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Spectral properties of a generalized chiral Gaussian unitary ensemble
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~Received 23 April 2001; revised manuscript received 23 July 2001; published 21 November 2001!

We consider a generalized chiral Gaussian Unitary ensemble~chGUE! based on a weak confining potential.
We study the spectral correlations close to the origin in the thermodynamic limit. We show that for eigenvalues
separated up to the mean level spacing, the spectral correlations coincide with those of chGUE. Beyond this
point, the spectrum is described by an oscillating number variance centered around a constant value. We argue
that the origin of such a rigid spectrum is due to the breakdown of the translational invariance of the spectral
kernel in the bulk of the spectrum. Finally, we compare our results with the ones obtained from a critical
chGUE recently reported in the literature. We conclude that our generalized chGUE does not belong to the
same class of universality as the above mentioned model.

DOI: 10.1103/PhysRevE.64.066121 PACS number~s!: 11.30.Rd, 12.39.Fe, 12.38.Lg, 71.30.1h
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I. INTRODUCTION

Random matrix ensembles~RME! have proven to be an
invaluable tool to model the level statistics of complex qua
tum systems. Since RME depend only on the symmetrie
the system, its range of applicability is restricted to eigenv
ues separated up to the mean level spacing. Beyond
point, dynamical effects become important and RME cea
to be applicable for describing the spectral correlations
those quantum systems. Recently, new random matrices
pending on additional parameters have been proposed in
der to describe the spectral correlations of complex quan
systems beyond the mean level spacing scale. These
models, dubbed critical@1–7#, have been utilized to describ
the spectral correlations of a disordered system in
localized-delocalized transition@8# and the spectral correla
tions of the QCD Dirac operator in a background of insta
tons beyond the Thouless energy@7#.

So far, critical statistics have been reproduced follow
two different routes. In one of them, deviations from Wigne
Dyson statistics are obtained by adding a symmetry brea
term to the Gaussian unitary ensemble~GUE! @2,7#. The
model is solved by mapping it to a noninteracting Fermi g
of eigenvalues. The second one@4,9# makes use of soft con
fining potentials asymptotically behaving as@ ln(x)#2. In some
instance, it is solved exactly by means ofq-orthogonal poly-
nomials.

Universality in critical statistics has been conjectured@1#
due to the fact that both models share the same kernel in
thermodynamic limit when the deviations from GUE a
small. However, the origin of the critical kernel is different
both cases. In models based on soft confining potent
since the spectrum is less rigid in this case, the mean spe
density is not constant. The main ingredient to find the cr
cal kernel is the nontrivial unfolding performed with respe
to this mean spectral density@10#.

In models with an explicit breaking symmetry term, d
viations from Wigner-Dyson statistics arise because of
long range interactions among eigenvalues being suppre
@11#. Although progress have been recently reported@12#, the
universality class associated with critical statistics can
still considered an unresolved problem.
1063-651X/2001/64~6!/066121~6!/$20.00 64 0661
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Recently@7#, a critical chiral Gaussian Unitary Ensemb
~chGUE! @13# of the first class~addition of a symmetry
breaking term to the chGUE! was proposed in order to de
scribe the spectral correlations of the QCD Dirac opera
beyond the Thouless energy@14#. It was found that in the
bulk of the spectrum and for small deviations from t
Wigner-Dyson statistics, the spectral kernel coincided w
the one conjectured@1# to be universal for critical statistics

In this paper we shall study the effect of the hard ed
~the ensemble is defined on the positive real axis only! on the
spectral correlations of a chGUE with a weak confining p
tential. Our main motivation is to find out whether, as in t
GUE case, critical statistics for chGUE can be obtained
of soft confining potentials. We will show this is not the cas
Spectral correlations of our model, characterized by an
most constant number variance, belong to a universality c
different from critical statistics.

The paper is organized as follows. First, we propos
random matrix ensemble defined on the positive real l
with a nonpolynomial potential that is soft confining in th
bulk of the spectrum and Gaussian close to the origin. Th
we compute the spectral kernel in the semiclassical appr
mation. Finally, we compare our model with the above me
tioned critical chGUE@7#.

Finally, we would like to mention that properties o
chGUE with weakly confining potentials have been d
cussed already in the physics literature@15,16,10,17#, but
attention was focused on the bulk of the spectrum. The ef
of the hard edge in the critical spectral correlations and
impact on universality remains an open question.

II. DEFINITION OF THE MODEL

In this section we introduce the model to be studied a
argue the need to unfold the spectrum. Finally, we comp
the mean spectral density needed for such unfolding by u
the Dyson’s mean field equation.

