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Scaling fields in the two-dimensional Abelian sandpile model
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We consider the unoriented two-dimensional Abelian sandpile model from a perspective based on two-
dimensionalconforma) field theory. We compute lattice correlation functions for various cluster varigales
and off criticality), from which we infer the field-theoretic description in the scaling limit. We find perfect
agreement with the predictions of @ —2 conformal field theory and its massive perturbation, thereby
providing direct evidence for conformal invariance and more generally for a description in terms of a local field
theory. The question of the height 2 variable is also addressed, with, however, no definite conclusion yet.
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[. INTRODUCTION stable configuration. The relaxation process is well defined:
it always stopgsand can leave the system at the boundparies
Sandpile models have been invented by Bak, Tang, anend produces the same restjlt ; independently of the order
Wiesenfeld[1] as prototypical examples for a class of mod- in which the topplings are performethe Abelian property
els that show self-organized criticality. The main peculiarity ~One can let an initial distribution over the stable configu-
of these models is that they possess a dynamics that drivéations evolve in time according to the dynamics, and exam-
them to a critical regime, robust against various perturbain€ its time limit. Under mild assumptions, one sholgs
tions. The ineluctable criticality as well as the robustness ofhat all initial distributions converge to a well-defined and
these specific dynamics could provide a universal explanasnique distributionP*, called the SOQfor self-organized
tion of the ubiquity of power laws in natural phenomena.cr't'cal) state. The theory of Markov chains and the Abelian

o .
Various physical situations have been discussed followin@"OPerty allow for a complete characterization of R is
this idea; see the recent bodj&3]. uniform on the sefR of so-called recurrent configurations,

Sandpile models are among the simplest models showin nd is zero elsewheré&he transient configurationsThe
umber of recurrent configurations is|R|=detA

self-organized criticality. Although their physical relevance~(3.21)LM' with A the discrete Laplacian on thex M lat-

can be questioned, it is believed that they have all the feafice with open boundary conditions. Although the counting

tures. that should be present in more.compllcated and/o(Sf recurrent configurations is easy, the criterion that actually
physical models. Therefore they constitute a useful pIay—a

dwh h . f b q ecides whether a given stable configuration is recurrent or
ground where the most important features can be understool, \ient is well known6,7] but hard and nonlocal: in a

One of the most interesting models is the two-dimensionayeneric case, one has to scan the whole configuration in or-
unoriented Abelian sandpile modehSM) [1], which we e 16 gecide whether it is recurrent or not. Explicit calcula-

first briefly recall (recent reviews arg4,5]). The model is {515 are therefore difficultand few.
defined on an. XM square lattice. At each siigwe assign From the point of view of critical systems and conformal

a random variablé;, taking its values in the s€.,2,3,4.  fie|q theory, one is interested in the thermodynamic limit
We think ofh; as a height variable, which counts the number"mL \1_...P* . The result should be a probability measure on

of grains of sand at Thus a sand configuration is specified o épace of spatially unbounded configurations, or equiva-

by a set of valuegh;}; of the height variables. A configura- |ently on the infinite collection of random variables. De-
tion is stable if allhj=4, and unstable ih;>4 for one or  gpite the fact that these variables are strongly coupled—the
more sites. The number of stable configurations is equal t®ouplings are even nonlocal because of the recurrence

4N, . i condition—their correlation functions seem to be of the
~ The discrete dynamics of the model takes a stable coryga); |ocal form. In the scaling limit, one could therefore
flgurgtlon C,t at time't to another st.able con.flguratldhfl_, hope to recover a local field theory.

and is defined in two steps. The first step is the addition of There are indications that indeed a conformal field theory
sand: one grain of sand is dropped on a randomly chosen sitgnerges, as in ordinary critical, equilibrium lattice models.
of C;, and this produces a new configuratign The second |n [7], a connection with spanning trees was established,
step is the relaxation t6;. ;. If C{ is stable, we simply set which suggests a relationship with tlie=0 limit of the
Ci+1=C{ . If not, the site wherén,>4 topples: it loses four g-state Potts model, and hence with-a—2 conformal field
grains of sand, and each of its neighbors receives one graitheory, a value confirmed by calculation of the universal fi-
something we write in the forrh;—h;—Aj; for all sitesj,  nite size correction to the free energy on a finite dtrip The
with A the discrete Laplacian. In the process, one neighbotwo-site probability Profhj=h;=1] was shown in[8] to

can have its height>4, in which case it too topples: it loses decay algebraically, with an exponent that can be easily ac-
four grains of sand, each of its neighbors receiving one graircommodated in ac=—2 free Grassmanian scalar field
And so on for each site that has a height4, until we reach  theory[9]. The two-site probabilities for height variables on
a stable configurationC;,, is then set equal to this new the boundary of a half-plane domain have also been com-

1063-651X/2001/646)/06613Q@19)/$20.00 64 066130-1 ©2001 The American Physical Society



STEPHANE MAHIEU AND PHILIPPE RUELLE PHYSICAL REVIEW E64 066130

puted in[10,11], and show the same algebraic falloff as the ,

height 1 variables in the bulk. o 00 Qoo @%
Beyond these concordant elements, no systematic investi

gation in the sandpile model has been made, to our knowl- 0 G- g & g 0

edge, which can solidly confirm the connection witlta o0 &

—2 conformal field theory. It is our purpose to provide a

more explicit link between the two. We do this by computing -0 OG-0

multisite probabilities of various height variables, and by & 9’9 & 909 OO 8:%
comparing them with the conformal predictions. More spe-

cifically, we compute the scaling limits of the two-, three-,  £iG. 1. on the first two lines are shown the ten smallest weakly
and four-site correlations of height 1 variables, but also ofyowed cluster variables, up to orientations, which contain no more
other lattice variables, namely, finite subconfigurations thatnhan four sites. Taking the different orientations into account makes

can be handled by the technique deve_lope@Bﬂn ~atotal of 57 clusters of weight smaller than or equal to 4. In addi-
In fact, we compute these correlations in an off-criticaltion, calculations involving the four clusters on the last line will be

extension of the Abelian sandpile model. We evaluate thengonsidered in the text. All these clusters will be numbeBgtb S;;

in the scaling regime, extract the scaling limit, and then esfrom left to right and top to bottom. The reason for including the
tablish a correspondence with a field theory. In this way wdast two clusters is explained in Sec. VII.

strengthen the field-theoretic connection away from critical-

ity, by relating a massive perturbation of the ASM to thefiguration is then recurrent if and only if it contains no FSC
massive extension of the= —2 fermionic field theory. One [6,7].

can therefore probe more deeply the structure of both pic- The idea used if8] allows us to compute the probability
tures, leaving little doubt about the identifications that are toof occurrence, in the SOC state, of any cluster that becomes
be made. an FSC if any of its heights is decreased by one unit. A

The conclusion these calculations allow us to draw is thasimple case is a height 2 next to a height 1, but more ex-
the c=—2 theory, and its massive extension, seems to proamples are given in Fig. 1. Followind.3], let us call them
vide a field-theoretic description of the height profile of theweakly allowed cluster variables.
sandpile model. At least for the cluster variables examined in Let Sbe such a cluster. The authors[8] show how one
this paper, this is a statement that we could verify explicitly.can define a new sandpile model, with its own toppling rules
Other important spatial, nondynamical features of the SOQGand a new matrix\’), such that the number of its recurrent
state must be studied. These include boundary features awdnfigurations is the number, in the original model, of recur-
avalanche distributions. The latter are undoubtedly muchient configurations that contath From this, a simple deter-
more difficult to handle, because they lie at a higher level oiminantal formula follows, Prol®)=detA’/detA. Because
nonlocality than the height variables, since they depend othe new sandpile model is obtained by modifying the original
height values in unbounded regions. Whether they can bene in the region localized arourf§ the ratio of the two
accounted for by the nonlocal sectors of the —2 confor-  determinants reduces to a finite determinant, even for an in-
mal theory remains a largely open question. finite lattice.

This technique has been used to compute the probabilities
of various subconfigurations, like those in Fig. 1. The sim-
plest one is the cluster reduced to one site, with height equal
to 1. In this case, the new model is obtained by changing the

As recalled above, explicit calculations in the bulk of the toppling rules at four sitegthe height 1 and three neighbgrs
lattice are notoriously hard, because of the nonlocal nature dh  4X4 determinant then yieldsP(1)=Prolfh;=1]
the SOC statéprobability measureP* . =(2/7?)(1—2/)~0.074. Allowing for disconnected clus-

All four one-site probabilites Prd=a], for a ters leads to multisite correlations such as the two-site cor-
=1,2,3,4, have been computed exactly in the thermodynamitelation of unit heights:
limit, but the calculation foa=2 [12] is already formidably L
more complicated than fa=1 [8]. The only two-site prob- e 2
ability that has been computed is again for the unit heightproqhi_hi_l]_ P(1) [l_ 28
variables|8]. (2.1

The technique used to compute the correlation of two unit
height variables is a particular case of a beautiful idea putt was also remarked i8] that more general clusters—for
forward by Majumdar and Dhd8]. It is based on the im- instance, a single site with height equal to 2—can be handled
portant notion of forbidden subconfiguratiof®SCsg, and its  using the same ideas, but the corresponding probabilities be-
relation to recurrent configurations. A clusteof sites, with  come infinite series, the terms of which involve weakly al-
its heightsh; , is a FSC if, for each sitge F, the number of lowed clusters, of increasing size. Unfortunately, these series
sites inF and connected tpis bigger than or equal tb; . seem to be slowly convergent.

