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Pathological behavior in the spectral statistics of the asymmetric rotor model
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The aim of this work is to study the spectral statistics of the asymmetric rotor nitoidedal rigid rotato).
The asymmetric top is classically integrable and, according to the Berry-Tabor theory, its spectral statistics
should be Poissonian. Surprisingly, our numerical results show that the nearest-neighbor spacing distribution
P(s) and the spectral rigiditr5(L) do not follow Poisson statistics. In particul&(s) shows a sharp peak at
s=1 while Az(L) for small values oL follows the Poissonian predictions and asymptotically it shows large
fluctuations around its mean value. Finally, we analyze the information entropy, which shows a dissolution of
guantum numbers by breaking the axial symmetry of the rigid rotator.
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I. INTRODUCTION with it. The classical Hamiltoniai of the top is given by

In the semiclassical limit1,2] there is a clear connection 1
between the behavior of classical systefregular or cha- H= E(a\]§+ bJ3+cJ3), (1)
otic) and the corresponding quantal ones. For quantal sys-
tems corresponding to classical regular systems, the spectral
statistics[ P(s) and A;(L)] follow the Poisson ensemble, WhereJ=(J;,J>,J3) is the angular momentum of the rota-
while for systems corresponding to chaotic ones the Wignefion anda=1/,, b=1/1,, c=1/1; are three parameters such
ensemble is followedsee, for example, Ref3] and refer- thatl,, I,, andl ; are the principal momenta of intertia of the
ences therein top. The Hamiltonian is classically integrable and its action
Nevertheless, some exceptions are known. The most fa@riables are precisely the three componggiss=1,2,3, of
mous case is perhaps the harmonic oscillator one, discusséte angular momenturfv].
in great detail in Refs[4,5]. It has been also found that  The quantum Hamiltoniahi is obtained by replacing the
low-energy spectral statistics of higher-dimensional sepacomponents of the angular momentum, in the classical ex-
rable Hamiltonian systems can show the level repulsion typipression of the energy, by the corresponding quantum opera-

cal for chaotic systems. Especial!y critipal in this sense ar%orsJ,, J,, andJs. The commutation rules for the operators
the systems close to the harmonic oscillators and to rectanss ipe angular momentum components in the rotating system

gular wells[6]. _ _ _ of coordinates are given by
The aim of this paper is to discuss another pathological

case: the classically integrable triaxial rotator madeke, for

instance, Ref[7]). Incidentally, this model has been used 3 3s—3J, = —itesdy, 2
very often in the description of the low-lying states of the
even-even atomic nucl¢s]. where ¢, is the Ricci tensor and,s,t=1,2,3. Note that

The asymmetric top described by the rotor model is &hese commutation rules differ from those in the fixed system
classically integrable system, but an analytical formula, as # the sign on the right-hand sid8].

function of quantum numbers, for its energy spectrum is not A usual, the two operator:t2=32+f]§+j§ and 33 are

. . 1
knowr_1. Nevertheless, numerical results can be obtained. Bgimultaneously diagonalized on the basis of eigenstatés
following the Landau approad®], the Hamiltonian operator

) o ! . . with integer eigenvalues) and k (k=-J,—J+1,...J
is split into four submatrices, corresponding to different sym—_lj) respectively. The nonzero matrix elements of the
metry classes. Each truncated submatrix is numerically di- ="’ '

agonalized. Finally, the nearest-neighbor spacing distributiouantum Hamiltoniart in the basigJ,k) are given by
P(s) and the spectral rigiditA5(L) are calculated. Surpris- ) ) )
ingly, the spectral statistics of energy levels do not follow the TABLE I. Number of states in each submatrix of the asymmetri-

predictions of Poisson statistics. cal top Hamiltonian for a fixed.
(E,9) (E,A) (0,9 (0,A)
Il. THE ASYMMETRIC ROTOR MODEL
J even Ji2+1 J/I2 J/2 J/2
Let us consider a system of coordinates with axes along odqd @-1)/2 3+1)/2 3+1)/2 (3+1)/2

the three principal axes of intertia of the top, and rotating
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A 72 h?
(J,k|H|J3, k)= Z(a+b)[J(J+1)—k2]+ ?ckz, 3
. 72
(IR k+2)=(3 k+2/H]3,k) = 5 (a= D) I-K (I —k- 1) +k+ 1) (I +k+2). (4)

transitions withk—k or k2. The absence of matrix ele-
ments for transitions between states with even andkolias
the result that the matrix of degred 21 is the direct prod- (J,18/A]3,1,9)=(J,/A|J3,1)+(J,1A[I,—-1), (D
uct of two matrices of degree$ and J+1. One of these
contains matrix elements for transitions between states with (JLAIA1I,1A)=(J,1A[3,1—(J, A3, 1), (8
evenk and the other contains those for transitions between
states with oddk [9].

