. This is b
cause the on-off model requires only two parameters,
transverse L.E.l>0 and its variance per unit timeb2. If we
examine the attractor inMI , we may compute a positive
L.E. (c above!, but the variance would be zero. Altern
tively, we may compute the ‘‘in’’ phases as discussed ab
and obtain both al and ab2.0, but in that casel,0.
Thus, either choice will be invalid.

Alternatively, one could computel/b2 from the scaling
of the probability density neary50, but then it is not clear
how to make a sensible choice forl or b, and therefore, we
may determine only one of the parameters in the model.

C. Probability distribution for the case with noise

Figure 8 shows the results of three distinct ways of c
culating the asymptotic probability distribution functio
~PDF! of q(y); resp.s(y), for a fixed noise level~in this
case,zy51028): from the direct integration of Eq.~31! using
the estimate values of the parameterse, c, l, andb; from
the full analytical solution~31! and finally from the direct
numerical measure of the PDF ofQ(y).

FIG. 7. Histogram of the distribution of calculated values ofl
and estimation ofl and b from the in phases for the trajector
considered in Fig. 4~see text for details!.
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We have also plotted in Fig. 9 the influence of differe
values of the noise levelz on the transverse variabley in the
PDF of Q(y), for both in-out and on-off cases, and discu
the behavior in the figure caption.

D. Length of the average laminar phase as a function of noise

1. Noise on tangential variable

We calculated for the map~54! the scaling of the length
of the average laminar phases, as a function of the noise l

FIG. 8. Histogram of the PDF’sq(y) on the in phase ands(y)
on the out phase as a function of the transverse variabley for trans-
verse added noisesy51028 for the examples of in-out intermit-
tency in Eq. ~54! discussed in the text. Note that the analytic
solution joins the two regions,uyu,s anduyu.s/b by means of an
internal boundary layer. Note that any algebraic scaling ofq(y)
'ya implies the same scaling fors(y).

FIG. 9. Histogram of the PDFQ(y) as a function of the trans
verse variabley for transverse added noise for the examples
on-off and in-out intermittency in Eq.~54! discussed in the text
Observe that there is a power-law scaling across a wide rangey
that changes to a constant smooth density~plateau! for very smally.
The turning point corresponds, as expected, to the noise level
posed; the response of on-off and in-out intermittency to the a
tion of transverse noise can be seen to be similar.
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z. Our results are depicted in Fig. 10. As can be seen, in
case, there is a significant difference between the on-off
in-out cases. While both show very similar behaviors for lo
noise levels, at higher noise levels, the behaviors show s
distinct differences. In particular, average laminar sizes c
responding to the in-out case drop off rather sudden
whereas for the on-off case, there is an increase in the
of the average laminar phases before it too drops off s
denly. This corresponds well with the discussion in S
III B, where we argued that in the case of in out, a sudd
change in dynamics would be expected at a certain n
level. For the map considered here, we observe that the l
basin of the ‘‘out’’ dynamics is of the order 1026, which
from Eq.~53! would suggest a noise threshold that is at m
1026.

Also shown on this figure are the results for the case
on-off intermittency for the same map at a different para
eter value~see caption!. One would expect a decrease in t
average length of laminar phases untils is of the same orde
of the threshold defining the laminar phases, which in t
case is;1023. This is to be contrasted with the in-out cas
where the drop off is more sudden and occurs at much lo
noise levels~i.e., ;1026). This level of noise seems to b
enough to disrupt the periodic attractor in the invariant s
manifold and it is interesting to note that the noise level
which this occurs is of the same order of magnitude as
size of the parameter window of periodicity.

FIG. 10. The difference between on-off and in-out intermitten
shows itself qualitatively in the behavior of the average lami
phase size as a function of the noise levelz5A3s for noise addi-
tion to the tangential variablex. This illustrates the case for tangen
tial and transverse added noise to map~54!. The noise onx is
uniformly distributed in the range@0,zx#, while that ony is in the
range@2zy ,1zy#. The parameter values arer 53.880 004 5, and
s520.3. The decay for noise onx in the in-out case corresponds
the x perturbation getting large enough to destroy the basin of
traction of the ‘‘out’’ dynamics; by contrast, the addition of tange
tial noise to on-off intermittency only makes a difference at mu
larger levels.
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2. Noise on transverse variable

For the noise on the transverse variable, on off and in
behave quite similarly in terms of the average lamin
phases, showing a smoother decay than the case~I!, with the
dramatic drop occurring around 1024, which is closer to the
threshold level. As can be seen from Fig. 11, the ‘‘ou
chains, initially dominant, decay rapidly, while the ‘‘in’
chains are on average of the same size for a wide ban
noise levelss, up to values of about 1026. Note also that the
actual percentage of time spent in the ‘‘in’’ chains actua
increases at high noise levels before decaying to zero, w
the time spent in the ‘‘out’’ chains decreases monotonica

3. Average mean crossing time through yÄ0

One may similarly analyze for the model the avera
mean crossing timeM throughy50 in presence of noise on
y @case~II !#. For positive transverse L.E. (lT.0), that is for
parameter values away from the blowout point, one expe
for the case of on off a typical growth given by@25#

M'
b11j

l
s2j1O~1!. ~63!

