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Spectral properties of a generalized chiral Gaussian unitary ensemble
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We consider a generalized chiral Gaussian Unitary ensefob®UE based on a weak confining potential.
We study the spectral correlations close to the origin in the thermodynamic limit. We show that for eigenvalues
separated up to the mean level spacing, the spectral correlations coincide with those of chGUE. Beyond this
point, the spectrum is described by an oscillating number variance centered around a constant value. We argue
that the origin of such a rigid spectrum is due to the breakdown of the translational invariance of the spectral
kernel in the bulk of the spectrum. Finally, we compare our results with the ones obtained from a critical
chGUE recently reported in the literature. We conclude that our generalized chGUE does not belong to the
same class of universality as the above mentioned model.
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I. INTRODUCTION Recently[7], a critical chiral Gaussian Unitary Ensemble
(chGUB [13] of the first class(addition of a symmetry
Random matrix ensembl§RME) have proven to be an breaking term to the chGUBEwvas proposed in order to de-
invaluable tool to model the level statistics of complex quan-scribe the spectral correlations of the QCD Dirac operator
tum systems. Since RME depend only on the symmetries dieyond the Thouless energg4]. It was found that in the
the system, its range of applicability is restricted to eigenvalbulk of the spectrum and for small deviations from the
ues separated up to the mean level spacing. Beyond thiigner-Dyson statistics, the spectral kernel coincided with
point, dynamical effects become important and RME ceasee one conjecturefl] to be universal for critical statistics.
to be applicable for describing the spectral correlations of In this paper we shall study the effect of the hard edge
those quantum systems. Recently, new random matrices d&the ensemble is defined on the positive real axis ooiythe
pending on additional parameters have been proposed in ogPectral correlations of a chGUE with a weak confining po-
der to describe the spectral correlations of complex quanturigntial. Our main motivation is to find out whether, as in the
Systems beyond the mean level Spacing scale. These né\;\UE case, critical statistics for chGUE can be obtained out
models, dubbed criticdlL—7], have been utilized to describe ©f soft confining potentials. We will show this is not the case.
the spectral correlations of a disordered system in @pectral correlations of our model, characterized by an al-
localized-delocalized transitiof8] and the spectral correla- Most constant number variance, belong to a universality class
tions of the QCD Dirac operator in a background of instan-different from critical statistics.
tons beyond the Thouless eneld. The paper is organized as follows. First, we propose a
So far, critical statistics have been reproduced followingrandom matrix ensemble defined on the positive real line
two different routes. In one of them, deviations from Wigner-With a nonpolynomial potential that is soft confining in the
Dyson statistics are obtained by adding a symmetry breakingulk of the spectrum and Gaussian close to the origin. Then,
term to the Gaussian unitary ensemb@UE) [2,7]. The  We compute the spectral kernel in the semiclassical approxi-
model is solved by mapping it to a noninteracting Fermi gagnation. Finally, we compare our model with the above men-
of eigenvalues. The second of¥e9] makes use of soft con- tioned critical chGUH7].

fining potentials asymptotically behaving[ds(x)]>. In some Finally, we would like to mention that properties of
instance, it is solved exactly by meansepbrthogonal poly- ChGUE with weakly confining potentials have been dis-
nomials. cussed already in the physics literatib,16,10,17, but

Universality in critical statistics has been conjectufgé¢l ~ attention was focused on the bulk of the spectrum. The effect
due to the fact that both models share the same kernel in tH the hard edge in the critical spectral correlations and its
thermodynamic limit when the deviations from GUE are impact on universality remains an open question.
small. However, the origin of the critical kernel is different in
both cases. In models based on soft confining potentials, Il. DEFINITION OF THE MODEL
since the spectrum is less rigid in this case, the mean spectral . ) ) )
density is not constant. The main ingredient to find the criti- " this section we introduce the model to be studied and
cal kernel is the nontrivial unfolding performed with respect2rgue the need to unfold the spectrum. Finally, we compute
to this mean spectral densifg0]. the mean spectral d_en5|ty nee_ded for such unfolding by using