We consider aN3N complex Hermitian matrix ensembl
H with block structure

H5S 0 C†

C 0 D ~1!
©2001 The American Physical Society21-1
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and probability distribution given by

P~C!}e2V(CC†), ~2!

where C is a N/23N/2 Hermitian matrix. In terms of the
eigenvalues ofH, the joint distribution is given by

P~x1 . . . xN!})
i 51

N

xie
2V(xi ) )

1< i , j <N
uxi

22xj
2u2 ~3!

V~xi !5
1

g
arcsinh2~xi !, ~4!

wherexi are the eigenvalues ofH and 0,xi,`.
SinceV(xi) in Eq. ~3! is proportional toxi

2 for xi!1 we
expect to recover the chGUE kernel@13# in this limit. For
xi@1, the potential tends toV(xi)} ln2(xi) and deviations
from the chGUE may be relevant@6,10#.

If the considered interval were the whole real line, t
orthogonal polynomials associated with Eq.~4! would be the
(1/q)-Hermite polynomials hn(x;q) @9,18,4# with g
5 ln(1/q). Unfortunately, for the positive real axes we do n
know any set of polynomials orthogonal with respect to
measure~2! with the potential~4!. Thus, in order to compute
the mean spectral density necessary to unfold the spec
we shall use the Dyson’s mean field equation.

The joint distribution~3! can be written as a statistica
distribution of a one-dimensional system ofN particles at
temperature ‘‘1/T52’’ with a pairwise logarithmic interac-
tion and a one-particle potential given by Eq.~4! that main-
tains the system confined

P~x1 , . . . ,xN!} exp@2F~x1 , . . . ,xN!/T# ~5!

where

F~x1 , . . . ,xN!5(
i 51

N

V~xi !22(
iÞ j

N

lnuxi
22xj

2u2 ln~xi !.

~6!

Since eventually we will deal with a singular integral equ
tions, we change variablese i5xi

2 in order to apply the stan
dard methods used to solve these equations. We want to
form a mean field theory analysis of the above on
dimensional system. We assume that in the largeN limit the
above system has a continuous macroscopic density give

r~e!5(
i 51

N

d~e2e i !. ~7!

Pluggingr(e) into Eq. ~6! and assuming that the density
nonzero only in the interval 0,x,D, we can expressF as a
functional of the spectral density,

F@ r̄~e!#5E
0

D

r̄~e!V~e!de

2E
0

DE
0

D

r̄~e!r̄~e8!lnue2e8udede8. ~8!
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The mean spectral densityrMF is defined as the density tha
minimizes the above functional, namely,dF/dr̄50, which
implies

E
0

D

de8rMF~e8!lnue2e8u5V~e!1c, ~9!

wherec is a constant due to the normalization constraint. T
solution of the above equation is given by@19,20#

rMF~e!5
1

p2

1

AD2eAe
ReE

0

D

V8~ t !
1

AtAD2t

dt

t2e1

1
2N

AtAD2t
, ~10!

wheree15e1 i0 andN is the total number of eigenvalues
In order to have a solution bounded near zero andD we have
to impose

E
0

D V8~ t !dt

AtAD2t
50 ~11!

E
0

D tV8~ t !dt

AtAD2t
5N.

The second constraint is nothing but the familiar normali
tion condition

E
0

D

rMF~e!de5N. ~12!

Provided that Eq.~11! holds in our case, Eq.~10! is given by

rMF~e!5
2

p2
AD2eAe ReE

0

D

V8~ t !
1

AtAD2t

dt

t2e1
.

~13!

Now, the task is to computerMF for the potentialV(e)
51/g arcsinh2(Ae),

rMF~e!5
2

gp2
AD2eAe ReE

0

Darcsinh~ t !

tA11t

1

AD2t

dt

t2e1
.

~14!

This integral can be performed by changing the contour
integration in a sum of two pieces,A5A11A2 whereA1 is
the the negative imaginary axis andA2 is the interval@D,`#.
Since we are interested only in the real part of Eq.~14!, A2
does not contribute to the integral. Thus, Eq.~14! can be
written as

rMF~e!5
2

gp2
AD2eAeE

1

` 1

tAt221AD1t2

1

t21e
.

~15!
1-2
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SPECTRAL PROPERTIES OF A GENERALIZED . . . PHYSICAL REVIEW E64 066121
The above integral can be performed by means of a cha
of variables, the final result being

rMF~e!5
1

2gp

1

AeAe11

D2e

D

3arctanF D2e

D~e11!
tanS arcsinA D

11D D G
2

1

2gp

1

AD
A e

11e
arctanFA D2e

~e11!D

3tanS arcsinA D

D11D G . ~16!

