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Self-affine nature of the stress-strain behavior of thin fiber networks
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The stress-strain behavior of toilet paper is studied. We find that the damaged parts of stress-strain curves
possess a self-affine scaling invariance. Moreover, we find that the stress-strain behavior and the rupture line
roughness are characterized by the same scétogst exponentH, which is not universal: rather it changes
from sample to sample. The variations Bnare mainly due to fluctuations in the paper structure, which are
larger than statistical errors within a sample. Furthermore, the same exponent governs the changes in the
stress-strain curve as the strain rate increases. The fractal damage model is employed to explain experimental
observations.
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Fiber networks form a class of materials in which disorder Several mechanical tests were carried out on a 4505
plays an important role in mechanical behavidr—3]. INSTRON testing machine. The deformation rate was con-
Whether the material in question is paper, a glass fiber matrolled by grip displacement speeds$u/dt) of 0.5, 1, 2.5, 5,
or a stochastically oriented fiber composite, the local stres$0, and 100 mm/min, respectively. The stress-strain measure-
varies widely due to local density variations and fluctuationgment rate was 50 points/sec. Toilet paper possesses aniso-
in the local stress transfél]. These fluctuations are mani- tropic mechanical properties associated with a preferred fiber
fested in the stochastic nature of rupture lines. It was foundrientation in the machine direction. In this work, we em-
that crack traces in solids are not at random, instead thegloyed paper sheets of lengthb=10cm and widthW
possess self-affine invariance, characterized by a well=5 cm, which were loaded in the machine direction of pa-
defined crack roughnessiurst exponentH [4—7]. That is, per. At least 30 paper sheets were tested for each displace-
if a crack trace is represented by a single-valued functionment speed(deformation rates =L ~‘du/dt=0.005, 0.01,
z(x), then z(Ax)=A"z(x) for any A>0, where =" de- 0.025, 0.05, 0.1, and 1 min, respectively.
notes equality in a statistical sense. Crack traces in a paper Toilet paper possesses a linear elastic behavior up to the
possess a statistical self-affine invariance within a wide butensile stressry, [see Fig. 18)]. This indicates that an indi-
bounded range of scale lengih,<x< &, where the lower, vidual fiber is linearly elastic up to its rupture threshold.
/o, and the upperé., cutoffs are determined by the paper However, different fibers achieve rupture thresholds at dif-
structure[8]. Generally, scaling properties of rough inter-
faces(specifically cracksare more complef5,9,10. :

Instead of a single crack growth, the failure of fiber net- 5 10 =12479¢i
works may also occur as the culmination of progressive dam- R®=0.9919,1
age, involving complex interactions between multiple defects
and growing microcrack$1,3,7,11. In such a case, the sl
stress-strain curve shows a stochastic nature. This fractur&
behavior is characteristic of many disordered fibrous materi-‘g
als, such as fiber-reinforced composites and various kinds o 4 |
paper[1,7]. The interaction between multiple defects and
several characteristic scales present a considerable challenc
to the modeling and prediction of rupture. .

_In _this wqu, we .study the failure of toilet paper under 0 Eu 0.04 008  gnu €
uniaxial tensile loading. The paper can be treated as a quasi
planar network with an asymmetrically orientated distribu-

"
o

tion of fibers[2]. The fiber distribution is not random, but o1 s - 0ses2(0ei® ™ o b
possesses long-range mass density correlations of a powe » o
law type[12]. The latter indicates thémulti-) fractal nature 3 R =09972 .-
. . kS o
of the paper structurel 3]. The thickness and areal density of 14 " 501522 0.232
. . ; - ; = 0.1522(de/dt)
the toilet paper display considerable variations in accordance
with a normal distribution with meanb=0.11*+0.06 mm R? = 0.9451
and p=236.8+0.3 g/nf, respectively. 0 0 ] . 3
In(de/dlt)
*Email addresses: balankin@iris.esimez.ipn.mx and FIG. 1. (a) Engineering strain-stress curve afiil graphs ofé
balankin@hotmail.com andS( ) versus strain rate for toilet paper.
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in the range 0.005&£<0.1min 1. These relations fail when
the strain rate iss=1 min~. The reason for this change
may be the change in the failure regifiet], which will be
studied in a future work.