It is useful to introduce a new basis given by

The quantum Hamiltoniaikl has matrix elements only for <\],k,S||q|J,k,S>:<J,k,A|H|J,k,A>:<J,k||:||J,k>, k#1,
(6

(3,k,S|H|3,k+2,5)=(J,k,AlH|J,k+2A)
=(J,k|H|J,k+2), k#0, (9

1
Jk;S)=—=(|3,k)y+|J,—k)), (3,05 =3,0), N .
= F 0T 090 (30SIAI3.29 = \ZO0AL2, k0. (10
1 We calculate the eigenvalues of each submatrix for different
|3, k;A)=—(]3,k)—|J,—k)), k=#O0. (5) values ofJ using a fast implementation, in double precision,
V2 of the Lanczos algorithm with a LAPAC cod#&0]. In Fig. 1

we plot the density of levelp(E) of each submatrix ofi

and J=1000. The results show that the density of levels is
practically the same for the four classgegE) displays a
high peak at the left center of the energy interval and a long
tail for large energy values.

By using this new basis, the total Hamiltonian matrix is de-
composed in the direct product of four submatrices by con
sidering the parity of the quantum numbereven(E) or odd
(O), and the symmetry of the state: symmeti® or anti-
symmetric Q). So the submatrices are labeled as follows:
(E,S), (E,A), (O,9), (0O,A). These are the classes of sym-

metry of the system. In Table | we show the dimension of lll. SPECTRAL STATISTICS

each submatrix for a fixed. . As previously discussed, according to the Berry-Tabor
The matrix elements of the Hamiltonidd in the new theory[11,12, given a classical integrable Hamiltonian that,
basis, with respect to the old basis, are given by written in action variabled, , satisfies the condition
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FIG. 2. Nearest-neighbor spacing distributiBfis) of the four
9 pacing (ts) =L/15. Parametera=1, b=+/2, c=1/5, andh=1.

classes of symmetry with=1000. The dashed line is the Poisson
prediction P(s) = exp(—s). Parametersa=1, b=/2, c= 5, and o _ o
h=1. spectral statistics arB(s) andA3(L). P(s) is the distribu-

tion of nearest-neighbor spacings=(E;, ;—E;) of the un-
folded levelsE; . It is obtained by accumulating the number
of spacings that lie within the bins(s+ As) and then nor-
malizing P(s) to unit. As shown by Berry and Tabgt1,12,

then, in the semiclassical limit, its spectral statistics shouldor quantum systems whose classical analogs are integrable,
follow the Poisson statistics. Note that a system of lineaP(s) is expected to follow the Poisson distribution

harmonic oscillators, whose Hamiltonian is given Hy- @

J°H
FAREAN

+0, (11)

-1, does not satisfy the previous condition. In fact, a system P(s)=exp(—s). (12
of linear harmonic oscillators is integrable but it does not
follow Poissonian statisticgt,5]. The statistic Az(L) is defined, for a fixed interval

The triaxial rigid rotator is integrable and satisfies the(_| /2| /2), as the least-square deviation of the staircase
Berry-Tabor conditior(11). Thus, one expects that the spec- f,nction N(E) from the best straight line fitting it,
tral statistics of the quantized rigid rotator should be Poisso-

nian. We shall show that is not the case.

