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Self-consistent quantal treatment of decay rates within the perturbed static path approximation
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The framework of the perturbed static path approximation is used to calculate the partition function of a
finite Fermi system from a Hamiltonian with a separable two body interaction. Therein, the collective degree
of freedom is introduced in self-consistent fashion through a Hubbard-Stratonovich transformation. In this way,
all transport coefficients that dominate the decay of a metastable system are defined and calculated microscopi-
cally. Otherwise the same formalism is applied as in the Caldeira-Leggett model to deduce the decay rate from
the free energy above the so called crossover temperaure
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[. INTRODUCTION One starts from the so called static path approximai&m®a)
functional integrals as an approximation to the classical or

Commonly quantum versions of the decay rate of dampedigh-temperature limif9—-11]. Then small scale fluctuations
metastable systems are treated on the basis of the Caldei@round this static path are treated to second order, such that
Leggett mode[1]. For an exhaustive overview on this topic quantum effects come in through local random-phase ap-
we may refer to the review papers by tmi et al.[2], In-  proximation (RPA). In the literature this is referred to as
gold [3], or Weiss[4]. Unfortunately, this model assumes RPA-SPA [12], the perturbed static path approximation
some simplified coupling to a linear heat bath. Furthermore(PSPA in Ref. [13] (the name that we are taking oyesr
it does not make any predictions about the input of sucteorrelated static path approximati¢8SPA in Ref.[14].
important quantities as the potential energy and the inertia,
which need to be chosen on an entire phenomenological. PARTITION FUNCTION OF A FINITE FERMI SYSTEM
level. These features do not allow the model to be appliedto . , , .
self-bound Fermi systems. There, one would like to see the Finally, we are interested in generalizing the formulas of

collective variables introduced in some self-consistent fashdissipative tunneling tQ a system where t_he collective (_je—
ion, with a microscopic treatment afl transport coefficients  9r€es of freedom are introduced self-consistently. The sim-
alike. plest Hamiltonian that may serve this purpose is of the fol-

One possible attempt to overcome these deficiencies i@WiNg structure:
formulated in Ref[5] (with references to earlier papgis
connection to nuclear physics. It is based on a quantal trans- H=Hy+
port equation that is derived within a locally harmonic ap-
proximation exploiting linear response theory. It is this ap- - N .
proximation that allows one to treat a more complicatedWith (Hermitian one body operatorsly andF. The product
coupling between the collective variable and the intrinsicFF mimics an effective separable two body interaction. For
degrees of freedom. A transport equation necessarily ddsoscalar modes, the case we have in mind predominantly,
scribes evolution in real time. Therefore, in barrier regionsthe coupling constarktis negativeg 15]. As we shall see later,
quantum effects can be accounted for only above a criticaf describes one collective degree of freedom. The ar{gatz
temperaturel ., which is larger than the so called crossovershould be considered to define a microscopic model, for just
temperaturel,, which one encounters for imaginary time this collective mode we want to address to Rdf5]. Ne-
propagation(6]. As one knows, the same feature holds trueglecting spin and isospin degrees of freedom, a general two
also for the Caldeira-Leggett mod@l,8]. Another disadvan- body interaction may be written as a sum of separable terms
tage of the derivation of this transport equation mentioned is
that it bases on the deformed shell model. Surely, it allows
one to calculate all transport coefficients on the same foot-
ing. But as one does not start from a genuine two body
interaction, self-consistency is handled on a semifor instance, one might exploit an expansion into multipole
microscopic level only. operators. In case the latter are not Hermitian the product

It is the aim of the present paper to do first steps to over- ete
come these deficiencies. This is possible by adapting a pr(—:r-TJUSt be replaced blyiF; (see, e.g., Sec. 4.4.7 of REL6)).

viously developed formalism to evaluate the partition func-
tion for bound systems with separable two body interactions.

FF, (1)

N X

o1 -
H=H0+§E kiFiF; . 2)
I

A. The general form of the partition function

The partition function of the grand canonical ensemble
reads
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whereB=1/T is the inverse temperature ahidis the Hamil- q= k<ﬁ>, (10
tonian (1). The chemical potentighk is needed in order to

keep the particle numbc{n&) fixed on average. It would be Wwhich relates the collective variablg to the expectation
more appropriate to work with truly fixed particle number. value of the operatoF. The exponent in the first factor of
But as we are mainly interested in the dependence of transhe integrand of Eq(6) is easily understood as to represent

port properties on excitation energy or temperature in thigne static part of the correction k(F)2/2, which the energy
paper, this simplification should be accepted. An exact evalu<-ﬁ0> in the independent particle picture gets from the two

ation of (3) is prohibited by the presence of the two body : . . .
. : . : . - . body interaction. Neglecting the fact6rone obtains the par-
interaction. Treating the latter in mean field apprOX|mat|ontition function in SPA[9—11]

facilitates the calculation greatly. A convenient technical tool
to incorporate this approximation is to use functional inte- .
grals (in imaginary time propagatiorf17], with which fluc- ZSPAB) = / B J dq e[ﬁ/zk]qu(ﬁ Qo)
tuations about the mean field may be treated as well. An =27k ] = '

elegant form of handling this problem is given through the 3 .

