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Self-affine nature of the stress-strain behavior of thin fiber networks
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The stress-strain behavior of toilet paper is studied. We find that the damaged parts of stress-strain curves
possess a self-affine scaling invariance. Moreover, we find that the stress-strain behavior and the rupture line
roughness are characterized by the same scaling~Hurst! exponentH, which is not universal: rather it changes
from sample to sample. The variations onH are mainly due to fluctuations in the paper structure, which are
larger than statistical errors within a sample. Furthermore, the same exponent governs the changes in the
stress-strain curve as the strain rate increases. The fractal damage model is employed to explain experimental
observations.
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Fiber networks form a class of materials in which disord
plays an important role in mechanical behavior@1–3#.
Whether the material in question is paper, a glass fiber m
or a stochastically oriented fiber composite, the local str
varies widely due to local density variations and fluctuatio
in the local stress transfer@1#. These fluctuations are man
fested in the stochastic nature of rupture lines. It was fou
that crack traces in solids are not at random, instead t
possess self-affine invariance, characterized by a w
defined crack roughness~Hurst! exponentH @4–7#. That is,
if a crack trace is represented by a single-valued func
z(x), then z(lx)>lHz(x) for any l.0, where ‘‘>’’ de-
notes equality in a statistical sense. Crack traces in a p
possess a statistical self-affine invariance within a wide
bounded range of scale length,l 0,x,jc , where the lower,
l 0 , and the upper,jc , cutoffs are determined by the pap
structure@8#. Generally, scaling properties of rough inte
faces~specifically cracks! are more complex@5,9,10#.

Instead of a single crack growth, the failure of fiber n
works may also occur as the culmination of progressive d
age, involving complex interactions between multiple defe
and growing microcracks@1,3,7,11#. In such a case, the
stress-strain curve shows a stochastic nature. This frac
behavior is characteristic of many disordered fibrous mat
als, such as fiber-reinforced composites and various kind
paper @1,7#. The interaction between multiple defects a
several characteristic scales present a considerable chal
to the modeling and prediction of rupture.

In this work, we study the failure of toilet paper und
uniaxial tensile loading. The paper can be treated as a qu
planar network with an asymmetrically orientated distrib
tion of fibers @2#. The fiber distribution is not random, bu
possesses long-range mass density correlations of a po
law type @12#. The latter indicates the~multi-! fractal nature
of the paper structure@13#. The thickness and areal density
the toilet paper display considerable variations in accorda
with a normal distribution with meansh50.1160.06 mm
andr536.860.3 g/m2, respectively.
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Several mechanical tests were carried out on a 4
INSTRON testing machine. The deformation rate was c
trolled by grip displacement speeds (du/dt) of 0.5, 1, 2.5, 5,
10, and 100 mm/min, respectively. The stress-strain meas
ment rate was 50 points/sec. Toilet paper possesses a
tropic mechanical properties associated with a preferred fi
orientation in the machine direction. In this work, we em
ployed paper sheets of lengthL510 cm and width W
55 cm, which were loaded in the machine direction of p
per. At least 30 paper sheets were tested for each displ
ment speed~deformation rate«̇5L21du/dt50.005, 0.01,
0.025, 0.05, 0.1, and 1 min21, respectively!.

Toilet paper possesses a linear elastic behavior up to
tensile stresssM @see Fig. 1~a!#. This indicates that an indi-
vidual fiber is linearly elastic up to its rupture threshol
However, different fibers achieve rupture thresholds at d

d FIG. 1. ~a! Engineering strain-stress curve and~b! graphs ofd
andS(d) versus strain rate for toilet paper.
©2001 The American Physical Society31-1
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ferent deformations; hence, the network failure represen
progressive damage from multiple microcracks@see Fig.
2~a!#. As a result the engineering stress-strain curve disp
a stochastic behavior@see Fig. 1~a!#. In the very final stage
the process of coalescence of individual microcracks gi
rise to a single rupture line@see Fig. 2~b!#.

It was also observed that all the stress-strain curve par
eters~Young modulusE, tensile strengthsM , deformation
threshold«M , maximum deformation«max, and deformation
range of damaged5«max2«M! vary from sample to sample
following a normal distribution. The means and standard
viations~S! for these distributions are functions of the stra
deformation rate«̇ @see, for example, Fig. 1~b!#. Specifically,
we find that

E5245«̇0.087 MPa, sM52.89«̇0.0085 MPa,

«M50.0171«̇20.0661, «max50.16«̇0.17,

d50.1522«̇0.2321, S~d!50.6852«̇0.7242, ~1!

FIG. 2. ~a! Damage and~b! rupture line images for toilet pape
and ~c! graph of rupture line.
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in the range 0.005<«̇<0.1 min21. These relations fail when
the strain rate is«̇51 min21. The reason for this chang
may be the change in the failure regime@14#, which will be
studied in a future work.

The scaling properties of decreasing parts («M ,«max) of
stress-strain curves@Fig. 1~a!# and rupture lines@Fig. 2~b!#
were studied with the use of theBENOIT 1.2software@15#. For
this purpose the fractured sheets were scanned in black
white BMP format@see Fig. 2~b!# with a 600 dpi resolution.
Then the rupture lines were plotted using the Scion Ima
software@16# as single-valued functionsz(x) in the Excel
~XLS! format @see Fig. 2~c!#.