In models with an explicit breaking symmetry term, de- th€ Dyson's mean field equation. ,
viations from Wigner-Dyson statistics arise because of the e consider & XN complex Hermitian matrix ensemble
long range interactions among eigenvalues being suppressEfWith block structure
[11]. Although progress have been recently repoftt], the
universality class associated with critical statistics can be H=(
still considered an unresolved problem.
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and probability distribution given by The mean spectral densipy,¢ is defined as the density that
minimizes the above functional, namel§t/5p=0, which
P(Cyxe VO, @ implies o
where C is a N/2XN/2 Hermitian matrix. In terms of the D
eigenvalues of, the joint distribution is given by f de’pyr(€)Inje—€'|=V(e)+c, 9)
0
N
P(xy .. .xN)ocH x;e~ Vi) H |x =X | (3 wherec is a constant due to the normalization constraint. The
=1 1si<j=N solution of the above equation is given 49,20
1
V(x;)= —arcsinf(x;), (4) 1 dt
€ Re V t P
Y pMF( ) ,_—6\/_ ( )\/E /—D_t t_E+
wherex; are the eigenvalues &f and 0<x;<o.
SinceV(x;) in Eq. (3) is proportional toxi2 for x;<1 we i 2N (10)
expect to recover the chGUE kerndl3] in this limit. For JtyD—-t’
x;>1, the potential tends t&(x;)= In’(x) and deviations
from the chGUE may be relevaf$,10]. wheree, =e+i0 andN is the total number of eigenvalues.

If the considered interval were the whole real line, theln order to have a solution bounded near zero Bnge have
orthogonal polynomials associated with E4). would be the  to impose
(1/g9)-Hermite polynomials h,(x;q) [9,18,4 with vy

=In(1/q). Unfortunately, for the positive real axes we do not D V'(t)dt
know any set of polynomials orthogonal with respect to the o W =0 (11

measurd2) with the potential4). Thus, in order to compute
the mean spectral density necessary to unfold the spectrum

we shall use the Dyson’s mean field equation. DtV'(t)dt B
The joint distribution(3) can be written as a statistical o \/f \/ﬁ

distribution of a one-dimensional system Nf particles at

temperature “Ir=2" with a pairwise logarithmic interac-  The second constraint is nothing but the familiar normaliza-
tion and a one-particle potential given by Ed) that main-  +ion condition

tains the system confined

P(Xy, ... X% exd—F(xe, ... x)/T] (5 JODpM,:(e)de=N. 12)

where

N Provided that Eq(11) holds in our case, Eq10) is given by

N
F(X1, ... X0 =2 V(X)) =22, In|x?—x2[=In(x;).

- 7 (6) pMF \/ \/;Ref V’(t)

. . . . . 1
Since eventually we will deal with a singular integral equa- (13

tions, we change variablas=x? in order to apply the stan- Now, the task is to computey, for the potentialV(e)
dard methods used to solve these equations. We want to per-1/, arcsinR(e),

form a mean field theory analysis of the above one-

dimensional system. We assume that in the I&danit the JDarcsinmt) 1 dt

above system has a continuous macroscopic density given by, €)= —\/ - e\/E Re .
Purle)= ym tyi+t JD-tt—e:
(14

dt

1
\/E\/D—t t—e,’

p(e)=2 Se—e)). (7)
=1 This integral can be performed by changing the contour of

integration in a sum of two pieced=A;+A, whereA; is

the the negative imaginary axis aAd is the interval D,o].

Since we are interested only in the real part of Bdf), A,

does not contribute to the integral. Thus, Ef4) can be

written as

Pluggingp(e) into Eqg.(6) and assuming that the density is
nonzero only in the interval @x<D, we can expresk as a
functional of the spectral density,

_ D__
F[P(f)]=fo p(e)V(e)de
1

t\to— x/D+t2 2+ ¢

(15

D (D_ __ pur(e)= \/ \/—j
_fo fo p(e)p(€)Inje—€'|dede’.  (8)
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The above integral can be performed by means of a change Ill. CALCULATION OF THE SPECTRAL KERNEL

of variables, the final result being In this section we compute the spectral kernel in the semi-

. classical approximation. The semiclassical approximation in
the GUE consists in substituting the wave funct{orthogo-

D nal polynomials timeg V™) appearing in the spectral ker-

nel, after the Christoffel-Darboux formula is applied, by their

WKB approximation. Owing to the presence of the hard

1 1
6 =
pme(€) 2y \/E ey
vt % D—e t r( [ D
arctan ————tan arcsim\/ ——=
D(e+1) 1+D edge atk=0 we cannot simply do a WKB approximation by
replacing the wave functions by plane waves, but instead we