Hubbard-Stratonovich transformatipb8], by which the col- _ f * B P

lective variableq(7) is introduced. To keep the present ex- NV —27k)_. dao exil — B7°"(B.d0)]
position as short as possible we save ourselves from repeat-

ing the derivations of{9—14] but simply state the basic

results that will then serve as the starting point for our gen- . P
eralizations. Mind, however, that the notation has bee In the second line of Eq(ll) the symbol7>"(3,qo) has

adapted to that used in transport thefitg]. 'been introduced to represent the free energy. It is not the one

After introducing the Fourier expansion of the collective of the total _systen(or total nucleuswhich would be given
variable by the relation

11)

Z(B)=exd —BF(B)], (12

when the partition function is identified &) =Z5"{(B).
Rather, theFSPA(8,q,) represents the free energy of the sys-
tem of nucleons whose mean field is kept fixed atdheln

27 2w . a common language of transport theory one would call it the
“ng' = Z [T with r=x1, +2, £3-- (5 free energy of the intrinsic degrees of freedom.

So far, any contribution from the dynamics in the collec-

(in units withkg=1) have been used, the partition function tive variableq(7) has been neglected. Formally this may be
may be written in the following form within the PSH&ee  accounted for by writing the correction factor as the follow-
Eq. (21) of [13]]: ing path integra[13]:

Z(ﬁ)=\/%wk f_xd% 6l #20%7( 5,10)C( 8, G0)- C(B.4o) = f D'qexp(égo lar[*+ (g, |, (13
(6)

a(7)=do+ 2 dr explive7), @
where the so called Matsubara frequencies

Vr

with the measure
Herek<0 and

R R (N-1)/2
z(B.do) = Trexp{— BLho(do) — nA]} D'q= Iim ][] %d Re(q,)dIm(q,). (14
r=1 —
N—oo
=11 @+exp{-pla(a)—ulh, @ Ne=np
In Eq. (13) there appears the thermal expectation value of an

is the grand canonical partition function belonging to theevolution operatoi:lq, which can be expressed by the fol-
static part of the Hamiltonian in mean field approximation lowing (imaginary time-ordered product:

ho(qo)=Ho+Fqpo, (8 R 1 .
o(do 0 0 (Mq>q0=z(ﬁ—)Tf<eXF[_ﬁho(%)]
which is simply a sum over one body operators. The corre- Go
sponding one body Schidinger equation at some givem, s 1 (8 .
reads xTexp{—%fo drhy(7,q,) ) (15
ho(do)[1(do)) = €1(do)[1(do))- ) The Hamiltonian

The appearance of thg, reflects the static version of the A A
self-consistency relation for the mean field h,(7,9,)=F(7)8q(7), (16)
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may be understood as the time dependent correction to the ~ 1 .. .
static mean field given in E48). Here, the time dependence G(qo, 7—0)=— g(F(T)F(U»qO- (21)
of the operator part is defined as

. . - On the other hand the retarddel-response function is
F(7)=eholdo) 7 E g~ holdo) /h (17 given by

which means through the interaction picture based on the ~r i A ag fpoa

Hamiltonianhy(qo) of Eq. (8) and thus depends on the static X (qo,t—s):%a(t—s)(F(t)F (5)=FI(S)F(1))q,

Jo- The fluctuation of the collective variabléq(7)=q(7) _

—(o in EqQ. (16) is related to the fluctuating mean field =x(qo,t—5). (22

through Eq.(10). It may be noted that the dependence of

the c numberg is meant to be the correct one, not that of any(Henceforth, we shall omit the upper indexR®). It de-

interaction picture. scribes the response of the expectation valéé to the
The partition function(6) may finally be written in the variations ofq in real time evolution

following compact form:

e (Frog0=— | dsxtaot-slae -0l @3
Z(B)= \/_—ijixdqoexr[—ﬁ}"(ﬂ,qo)], (18) -

The spectral representatior®(qq,iv,) of Eg. (21) and
if again one uses the concept of the “intrinsic free energy,”x(do,®) of Eq.(22) are obtained by Fourier series and Fou-

which now is given by rier transformations, respectively. As both have the same
spectral density, one may proj20] them to be connected by
1 1 1 the analytic continuationy, < w+ie€:
FUB.Go) =~ 5pdo— 5In2(B,do)~ 5INC(B.Go). _ A
(19) g(qOYIVr)H - X (QO!w)- (24)
The response function may be continued to the whole com-
B. The perturbed static path approximation (PSPA) plex plane via Ref{5]