Simple examples of FSCs are two adjacent{1lB, a linear In general, the way the original sandpile model is modi-
arrangement121), or a cross-shape arrangement with fourfied is by removing some of the bonds linkigdo its nearest
1s surrounding a central site with any height value. A conmneighborhood, and at the same time by reducing the thresh-

Il. LATTICE CALCULATIONS
IN THE SANDPILE MODEL

. r=li—jl>1.
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old at which the sites become unstaltfe in the original  from the rest of the lattice, defining a different modification
mode), so that the threshold at every site remains equal to itef the original ASM? Either of them can be used to compute
connectivity. These modifications affect all the sitesSf correlations involving heights 1.

plus a certain number of sites that are nearest neighbd@s of  Correspondingly, the matrii that specifies the modifica-
All together they form a set we caMg, the cardinal of tions is a 4X4 or a 5X5 matrix given by(in an obvious
which depends on the shape®fThe new toppling matrix is  ordering
then given byA’ = A + B, where the symmetric matrig has
entriesB;; =1 if the bond linkingi to j has been removed,

B;;=—n if n bonds off the sité have been removed, and is -3 1
zero otherwise. Then the probability & (in the original 1 -1 0 0
mode) is B=l 1 o -1
0 0 -1
PS—det’—d 1+GB)=def{1+GB 2.2
()= orp —detl+GB)=detl+GB)[y, (22
BecauseB is zero outside the finite sél s, the determinant -3 1 1 1 1
is finite, in fact of sizeM g, but requires knowledge of the
Green functionG=A ! of the Laplacian at all sites belong- 1 -1 0 0 0
ing to Ms. 1 0O -1 0 0 2.3
In the above example wher8 is just one site with a 1 0 0 -1 0
height equal to 1, the modifications can be pictorially de-
scribed as follows: 1 0 0 0 -1
J& For bigger clusters, there is a fair amount of ambiguity in the
A N way the modifications are made in order to freeze the cluster
8% - ‘ 3 heights to what we want. These modifications can affect re-
t gions of different sizes, and so can be more or less compu-

tationally convenient. The least economical solution is the
The dashed segments represent the removed bonds, and tirealog of the second modification explained above for the
numbers on the right lattice indicate the thresholds at whiclunit height. It is also the easiest to describe: one simply cuts
the sites become unstable and topple. the cluster off the rest of the lattice, removing all bonds
In fact, in the modified lattice shown on the right, the only inside the cluster and all connections between the cluster and
site to which the 1 is connected has a height bigger than athe outside lattice. There are many other choices of interme-
equal to 2. So one could as well decrease its height and itdiate efficiency. For the second cluster in Fig. 1, for instance,
threshold by 1, and remove the connection. In this way, thewxamely a 2 next to a 1, one may consider the following three
site with a height originally equal to 1 is completely cut off modifications(among others

8§ 88 88
Q)‘() - -3010014»3 or ——20—0103 or 1"1
% 1 5%

with corresponding matrices of dimension 8, 7, or 6. For est possible region makes the calculation of determinants
bigger clusters, the difference can be computationally noticeeasie? So one should cut as few links as possible, a pre-
able, and so choosing the modifications that affect the smallscription that makes sure that the modified ASM remains

conservative where the original one is: the removal of a bond

Istrictly speaking, in this second modified ASM, the removal of
the bond connecting the height 1 to its western neighbor should be?The reader familiar with the technique knows that these determi-
supplemented by the creation of a bond connecting the height 1 tomants can be reduced by appropriate summations of fowsol-
sink site, so that sand brought in by seeding can be evacuated. Thienng. The gain in size is equal to the size of the cluster one
part of the modifications that affects the sink site plays no roleconsiders, but it has its price, because it renders the entries of the
whatsoever, so we may ignore it completely. See Appendix B for aeduced determinant more complex. This gain is the same no matter
detailed argument. how the ASM is modified.
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off one site is always accompanied by the lowering by 1 of In order to assess the robustness of their SOC features,
the threshold at that site or, equivalently, tRematrix has  perturbations of sandpile models have often been discussed,
row and column sums equal to 0. with various and sometimes surprising conclusions; see, for
When the clusteB=U, S, is disconnected, the matr& instance[14] for a review. Among the many contributions
is the direct sum of submatric& . The probability Prokf) ~ ©n the subject{15] was one of the first attempts to see how
(the correlation of the subparg) involves the Green func- the nonconservation of sand in the toppling rules can alter
tion G(i,j)=G(0, —j) at all sitesi,j of S and thus depends the crltlca_ll properties of the model. In particular, the massive
on the relative locations and orientations of the variSyis, perturbation defined above in E(.1) corresponds to the

. : : . : ._.globally dissipative model studied in that paper, and for
and in particular on their separation distances. As the or|g|9 . S o
nal sandpile model is invariant under lattice translation, theWhICh the authors found that the avalanche distributions de-

probabilities retain the translation invariance. Batontain- cay exponentially. More recently, the same perturbation was

ing two heights equal to 1, separated by a distancte reconsidered if16], in which the exponential decay of the

: . ; ; two-site probability for unit height variables, our E@.4
evaluation of the &8 determinant yields the dominant term 54\ wgs prove():i/. g @4

r~4 given in_Eq.(2.1), independently of the angular distance e advantage of the perturbati¢.1) is that it allows
of the two sites. o the same calculations as the nonperturbed model, in the way
Precisely in the case in whicBis disconnected and con- that has been recalled in Sec. Il. One can in particular com-
tains different pieces separated by large distances, a simpjfite the correlation functions from the same formulas, with,
but important observation can be made. Because the prolrowever, two minor changes. The first one is of course that
ability of S is going to depend on the Green function one uses the massive Green function, with a mass fixed by
G(z¢,zx) ~log|z—2| evaluated at points where the sub- \/x—4. The second one concerns tBenatrices that define
parts are located, one could expect at first sight a logarithmithe modified ASM. Because the height variables now take
dependence in the separation distances. However, due to thelues from 1 up t, the diagonal entries d correspond-
property that sand is conserved in the modified ASM, theng to sites of the cluste® must be set equal to-1x, in
probability in fact depends only on the derivatives finite  order to lock the heights into their minimal valug#\s a
difference$ of the Green function. This removes the loga- consequence, note that sand is conserved at those sites, in the
rithmic dependences and turns all correlations into rationamodified model.

series in the various distances, ¢ z,). When doing concrete computations, one needs the value
of the Green function at points close to the origat sites
Ill. THE MASSIVE SANDPILE MODEL belonging to the same connected subpamd at points far

. . . . from the origin(at sites located in different connected parts

The previous section summarized the calculation of corgq, the former, one uses a development arotad (in
relations of cluster variables in the standard ASM. Even,qers oft with logt terms, whereas for the latter one per-
though it is critical, and self-organized in the dynamical forms a double expansion in inverse powers of the distances,
sense, one can drive it off criticality by switching on relevantgng in (half-integra) powers of the perturbing parameter
perturbations. There are various ways of doing it, but one of-or arbitrary positions, this development is cumbersome as it
the simplest is to add dissipation, whose rate is controlled byjepends also on the angular positions. In the calculations to
a parametet. In effect this introduces a mass~\t, or  be presented in the following sections, we have therefore
equivalently a nonzero reduced temperaturéhe resulting restricted ourselves to configurations of clusters that require
model can be described as a masdimethermal perturba-  the knowledge of the Green function only at points close to a
tion of the massless, critical sandpile model. For the purposgrincipal or a diagonal axis, for which all useful expressions
of comparing the correlations in the ASM with those of aare collected in Appendix A.
local field theory, the inclusion of some neighborhood of the  The field theory enters as a description of the long dis-
critical point is important as it strengthens the connection. tance regime of the ASM correlatiotigerturbed or not As

The way a mass can be introduced in the model is mosgisual, this requires at the same time an adjustment of the
straightforward, and corresponds to a dissipation of sandorrelation length, or equivalently of the mass. So we are
each time a toppling takes place. We define the perturbeghterested in computing the scaling regime of correlations.
ASM by its toppling matrix(we suppress the explicit depen- To reach it, we take simultaneously the long distance limit

dence orx) R=r/a— and the critical limif x—4=a?M?2—0, so that
X it i=j the productyx—4R— Mr defines the effective madd and
A= —1 if i and ] are nearest neighbors,
0 otherwise. SWe deliberately take the stand of formally continuing all the

(3.1 expressions from integer valuesofo arbitrary valuex=4. Thus

o . . we do not define a family of well-defined sandpile models, param-
The external driving rate of the sandpile remains the samgrized by a real number=4. For x rational, this can easily be