. - 1 L/2
In general, various statistics may be used to show the As(L)= *minf [N(E)—AE—-B]%dE,
local correlations of the energy levels but the most used Lag -2
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whereN(E) is the number of levels betwedhand zero for  =|/15 for smallL but for larger values of it gets a constant
positive energy, between E and zero for negative energy. mean value with fluctuations around this mean value. These
The A5(L) statistic provides a measure of the degree of ri-fluctuations become very large by increasingin contrast
gidity of the spectrum: for a given intervél, the smaller with the Berry predictior13].
A3(L) is, the stronger is the rigidity, signifying the long-  The behavior of the density of levels(E) and of the
range correlations between levels. For this statistic the Poisspectral statisticP(s) andA;(L) does not change by chang-
sonian prediction is ing the matrix dimension, namely, the quantum numbeén
Fig. 4 we plot the density of levels and the spectral statistics
for J=2000 andJ=4000.

The results shown in the first four figures have been ob-
tained witha=1, b=2 and /5, in such a way that the
It is useful to remember that Berry, on the basis of thefotor is triaxial. It is interesting to see what happens if one
Gutwiller semiclassical formula for the density of states, ha<12nges the deformation parametrb, andc, studying the

shown thatAs(L) deviates from the universal Poissonian Jansition from axial symmetry to triaxial symmetry. To do
. 3 ) so, we take fixedb andc and modifya. In Fig. 5 we plot the
predictions for largeL: A;(L) should saturate to an

asymptotic value performing damped oscillatigas] density of levelsp(E) for six values ofa ranging froma
In Fig. 2 the spectral statistie(s) is plotted for the four =12 t0a=0. The cas@=b=\2 corresponds to the axial

: . symmetric one. The density of levegd§E) is strongly modi-
submatrices oH andJ=1000. Note that the level spectrum fied by changing the parametayi.e., by breaking the axial

is mapped into unfolded levels with quasiuniform level den-symmetry, but the spectral statistics are not, as shown by Fig.
sity by using a standard procedure described in Refl. As 6 for the P(s) distribution.

expected from the previous analysis of density of levels, To conclude this section, we discuss another statistical
P(s) is practically the same for the four classes of symmetryquantity that has been proposed to study quantum chaos: the
Moreover,P(s) has a pathological behavior: a peak near information entropyS(E) of the eigenvectofE) associated

=1 and nothing elsewhere. ComparedR(s), the spectral with the eigenvalueE of the the Hamiltonian operatdt
rigidity As(L) is less pathological. As shown in Fig. 3, [15]. Given a generic basis sff)}, the eigenvectofE) can
A;(L) follows quite well the Poisson predictions(L) be written as

Ag(L (13

)= 15
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CONCLUSIONS
[B)=2. cili), (14)

The main conclusion of this paper is that the asymmetric
wherec; are the probability amplitudes. Then, the informa-rotor is, like the harmonic oscillator, another pathological
tion entropy of the eigenvectdE) with respect to the basis case with respect to the classical-quantum correspondence
set{|i)} is defined as between the integrability and Poisson statistics. In our opin-

ion, the pathology of the asymmetric rotor model is more
interesting because, unlike the harmonic oscillator, the asym-

S(E)=—2 |ci|?In]ci|2. (15  metric rotor satisfies the conditions of the Berry-Tabor
' theory. The presence of hidden symmetries could explain the

The idea is that, just as in the classical theory a dissolution opathological behavior of spectral statistics but such symme-
integrability (with the KAM mechanism simply means the tries have not yet been identified. For the sake of complete-
onset of chaotic motion, in quantum systems a dissolution of€ss we remember that, as stressed by [Rd}) in classical
quantum numbers may indicate the onset of quantum chadgechanics, the asymmetric rotor and the nonlinear pendulum
(see also Ref[16]). In Fig, 7 we show the information en- are intimately linked and form the basis for many studies of
tropy S(E) of the eigenvectors of the Hamiltonian matrix of nonlinear dynamics. Finally, we have shown that the infor-
symmetry class E,S) with respect to the axial symmetric mation entropy of eivenvectors with the respect to the axial
basis setJ,k,S), calculated for different values of the defor- symmetric basis set gives a clear signature of the breaking of
mation parameten. As expected, if the system has axial axial symmetry of the rigid rotator, but the rigid rotator is
symmetry @=/2) then the information entrop$(E) is ev-  always classically integrable.

erywhere zero. By deforming the system, i.e., by breaking

the axial symmetryS(E) becomes positive and it is larger in

the central part of the energy spectrum. It is important to ACKNOWLEDGMENTS
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