We are now going to evaluate the general form(ia) "
within the so called PSPA. It is defined as that approximation X(Go.2) = f” dQ x"(qo,Q)
in which the exponent appearing in EHd.5) is expanded to ’ —wm -z
second order in the, . This leads to the common Gaussian
approximation that is known to be related to the semi-with x"(qo,w) being the imaginary(dissipative part of
classical limit. Following Ref[13] one may write x(go,w). The form(25) defines two branches. The one that

is analytic in the upper half plane coincides with the retarded
np hp function x7(q,2z) and the one analytic in the lower half
> qrquo deO do plane defines the advanced functiog’(qg,z). Both
branches may be continued analytically into the other half
XeinTeivS(r@f:(T)f:(a))qol (200  Planes. Eelow we will make use only of the retarded re-
sponsex"(gg,2)=x(0dg,2). On the imaginary axisz=iw
with w e R) it has the following symmetry properties:

for Imz#0, (25

1
~o\PSPA_ T
In<Uq>q° _2h2 r,s#0

with the 7 dependence of the operators as defined in(Eg.
Likewise, according to Eq.15), the expectation value is to LN TR Lk i — :

be calculated with the density operator corresponding to the [x(do,W)]* = xLGo, (W)™ ] = x(Qo, —1W) X(qo’lwz'%)
same unperturbed Hamiltonidm(qy). It is this feature that

will allow us to introduce and work with response functions. This property, together with the relatiof®1) and (24) may
As we shall see below, this is of advantage for at least twde exploited to calculate theintegrals in Eq.(20) as
reasons, which in a sense are related to each other. The final

result, say for the decay rate of metastable states, has much A\ PSPA_ ’ )

in common with the linear response formulation of transport In(Ug) _’820 |9l “x(doiwr)- (27
theory within a locally harmonic approximatidib]. From

this app_rpach one know_s how the response functions have {Qind that because of the reality of the collective variable one
be modified in order to introduce dissipation. hasqg® =q_, . The result27) may be plugged into Eq13)

. ) to arrive at the following form:
1. Exploiting Green and response functions

The time ordered average in EO) can be identified PSP _ , B . >
with the two body Matsubara function of the one body op- C™"B.a0)= | D'gex K 20 [1+kx(do,iv)]ar]* .

eratorF [20], (28
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The remaining integrals hidden ' q are of Gaussian type.

PHYSICAL REVIEW E 64 066126

Notice, please, that along the real axis th@ust be chosen

As we stick to the cask< 0, they cause no problem as long identical tow +ie. For details about these response functions

as

1+kx(qg,iv,)>0 for r>0. (29

we may refer to Ref[5].

3. The crossover temperature

As we shall see soon, this leads to a condition on the tem- L€t us elaborate now on the convergence condit9)
perature below which the PSPA breaks down, as already ndor theq; integrals in Eq(28), finally to establish connection
ticed in Refs.[12,13. Here, this condition only has been to an analogous condition that shows up while treating dis-

rewritten in terms of the response functions used in the lineagiPative tunneling at finite temperature within the Caldeira-

response approach to nuclear transpeee, e.g.[5]). In this
language the final result fat”>™ reads

CPPB.a0) =11 [1+kx(aoiv0] ™" (30)
and that for the partition function of the PSPA becomes

Z7P )= \/%fﬂ dao

X exd — BF S B,d0)1C7AB,q0)
=1\/ %fﬁm dgo e[BIZK]qu(,B,QO)

XLIO [1+kx(qo,iv)] ™ (3D)

2. Response functions in the independent particle model

Before we discuss further the conditié®9) in the next

section, let us recall how the response function looks in the

Leggett mode[21,22. To this end, the following identity is
useful[13]:

IT [v2+ w%(a0)]

v

1+kX(qO,in): y
g’ (V2 +[en(ao)/n]?