(one grain per unit of time but the threshold beyond which gone: however, the limit fox going to four by rational values is not
the sites become unstable is increased from &.t&s a  the usual, original model defined for=4. We suspect that the
consequence, the height variables now take values betweenybdel one gets in this specific limit is a model in which the height
andx. Each time a site topples=x—4=0 grains of sand variables are completely decoupled. $&&] for a related discus-
are dissipated. sion.
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the macroscopic distances The scalea—0 controls the tions of all those permutations can be summed up to yield a
way the limit is taken, and can be thought of as a latticeformula written in terms of the minors of the diagonal
spacing. blocks:
In the actual calculations of correlation functions, large
determinants are needed, with entries given by Green func-
tion values, themselves expressed as power series. In theProld S(0), S'(i)]=ProdS)ProdS’)
scaling regimex~4, it is convenient to expand all matrix _ ; ,
entries and the correlations as power series/ofThe first ~ TrMi(I+GoB) I'(GoiB')

nonzero term in a correlation should then be directly related X[Mi(1+G;iB)]Y(GioB)}+- - -.
to its scaling limit.
We will finish this section by commenting on the way the 34
calculations have been done, before presenting in the next o
section the results for the unit height variables. Here Mi(A)=(—1)""det(A; ;) denote, up to signs, the mi-

Suppose that we want to compute the joined probabilitynors of A of maximal order A; j is the matrixA with theith
for having a certain clustes at the origin, say, and another row and thejth column removed Formula(3.4) is exact
clusterS' at some sité. Each cluster comes with its own set modulo quartic, sextic, etc. terms in the off-diagonal Green
Mg or Mg which contains the sites where the ASM has beerfunctions. It has been used to compute all two-cluster corre-
modified, the modifications themselves being specified byations considered in this article.
the matricesB and B’. According to the discussion of the In order to determine the dominant term in the perturbing
previous section, this probability is equal to a determinant; parametett, one still makes an expansion in powers \if
(actually the expansions of elements of the diagonal blocks
Ggo andG;; involve the two kinds of termg“? andt“?logt).
Goo Gm) ( B 0 )) To this end, one develops all Green functions arotsad
, using the formulas of Appendix A, and keeps the first non-
Gio Gi/\0 B zero term in the trace. Since the madsor inverse correla-
[+GgB Gy B’ tion length is related tq't, a first nonzero contribution of the
( ,). (3.2 formtCa™2E(G(it),G'(i\1), ...) determines the scal-
GioB  1+G;B ing limit of the correlation, and hence the corresponding
field-theoretic two-point function, in terms of two fields of
The G blocks collectively denote Green function values scale dimensiong; andx,, in the usual way. In this respect
evaluated at two sites belonging to the 8Bf{UMg, , withiin  the presence of a logarithmic singularity lo@n the final
addition G;o=(Gg;)". result would be the signal that the scaling limit is ill defined.
We do not want to know the exact value of this determi-It turns out, in all the calculations we have performed, that
nant, but rather the terms that are dominant in the scalinghe first nonzero term scales liké (yielding X, +x,=4).
region, wheni is far from the origin. Using the standard Because the off-diagonal terms start off like—they are
development of a rank determinant in terms of the matrix differences of Green functions at neighboring sites—it is
entries, enough to expand all Green functions up to ord& as has
been done in Appendix A(the three-cluster correlations re-
quire expansions to ordef).
In fact this procedure has anticipated the results on one
detA= > e(0)AL,1A202)  Anomy, (33 point. For the purpose of taking the scaling limit, it is the
&5 dominant term int that we want to determine, while the
above procedure determines the dominant terrh among
one may distinguish in Eq3.2) several types of term. The the contributions that are quadratic in the Green functions.
permutationsr that do not mix the sites of the clust8with  So one should also check that no higher than quadratic term
the sites ofS’ produce terms that do not depend on thein the Green functions brings & contribution. This can
distanceli| separatingS from S', and thus contribute a term easily be done in the following way. Since the off-diagonal
equal to[ Prob(S) ]J[ProbS’)]. terms start off likeyt, checking the quartic terms is enough,
The other permutations necessarily involve an even numand one can stop the expansion of the off-diagonal blocks to

ber of entries from the off-diagonal blocks. As all such en-jt order. To that order, the two blocksy; B’ and G;, B
tries are combinations of Green functions, they decay expo-

nentially with the distance. Therefore the two-point function
will be dominated by those terms in the determinant that are 415 would not be the case if the least economical modification
quadratic in the off-diagonal Green functions. With the helpyas choserithe one that cuts the cluster off the rest of the lajtice
of the formulas in Appendix A, these Green functions are allthe B matrix would not have all row sums equal to zero, and
reducible to the singl&(i) =Gy, , and its derivatives. consequently the off-diagonal Green functions would have nonzero
The quadratic terms come from the permutations that sen@érms of order 0 irt. This would force us to expand everything to
one site of the first cluster onto one site of the second clustetrder 2 (instead of 3/2in t. So these modifications appear to be
and vice-versdwith possibly two other sitgsThe contribu-  doubly inefficient.

Prolf S(0), s'(i)]=de(1[+

066130-5



STEPHANE MAHIEU AND PHILIPPE RUELLE PHYSICAL REVIEW E64 066130

have all their rows identical. Indeed, inside a given columnJinear combinations of Green functions. Such a determinant
all entries are finite differences of Green functions evaluatedias no term that is quartic in the off-diagonal block entries.
at neighboring sites, and so differ by second order finite dif- To end this section, we give the expansion analogous to
ferences of Green functions, i.e., by terms of ordeFhus  Eq. (3.4) that pertains to the calculation of three-cluster cor-
the determinant withGy B’ and G;;B as off-diagonal relations. Its proof relies on the same arguments as above
blocks can be reduced to a determinant where the two offregarding permutations. For three clusters rooted at sites
diagonal blocks have but their first row nonzero, and equal ta,j,k, it reads

Prof S(i), S'(j), S'(K)]
=—2 Prol§S)Prol{S')Prol(S") + Prol S)Prolf S' (), (k) ]+ Prok(S' ) Protf (i), S"(k) ]
+Prol(S")Pro S(i),S' (j) 1+ Tr{[Mi(I+ G;;B)]'(G;;B")[Mi(1+G;;B")]'(G;B")
X[Mi(I+GB")]'(GyiB)} + Tr[Mi(1+G;iB)]'(GixB")[Mi(I+ GyB") ] (GkjB [ Mi(1+ G};B") ]{(GjiB)} + - - -
(3.5

This formula gives all terms of the determinant that are cubic 1
in the off-diagonal Green functions. They are to be expanded P(1) = 5o (x—=4)G(0,0 — 1][x*G(0,0 - 16G(1,1)
aroundt=0 as discussed above.

—(x+4)][(x?—8)G(0,0 —8G(1,1)— (x—4)]%.

4.2

_ _ o It goes to 22G(1,1)—2G(0,0)+1][G(1,1)—G(0,0)]?
The S|mplest.clus.ter vgrlable &, namely, Fh.e unit helght =2(mw—2)/7° in the limit x—4.
varlable. We give in thIS. section its multisite correlation  p1ore interesting is its graph, which shows that P&g)(
func'uons, in various configurations, as computed along thg,reases whex goes away from 4 before falling off alge-
lines exposed above. braically whenx keeps growing. The graph of Prdk) as a

The one-point function, namely, the probability that anction of x is reproduced in Fig. 2 as the long-dashed
fixed site has height equal to 1, poses no probland is in curve.

any case of little interest for the comparison with a field
theory). Making everything very explicit for once, it is given A. Two-point correlation
by

IV. UNIT HEIGHT VARIABLES

The joint probability for havig a 1 at theorigin, say, and
another 1 at a siteis equal to the &8 determinant

Pro(Sy)=P(1)

G(0,0 G(1,0 G(1,0 G(1,0 2
G(1,0 G(0,0 G(1,1) G(2,0 .
=@ 1 50 61y 600 6Ly
G(1,0 G(2,0 G(1,1) G(0,0 o) "o
1-x 1 1 1 0.6
1 -1 0 0 .
X 1 0 -1 o0 4.1 o
1 0 0 -1 4 5 6 7 8 9 10

HereG(m,n) is (A Yi o for the sitei = (m,n), and we have £, 2. Unnormalized probabilities of the clust&sup toS, as

used the symmetries of the Green function. The site orderingnctions of the perturbing parameterin this figure, all probabili-

is O, N, E, and S. ties have been normalized to 1t 4 to prevent some of them
This can easily be computed in terms of complete ellipticfrom melting into the horizontal axis. The curves from top to bot-

functions (see Appendix A although the result is not par- tom refer toS, (long dashesdown toS, (shortest dashgsThe two

ticularly transparent: solid lines correspond t8, andS;.
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[+GpB Gy B tries of the blocksG,y and G;; , which store Green function
, (4.3 values around the origifisee Appendix A We have also
GioB  1+G;B checked that Eq(4.4) is exact up to higher order it all
where B is the matrix used in Eq(4.1). Because the two terms of order lower than? vanish identically[apart from
clusters are identical;; = Gop. the zeroth order terr(1)?], and there are no terms quartic
As mentioned earlier, the expansion of the Green functio® higher in the Green function that contributetaterm.
at arbitrary points tends to be complicated, so we have relnus Eq.(4.4) is exact to ordet”.
stricted ourselves to configurations where the Green func- 1hat the correlation scales like the fourth power of the

tions close to a principal axis or a diagonal axis only areMass was expected since the critical correlation decays like