The scaling properties of decreasing pai$; (&mna) Of
stress-strain curveld=ig. 1(a)] and rupture linegFig. 2(b)]
were studied with the use of tlENOIT 1.2s0ftware[15]. For
this purpose the fractured sheets were scanned in black and
white BMP format[see Fig. 2b)] with a 600 dpi resolution.
Then the rupture lines were plotted using the Scion Image
software[16] as single-valued functiong(x) in the Excel
(XLS) format[see Fig. Zo)].

The scaling(Hurs? exponent of each rupture ling(x),
as well as of each stress-strain cureés), was determined
by five different statistical methods adopted in H®NOIT 1.2
software [15]: variogram, roughness-length, wavelets,
power-spectrum, and rescaled-ran§#S) analysis. Specifi-
cally, for a self-affine curve, the averaged value of the
squared difference between pairs of points at a distance
(variogram scales withA asV=A2", the root-mean-square
roughness scales as A", wheresis the standard deviation,
and consequenthR/SxAH, whereR is the range taken by
the valuez in the rangeA andSis the standard deviation of
the first difference oz within the intervalA. The structure

z factor or power spectrum of self-affine curves scalePas
200 + «qf, whereq is the wave vector an8=1+2H. The wave-

let method is based on the property that the wavelet trans-
form of a self-affine curve has self-affine propertj&s].

Figures 3a)—3(d) show the fractal graphs obtained by the
100 + aforementioned methods for the stress-strain c(tvand its
corresponding rupture lin€) in toilet paper. The data pre-
sented in Fig. 3 suggests that the engineering stress-strain
curve possesses a self-affine invariance, i.e.,

0 } t }
9 00 600 g * o(Ae)=N"%0(e), with a=H, (2
FIG. 2. () Damage andb) rupture line images for toilet paper, ] )
and (c) graph of rupture line. whereH is the rupture line roughnegsiurst exponent,\

>0 is a constant, andy<e, Ae<&pmax-

ferent deformations; hence, the network failure represents a From the experimental data we note that the five afore-
progressive damage from multiple microcradieee Fig. mentioned methods lead to the same value of the roughness
2(a)]. As a result the engineering stress-strain curve display§xponenta=H for the stress-strain curve and the corre-
a stochastic behavigsee Fig. 1a)]. In the very final stage, SPonding rupture lin¢Fig. 4@)]. At the same time, we find
the process of coalescence of individual microcracks give§1at the scaling exponent is not universal; rather it changes
rise to a single rupture lingsee Fig. 20)]. from sample to sample in accordance with a normal distri-
It was also observed that all the stress-strain curve paraniution [Fig. 4(c) and Fig. 4d)]. These variations are larger
eters(Young modulusE, tensile strengthry,, deformation ~than statistical errors within a sample and they might be
thresholde,, maximum deformatio .., and deformation  attributed to the sample-to-sample variation in the network
range of damagé= & ey Vary from sample to sample, structure. On the other hand, we note that the mean value of
following a normal distribution. The means and standard de«=H does not depend on the strain rgsee Fig. 4b)].
viations (S) for these distributions are functions of the strain  1he observed failure behavior of the toilet paper may be

deformation rate: [see, for example, Fig.()]. Specifically, u_nderstood on the basis of a fr_actal damage _model of the
we find that fiber network. Namely, the elastic energy function of a net-

work formed byN elastic fibers can be represented ls

E=245%7 MPa, oy,=2.8%%% MPa, =0.5E(N)e?, whergE(N)onN(s) js the elastic mogiulus
of the network,E, is the fiber elastic modulus, and is a
B - 00661 3 017 strictly decreasing continuous function of strain(N de-
em=0.017k » Emac 0.1677, creases every time as one fiber fail$he functionN(e)
obeys the following properties:N(e<<e;<ep)=Ng,
5=0.152222%21 g(5)=0.685207242 (1)  N(emaw=0; furthermoredN/de =0, where the symbol”
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FIG. 3. Fractal graphs of the
stress-strain curvél), and corre-
sponding rupture lin€2) for toilet
paper{see Figs. (a) and Zb)] ob-
tained by:(a) the variogram,(b)
the roughness-lengthc) the re-
scaled range, an(d) the power-
spectrum methods.