(36)

which is valid for allr #0. The frequencies,(qo) appear-

ing here are those of the local RPA associated to the local
vibrations of the mean field arourtg. They satisfy a secular
equation[13], which can easily be brought to the form

(37)

by analytically continuing the functio@(qg,i v,) to complex
z by way of Egs.(24) and (25). As the denominator of the
ratio on the right of Eq(36) is real and positive the condition
(29) can be reformulated as

1+kx(qo,2)=0,

I1 [v?+w%(a0)1>0, (38)

model of independent particles, as defined by the Hamil-

tonianh, of Eq. (8). It is not difficult to convince oneself of

the following form for the dissipative part of the

FF-response function

X(G0:0)= =5 = [Fie(do) Pnie(do) Ol o (o)1),

(32)
where
Fii(do) =(1(a0)|F|k(do)),
€i(do) = €(do) — (o), (33
Nik(do) = N[ €(do)]— N (o) ],
andn(e) being the Fermi occupation numbers
n(e)= (39

1+exdple—u)]

Within this model it can easily be seen, that théq,,2) is
given by

Nik(do)

anqoli—z 3

1
X(00,2)== 7 2 |Fu(ao)|?

as already mentioned in Refd2,13. In case that all local
RPA modes are stable, and hence thatgllq,) are real, the
condition is fulfilled for any temperature, viz far=T,=0
[mind Eq.(5)]. For unstable RPA modesn the other hand,
one pair of corresponding frequencies"*(q,) becomes
purely imaginary, in which case EB8) can be fulfilled only
above a certain minimal temperaturg(qp). The latter may
vary with qq, but it is possible, of course, to define a minimal
global temperaturd, by

i 0,(qo)|
T0= maxT,

(39
such that Eq(29) is fulfilled for all T>T,. This temperature

is identical [23] to the so called “crossover temperature”
(here, of course, for an undamped systéhat shows up in
the Caldeira-Leggett model when dealing with unstable
modes of dissipative quantum systef@g]. There, the no-
tion “crossover” indicates a transition in the nature of the
decay of a metastable system. Abdvgthe process is domi-
nated by thermally activated decd§thermal hopping”)
with the effects of genuine barrier penetration in the quantum
sense to become dominant only below this (called “dis-
sipative tunneling” for damped quantum systentsvidently,

in a typical situation, th@, of Eq. (39) would correspond to
that qo where the top of the barrier is located.
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lll. THE PSPA FOR DISSIPATIVE PHENOMENA It may be characterized as a generalization of the degenerate

To elaborate on the connection to the treatment of dissi-mOdeI often used in nuclear physitze, €.g., Re{15)) to

pative tunneling within the Caldeira-Leggett model we need’'C where the nucleonic states are spread over a certain re-

to introduce dissipation. As mentioned previously, the most N d_eterm_lneq by.the W'dtﬂ(qf’)‘ The strength of these
intrinsic excitations is parametrized by the quanft§(q).

natural way is through the response function. This can bes straightforward generalization could be seen in a summa-

[ = = *
\?viiscﬁet?]:trége;ﬁscglarni?iggtgﬁ?télzir?{orﬁzlf éma;\cti(i)/ e’{jﬁg tion of more than one term. In a sense the reduced fdrn
P P corresponds to what has been called the “one pole approxi-

|n;?sg|nary (dissipative part, x(w)=x"(w)+ix"(w), one oo (see, e.g., Ref5)). It is valid whenever the strength
9 distribution is dominated by one peak, which then finally
implies to have one prevailing collective mode. The param-

1+kyx'(w)=0, eters appearing in Eq41) could be calculated in various
ways, as indicated within the linear response approach, for
¥'(©)=0. (40) instance, but even the random matrix moeMM) might

be usedsee, e.g., Ref5]).
., . . Inserting the spectral densitytl) into Eq. (25) the full
Whenever the functioy”(w) is given by a discrete sum @ oghonse function can be calculated, which is needed both
functions located ak(qo)/%, as shown in Eq(32), the  for the secular equatiof87) as well as for the conditiof29).
second equation is automatically fulfilled at the solutiens  The integral can be carried out with the help of the residue
of the first equation. These solutions are either real or purelyegrem noticing that the integrand has five poles altogether,
imaginary without any sign of dissipation, reflecting the factgjy ated atQ =z and Q= +&(qo) *il'(gg)/2, and closing

that the local RPA as discussed above corresponds to timge o0p in the appropriate half plane. The final result for the
reversible dynamics. This argument shows that irreversibility,qtarded response function reads

is intimately related to the functional form of the dissipative
part x"(w) of the response function. A genuinely micro- (o)
scopic approach would require to consider explicitly cou- x(00.2) =F2(qo) 9o )

plings of the simple particle-hole configurations to more E(qo)?+[T(qo)/2)>—iT(qo)z— 22
complicated stategl7]. Definitely, this is beyond the scope (42

of the functional integral method underlying the present

model. In a more phenomenological approach one might afThe advanced response function would be obtained by
gue to dress the single particle states with complex selfchanging—i into +i.) For the condition(29) one needs to
energies that itself may vary with temperature, for details se&now this function along the positive imaginary axis. There,
Ref. [5] or Ref.[24], where the inclusion of pairing is dis- the denominator is always positive implying thatq,iw)
cussed. An even simpler way is to effectively perform theis finite for realw. Furthermore, it is seen thg(qg,iw) still
transition to a continuous spectrum, which directly corre-is real for continuous spectra.