. 74 - - .
required. For the two-site correlation, this leaves only the!l L8] Itis easily recovered frgzm Eq4.4 byztglzlr]g the
two possibilitiesi = (m,0) andi = (m,m). Using the formula iMit t—0, in which the term irKg (li[Vt)~1/2]i]* is the

Projhg=h;=1]= deﬂ(

(3.4), we found the same answer in both cases: only one to survive, reproducing the res(@t1).
1 What the above suggests is that the scaled unit height
Profho=h,=1]—[P(1)]2= _t2[p(1)]2(_|<62( Vi) variable goes over, in the scaling limit, to a massive figld
2 with scale dimension 2,

1 1 1 oz
—EKO(\/f|i|)K6(\ﬁ|i|)+EK(’)Z(\EIiI) BIJE]O;[5(hz/a_1)_P(1)]:¢0(Z)a i=_ -

t=a2?M2-0 with i\t=Mz, (4.5)

e @49 and whose two-point function reads

1+ 72 )
+WK§(\E|I|)

with |i|=m or y2m depending on whethéris real or on the {o(0) bo(2)) = — M“[P(l)]z{lK”z(M I2])
diagonal. The functiorK, is the modified Bessel function. 0 0 270

Note that theP(1) appearing in the left-hand sideHS) (in 1 1

the subtraction teriris the off-critical probability, while that — ZKo(M|Z))K§(M|Z]) + 5—K{2(M|z2])
in the (RHS) can be taken to be the critical one. 2 2m

features. The spatial dependence is only through the function + H—ZKS(M |z])
Ko, that is, the scaling form of the massive lattice Green 4m
function. The other functions, denot&d or P; in Appendix

A, and representing the lattice corrections to the scaled, con-
tinuum Green function, actually do not enter. Moreover, the We made the same calculations for the three-site probabil-
fact that the answer is the same for the two positions of ity, using the formula3.5). The use of the Green functions
suggests that the probability is invariant under rotations, iron the horizontal or the diagonal axis leaves essentially two
agreement with the rotational invariance of the clusigr possibilities: either the three insertion pointg, andk are
itself. This is related to the first point, since the functionsaligned, or else they form an isoceles right triangle. In both
Di~o and P;~ represent anisotropic terms in the lattice cases, the probabilities scale likg with all logarithms oft
Green function. canceled out. The explicit results, however, differ in these

Another reassuring feature is that the correlatidd)  two cases.

scales liket?, to the dominant order, and that all logarithmic ~ When they form a linear arrangement, be it on the hori-
terms log have dropped out at that order. This requires maszontal or diagonal axis, the result for the connected probabil-
sive cancellations because logarithmic terms occur in all enity (i.e., products of lower correlations are subtragtezhds

This formula has a number of instructive and comforting 2 )
. (4.6

B. Three-point correlation

M6
Proj h;= hj =h= l]aligned, connecteﬁT[ P(l)]3 [Ko(12) - K6(12)][Ko( 13) - KS( 13)][Ko(23)— K6(23)]
+Kg(12)KE(13)Kg(23) + %[Kg( 12)K(13)K((23) — Kg(12)K5(13)K((23) + K (120K (13)K(23)]

1 1
— —2[Ko(12)Ko(13)K(23) —Ko(12)Ko(13)K(23) + Ko(12)Ko(13)Ko(23) ]~ —3Ko(12)Ko(13Ko(23) (-
(4.7
We have written the answer in the scaled form, that is, after the scaling limit in which thei gitfesgo over to the
Macroscopic positions; ,z,, andz;. The notatiorK(ij) stands forlo(M|z;—z]).
For the triangular configuration, we chose the insertion paiat,0) andk=(2m,0) to be real, and pyt=(m,m) on the

diagonal. The result is slightly different in this case, and reads, in the same notation,
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Prolfh;= hj =h= 1]triangular, connected

M6
=- T[P(l)]3{ 2 Kp(12)Ko(13)Kp(23) —K(12)K(13)K(23) — Ko(12)Ko( 13)K((23)
1
+ ZIV2IKY(12) ~Ko(12TKA(13KH(23)+ V2K (12K (13K(23) ~ Ko(23)]
V2

+Ko(12)[2 Kp(13) —Ko(13)]Ko(23) ]+ 7 [Ko(12)K(13)Ko(23) — Ko(12Ko(13)Ko(23)]

2
+ ?Ko(lz)Ko(ls)Ko(zs)]. (4.9

Exactly the same result was found, as expected, for the rowise the number of terms grows quickly. So in this case we
tated configuration wherkeis at the origin,j=(m,0) on the have used throughout the calculations the expansions at
real axis, anck=(m,m) on the diagonal. x=4 of the Green functions, also given in Appendix A.

The same comments as for the two-site correlation apply We have examined two different arrangements of the in-
here but for one point. If indeed the three-site probabilitysertion points, when they are all aligned on the real axis, and
scaling ~t2 around the critical point is consistent with the when they lie at the vertices of a square. When they are all
dimension 2 of a unit height variable, one observes that thaligned on the real axis, the connected four-site probability
probabilities themselves vanish in the critical limM{0). takes a very simple form, at the dominant order,

Thus the scaling limit of three unit height variables in the
usual, unperturbed, ASM vanishes: Proffhi=h;=h=h=1] rea

. 4
I'm Prold h;= hj =h= 1]x:4,connectea_’ 0. (4.9 - _ P(1) [ 1 + 1
sealing 4 (z02234213200%  (Z13204214229)°
We have checked this result by using the critical Green func- 1
tions, and found that the probability for three sites aligned t—— (4.11
along the real axis, (214223219234)
Prolj hj =h;=hy= 1] ca, connected where the ellipsis represents terms of global power smaller
P(1)2 1 1 1 than or equal to- 10 (they disappear in the scaling linit
- _ ( 3) _ _ and z;3=i—k, ... (rea). The other case, for which
T | Z257 7t ZiZadis =(0,0), j=(m,0), k=(0,m), andl =(m,m) are the vertices
of a square of side length, is much more rigid as it depends
P(1)*| 1 1 1 on a single distancen. The result we found for this situation
8 |22z 22y 2o 1S
3P(1)3 1 1 1
+ 4 2 2 2 4 2+ 2 2 41 Pro[{h.:h.:h :h:l] square:_§w
Z19233%13  Z19233%13  Z19223%13 T R connected 8 m?3
+ (higher ordey, (4.10 (4.12

indeed, decays like a global power8 of the separation Before presenting the results for the other cluster variables of
distances. Moreover, the same calculation for the three sitgsig. 1, we examine the above correlations for the unit height
aligned on the diagonal axis produces different coefficientsrandom variable from the point of view of the conformal
Thus the dominant term of the critical lattice three-pointfield theory that is the most natural candidate, namely, the
function is not isotropic, contradicting the expected rota-c=—2 theory, and its massive extension.

tional invariance, and so should not survive the scaling limit.

C. Four-point correlation V. CONFORMAL FIELD THEORY

Finally, we have also determined the four-site probability =Thec= —2 conformal field theory was studied first in the
for unit height variables, at the critical point only, as other-context of polymerg18], and a bit later served as the sim-
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plest example of a logarithmic conformal field thed®®].  acteristic of a conformal theory with central charge —2.
Since then it has been extensively examined by many authofghe fieldsg and 6 are primary fields with conformal dimen-
[20-26. Reference[24] in particular presents a clear and sions(0,0), while the bosonic composite field¢: has the
rather complete account of the structure of ¢tlve— 2 theory following OPE withT-

as a rational conformal field theory. Even if it is considered 9 '

as the simplest situation where logarithms can occur, it con-

tains many subtle aspects and probably possesses many dif-

ferent and inequivalent realizations. The one that is relevant _
here is perhaps the most natural one. -1 3:06:(w)

The underlying field theory is formulated in terms of a T(2):00:(w)= 2(z—w)? + Z—W (5.6
pair of free Grassmanian scala?%z(ﬁ,?) with action
1 _ 1 _ It shows that the conformal transformation @f¢: does not
S= Ef Saﬁaaa‘wﬁ:;f 9690, (5.1 close on itself(and its descendantbut also involves the
identity and its descendants, which form a conformal module
wheree is the canonical symplectic forne;,= + 1. on their own. Thus the identity an@6: generate a Virasoro

The zero modes oB. 0. call them ¢ and €, have been module, which is reducible but not fully reducible. This is a

much discussed. Because the action does not depend Snaracteristi_c feature of logarithmic conformal theofieS].
them, the expectation value of anything that does not contaifihe field :06: is called the logarithmic partner of the iden-
6 and 6 explicitly, but only their derivatives, vanishes iden- tity. It is neither a primary field nor a descendasee below
tically. In particular, the partition function itself vanishes, so for a field that is primary and descendant without being)null
the correlation functions are normalized byZ’ The fact that there are two fields with zero scaling dimen-
=fD0’D§’ e~S, where the primed fields exclude the zero sion is_ the main source o_f unusual_featu(eed confusing
modes ¢ and . This normalization implies, for instance subtleties, one of the_m being the existence of two de_geher-
(€*P=—e,p), ate vacual0) and |£€) (there are two more of fermionic

nature,|£) and|£)). The above prescription about the inser-
_ tion of the zero modes can be viewed in the operator formal-
(1)=0, (&&)=1, (5.2 ism as the taking of operator matrix elements between two
distinct ingoing and outgoing vacua.
. In conclusion, the theory specified by the act{érl) is a
(0%(2) P(W)) =€, (0%z) P(W)EE)=€e*Plog|z—w], logarithmic conformal theory with central charge- —2. It
(5.3  contains a nonlogarithmic local sector, which retains the cen-
tral charge value= —2, and in which derivative fields only
are considered. Anticipating the analysis to be given below,
o _ o — our results suggest that the ASM scaling fields related to
(060%(2)96%(w))=0, (a6 (Z)ﬁﬁﬁ(W)§§>—‘2(Z_W)2’ height variables lie precisely in this= —2 nonlogarithmic
conformal theory.