_ 1 i | € arcta / D-e have to use Bessel functions. The kernel associated with a
2ym D V1+te (e+1)D chRME can be written in terms of the wave function as fol-

From the normalization condition we find thBt—~ asN

—oo, Therefore, the mean spectral density in the lakge In the chiral case, these wave functions are Laguerre poly-

limit is given by nomials. The above expression can be evaluated by the
Christofel-Darboux formula

D—e

. (16) 1

N
K(uw)ore™ M9 3 Juv 2 din(W)in(v). - (20)

pMF(G):é\/;\/%- 17 K(uv)
In terms of the original variables=x?, e ) Juy ¢2N+1(U)¢2N(UJ:fZN(u)¢2N+1(v) .
1 1 (21
pMF(X):Z_?’\/ﬁ. (9 Next, we change variableE=u? and E'=v? since our

) o o model (4) was originally expressed in terms of these vari-
As expectedpy(x) has the right limiting values, it is @ gpjes. After some rearrangements
constant forx<1 (as in the chGUE caseand forx>1 is ’

proportional to 1%, as for the random matrix ensemble with E E')— E’ E
soft confining potentials discussed[i,9,18,21. The above K(E,E')= Vo a(B)Van(E') ¢2/N+1( J¥2n(E)
spectral density will be used in the following section to un- m(E—E')

fold the spectrum. This unfolding allows us to work in units , ,

in which the mean level spacing is equal to 1. We recall that, + Yan+1(E) hon(B) + thon1(E') thon(E)
in this context, random matrix theories only reproduce spec- m(E+E") ’

tral correlations around the average spectral density. 22)
We remark that the above mean spectral density is an

approximate formula capable of giving only the smooth partyhere i, (E) and ¢,y 1(E) are the even and odd lardé
of the spectral density. The exact mean spectral density hagyit of the wave functions associated with the potentisl

oscillations that are out of reach of the mean field fo.rmalismn the semiclassical approximation those functions are given
used above. Therefore, the mean spectral derigByis a py [g]

valid approximation only if these fluctuation are small

enough[17]. In our model this situation corresponds with Yon(E)=s(E)Jo(m7s(E)),
y<1. Fory>1 the exact spectral density is a rapidly oscil- (23
lating function. Hence, it is not possible to define a meaning- Yon+1(E) = VS(E) I (ms(E)),

ful mean spectral density out of[i6,17].

As the mean spectral density is not constant, the rescalingghereJ, andJ; are Bessel functions ars{E) is defined by,
procedure is not trivigl11]. The variablecin terms of which  py,r=ds/dE, with pyr the mean spectral density computed
the spectral density becomes a constant, is the integratéd the last section. It is cleqR2] that the above semiclassical
mean spectral density expressions for the wave functions are correct for polynomial
increasing potential. For soft confining potentials, according
to Refs.[8,6] these expressions are valid if the mean field
spectral density used to unfold the spectrum is close to the
exact mean spectral density. In our model this happens
wherepy(€) is the mean spectral density previously found.whether y<1. Other argument supporting E23) comes
We shall see in the following section that this nontrivial un-from the asymptotic form of the orthogonal polynomials as-
folding is the main ingredient to get a nontranslational in-sociated with a potential asymptotically proportional to
variant kernel in the bulk of the spectrum. In?(E). This problem has already been discussed in the litera-

E
X:f pMF(E)df, (19)
0
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ture [16]. They found that folE>1, W,y (E)>=cogIn(E)/y]. Once we know the form of the kernel we can unfold the
This result coincides with Eq23) in the limit considered. SPectrum by using Eq19) and(18) [11,10

For E<1, s(E)x=1/y and we recover the chGUE result. As

an additional check, we evaluafe(x,y) = |K(x,y)|? by nu- JEE 1
merical integration of the the joint distributid). Figure 1 07 \J1+é®

shows that the agreement between the numerical and analyti-

cal results is excellent. We recall that for polynomial-like E=sinh(xy/2), (25)
increasing potentials the mean spectral density is a constant

proportional toN>1, s(E) is linear forE—0 and we re- where, for convenience, we have replacedyy y/4. The
cover the kernel of the chGURS5]. kernel in terms of the new, unfolded variables is given by

de=x, (24

[ Jo(mx) Iy (1Y) +Io(Yy)I1(7X) N J1(mx)Jo(7y) — I1(7Y) Jo(7X)
sini{(x+y)y/4cosH(x—y)y/4} = sinb{(x—y) y/4}cosH(x+Yy) y/4} |
(26)