From the normalization condition we find thatD→` as N
→`. Therefore, the mean spectral density in the largeN
limit is given by

rMF~e!5
1

4g

1

AeAe11
. ~17!

In terms of the original variablese5x2,

rMF~x!5
1

2g

1

Ax211
. ~18!

As expected,rMF(x) has the right limiting values, it is a
constant forx!1 ~as in the chGUE case! and for x@1 is
proportional to 1/x, as for the random matrix ensemble wi
soft confining potentials discussed in@6,9,18,21#. The above
spectral density will be used in the following section to u
fold the spectrum. This unfolding allows us to work in un
in which the mean level spacing is equal to 1. We recall th
in this context, random matrix theories only reproduce sp
tral correlations around the average spectral density.

We remark that the above mean spectral density is
approximate formula capable of giving only the smooth p
of the spectral density. The exact mean spectral density
oscillations that are out of reach of the mean field formali
used above. Therefore, the mean spectral density~18! is a
valid approximation only if these fluctuation are sm
enough@17#. In our model this situation corresponds wi
g!1. Forg@1 the exact spectral density is a rapidly osc
lating function. Hence, it is not possible to define a meani
ful mean spectral density out of it@6,17#.

As the mean spectral density is not constant, the resca
procedure is not trivial@11#. The variablex in terms of which
the spectral density becomes a constant, is the integr
mean spectral density

x5E
0

E

rMF~e!de, ~19!

whererMF(e) is the mean spectral density previously foun
We shall see in the following section that this nontrivial u
folding is the main ingredient to get a nontranslational
variant kernel in the bulk of the spectrum.
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III. CALCULATION OF THE SPECTRAL KERNEL

In this section we compute the spectral kernel in the se
classical approximation. The semiclassical approximation
the GUE consists in substituting the wave function~orthogo-
nal polynomials timese2V(x)) appearing in the spectral ker
nel, after the Christoffel-Darboux formula is applied, by the
WKB approximation. Owing to the presence of the ha
edge atx50 we cannot simply do a WKB approximation b
replacing the wave functions by plane waves, but instead
have to use Bessel functions. The kernel associated wi
chRME can be written in terms of the wave function as f
lows:

K~u,v !}e2(u1v) (
n50

N

Auv
1

n11
cn~u!cn~v !. ~20!

In the chiral case, these wave functions are Laguerre p
nomials. The above expression can be evaluated by
Christofel-Darboux formula

K~u,v !

}e2(u1v)Auv
c2N11~u!c2N~v !2c2N~u!c2N11~v !

u2v
.

~21!

Next, we change variablesE5u2 and E85v2 since our
model ~4! was originally expressed in terms of these va
ables. After some rearrangements,

K~E,E8!5
c2N11~E!c2N~E8!2c2N11~E8!c2N~E!

p~E2E8!

1
c2N11~E8!c2N~E!1c2N11~E8!c2N~E!

p~E1E8!
,

~22!

wherec2N(E) andc2N11(E) are the even and odd largeN
limit of the wave functions associated with the potential~4!.
In the semiclassical approximation those functions are gi
by @6#

c2N~E!5As~E!J0„ps~E!…,
~23!

c2N11~E!5As~E!J1„ps~E!…,

whereJ0 andJ1 are Bessel functions ands(E) is defined by,
rMF5ds/dE, with rMF the mean spectral density compute
in the last section. It is clear@22# that the above semiclassica
expressions for the wave functions are correct for polynom
increasing potential. For soft confining potentials, accord
to Refs. @8,6# these expressions are valid if the mean fie
spectral density used to unfold the spectrum is close to
exact mean spectral density. In our model this happ
whetherg!1. Other argument supporting Eq.~23! comes
from the asymptotic form of the orthogonal polynomials a
sociated with a potential asymptotically proportional
ln2(E). This problem has already been discussed in the lite
1-3
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ture @16#. They found that forE@1, C2N(E)}cos@ln(E)/g#.
This result coincides with Eq.~23! in the limit considered.
For E!1, s(E)}1/g and we recover the chGUE result. A
an additional check, we evaluateT2(x,y)5uK(x,y)u2 by nu-
merical integration of the the joint distribution~3!. Figure 1
shows that the agreement between the numerical and an
cal results is excellent. We recall that for polynomial-lik
increasing potentials the mean spectral density is a cons
proportional toN@1, s(E) is linear for E→0 and we re-
cover the kernel of the chGUE@15#.
is
he

fo
c

f

n
hi
th

e
o
e

be
a
el

we
b

tiv
ar
ion

06612
yti-

nt

Once we know the form of the kernel we can unfold t
spectrum by using Eq.~19! and ~18! @11,10#

E
0

E2

g

1

A11e2
de5x, ~24!