P

5.4 It should also be noted that either theory, logarithmic or
nonlogarithmic, contains additional nonlocdWwisted sec-
(0%(21) 6P(2,) 07(23) 6%(24)) tors. Although they could play an important role in the sand-
_ aBys  ay.ps pile models, for the description of other lattice variables than
= €P€7°100| 21523, — "€ 09| 2152, heights, we will not discuss them here, and refef24) for

(5.5 further details.
' We will also need the off-critical, massive extension of

o . . the above conformal theory. It corresponds to a perturbation
As far as derivatives of fields are concerned—as will be theby the logarithmic partner of the identity

case in the ASM, at least at the conformal point—one can

insert the two zero modes in the correlators, as in (&g,

to take care of the integral over constant fields. The func-

tional integral over nonconstant fields then yields the usual 1 2

form for the correlators, obtained from Wick’s theorem and S(M)= _f 9090+ —:00:. (5.7
the kernel of the Laplacian. Equivalently, one can define the ™ 4

functional integral for derivative fields by keeping the zero

modes out, or consider the so-callg@e-£ system[18].

_ The stress-energy tensor componefits2:96 76: and  The zero mode problem no longer arises in the massive
T=2:960 d0: have operator product expansiqQ@PESg char-  theory, so that one can normalize the correlation functions by

+ Gageﬂ’y |Og| 214223| .
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the full partition functionZ(M):fDQDEe—S(M). One then While the critical ones will be computable in terms of the
obtains nonlogarithmic conformal field theory using the insertion

prescription.

_ VI. SCALING FIELDS FOR CLUSTER VARIABLES
(0(2) B(W))=Ko(M|z—w]), . .
(5.8 Let us now reconsider the multisite probabilities for

height 1 computed in Sec. IV. The two-site probability sug-
— gested that the unit height variable is described by a field
(6(2)6(w))=(6(2) 6(w))=0, with scaling dimension 2, which should in addition be scalar
since a unit height variable is rotationally invariant. If one
assumes that this field is local # 6, the only possibilities
are 90%96°:, 100 96* 96”:, andM?: 96:. The second set of
fields :00 90* 96P: must be excluded, because, as explained
. M27 above, they would produce logarithms in correlation func-
(06(2)36(0))y=— e -[2K3(M|z]) —Ko(M|Z])]. tions, contradicting the observation we made in Sec. Il that,
z in the massless sandpile model=4), the multisite prob-
(5.9 abilities are never logarithmicat least those one can com-
pute from the Majumdar-Dhar technique, i.e., from finite de-
terminants.
It is not difficult to see that

and, for instance,

On account ofKy(x)~—logx for small arguments, the
massless limit of the previous equation exists and reproduces
the expression given in Ed5.4) with the zero modes in-
serted. This is expected since the effect of the zero mode
insertion is formally to change the normalization factor from
Z' to Z. On the other hand, the same does not apply to the
correlations of the field9* themselves, as the normalizing is indeed the right combination: its two-point function is ex-
functionalZ(M) goes to zero aM—0. actly the form given in Eq(4.6), which was obtained by
As mentioned above, the cluster variables we consider imaking the scaling limit of the two-site probability computed
this article are all related to derivative fields. The previouson the lattice.
remark then implies that the off-critical ASM multi-site In order to confirm this identification, the field-theoretic
probabilities have a smooth massless limit, equal to the critithree-point function of¢, can be computed and compared
cal probabilities. The scaling form of the off-critical prob- with the lattice result. In the same notation as in Sec. IV, one
abilities will be related to the above massive free theoryfinds for an arbitrary arrangement of the insertion points

. MZ _
$o=—P(1)[:0000+ 9000+ 5—:00: (6.1)

Ko(12)[2K3(13) — Ko(13)][2K5(23) — Ko(23) ]+ perm

M® (12,42,
(bo(21) Po(Z2) Po(2Z3)) = — 16 X{E(il3223+c.c.

213723

T2

— +cC.C.
7T2

1
Ko(12K(13)K4(23) + perm| + —

w

( 213;23
1214224

,——
Z15Z213723 )

|z1J 2| 214|224

3

X[2Kh(12) — Ko(12)TK 4(13)K§(23) + perm +7T7T3 Ko(12)K0(13)K0(23)], 6.2

where the permutations that must be added are the two esince the three-point function will necessarily involve a
changes; < z; andz,«z5. One easily checks that it repro- \wick contraction of aj6% with somed 5.

duces the three-site prObab”itieS reported in Sec. IV for the Fina”y, the four-point function can be Compared_ For con-
two arrangements examined there. The massless limit of Egenience, we give the field-theoretic result in the massless
(6.2 vanishes, as clearly follows from E¢6.1) for M=0, regime:
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{bo(21) Do(Z2) Do(Z3) Po(Z4) Ym—0 The features of the two-cluster probabilities are the same
as for the unit height variables. We found that all of them
P(1)% P(1)* P(1)% scale liket?, with all logarithmic singularities canceled out.

This implies that all cluster variables go in the scaling limit

4zi)d Y zad*  Hzigd*|zod* Alz1d% 229 to fields with scaling dimension 2:

P(1)* 1 1
8 |(212234?13?24)2—'—(213224?14;23)2 ”mé[é(S(i))—P(S)]:(ﬁs(Z), i:§_>°°,
1 a—0
+—(Zl42232_1224)2+c.c.], (6.3 t=x—4=a?M%2—-0 with iJt=Mz. (6.5

where only the last term within the curly brackets representd Nis is somewhat surprising as one might have expected the
the connected part of the four-point function. When the fourdimension of the scaling fields to increase with increasing

insertions lie on the real axis, it clearly reproduces the latticéiz€ Of the clusters. _ _
result (4.11), and when they are the vertices of a square of All cluster variables we have considered have a scaling

sidem, z;=02z,=m,zz=im,z,= (1+i)m, it reduces to limit that corresponds to a field of the following form:
<¢0(21) ¢0(22) ¢O(23) ¢0(Z4)>M=O,square,connected QS(Z): _ AI(?@%‘FEH&'E+Blio7007?+30£+i82207007§
3[P(1)]*
=78 e (6.4) o M2
—06000:+C P(S)ﬁ:ea: . (6.6

and again matches the connected four-site probalfditi?).

We believe these comparisons provide enough evidencehe (real) coefficientsA, B;, B,, andC are given in Table |

to assert that the unit height random variable of the sandpiI?Or each cluster. The fact®(S) in front of the term 90 is

model goes over, in the scaling limit, to the figld defined o 1, opapility ofS evaluated ak=4. Note that the field is

in Eq. (6.1). In the conformal limit, po~:9096+3636:  not invariant under a rotation af/2 as soon a8, or B, is
=04:00: is a primary field with conformal dimension, 1), nonzero, but is invariant under a rotation #f no matter

but is also a descendant ofé:. what the coefficients are. So, in particular, the scaling limit
The rest of this section presents analogous results for th@f the cluster variables does not in general yield conformal
other cluster variables pictured in Fig. 1. fields, but sums of pieces with different tensor structures.

We have repeated, for the other 13 clusters in Fig. 1, the As far as numerical values are concerned, the last column
same calculations we performed for the unit height variable0f the table is particularly striking: all entries are integers,
More precisely, for each of the cluster variab®s up to simply equal to_the size of the cluster. This makes the coef-
Si3, we have computed its joint probability with a unit ficient of the :#6: terms particularly simple and apparently
height, namely, Prdl®,(0),S.(i)], with i on the principal regular. The reason for this is unclear.
and on the diagonal axis. From these two probabilities one The other numbers mentioned in the table are not in them-
can write down an ansatz for the fielgl with which the selves particularly interesting. As mentioned above, all these
clusterS, gets identified in the scaling limit. These identifi- numbers are complicated expressions. For instance, the first
cations were subsequently checked to reproduce all two-sitdiree numbers on the line correspondingsto(the last clus-
probabilities  PropS,(0),S,(i)], for all pairs k,/~ ter of size 4 are in fact equal to
=0,1,2 ...,13, on both the principal and the diagonal axes.