™y
K(x,y)= ?\/COSK yx/2)cosH yy/2)xy

As expected, fory—0 we recover the chGUE kernel. This  For the Wigner-Dyson statistics the number variance is
kernel is already in a suitable form for comparison with theproportional to In[(). Such weakly increasing number vari-

one previously found in Ref7]. ance is not surprising as the eigenvalues repulsion produces a
highly rigid spectrum. For the Poisson statistics the number
Ty Jo(mx)I1(7y) + Jo(7y) I (7TX) variance is equal thb as expected for eigenvalues that are not
K(x,y):?\/x_ Sinb{(x+y) y/4} correlated. Finally, a number variance proportionalto
(for L>1 and y<1) is a signature of critical statistics
J1(mX)Jo(7y) = I1(7Yy) Jo(7X) [23,24,10,5,25,B The slopey is directly related 26] to the
sinh{(x—y) y/4} ) (27) multifractality of the wave functions of a disordered system

at a delocalization-localization transition.

Even though both kernels reproduce the chGUE kernel for A linear number variance fdr> 1 with a slopey<1 was
y—0 they are essentially different in the bulk of the spec-found in the generalized chGUE]. However, as it can be
trum. Equation(27) is translational invariant in the bulk of observed in Figs. 2 and 3, the number variance of our model
the spectrum unlike Eq(26), which is not. The origin of is almost constant for>1. The oscillating behavior around
such nontraslationally invariant kernel is due to the non-a constant value is partially due to the self-interactions com-
trivial unfolding induced by the mean spectral density. Thising from the first term of the number variance.
unfolding prevents from vanishing the second term on the Apparently, this result is surprising because random ma-
right hand of Eq(22) in the bulk of the spectrum. trix ensembles with broken time invariance based on poten-

In the following section, we shall study the effect of the tials behaving as fifx) asymptotically are supposed to have a
nontranslational invariance of the kernel in the spectral corlinear number variance with slopgin the bulk of the spec-
relations involving many levels by computing the numbertrum, which is a signature of critical statistif8,4]. In prin-
variance. ciple, one may think that the presence of a hard edge at

=0 in our model does not affect the spectral properties in the
IV. DISCUSSION OF RESULTS bulk of the spectrum. We argue that this is not the case.
The hard edge, combined with the soft confining nature of

In this section we shall see, by computing the numbetthe potential breaks the translational invariance of the kernel
variance, that the spectrum of our model is more rigid than26) even in the bulk of the spectrum. In the bulk, the cluster
the chGUE one and essentially different from the modeldunction associated with the kern@e) is given by
describing critical statistics.

In order to observe deviations from chGUE prediction, we sid{m(x—y)} sin{ m(x+y)}
are going to study long-range correlations of eigenvalues by  Yx(X,y)o| —
studying the number variance in an interj/@ls]. The num- sinf?{(x—y) y/4} ~ costt{(x—y)y/4}
ber variance is a statistical quantity that gives a quantitative . . _
description of the stiffness of the spectrum. The number vari- sinf{m(x+y)} §|n{w(x y)} ,
ance is obtained by integrating the two-point correlation cosH(x—y) y/4} sinh{(x—y)y/4}

function including the self-correlations (29)

L L . .
EZ(L)=f dxf dy[ S(x—y){p(x)}+Ra(x,y)]. (28) where we have used the asymptotic expression of the Bessel
0 0 functions. By performing elementary integrations, we ob-

066121-4



SPECTRAL PROPERTIES OF A GENERALIZED. .. PHYSICAL REVIEW@ 066121

O Numerical T, £ ——— Generalized chGUE
Analytical T,

06l ~—— GhGUE |

-------- ~ Critical chGUE [10]
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FIG. 3. y=In(1/g)=0.3. A constant number variance is ob-
served in the generalized chGUE whe® 1. That means the spec-
trum is even more rigid than the chGUE one.