sponds to the procedure one employs in the Caldeira-Leggett

model in typical solid state applicationt—4,23. However, A. Transport coefficients of collective motion

even for a finite nucleus such a transition is justified for not ) ) )

too small excitations. Indeed, as one knows from nuclea[ We are now going to write the secular equation for col-
reaction theor25], for not too small energies resonances do'€Ctiveé motion in terms of transport coefficients, as it is
overlap, implying that the true compound states lie dense fofNown for the damped oscillator. This is achieved best by
excitations above about 10—20 MeV. On the level of the'@Writing Eq.(42) in the form of the oscillator response func-
independent particle model one simply might employ energy©"
averages, which in turn are related to finite observation times

of the system; for details the reader may refer to Ref. ¥(Qo,2)= -1 1 = Yoed U0.2).
In this paper we would not like to penetrate any further " M(do) 224iT(qe)z—Q2(qe) O
into this discussion. Rather, in the sequel we would like to (43

assume the/”(w) to be a continuous function aé. In this

case the secular equati@i7) may no longer be written as in The parameters introduced here correspond tatieeonic
Eg. (40) and its solutions become complex quantities. To beor “intrinsic” ) motion at any value ofj; and areuniquely
specific, instead of Ed32) we like to suggest and work with derived from Eq.(42) as follows:

the following model function consisting of two Lorentzians

of width I'(qp): 1 #*x Yq,2)
M =5 =0 ’ 44
A O L
X' (Go, ) =F(q )( L9072
> "\ [o—&(q0) 12+[T(qo)/2]? 02—y g0y ST (@02
0 0)=X 0:14= =
&(do)F?(do)

—(5<—>—5)>. (42) ° ° (45

066126-5



C. RUMMEL AND H. HOFMANN PHYSICAL REVIEW E 64 066126

ax 4o,2) T'(qo) over, thex(qq,iv,) may be expressed by the transport coef-

ficients by making use of E¢47). In this way Eq.(29) turns

M 1_, :| - 7= -
(QO) (QO) 0z 0 g(qO)Fz(qo) into
(46)

2 2
ve+T'(qo) v, +®=(qg) >0, (52
These transport coefficients may be interpreted aslttal) ' Aol do

coefficients of inertia, frequency, and friction for the nucle-as a natural generalization of E@8). Still, for a real col-

onic mode. Plugging Eq43) into Eq. (37) one obtains lective frequency this condition is always fulfilled. For a
purely imaginary one, on the other hand, E§2) can be
22+iT(qg)z— Q?(qo) — kIM(qo) fulfilled only if the v, is larger than

0=1+kx(0o.2)=

2°+il'(do)2— 2*(qo) v =lw(Go) [~ 7(do) + V72(Go)— 5anw2(qo)]. (53)

Hence,T has to be larger than the local crossover tempera-

(47)

This equation may be fulfilled only for a vanishing numera-
tor, which leads to the secular equation for the local frequen-
ciesz™(qo) of collective motion, namely,

h
TO(QO):W[\/“' 7°(do) — 1(do) 1. (54)

Evidently, theTy(qp) is decreasing with growing damping
strength (qg). For 7(qgge)>1 one hasTy(gq) ~1/2%7(qo)-

The global crossover temperature, finally, has to be defined
as

(z°)?+il(o)z” —w*(qo) =0, (48)
with the localcollectivefrequency being defined as
w?(do) = Q%(do) +kIM(qo) <Q*(d). (49

The last inequality is given because we are dealing with iso- To=m
=maxT . 55
scalar modes wher&<0. Notice that the collective fre- 0 o(%o) 59

quencyw may become purely imaginary, whereas the intrin-For vanishing damping we recover E§9) with w(q,) be-

sic one(} is always rea[see Eq(45)]. ing identical tow ().
Now the frequencieg™(q,) are no longer real quantities.
A convenient form is seen to be IV. THE FISSION RATE WITHIN THE PSPA
2 (0o) =|w(qo)|[ + Vsgnw?(qo) — 7°(do) — i 7(qo) ], Imagine that we are given a heavy nucleus that may decay