denotes “equal with exception of a Lebesgue set of zeraepresented by the Devil's staircags] associated with the

measure,” andlN/de =, whene=¢;, i=1,2,...N, where
g; Is the failure strain of théth fiber, which is a function of

Cantor set &;) of fractal dimensiorD. The latter is deter-
mined by the fractal dimension of the damaged enseifble

the strain ratdsee Eq.(1)]. The simplest stepwise function which is related to the fractal dimension of the fiber network,

that satisfies these conditions is

T
a &06
0.8 ',0
. .b‘[{o -
g,oo,od’
0.7 + o '8' .’ H2= 0.99620
o R"=0.7875
b
0.6 4= ; :
0.6 0.7 0.8 o
T | b
0.77 1 H =0.75+0.03
O
075+ —Q @ Q
. . ¢
O e
0.73 + *
0.71 ' :
0.001 0.01 0.1
In(de/dt)

2<Dy\=3[13]. Under these assumptior$(s) possesses a
statistical self-affine invariance, i.e.,

N(8i<8<8i+1):C0nSt, N(Si):No[l_(Ei/Smax)],

0<g <e,<---<eN=Emax-

In this way, a fractal elastic networkl(¢>¢4) can be

N(Ae)=N""N(e), where A\>0,
e1<e, ANe<Spax and n>0.
S
c
\
o1
FIG. 4. (a) Graph ofH versus
a, for tests with a deformation
rate e =0.01 min %, (b) the mean
0 values ofH (circles anda (rhom-
0.3 0.9 H buse$ versus strain rate, and sta-
tistical distributions of (¢c) «
(bars—experimental data, solid
— line—fitting by normal distribu-
34 d tion: significance level according
to the x? test with fitnessp
=0.936), and (d) H (bars—
2 T experimental data, solid line—
fitting by normal distribution:p
=0.7622.
14
0 }
0.3 0.5

066131-3



BALANKIN, SUSARREY, AND BRAVO

Using the properties of the Devil's staircgdéd and some
conventional thermodynamic assumptidig] it is easy to
derive the constitutive equation for an eladtiaulti-) fractal
network

7V
o= %E E(N(g))e=EgN(g)exo ¢,

which obeys a self-affine scalin@) with «=7—1, within
the intervale<e, Ne<epay. On the other hand, under the
assumption that the rupture fractal dimensp relates to
the fractal dimension of the damaged ensembldas-D
-1 [5,7], we have &H=2-Dir=3-D=<1.
Taking into account the second equality of E2), we obtain
l<yp=H+1=4-D<2.

Furthermore, we speculate that Edj) may be cast in the
form

5=0.14541"H,

S(6)=0.6852", ©)
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at each deformation rate was divided in two subsets, associ-
ated with specimens with the lowest and the highest values
of H. So, we obtained two sets of data with different means

H=a=0.645-0.04 andH=«a=0.848t0.06, respectively.

For these sets, the means and standard deviatioAscdle

as

Soc 80'367, S D( 5) o 80'639

RIS 5(0)e 0% @

respectively. One can see that relatiqd$ are in a good
agreement with Eq(3).

From Eq.(3), it follows that for a smoothKl = 1) rupture
line, one may expech=const, andSD(5)x=e, while for a
random H=0.5) damageg=S(5)x&%5. A further study on
different materials, including the fractal analysis of the net-
work structure, is needed in order to confirm the general
character of the fractal failure behavior shown in E@,

(3).

and J«e

i.e., the failure dynamics is governed by the same Hurst ex- This work was supported by the Mexican Government

ponent, which depends on the network struct(see also

under the CONACyYT Grant No. 34951-U and by the Mexi-

Refs.[8,13)). To verify this assumption, a set of experimentscan Oil Institute under the Pipeline Integrity Program.
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