FIG. 1. We compare the analytical value af,(x,6.53)
=|K(x,6.53)? with the numerical onek (x,y) is given by Eq(26)
with y=0.25. The numerical integration was performed by using

the Metropolis algorithm foN=100 “particles” in the confining R hl kina. weak increasin tentials fail to k
potential(4). We have used the first910* sweeps to “warm up” oughly speaking, weak increasing potentials fail to keep

the system and taken the average over the next@. We repeated thel glger_lva_lue_s conflneld. As a Colnseqy”en_ce, ]:[he mean Spec-
the process four times. The final result is the the average of the fOLHa ensity Is, in general, a strongly oscillating function even

trials. We explicitly checked the agreement between numerical ani) the thermodynamic limit. Ify<1 the deviations from
analytical results foy<20. chGUE are small and we can still define a relevant smooth

mean spectral density by using the mean field formali§n

serve that the leading contribution to the number variance fo he unfolding proqedurg using this mean spect_ral density
L>1 coming from the first term of, (translational invari- reaks the translational invariance of the kernel in the bulk

ant part is yL wherey is a function ofy only. On the other of the spectrum. This breaking of the translational symmetry
hand, the leading contribution of the second terrY ofnon- produces a spectrum hlghl_y correlated and essentially differ-
translational invariant pgrto the number variance is yL. ent from the one reported in Rqf).

Therefore, both contributions cancel each other and we ar]% uvr:/g |\r11V(t)rL11|I:S I!l(eetrohrgsegggg :zag?terg%u'tgg;ﬁ;f th?aS?s%v
left with a oscillating(around a constant value depending on pap P y

) number variance coming from the third term of the cIuste|127’1]] - They studied the spectral properties of a generalized

function. We point out that the above cancellation is mainlye?swi1 Egﬁgisovr\]/eﬁl '\I,'vhe:kng?iEzgl?k?atpiﬁt?hnélzluI\LVIg? tfgz -
due to the nontrivial unfolding used. ymp ' y P

trum for N—o~ and y<<1, the cluster functior¥,(x,y) of
that ensemble has strong correlations not only wkery,

——— Generalized chGUE but also wherx~ —y. The total cluster function is given by
-------- - Critical chGUE [10] P the following nontranslational invariant relation:
04 chGUE \//\/\/“/ ]

WA Ya(x5) y? sir?{m(x—y)}coshxy/2)coshyy/2)
X,y)= .

ANAVAVAYAVAVAVA' 2%y 1672 costt{(x+y)yl4}sintt{(x—y) y/4}
(30

ANAY N AN
’\\ /"\v/ \J/ \j/ \/ \v/ \Yj
v

_ They showed that, due to this “ghost” peak, the number
variance depends on the interval in which it is calculated.
If the interval is not symmetric with respect to the origin
([0,s] for instance, the system does not feel the straingn-
translational invariant correlations atx=—y. Then, the
number variance goes asymptotically like and the model
is supposed to describe critical correlations. However, if the
0 4 8 12 16 20 interval is symmetric with respect to the origin , the peak at
x=—Yy of the two-point functionY,(x,y) has to be taken
FIG. 2. Number variance foy=In(1/q)=0.1. It is linear for  into account as well. This contribution drives the asymptotic
L>1 in the critical chGUE of(7]. In our generalized chGUE is form of the number variance to a constant v&l26,27,28,
almost constant in the bulk of the spectrum. in agreement with the results obtained in this paper.
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It is straightforward to compare the number variance inis even more correlated than the chGUE one.
the bulk of the spectrum di25,27] with the one studied in We point out again that our result contrasts with the one
this paper. The asymptotic form of the number variance in dound for soft confining potentials for GUE in which the
interval[ 0,s] associated with the first two terms of EQ9) spectral correlations are given by critical statistics.
corresponds to the number variance in the interval In our model the linear term of the number variance char-
[ —s/2,s/2] of the above mentioned critical GUE. By chang- acterizing critical statistics vanishes due to the nontransla-
ing variablesu= —x, v =Yy in the expression for the number tional invariance of the spectral kernel in the bulk of the
variance of our model we recover the expression obtained bgpectrum. Thus, the generalized chGUE studied in this paper
Canali and Kravtsov. The third term of EQ9) produces the and the critical ensemble of Réf7] (in which a linear num-
oscillating behavior observed only in our generalizedber variance was found to be proportionalyb for L>1)
chGUE. belong to different universality classg28].

To sum up, due to the nontranslational invariance of the
kernel contributions coming from the poirnts- —y have to
be taken into account. These contributions make the linear ACKNOWLEDGMENTS

term in the number variance vanish. ) . .
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