In addition, at least one rotatédr mirrored version of each 2621440 21389312 24279040

cluster has been examined, although not systematicatly Prol(Sg) = = st 5

the correlation withS, on both axes The results we found 20m 8lm 81w

for the rotateq clusters are in agreement with the rotation; of 14968672 1809776 258037 10061
the fields assigned to the unrotated clusters, so that the field = —

of the rotated cluster is the rotated field. Finally, mixed 817’ 2773 1872 6m
three-cluster probabilities involving unit heights addclus- 663

ters have also been computed. They all confirmed the field - (6.7)
identifications. 8

All calculations have been performed exactly, i.e., not nu-
merically. The two-cluster probabilities take a form similar (3#—8) ( 655360 3389440 2259952 81566

to Eq. (4.4), where the coefficients are in general compli- A= 2 5 YR 3 >
cated rational expressions of Keeping these coefficients in 2rm 8lm 8lm 9

an exact form allows the check of the field identifications to

. L 5765 8647
be made in an exact way. For simplicity, however, the results + ], (6.9
presented below are given numerically. 4m 96
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TABLE I. For each cluster in Fig. 1, the table gives the values
of the parameterd, B, B,, andC specifying the field that de-
scribes the scaling behavior of the given clugsze Eq.(6.6)].
Note in particular that the coefficie@ is equal to the size of the

cluster.

cluster § P($) A By B, C

o 0.0736362 | 0.0736362 0 0 1
LORO 0.0103411 | 0.0201433 | —0.00619014 0 2
@O0 0.00141994 | 0.00449027 | —0.00208008 0 3

®

@ 0.00134477 | 0.00389417 0 —0.000534524 | 3
G&-@-@0 | 000019246 |0.000893234| —0.000502885 0 4

0.000179829 {0.000752599( —0.000172832 | —0.000122784 | 4

0.000173323 |0.000695941 —0.00012949 | —0.000153467 | 4

| 0.000179829 |0.000752599| 0.000172832 | —0.000122784| 4

0.000173106 |0.000692147| 0.000135489 0 4

0.000173106 |0.000692147| —-0.000135489 0 4

® © ©
S ®)
g §“’° 68 :“;f %"
5 OO0 O 5 &6

0.0000572863 |0.000255127|—0.0000470539( —0.0000259802} 5

S 0.00000731457|0.000042272| —0.0000130978|-0.0000071978} 6
S1p = O-O-0| 0.00496687 | 0.00969315 | —0.00129393 0 2
S13 = 8:% 0.00404859 0.010213 0 —0.00312009 2
37—8\/305152 359056 17554 13693 group of the lattice. One easily sees that the figlih Eq.
1=( ~ ) . 3 > 38 (6.6) changes under rotations and reflections according to the
™ 81w 81w 9 ™ following rules:
2663
+W . (69) (A!BlvBZ!C)
(A,—B;,—B,,C) wunderamw/2 rotation,
A gross feature of Table | is that tHeonzerg numbers are - (A,B;,—B,,C) under anx or y reflection.
roughly constant for all clusters of the same size, namely, the
probabilities and the coefficients do not change much with (6.10
the shape of the clusters, but depend essentially on their size
only. Roughly speaking, these numbéexceptC) get di- By convention, all clusters are assumed to be anchored to
vided by 10 when the size increases by 1. their lower left site. The rotations are performed about an

The zeros in the table or the equalityp to signg of  axis passing through that site.
coefficients can be understood from the transformations of First of all, the only one to hav8;=B,=0 is the unit
the clusters and the corresponding fields under the symmetiyeight. Indeed, it is the only cluster that preserves its shape
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under rotations and reflections, and so one can expect threduce the threshold at that site to 1, and cut it off from the
corresponding field to be a scalar undeontinuou$ rota-  rest of the lattice. This can be implemented by the following
tions and reflections. matrix:

There are clusters whose fields h&e=0, and they are

precisely those clusters that are invariant under a reflection 1-x1 1 11

through the horizontal axis. The same can be said of the 1 0 0 0O

rotated clusters for a reflection through the vertical axis. That =] 1 0 0 0 o 6.1
Sy has a coefficienB,=0 can be understood along the same - :
lines, although it is not manifestly invariant under reflec- 1 00 O0O0

tions. Anx reflection ofSy followed by a rotation byr and 1 0 0 0 O

a translation of two lattice sites brings it to itself, except that

a height 2 and a height 1 have been swapped. However, thEnhe corresponding probability is simply given by Prbb
assignment of heights within a cluster is irrelevant in the=h>4]=G(0,0), and is logarithmically divergent at=4.
actual computation: the modified ASM is defined in terms ofFor that reason, one considers instead the probabilityrthat
certain bonds being removed. Since each site whose height éxceeds 4:

being constrained loses three out of its four bonds, the actual

height assignment is irrelevant. In effect, the #&g that 3 _2(x—4) (4
includes all the sites affected by the modifications and the Proljh;>4]=(x-4)G(0,0= X K X/’
modification matrixB itself can be chosefthave been cho- (6.12

sen invariant under & reflection.
In the same way, one sees th&§ and S; have equal Which goes to 0 wher— 4. (The matrixB corresponding to
coefficients, up to signs. As represented in Table | and Fig. 1this has—4 as the first diagonal entry, rather thar £.) K
they are related by a rotation @2 and arx reflection, with ~ is @ complete elliptic functiorisee Appendix A
the consequence that thed; coefficients are opposite but ~ As for the above clusters, one can compute the correla-
theB, are equal. The same can be saidgandS,, with the  tions of this random variablé(h;>4) with itself or with the
same remark as above regarding the locations of the heiglther clusters, and see what field-theoretic description it has
values within the clusters. in the scaling limit. Again, the result is simple. The lattice
From these remarks, one easily finds the fields correcalculation of its own correlation yields
sponding to different orientations of a cluster. The cluStgr 2
for instance, comes in eight different orientatiofal an- Proff hy>4h;>4]— Prof hy>4]2= — _2K(2)( \ﬁ|i|)+---,
chored to the same sjteAll of them have the same coeffi- 4
cient A~0.000 695 941 an€ =4, whereas pairs of clusters (6.13
have coefficients®,,B,), or (—B4,B5), or (B;,—B>), or . S
(—B1,—B,). As a consequence, the sum over the corre-WhICh suggests the scaling limit
sponding eight fields reduces to a projection onto the scalar scaling M2
part, and involves thé and C terms only. S(hi>4)—{(5(hj>4)) —— ¢= 5100 (6.19
In a sense, the fact that the fields reflect so well the geo-
metric symmetries of the clusters is surprising. As discusse@orrelations with the other cluster variables confirm this

at length in Sec. Il, the actual calculations are based on admit. It nicely fits the expectation that the field should vanish
equate modifications of the original ASM on a set we calledyt the critical point.

Mg, which contains not only sites belonging to the cluster
itself, but also sites in its close neighborhood. Thus each
cluster drags with itself an invisible shadow, made of the
sites in the seM q\S. The shadow is a computational artifact, ~ We have so far focused on the class of weakly allowed
but is nevertheless crucial. Moreover, it usually breaks orkluster variables, whose correlations can be handled by the
alters the geometric symmetries of the cluster it goes withtechnique developed if8], and in turn computed from a
The insertion of a height 1, for instance, somewhere in thdinite determinant. The authors point out in that article that
lattice, really requires us to consider a four-cluster picturechon weakly allowed cluster variables can in fact be viewed
in Sec. Il. Here the shadow consists of three neighbors of thas infinite series of weakly allowed clusters. It dramatically
central site, and clearly breaks the rotational invariance. complicates their treatment, since a correlation involving a
We will conclude this section by observing that the heightsingle non weakly allowed cluster requires the computation
h variables, forh bigger than 4, can be handled in the mas-of an infinite number of correlations of weakly allowed clus-
sive ASM exactly like the unit height variables, even moreters, of finite but unbounded size.
simply. The reason is that a height equal to0,5,6 x can In this section, we address the question of the field assign-
never be in a forbidden subconfiguration, so that the set ofnent for the height 2 variable, in the light of the results of
recurrent configurations containing a height equéite4 at  the previous sections. We will consider the height 2 variable,
some site is equal to the set of recurrent configurations onboth from the perturbative point of view that we have just
the lattice with i removed. Therefore the modifications summarized, and from the conformal point of view.
needed to freeze the height of a siteho-4 must simply That a height 2 variable can be treated as an infinite sum

VII. THE HEIGHT 2 VARIABLE
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of weakly allowed cluster variables can be seen as followsr/2. The sum over the orientations of a cluster makes these
[8]. Consider the set of recurrent configuratiahsvith a  terms cancel against each other, leaving a scalar field, as it
height 2, at the origin say. That set can be divided up intashould be.
two disjoint subsets according to whether the configurations The natural conclusion one might draw from this is that,
remain recurrent when the 2 is replaced by a 1, or becomgt the critical point, the heights 1 and 2 scale in the same way
transient upon that replacement. . and in fact go over, in the scaling limit, to the same—up to
The number of those that remain recurrent is the same aformalization—primary field of conformal dimensiofts 1).
the number of recurrent configurations that have a height 1 agnis is direct though tenuous evidence in favor of such a
the origin,_ because, vice_ versa, a recurrent configuration Witgtatement, which was in fact made[ihl], based on an ex-
al remains recurrent if the 1 is replaged .by a2. SQ th‘?rapolation to the bulk of a similar statement on the corre-
contribution toP(2)=Prolj ho=2] from this first subset is sponding boundary variables, itself relying on the boundary
exactly equal t>(1). two-point functions. As plausible and likely as it may be, the