(500 by fission, a process that is to be understood as collective
motion across a barrier. It is known that at smaller tempera-

with tures this barrier may have substructure due to shell effects.
Such details shall be neglected here. Rather we shall assume

~ I'(go) the process to be dominated by just one potential minimum

7o) = 2|w(qo)|” 5D and one pronounced barrier. Likewise, we shall discard any

evaporation of light particles angs. Moreover, the transfer
The dimensionless parametg(q,) measures the degree of of energy from the collective degree of freedom to the nucle-
damping: It is smalleflargen than 1 if the(local) collective  onic ones will be supposed not to change much the latter’s
motion is underdampedoverdampefl In the stable case temperature. Under such circumstances the previously dis-
w?(qe) >0 the frequencieg™(q,) of Eq. (50) are found in  cussed path integral formulation may be applied, with a fixed
the lower complex half plane symmetrically to the imaginarytemperature. As noted earlier, for the PSPA we expect great
axis for 7(qg)<1 and on the negative imaginary axis for similarities to processes that are described on the basis of the
7(ge)>1. In the unstable case?(q,)<0 they always lie Caldeira-Leggett Hamiltonian.
on the imaginary axis, but now the frequerz(q,) is in There, the decay ratR of unstable systems at not too
the upper half plane. small temperatures is traced back to the imaginary part of the

It may be worthwhile to briefly compare E@7) with the  free energy. As can be seen in the literature, see,[éJg[3]:

undamped case. It is easily recognized that for vanishing or [2], for T>T, the following formula is in wide use:
the form(47) turns into Eq.(37) under the following condi-

tions: (a) Eq. (36) is evaluated at instead ofi v, , (b) simply R=— z EIm F(B) (56)
one (pair of) local collective modés) w(qg) is considered h T '

instead of all local RPA modes,(qy), (c) the intrinsic fre- . ) . .
quenciese, (0o)/% are replaced b2 (qp). It has originally been postulated in Refg6,27] and, in strict

sense, still lacks a general proof from first principles. How-
ever, it can be said that it is capable of reproducing correctly
certain limits. For instance, one recovers correctly Kramers’

There is no change in the conditi¢®9) for convergence high-temperature limit, and in the quantum limit one gets the
of the integrals in Eq(28). It is only that Eq.(29) takes on a same functional form as obtained with real-time path inte-
different form in terms of the transport coefficients. More- grals[7] or in a quantum transport theofg].

B. The crossover temperature for damped motion
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To evaluate the imaginary part of the free energy one stilthe common Gaussian integrals of the saddle point approxi-
uses the relatiotF( 8) = — T In Z(B) to the partition function. mation, for Eq.(60) the integration contour had to be de-
For an unstable system the latter attains(exponentially formed such that it runs parallel to the positive imaginary
smal) imaginary part. Following Langer26] this may be axis. This is the reason for the additional factor 2 in the
shown by applying the saddle point approximation and disdenominator of Eq(60), see Refs[26—-28.
torting the integration contour into the complex plane at the The generalization of the PSPA correction fac{8) to
barrier. Expanding the logarithm to first order in the expo-damped quantum systems may be performed by replacing
nentially small quantity InZ(8)/ReZ(3) the imaginary part the response functiof85) of the independent particle model

of the free energy becomes by its continuous versiof42). Furthermore, we may make
8 use of the transport coefficients introduced in Sec. Il A. In
ImZ(B this way one gets
ImFAB)~—-T . 5
(B) ReZ(5) (57) e
vy o) vy do
Plugging Eq.(57) into Eq. (56) we obtain CPSPBa0)=11 . (83
999 £G(57) into £4. (50 0 27+ T(do) v+ (q)
2Ty ImZ(B)

i (58)  As mentioned earlier, in comparison to Eg6) there is only

h ReZ(B) one (pair of) modds). The relation between the local nucle-
gnic frequency()(qy) and the local collective frequency
w(qp) is given by Eq.(49). It is worth stressing that the
infinite product(63) is convergent. To guarantee this impor-
tant feature, it suffices to have the same coefficients for local
inertia and damping in the numerator and the denominator

The partition functions appearing here may be evaluate
within the PSPA extending formul@1) to a dissipative sys-
tem as outlined in Sec. Ill. Applying the saddle point ap-
proximation to theq, integral in Eq.(31) we obtain