E5sinh~xg/2!, ~25!

where, for convenience, we have replacedg by g/4. The
kernel in terms of the new, unfolded variables is given by
K~x,y!5
pg

8
Acosh~gx/2!cosh~gy/2!xyF J0~px!J1~py!1J0~py!J1~px!

sinh$~x1y!g/4%cosh$~x2y!g/4%
1

J1~px!J0~py!2J1~py!J0~px!

sinh$~x2y!g/4%cosh$~x1y!g/4%G .
~26!
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As expected, forg→0 we recover the chGUE kernel. Th
kernel is already in a suitable form for comparison with t
one previously found in Ref.@7#.

K~x,y!5
pg

8
AxyFJ0~px!J1~py!1J0~py!J1~px!

sinh$~x1y!g/4%

1
J1~px!J0~py!2J1~py!J0~px!

sinh$~x2y!g/4% G . ~27!

Even though both kernels reproduce the chGUE kernel
g→0 they are essentially different in the bulk of the spe
trum. Equation~27! is translational invariant in the bulk o
the spectrum unlike Eq.~26!, which is not. The origin of
such nontraslationally invariant kernel is due to the no
trivial unfolding induced by the mean spectral density. T
unfolding prevents from vanishing the second term on
right hand of Eq.~22! in the bulk of the spectrum.

In the following section, we shall study the effect of th
nontranslational invariance of the kernel in the spectral c
relations involving many levels by computing the numb
variance.

IV. DISCUSSION OF RESULTS

In this section we shall see, by computing the num
variance, that the spectrum of our model is more rigid th
the chGUE one and essentially different from the mod
describing critical statistics.

In order to observe deviations from chGUE prediction,
are going to study long-range correlations of eigenvalues
studying the number variance in an interval@0,s#. The num-
ber variance is a statistical quantity that gives a quantita
description of the stiffness of the spectrum. The number v
ance is obtained by integrating the two-point correlat
function including the self-correlations

S2~L !5E
0

L

dxE
0

L

dy@d~x2y!^r~x!&1R2~x,y!#. ~28!
r
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-
s
e

r-
r

r
n
s

y

e
i-

For the Wigner-Dyson statistics the number variance
proportional to ln(L). Such weakly increasing number var
ance is not surprising as the eigenvalues repulsion produc
highly rigid spectrum. For the Poisson statistics the num
variance is equal toL as expected for eigenvalues that are n
correlated. Finally, a number variance proportional toxL
~for L@1 and x!1) is a signature of critical statistic
@23,24,10,5,25,8#. The slopex is directly related@26# to the
multifractality of the wave functions of a disordered syste
at a delocalization-localization transition.

A linear number variance forL@1 with a slopex!1 was
found in the generalized chGUE@7#. However, as it can be
observed in Figs. 2 and 3, the number variance of our mo
is almost constant forL@1. The oscillating behavior aroun
a constant value is partially due to the self-interactions co
ing from the first term of the number variance.

Apparently, this result is surprising because random m
trix ensembles with broken time invariance based on pot
tials behaving as ln2(x) asymptotically are supposed to have
linear number variance with slopex in the bulk of the spec-
trum, which is a signature of critical statistics@8,4#. In prin-
ciple, one may think that the presence of a hard edgex
50 in our model does not affect the spectral properties in
bulk of the spectrum. We argue that this is not the case.

The hard edge, combined with the soft confining nature
the potential breaks the translational invariance of the ke
~26! even in the bulk of the spectrum. In the bulk, the clus
function associated with the kernel~26! is given by

Y2~x,y!}F sin2$p~x2y!%

sinh2$~x2y!g/4%
1

sin2$p~x1y!%

cosh2$~x2y!g/4%

12
sin$p~x1y!%

cosh$~x2y!g/4%

sin$p~x2y!%

sinh$~x2y!g/4%G ,

~29!

where we have used the asymptotic expression of the Be
functions. By performing elementary integrations, we o
1-4
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SPECTRAL PROPERTIES OF A GENERALIZED . . . PHYSICAL REVIEW E64 066121
serve that the leading contribution to the number variance
L@1 coming from the first term ofY2 ~translational invari-
ant part! is xL wherex is a function ofg only. On the other
hand, the leading contribution of the second term ofY2 ~non-
translational invariant part! to the number variance is2xL.
Therefore, both contributions cancel each other and we
left with a oscillating~around a constant value depending
g) number variance coming from the third term of the clus
function. We point out that the above cancellation is mai
due to the nontrivial unfolding used.