For those configurations that become transient, it must be . ;
extrapolation remains uncontrolled, as there are well-known

that the 2 belongs to a weakly allowed cluster. This weakly . . :
allowed cluster can be of various sizes and shapes, and(Sefamples of lattice observables that go to different fields,

straight enumeration according to their size leads directly t ependlr_lg on whether they lie on a boundary or n the bulk.
the clusters of Fig. Iexcept the first one and the last two | NUS neither argument is convincing, but both point to the
and their various orientations. In this way, the second subsé@me field assignment for the height 2 variaaled probably

is itself divided into an infinite number of disjoint subsets, Similarly for heights 3 and )t _ .
according to which weakly allowed clust8rthe height 2 at This seems reasonable and likely. It is therefore surprising
the origin is part of. The subset labeled By(fixed size, 10 observe that it does not appear to be consistent with a
shape, and orientatidreontributes toP(2) a term equal to  Naive interpretation of the operator product expansions. To

P(S). simplify, we consider the critical point, and the correspond-
Putting all together, one obtains, observing that the numing conformal field theory. _ _
mula taken far apart and subsequently brought closer to each other

until they occupy neighboring sites, thus forming the cluster
variable we calledS,;. In the field-theoretic picture, this

P(2)=P(1)+ X P(S)=P(1)+4P(S,)+4P(S,) amounts to taking the two corresponding fields closer and
wac. s closer to each other, until they become coincident, at which
+8P(S;) +4P(S,) +8P(Sg) + - - - (7.1  point they form a new composite field. The information

about what composite fields a pair of fields can form when

where the summation is over the weakly allowed clusterdhey come close to each other and are asymptotically coinci-
which are “anchored” to a height 2. As pointed out[i], ~ dent is contained in their operator product expansion.
the convergence is very slow. From Table I, the terms up tc Thus it seems natural to expect that the field assigned to
Sy furnish the lower bound®(2)=0.13855, well below the  the cluster variable -@-(- be in the OPE of the field cor-
exact valueP(2)~-0.1739[12]. . . responding to height 1 with the field corresponding to height

The argument recalled above leading to the perturbauvnz' If one assumes, as argued above, that the heights 1 and 2

formula for P(2) works similarly for any correlation. The . ..
result can be expressed as an identity between random vaScale to the same field, the required OPE is simply

ables,
_ 29000+ 9090:(2): 9000+ 9096 (W)
shi=2)=ohi—D+ > aSi). (7.2 o B
e _ 1 10096:(w) N 10006 (wW)
Modulo the issue of convergence, this identity is valid when 2lz=wl* " (z-w)? (z—w)?
inserted in expectation values. + (less singular, (7.9

The results of the previous section suggest that all random
variables on the RHS have the same scaling form, given by
the field in Eq.(6.6). Assuming this at all orders and taking
the scaling limit of the previous identity lead to a scaling
field for height 2 of the same form as the scaling field for
height 1, namely,

where, from dimensional analysis, the less singular terms
involve fields of scale dimension strictly larger than 2. One
sees from Eq. (7.4) that the only fields with scale dimension
2 that can be formed in the fusion of a height 1 with a height
scaling 2 are the nonscalar parts of the field making the cluster

8(hi—2) —— @:9006+3006:+ BM266:. (7.3 -@—d)- The scalar part of it, :98d6+3698:, is missing.

. . . [Note that it must be so, since otherwise the unit height vari-
This follows from the observation we made earlier that theables, represented by that scalar field, would have a nonzero

other termsa@a6+ 3636 change sign under a rotation by (connected) three-point function.]
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One may observe that the only dimension 2 scalar fields against the correlation functions. On the other hand, at the

whose fusion produces all field components of @_@ are  critical point, we have noted a disagreement between these
o . o assignments and the naive fusion rules of the conformal
logarithmic fields like :06(9096+3858):. The change to

< S theory.
this logarithmic scalar field has, however, heavy conse- We do not claim that all features of the sandpile models
quences as correlations involving heights 2 would automati-

) oy < . . will be comprehensible within a field theory, but some of
cally contain logarithmic functions of the separation dis- - . .
. =" . . them definitely are. In this respect, other issues than the
tances, in addition to the usual rational functions.

Note that for exactly the same reasons one could questioﬁeight variables can be raised: boundary phenomena against
the field assignment of the height 1 variable itself, despite th oundary conformal field theory, the question of the modular

' foninvariance on a toru@vith leaking siteg etc. Also, the
fact that the fieldg, has successfully passed so many teStStajevance and the role of logarithmic fields and twist fields in

Although one cannot bring two heights 1 Sid? by side, ONGhec=—2 logarithmic conformal field theory must be fur-
can bring them fairly close to each other, as in the last tWO[her examined

clusters of Fig. 1(or Table ), in fact close enough so as not
to lose the OPE argument. But then the fields associated with

the two clustersS;, and S;3 must be contained in the fusion ACKNOWLEDGMENTS
of two heights 1, i.e., in the fusiofv.4), which we know is P.R. heartily thanks Michael Flohr for many stimulating
not the case. discussions and for sharing his own insight into the subtleties

Perhaps sandpile models are so special that one shoudd logarithmic conformal field theories. Useful discussions
reject the fusion altogether, on the basis that height variablesith Deepak Dhar about the draft of this article are also
have hair, because a particular height imposes restrictions ayratefully acknowledged. P.R. would like to thank the Bel-
what can stand close to it. For example, a height 1 forces ajian Fonds National de la Recherche Scientifique for finan-
its neighbors to be higher than or equal to 2, and a height 2ial support.
does not allow two of its neighbors to have a height 1. This

might explain the inconsistency noticed above, but at the APPENDIX A: GREEN FUNCTIONS

same time it denies the very possibility of a field assignment. ] ) )

We believe that this issue should be clarified. In this Appendix, we collect a number of expressions we
have used for the computations of correlations in the sand-
pile model.

VIIl. CONCLUSION The central object here is the Green functiGnof the

massive discrete Laplacian @A, which is the solution of the
The power of conformal field theory could bring a much Poisson equatiod G=1, with A being the finite difference
better understanding of the sandpile model, if some of itperator given in Eg3.1). The solution is easily obtained by
observables could be identified with conformal fields. This isFourier transform:
a nontrivial task even for the height variables, which are

probably the easiest variables to account for in a field- G(m,n)=G((m’,n"),(m+m’,n+n"))
theoretic setting. In addition, and in order to strengthen the ) e

. . . . .. 27 d%k I 1m+ikon
connection with a field theory, the neighborhood of the criti- :J J'
cal point should be investigated. In this article, we have 0 472 X—2cosk,—2 cosk,’

taken the first steps toward a systematic study of this rela- . 5
tionship, at and off criticality. (m,n),(m’",n") e Z=. (A1)

The off-critical extension of the sandpile that we consid- s explained in the text. values 6fare needed at points that
ered is defined by allowing dissipation, i.e., loss of sand eacﬁ‘ P Co P o
are either close to the origin, or else very far from the origin,

time a site topples. The dissipation rate is controlled by &

parametet=0 and corresponds to a relevant perturbation of nd in this Ia.‘St case we have restri(_:ted ourselves to points
the usual Abelian undirected sandpile model close to a principal or a diagonal axis. We treat these three

We have examined multisite probabilities for the simplestCases In turn.

local cluster variables in the off-critical sandpile model. By
explicit calculations, we have shown that their scaling form
can be fully reproduced by a free field theory of massive By using the invariance o& under the reflection symme-
Grassmanian scalars. In the massless, critical limit, thigries of the lattice and its defining equaticdnG=1, the
theory is a logarithmic conformal field theory with central Green function can be given everywhere in terms of its val-
chargec=—2. The local fields assigned to the various clus-ues on a diagonal. By a suitable change of variables and one
ter variables, however, all belong to a nonlogarithmicintegration[27], the diagonal values can be recast into
bosonic sector. The massive regime, with a mibs \t
directly related to the perturbing parameter, corresponds to a (=" (= cos 2mt
thermal perturbation of the conformal theory, i.e., a mass G(m,m)= 7 Jo dt\/m'
term specified by a logarithmic field.