[29].
1 . . .
ZPSPAB) |, = Plugging Eqgs(54), (59), and(60) into Eq.(58) we obtain
A |qa Vv—kCHQa) the following expression for the PSPA decay rate of the sys-

tem under consideration:

xexf — BF A B,0.)1C7AB.0a),

. Rl
as the contribution from the minimum and the purely imagi-
nary expression o [ Cr() exd—BF B,y
i |Cx(ab)| exd — BFSAB,04)]
ZPSPA(BH%:— PSP
2\ =k|Cxap)| XC AB,0b) _ 64
X extf — BF S B,ap) ICPS B0, B, da)

(60 Like in the sequel we have partly used indicd® fnstead of
o ) ) an argumenty, to keep our notation short. The two first
as the contribution from the barrier. Here, the stiffnesses factors, which in a sense represent dynamics, have come in
through the crossover temperatur discussed in Sec.
F S B,q0) 362=C £ (o), (61) g perattlig{do)

Il B, mind Eq. (54) in particular. Like in the Caldeira-
of the SPA free energy at fixed temperature appear, as it Wéseggett model the decay rate factorizes into a classical part

PSPA : PSPA
assumed that the integrand is dominated by the exponenti&iciass @nd & quantum correction factf,™,
and that the correction facta™™(8,q,) varies smoothly RPSPA_ QPSPA, £PSPA 65)
with qo. The stationary points are thus defined by this free class”™ Tgm

energy throughy.F 5P 9q,=0. Evaluating the intrinsic free ith
energy in SPA from Eq(19) with C=1 it is easy to convince
oneself that the extremal points fulfill the relation psea_ @bl [ Cr(ga) exd —BFSAB,qp)]

R
2m N |Cx(ap)| exd — BFSPAB,0.)]

X(N1+ 92— mp), (66)

class™

e =K(F)q_,- (62)

The derivatives of the eigenvaluegq,) with respect tagg

needed here may be obtained from time-independent pertuand

bation theory. In Eq(62) the indicesa andb stand for the

minimum and the maximuntor barriey of FSPAqy), re- psea C OB, Op)

spectively. The relation§2) are nothing else but the self- am CPSPAB,q.) (67)
consistency condition10) applied to the two stationary

points of the system. Whereas Ef9) was obtained through respectively.
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Let us discuss first the fact®>> . that survives the classical are not meaningful. In certain limits it is possible, however,

limit, as no is involved. Evidently, it contains the common to simplify the f5>™ of Eq. (74). For slow collective motion,
Arrhenius factor sometimes referred to as the zero frequency limit, the local
stiffness(71) of collective motion may be shown to be rep-
exp(—ﬁEb):exp{—B[]—“SPA(B,qb)—]—'SPA(,B,qa)]},(68) resented by that of the free enertfl) (see, e.g., Ref5))

such that one simply has

defined here by the differends, of the free energy between

barrier and potential minimum. The influence of damping is f§PSPA_ % (75)
given by the correction factor found first by Kramg®g9], class My’
namely,
For a derivation of this factor based on a generalized version
f=\1+ 75— 7. (69 of Kramers’ equation and picture of the decay we like to
. o ] refer to Eq.[31].
It decreases monotonically with increasing and for », Next, we turn to theguantum correctionso the classical

>1 behaves like 1/3,. The remaining factor can be made rate (66), which in this approach is given by the ratio of the
to become proportional to the attempt frequersy at the  pspA correctiong™S™(8,q,) of Eq. (63) evaluated at the
minimum by writing barrier and the minimum. With the help of the local nucle-

onic and collective frequencid3(qy) andw(qg) it writes
ol [Cr(0) _wa Mo [Ic®(ay)]| [Cr(aa) ’ ’
2m V|Cr(ap)| 27 VMy N ceoliq) V[Cr(ap)|

(70) fom =

2+ T v+ Q2 V24T v+ Q,

2"
a

r=0 Vr2+Fbvr+m'ﬁ'r>0 vr2+Favr+m 79
Here, use has been made of the relation between the fre-
quency and inertia of the local mode and the associated stifffhe nice feature about this structure is that it converges for
ness, all conceivable values of the transport coefficients as long as
coll B ) T>T,. The reason simply is that it is the ratio of two con-
C*(do) =M (do)w*(qo)- (71 vergent products of typés3). As the alert reader may guess
a simple generalization of the quantum correction factor of

Putting all factors together the classical rate may be ertter%he Caldeira-Leggett modelsee, e.g., Refs[3.4]) to

as coordinate-dependent coefficients such as
Reass =R Giass- (72) ) ;
e vi+1 v +wy
It contains Kramers’ original form fm— 1l 50— (77
r>0 vy +1pv + @y
Re=—2 e~ 1+ 72— 7p) (73 : -
K=o o™ o) (see, e.g.[32]) may (for Ohmic damping wher& does not

fall off for large frequencieslead to problems of conver-
as the first factor. In addition there is a another correctiorgence. Indeed, fof' ,#I',, the infinite product either con-
factor verges to zero or diverges depending which one ofltisds
larger[29]. In Ref.[6] the form(77) has been derived on the
psea__ [Ma |ce(qp)| Cr(qa) basis of a quantum transport equation. In R&8] this factor
flass— Mn ol \Y} IC (o)’ (74 has been evaluated for microscopically calculated transport
b C™da) FHp coefficients. To circumvent the convergence problem in Eq.