FIG. 1. We compare the analytical value ofT2(x,6.53)
5uK(x,6.53)u2 with the numerical one.K(x,y) is given by Eq.~26!
with g50.25. The numerical integration was performed by us
the Metropolis algorithm forN5100 ‘‘particles’’ in the confining
potential~4!. We have used the first 93104 sweeps to ‘‘warm up’’
the system and taken the average over the next 93105. We repeated
the process four times. The final result is the the average of the
trials. We explicitly checked the agreement between numerical
analytical results fory,20.

FIG. 2. Number variance forg5 ln(1/q)50.1. It is linear for
L@1 in the critical chGUE of@7#. In our generalized chGUE is
almost constant in the bulk of the spectrum.
06612
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y

Roughly speaking, weak increasing potentials fail to ke
the eigenvalues confined. As a consequence, the mean
tral density is, in general, a strongly oscillating function ev
in the thermodynamic limit. Ifg!1 the deviations from
chGUE are small and we can still define a relevant smo
mean spectral density by using the mean field formalism@6#.
The unfolding procedure using this mean spectral den
breaks the translational invariance of the kernel in the b
of the spectrum. This breaking of the translational symme
produces a spectrum highly correlated and essentially dif
ent from the one reported in Ref.@7#.

We would like to mention that a result similar to the on
found in this paper has been reported by Canali and Kravt
@27,11# . They studied the spectral properties of a generali
GUE based on a weak confining potential with a ln2(x)
asymptotic as well. They noticed that in the bulk of the sp
trum for N→` and g!1, the cluster functionY2(x,y) of
that ensemble has strong correlations not only whenx'y,
but also whenx'2y. The total cluster function is given by
the following nontranslational invariant relation:

Y2~x,y!5
g2

16p2

sin2$p~x2y!%cosh~xg/2!cosh~yg/2!

cosh2$~x1y!g/4%sinh2$~x2y!g/4%
.

~30!

They showed that, due to this ‘‘ghost’’ peak, the numb
variance depends on the interval in which it is calculated

If the interval is not symmetric with respect to the orig
(@0,s# for instance!, the system does not feel the strong~non-
translational invariant! correlations atx52y. Then, the
number variance goes asymptotically likexL and the model
is supposed to describe critical correlations. However, if
interval is symmetric with respect to the origin , the peak
x52y of the two-point functionY2(x,y) has to be taken
into account as well. This contribution drives the asympto
form of the number variance to a constant value@25,27,28#,
in agreement with the results obtained in this paper.

ur
d

FIG. 3. g5 ln(1/q)50.3. A constant number variance is ob
served in the generalized chGUE whenL@1. That means the spec
trum is even more rigid than the chGUE one.
1-5
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It is straightforward to compare the number variance
the bulk of the spectrum of@25,27# with the one studied in
this paper. The asymptotic form of the number variance i
interval @0,s# associated with the first two terms of Eq.~29!
corresponds to the number variance in the inter
@2s/2,s/2# of the above mentioned critical GUE. By chan
ing variablesu52x, v5y in the expression for the numbe
variance of our model we recover the expression obtained
Canali and Kravtsov. The third term of Eq.~29! produces the
oscillating behavior observed only in our generaliz
chGUE.

To sum up, due to the nontranslational invariance of
kernel contributions coming from the pointsx;2y have to
be taken into account. These contributions make the lin
term in the number variance vanish.

V. CONCLUSIONS

In this paper we have studied the effect of a hard edg
the spectral correlations of a chiral random matrix ensem
with a soft confining potential. We showed that beyond
Thouless energy the spectrum is characterized by an osc
ing number variance around a constant value. The spec
.

,

. B
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is even more correlated than the chGUE one.
We point out again that our result contrasts with the o

found for soft confining potentials for GUE in which th
spectral correlations are given by critical statistics.

In our model the linear term of the number variance ch
acterizing critical statistics vanishes due to the nontran
tional invariance of the spectral kernel in the bulk of t
spectrum. Thus, the generalized chGUE studied in this pa
and the critical ensemble of Ref.@7# ~in which a linear num-
ber variance was found to be proportional toxL for L@1)
belong to different universality classes@28#.
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