For the on-off case,@25# predicts that at blowout point the
scaling has the asymptotic form (l→0)

M'2
2 lns

b
1O~1!. ~64!

In the in-out case, we find the scaling for smallusu, may be
approximated from the expansion of Eq.~50! in s, consid-
ering lT*0, in the form

r

t-

FIG. 11. Comparison of the average length of the laminar pha
‘‘in’’ phase and ‘‘out’’ phase as a function of the noise levels for
addition of transverse noise in the variabley; parameter values are
r 53.880 004 5 ands520.3.
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M'C11C2 ln s1C3 ln2 s1O~ ln3 s!. ~65!

We verified this for the case of in out in the map above,
using the same parameter values, except for the norma
rameter b, which was chosen such thatlT5 ln(1.82)
1b^x& r50, in order to enable us to calculate numerica
the dependence of the average mean crossing timeM through
y50 for the blowout point (lT50). In Fig. 12, we verify
the above predictions of the scaling for the mean cross
time M for the three caseslT,0, lT50 andlT.0. Note,
in particular, the caselT.0, which in contrast with the on
off case needs the term in ln2 s to be included~see Ashwin
and Stone@25# for the on-off version of Fig. 12!.

4. Probability distributions of laminar phases

We have as yet been unable to compute a closed f
approximation for the probability distribution of the lamin
phases for in-out intermittency for the Fokker-Planck mod
but Fig. 13 suggests that the scalings are analogous to t
obtained in@10# for the discrete Markov model. Note th
presence of an inflection point and ‘‘shoulder’’ in the in-o
distribution corresponding to a relatively high number
long laminar phases. This shoulder appears to persist on
dition of noise. By contrast, the distribution for on-off lam
nar phases does not show such a shoulder.

V. DISCUSSION

We have proposed a continuum model of the statistics
the transverse variable for in-out intermittency in the form
a Fokker-Planck model with delay integral boundary con
tions to model the deterministic propagation of probabil
density near the unstable manifold of the ‘‘out’’ phase. Th
presupposes that the ‘‘out’’ dynamics are periodic in the
variant manifold, but if they are not then similar mode

FIG. 12. Mean crossing times of variabley through zero, as a
function of noise levels, with noise added on the transverse va
able y, for three cases:lT,0,lT50,lT.0. Parameter values ar
r 53.880 004 5,n51.82, a521, ands520.3. The parameterb
is varied to obtain normal variations onlT .
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could be derived in the form of coupled Fokker-Planck eq
tions. Such models are then well adapted to model the a
tion of further noise.

Although in-out intermittency has a number of similaritie
to on off, we see that there are differences in their statist
properties. In particular, the addition of noise ‘‘tangentia
to the dynamics may lead, at least in our examples, to
nificant changes in behavior at much lower noise levels t
for on off.

We have demonstrated how, given an in-out intermitt
signal, it is not possible to sensibly fit the parameters
on-off intermittency from the dynamical data availabl
There is clearly a lot more one could examine in such m
els, for example, the scalings of the variance and mean
crossing times with the various model parameters and n
level; there is work presently in progress that aims to und
stand the variation of such scalings on change of sys
parameters.

Implicit in our paper here is the assumption that the in-o
intermittent attractor supports a natural ergodic invari

FIG. 13. Scalings of the probability distribution of lamina
phases for~a! on-off and~b! in-out intermittency with noise added
in the transverse direction. The noise perturbations ony are uniform
in @2sy ,1sy#. Parameter values are~a! (r ,s)5(3.827 86,0) and
~b! (r ,s)5(3.880 004 5,20.3). Observe that the on-off statistic
limit do not show the presence of the inflexion point clearly visib
in the in-out statistics.
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measure, such that almost all points attracted to the attra
will display the same stationary statistical behavior. A
though we do not doubt this for the models considered so
it does seem possible that in-out intermittency may give
in certain circumstances to behavior that is not ergodic,
one needs to bear in mind the possible existence of s
behavior.

Finally, note that for this investigation we have only co
sidered the effect of noise on the ‘‘in’’ phase of the dyna
d J

ifo

C
n
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ics; if noise is also on the ‘‘out’’ phase the delay integr
boundary condition will need to be replaced with a seco
coupled drift diffusion equation.
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@18# A. Çenys, A. N. Anagnostopoulos, and G. L. Bleris, Phy

Rev. E56, 2592~1997!.
@19# M. Ding and W. Yang, Phys. Rev. E56, 4009~1997!.
@20# H. Hata and S. Miyazaki, Phys. Rev. E55, 5311~1997!.
@21# P. W. Hammeret al., Phys. Rev. Lett.73, 1095~1994!.
@22# E. Barreto, B. Hunt, C. Grebogi, and J. Yorke, Phys. Rev. L

78, 4561~1997!.
@23# E. Covas, P. Ashwin, and R. Tavakol, Phys. Rev. E56, 6451

~1997!.
@24# E. Covas, R. Tavakol, P. Ashwin, A. Tworkowski, and

Brooke, Chaos11, 404 ~2001!.
@25# P. Ashwin and E. Stone, Phys. Rev. E56, 1635~1997!.
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