We have determined the field assignment for the 14 clusThis can be resolved in terms of the complete elliptic func-
ter variables pictured in Fig. 1, and checked their consistenctions [28]

1. The Green function at points close to the origin

(A2)
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The asymptotic expansion of this kind of integral was stud-
ied in[29], from which one finds, using their notation,

/2 1
Kip)= | dt—o
-], o

2 4 2 4 u 1 A 3 Az 3

[, @ 9 4| _[o* 219 G(mm)=1/ WP 1 e
= 1+Z+a+--- Iog(a)—[erer-n , (m,m) x(l—uz)m 8m 64 2

515 — et (Al1)

2
E(p)= J dtyl-— pzsi?t
0

where the coefficienté\,.. are defined from the generating
4) function

1
VI1+(1-ud)/(1+ud)z][1+(1+Uud)/(1-u?)zZ]

(Ad)  A_(2)=

whereq=\1—p?, and where the expansions are given for "
p=<1 close to 1. _ = 5
In terms of our perturbing parameter x—4, one finds, ngo An>Z", (A12)
for instance,
and are thus themselves infiniteauren} series inu?, and

G(0 0):£K 4 (a5) ~ hence inyt=yx—4. It is not difficult to show that these
' X \ X/’ coefficients start off like
1 4 4 ~ (2n—1)11 (22 B
G(l,DZm((XZ—S)K(;)—XZE(;)], (AB) An>=(—1)”W(? +O(t7 "), (A1)

1 4 4 with the consequence that the " term in Eq.(A1l) takes
G(2,2= m[ (x*—16x%+ 48)K(;) —x2(x2—8)E(;) ] ,  the form

(A7)

2n—1)11 Ao+ (—1)”((2n—1)!! )2

6 4 2 4 8" m" n! 2"
G(3,3):m (X°—=24x*+ 158x°— 240K ;
1
4 X ——=——[1+(seriesint)],
—xz(x4—16x2+46)E(;”, (A8) (2\/2tm)"

(A14)

which can then be expanded around4 by using Eqs(A3) ) ) ) ) )
and (A4). They all have the same logarithmic singularity at that is, a first term that has the scaling form times corrections

x=4 as G(0,0), so that the difference&(m,n)—G(0,0) [Nt independent of the distance S
remain finite wherx—4. In particular, the critical limit of By combining the previous expansion with that of the

the subtracted diagonal Green function is simjy] prefactor of Eq(A11),

1 1 / u 1 m
im[G(m,m)—G(0,0]=—— kzl k-1 (A9 X(1=U%) \27m o

X—4

1/2
1 i I o
2. The Green function on the far diagonal = ( m) e~ MZT+mV2tU48+ 1] 4 (series int)],
e

For mlarge, the use of elliptic functions is impractical to
extract the asymptotic behavior m. Making the change of

variablesz=€'t, the formula(A2) becomes an integral over a . . .
: one eventually finds that the Green function can be written as
contour that can be deformed to enclose the cut lying be-

(A15)

tween the two rootstu of the denominator, withu=x/4 _ 2
— XZ16-1. This yields G(m,m)={Dy(my2t)+t Dy(my2t)+1t° D4(my2t)
1 . sz + .. _}em\/Zt 148+ , (A16)
G(mm)=— —f dz . ) . . .
2m) v (Z2—u?)(Z2—1Iu®) where all function; depend on the single scaling variable

(A10)  my/2t (the square root of 2 has to be included, since the
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distance from the origin is/im). Moreover, from Eq(Al4), with y=0.577 2 ... theEuler constant.
the first functionD is explicitly given as

3. The Green function on the far principal axis

The calculations can be repeated on a principal axis. The

1
Do(2)= e 2>
Jy8mz n=o nl

- (—1)”((2n—1)!! )2 1

2" (22)" integration of Eq.(A1) over k, followed by the change of
variablez= et givesG(m,0) as a contour integral over the

= iKO(z), (A17) unit circle. It can again be deformed to encircle the branch
2m cut joining the two rootw <u of the denominator that lie

inside th it circle, yieldi
a modified Bessel function. This is to be expected and con'—nSI © the unit circle, yielding

firms that the scaling limit of the Green function is indeed
equal to(1/27)Ky(Mr), the propagator of a massive scalar. G(m,0)= _J dk

For calculations in the ASM model, one still needs the A ], 1\/(x/2—cosk1)2—1
Green functions at points close to the diagonal. The Poisson

2m eiklm

equation is not sufficient, because it would require the 1 (u zm
knowledge of the Green function all the way down to the = —f dz ,
horizontal axis, but a simple ansatz similar to E416) ' Je(z=u)(z- 1) (z- ) (2= 1)
leads to the following expressions, valid fos&<m: (A20)
t k2
G(m,m+k)=1{Dg(z)+k Dg(z) §+ D,(z)+ ZDO(Z) t
, , with u<1 andv<1 the two roots ofz>— (x—2)z+1 and
K , k> 72— (x+2)z+1, respectively, that is,
+ %DO(Z)‘*‘ §D0(Z)_ 1_2Do (2)
k 1 1
+§D§(z) 234 ... et (A18) u:z[x—z—\/x(x—4)], vzz[x+2—\/x(x+4)].
(A21)

wherez=m\/2t is the scaled distance. At the order where all

the calculations have been performed, the terms shown in thene asymptotic behavior of this integral for largecan be
previous expression are all that is needed. found again in29], with the result
The critical limit of the above expansions is more conve-

niently computed from Eq(A9) by using the asymptotic

expansion of the) function[28], or from the integralA2). W um A 3 Ap-— 2
The result is = - oL - 2
CMO=N = | am T 2
lim[G(m,m)—G(0 0)]——i|o m—i 7 L log2 15A3-— § A=
oL O T o L (A22)
- 64 m3
1 7

- +
487m? 19207 m*
The series within the curly brackets is similar to that of the
31 previous subsection, with, howevarn/2 substituted fom,

“16128me T A9 Gndwith the coefficient\,~ as defined if29], namely, by

l o0
=> A2 (A23)

A>(Z)=
V[1+(1+uv)/(1—uv)z][1—(1+v/u)/(1—v/w)zZ][1+(1+u?)/(1—-u?)z] n=0

(the coefficientsA,~ used above correspond to the present G(m,0)={Po(myt) +t Po(myt) +t2 P, (mylt)
A~ upon the identification = —u). =
The usual expansion aroumd4 now yields 4. YemvtTRAE (A24)
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with Po(z) =(1/27)K(2) as before. We show here that the sink has in fact no effect at all and
For points close to the horizontal axis, one finds from thecan be omitted completely, be it in the usual or the massive
Poisson equation the expansions fsgm: ASM. The argument is simple and worth being made explic-
itly.
K2 The discrete dynamics of the ASM recalled in the Intro-
G(m,k)=1{ Po(2)+| Py(2)+ ?[Po(z)— Pg(2)] ]t duction uses a toppling matrix that ignores the sink site s. To

include it, one simply defines an extended toppling malrix

by adding toA a row and a column:
+ ... pet2at (A25)
1 0

with z=m\/t the scaled distance. The ASM calculations also Ae= ( Vv A) ' (B1)
need the values o&6(m=/,k) for small /, and those can
easily be obtained by expanding the previous result, yieldingrhe diagonal entry4,)s sis set equal to 1, in order to freeze
a Taylor series invt. the height of the sink site. The rest of the first row is equal to

The critical asymptotic expansion &(m,0) can also be 0, since the sink has no connection to the sites of the pile. On
computed from Eq(A20). One has the other hand, the first column is not zexq:s= —n; if n;

grains of sand fall off the pile when sitdopples. The num-
1 (2= " bern; is equal ton;=—X; A; ;, so that all row sums o,
[G(M,0)—G(m+ 110)]|x:4:Ef0 dk,€"1"F(ky), except the first one, are zero, In the usual ASHK, is non-
(A26) zero for the boundary sites only, whereas in the massive
model all components are nonzero, with.=4—x for all
where F(x)=(1—e*)/\/(2—cosx)’>—1. A repeated use of bulk sites. The formula for the number of recurrent configu-

integration by parts then leads to rations remains valid, with obviously the same result,
detA.=detA.
1 ( 1)k The same method for computing probabilities and corre-
[G(M,0)—G(M+1,0]|x=a=— 2 [dk F] lations of weakly allowed clusters works as before. One uses
an extended matrix specifying the way the ASM needs be
1(1 1 1 1 modified:
_Zw[m om? " 2md 2m’

w o
Be=\y g (B2)

TR (A27)

The first row is clearly always zero, but the first column can
from which one deduces the subtracted Green function itse[f,e nonzero, depending on the modifications. For those called
as the “least economical” ones in Sec. Il, in which one cuts the

cluster off the rest of the lattice, each sitef the cluster is

) 1 1 y 3 left with a sole connection to the sink, so one Séts=5
Ilm[G(m,O)—G(0,0)]z——Iogm—— > 4Iogz —x.
x4 The probability of a cluster variabl8 is given by the
1 43 usual formula, which as before reduces to a finite determi-
T 24 T 480w m? nant
949 def( A +By)
—— Ce _ _ -1
T 016mme T (A28) Prob(S) =~z =detl+ A, "By
_ -1
APPENDIX B: ABOUT THE SINK SITE =detl+A, Be)|Msu{s}' (B3)

The evacuation of sand is a crucial ingredient in the selfHowever, the restriction tVsU{s} of A_ * B, is particularly
organized criticality of the sandpile models. In order for its simple,
dynamics to be well defined—any unstable configuration re-
laxes to a stable one—each site should be pathwise con- 1 0 0 0 0 0
nected to a sink, where the sand goes that falls off the p|IeA Be= ( N )( ):( . o )
The sink is usually omitted in all discussions, perhaps be- ATV A W B/ AW A""B
cause in the ordinary ASM only the boundary sites are con- (B4)
nected to the sink, and the large volume limit takes them to
infinity. In the massive ASM, however, each site is con-

nected to the sink. One might thus worry about its possible _ _1
role in actual computations. Prol(S) =de(l+A B)|Ms' (BS)

and manifestly leads to the usual result, with no sink,
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