not present in the derivations based on the Caldeira—Leggegn the mdnﬂjuall“ s had been replaced by the arithmetic
model. The reasons for that are obvious. First of all, in thignéan value Z=1,+T',. _ o

model the inertia in the collective mode is simply put equal  The local frequency of the collective motian is real at

to a constant that renders the first factor on the right of Eqthe minimum and purely imaginary at the barrier, whereas
(74) equal to unity. Second, the dynamical stiffnég4) is the frequency of the nucleonic motidh is real everywhere.
forced to be identical to the one of the phenomenologicallyThe denominator of the first term in E(Z6) vanishes a§
introduced collective potentiab?V(q)/dq? in Refs.[1,3,4]. approached,, corresponding to the definition of the cross-
This is achieved by working with a Hamiltonian in which over temperature in Sec. Il Bsee Eq.(52)], but all other
from the beginning the collective part is renormalized by thefactors are strictly positive. For this reason,Tatthe quan-
term x(0)q%2, which in the linear response approach is in-tum correction factof {2 diverges to plus infinity, a feature
duced by the static influence of the coupling. In this waywell known from the Caldeira-Leggett modél2].

only the dynamical part of the induced force appears, which In the limit of very high temperaturee>#{), where# ()

in the end may lead to Ohmic friction. In our approach,represents the typical nucleonic excitatithﬁPAstrictly con-
whereall transport propertiesof the collective dynamics are verges to unity. For nuclear fission, collective motion is ex-
generated from the two body interaction, such manipulationpected to be slow in the seng&l] of having
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integrals breaks down, simply because for unstable modes
~6 MeV. (78  the Gaussian integrals diverge for smaller temperatures. So
far, this latter feature also limited the applications of the
PSPA to bound systeni41-13. There is hope that this de-
Tficiency can be overcome in very much the same way as it
was possible for dissipative tunnelifg2,34]. Work in this
direction is under way35].

41 MeV
1 MeV=hw<h)~
Al/3

One may expect quantum effects in collective motion to dis
appear already for>7w. Indeed, the quantum correction
factor will be close to unity already fof/AQ=0(1). At

least this can be shown for the two factors of Etf). Di- There are several advantages of the method presented
vide all numerators and denominators by and neglect nhere hoth over the usual approach to dissipative tunneling
(@/vr)2<1 in the resultmg.denomlnators. _Thls_ is justified \yithin the Cladeira-Leggett modgB,4], as well as with re-
simply because the conditiol/%{~O(1) implies /v, gpect to the locally harmonic approximati¢bHA) [5] to
~1/(2arr) [mind Eq.(5)]. Remain the terms which involve quantum transport. Different from the Caldeira-Leggett
I'/v,. They can be neglected if>(1/2m)Al" or T/fiw  model, all transport properties derive from the two body in-
>zl . Microscopic computations of the transport coeffi- teraction of the many body system. No phenomenological
cients show this condition to be fulfilled, althoughitself assumptions have to be made for any transport coefficient.
increases witlT; see Fig. 3 of31] or Fig. 5.2.10 of Ref[5].  The effects of the two body interaction are treated on a fully
self-consistent level, largely because the collective variables
V. CONCLUSION can be introduced globally by way of the Hubbard-

We have been able to demonstrate how the PSPA can t??Le;ratonowch transformation. For the LHA, on the other

and, and on a quantum level this is possible only lo
extended o treat Fhe decay of damped metast.able sy§tems. is method hgwever is more ﬂexipble with resypeéﬁ]g the
this first step a simple schematic two body interaction ha%h ’ '

been taken and the nucleonic excitations have been assum f?rmal properties. There, one need not rely on the concept
. . 6F'a fixed temperature, an assumption that is questionable for
to be concentrated in one Lorentzian peak around a certain

L isplated systems.
mean value. Generalizations to more general systems shou® y

not cause too many problems. So far we have concentrated
on the quantum corrections to thermal hopping that take
place above the critical temperatuifg [6,22]. At this tem- The authors would like to thank J. Ankerhold and F.
perature the common semi-classical treatment of functionalvanyuk for interesting discussions and helpful suggestions.
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