The scaling~Hurst! exponent of each rupture line,z(x),
as well as of each stress-strain curve,s~«!, was determined
by five different statistical methods adopted in theBENOIT 1.2

software @15#: variogram, roughness-length, wavele
power-spectrum, and rescaled-range (R/S) analysis. Specifi-
cally, for a self-affine curve, the averaged value of t
squared difference between pairs of points at a distancD
~variogram! scales withD asV}D2H, the root-mean-square
roughness scales ass}DH, wheres is the standard deviation
and consequently,R/S}DH, whereR is the range taken by
the valuez in the rangeD andS is the standard deviation o
the first difference ofz within the intervalD. The structure
factor or power spectrum of self-affine curves scale asP
}qb, whereq is the wave vector andb5112H. The wave-
let method is based on the property that the wavelet tra
form of a self-affine curve has self-affine properties@15#.

Figures 3~a!–3~d! show the fractal graphs obtained by th
aforementioned methods for the stress-strain curve~1! and its
corresponding rupture line~2! in toilet paper. The data pre
sented in Fig. 3 suggests that the engineering stress-s
curve possesses a self-affine invariance, i.e.,

s~l«!5l2as~«!, with a5H, ~2!

whereH is the rupture line roughness~Hurst! exponent,l
.0 is a constant, and«M,«, l«,«max.

From the experimental data we note that the five afo
mentioned methods lead to the same value of the rough
exponenta5H for the stress-strain curve and the corr
sponding rupture line@Fig. 4~a!#. At the same time, we find
that the scaling exponent is not universal; rather it chan
from sample to sample in accordance with a normal dis
bution @Fig. 4~c! and Fig. 4~d!#. These variations are large
than statistical errors within a sample and they might
attributed to the sample-to-sample variation in the netw
structure. On the other hand, we note that the mean valu
a5H does not depend on the strain rate@see Fig. 4~b!#.

The observed failure behavior of the toilet paper may
understood on the basis of a fractal damage model of
fiber network. Namely, the elastic energy function of a n
work formed byN elastic fibers can be represented asU
50.5E(N)«2, whereE(N)5E0N(«) is the elastic modulus
of the network,E0 is the fiber elastic modulus, andN is a
strictly decreasing continuous function of strain« ~N de-
creases every time as one fiber fails!. The functionN(«)
obeys the following properties:N(«<«1,«M)5N0 ,
N(«max)50; furthermore,dN/d«>0, where the symbol ‘‘>’’
1-2
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FIG. 3. Fractal graphs of the
stress-strain curve~1!, and corre-
sponding rupture line~2! for toilet
paper@see Figs. 1~a! and 2~b!# ob-
tained by: ~a! the variogram,~b!
the roughness-length,~c! the re-
scaled range, and~d! the power-
spectrum methods.
er

n rk,
denotes ‘‘equal with exception of a Lebesgue set of z
measure,’’ anddN/d«5`, when«5« i , i 51,2,...,N, where
« i is the failure strain of thei th fiber, which is a function of
the strain rate@see Eq.~1!#. The simplest stepwise functio
that satisfies these conditions is

N~« i,«,« i 11!5const, N~« i !5N0@12~« i /«max!#,

0,«1<«2<¯,«N5«max.

In this way, a fractal elastic networkN(«.«1) can be
06613
orepresented by the Devil’s staircase@5# associated with the
Cantor set (« i) of fractal dimensionDC . The latter is deter-
mined by the fractal dimension of the damaged ensembleD,
which is related to the fractal dimension of the fiber netwo
2,DN<3 @13#. Under these assumptions,N(«) possesses a
statistical self-affine invariance, i.e.,

N~l«!5l2hN~«!, where l.0,

«1,«, l«,dmax and h.0.
-

d

FIG. 4. ~a! Graph ofH versus
a, for tests with a deformation
rate «̇50.01 min21, ~b! the mean
values ofH ~circles! anda ~rhom-
buses! versus strain rate, and sta
tistical distributions of ~c! a
~bars—experimental data, soli
line—fitting by normal distribu-
tion: significance level according
to the x2 test with fitness p
50.9361!, and ~d! H ~bars—
experimental data, solid line—
fitting by normal distribution:p
50.7622!.
1-3
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Using the properties of the Devil’s staircase@5# and some
conventional thermodynamic assumptions@17# it is easy to
derive the constitutive equation for an elastic~multi-! fractal
network

s5
]U

]«
>E„N~«!…«5E0N~«!«}s2a,

which obeys a self-affine scaling~2! with a5h21, within
the interval«1,«, l«,«max. On the other hand, under th
assumption that the rupture fractal dimensionDR relates to
the fractal dimension of the damaged ensemble asDR5D
21 @5,7#, we have 0,H522DR532D<1.
Taking into account the second equality of Eq.~2!, we obtain
1,h5H11542D,2.

Furthermore, we speculate that Eq.~1! may be cast in the
form

d50.1454«̇12H, S~d!50.6852«̇H, ~3!

i.e., the failure dynamics is governed by the same Hurst
ponent, which depends on the network structure~see also
Refs.@8,13#!. To verify this assumption, a set of experimen
l

-

.

,

ng
l,
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at each deformation rate was divided in two subsets, ass
ated with specimens with the lowest and the highest val
of H. So, we obtained two sets of data with different mea
H5a50.64560.04 andH5a50.84860.06, respectively.
For these sets, the means and standard deviations ofd scale
as

d}«0.367, SD~d!}«0.639

and d}«0.157, S~d!}«0.841, ~4!

respectively. One can see that relations~1! are in a good
agreement with Eq.~3!.

From Eq.~3!, it follows that for a smooth (H51) rupture
line, one may expectd5const, andSD(d)}«̇, while for a
random (H50.5) damage,d}S(d)}«̇0.5. A further study on
different materials, including the fractal analysis of the n
work structure, is needed in order to confirm the gene
character of the fractal failure behavior shown in Eqs.~2!,
~3!.
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