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Rigidity of random networks of stiff fibers in the low-density limit
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Rigidity percolation is analyzed in two-dimensional random networks of stiff fibers. As fibers are randomly
added to the system there exists a density thresheld,,, above which a rigid stress-bearing percolation
cluster appears. This threshold is found to be above the connectivity percolation thr@shmldsuch that
Omin=(1.1698+0.0004).. The transition is found to be continuous, and in the universality class of the
two-dimensional central-force rigidity percolation on lattices. At percolation threshold the rigid backbone of
the percolating cluster was found to break into rigid clusters, whose number diverges in the limit of infinite
system size, when a critical bond is removed. The scaling with system size of the average size of these clusters
was found to give a new scaling exponéii 1.61+ 0.04.
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[. INTRODUCTION two known models. This has been answered in the case of a
model which can vary between a braced square lattice and a
Scalar percolatiori1] is a simple model describing the triangular lattice[16]. It was shown that the continuous 2D
transfer of a scalar conserved quantity, e.g., an electrientral-force rigidity percolation applies when the model is
charge, across a randomly diluted system. In two dimensiongven slightly deviated from the braced square lattice. The
the geometric exponents of connectivity scalar percolatioProperties of the percolation cluster and different limits of
are known exactly1,2]. Elastic percolation is not in general the models introduced seem thus a possible way to probe the
equivalent to scalar percolatidB], and the similarities and Properties that differentiate the three basic cases.
differences between the scalar percolation and the two- Two-dimensional random network is a geometrical struc-
dimensional central-force rigidity transition have been studfure. It can be used, e.g., to model planar structures that are
ied extensivel\i4—16]. The results obtained for the latter can composed of randomly positioned thin linelike obje(sy.,
be divided roughly into three different scenarios. The rigidityfibers in a sheet of paperThe statistical properties of this
transition can be discontinuous, i.e., of first ordep,12— ~ kind of 2D random networks are well knowr9]. In our
14,16]. This is true for the square lattice with randomly di- model the 2D fiber network is generated by randomly plac-
luted diagonals, for Cayley trees, and for the random-bondnd one-dimensional1D) objects of equal length on a plane
model. The rigidity transition can be continuous and belongs© that both thex and y coordinates and the orientation
to a different universa”ty Class than that Of the two- angleS of the fibers are taken from a uniform distribution. We
dimensional(2D) scalar percolatiorf9,11,14—18 This is  use periodic boundary conditions in tlyedirection, and a
true for generic bond diluted lattices and for random fiberbox of linear sizel. plus one fiber length in thedirection to
networks. Here the decisive quantities are the central forceinimize the boundary effects and to keep the fiber density
and the multiple connectivity of the structures. The transitionunchanged on the boundaries. A typical 2D random network
can also be continuous and belong to the 2D scalars shown in Fig. 1.
percolation universality class. In this case angular forces are The model is discussed in more detail [ib5,20. The
present, only singly connected paths are required for rigidity!igidity properties of this type of structure are discussed in
and hence the geometric properties of the elastic backborid5] in the case when the fibers are not totally if., they
are exactly the same as those of the scalar percolation prob-
lem [17,18. What sets these three different cases apart? In
the case of 2D scalar percolation the percolation cluster is
broken into two separate parts once a critical connection is
removed. Removing a critical connection in Cayley trees
leads, on the other hand, to the so-called house of cards
effect, and the percolation cluster is broken into infinitely
many cluster$12—14,18. In the case of diluted lattices and
random networks, it is diffucult to analyze the effects on the
percolation cluster of removing a critical connection, but one
can easily construct situations in which the rigid cluster is
broken into three, four, or an even higher number of rigid
clusters once a critical connection is removed. There is also
another related question: can one type of behavior change to
another(e.g., a discontinuous transition to a continuous one,
2D central-force rigidity percolation to 2D scalar percola- FIG. 1. A typical 2D random network with density=2q, (see
tion) when the model is continuously interpolated betweenthe text for the definitions of andqy).
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can bend at crossing pointaor are there connections be- floppy modes in the system. It basically represents the de-
tween the directions of segments across crossing p@iats  grees of freedom in a system with pebbles. Once a degree of
there are no angular forces between adjacent segiméiits freedom is bound, a pebble is bound, and hence one can keep
low densities, adding of angular constraifésg., upon dry- track of rigidity in a recursive fashion.

ing in the case of paper composed of wood fipensstiff- There are several ways by which rigidity can be intro-
ening of fibers in this kind of structure leads to a continuousduced in a random spring network. Of the possible mecha-
rigidity transition in the central-force rigidity universality nisms one should choose those which are relevant for physi-
class. At very low densities almost all fibers need to be stiffcal applications. We use stiff fibers whose positions are fixed
to achieve rigidity, i.e., to resist bending. It might thus beby the crossing points between the fibers. A stiff fiber cannot
assumed that in this case the same rigidity transition wouldbend but can rotate if there is only one crossing point. An
be found by having only stiff fibers in the system right from alternative strategy would be to weld some crossing points,
the beginning. It is, however, unclear whether connectivityi.e., to fix the angles between the crossing fibers. The first of
percolation of stiff fibers occurs at the same point as thehese strategies corresponds to a situation in which the cohe-
rigidity percolation. This question is further motivated by sion inside(or equivalently on the surface )othe fiber is
noticing that the elasticity properties of random networks ardarger than the forces between the fibers. The welding strat-
different for stiff-fiber and for fixed-angléangular forces are egy corresponds to a situation in which two bonded fibers
present, angles between crossing fibers are fixetlworks  cannot move relative to one another but can still bend. The
[21]. If the angles are not fixed, the network has far lowerformation of a paper web in the paper-making process is a
elastic constants at a given low density. The question then isombination of these two mechanisms but typically the ori-
whether the rigidity transition threshold is also the same forentational(i.e., welding type& mechanism is dominant. Other
stiff-fiber and for fixed-angle networks. There is also therandom networks could have a stronger tendency for stiff-
question of whether or not stiff fibers require multiple con-ness. It is known that iicompletely welded networks the
nectivity for the rigidity percolation. Constraint counting connectivity and rigidity transition densities are the same; in
seems to indicate different percolation thresholds for the twdhis work we show that for stiff fibers this is not the case.
cases. We will show below that the percolation thresholds are We generate a random network by randomly pladig
indeed different and that the connectivity and rigidity perco-fibers of lengthl in an area oL X L. We use as the control
lations for stiff fibers definitely belong to different universal- parameter the density of fibegs=N;/L?, and denote by

ity classes. the density at the connectivity-percolation thresh@d].

A system is rigid if it cannot be deformed without cost of ~ We first map all the crossing points in a network we know
energy, i.e., if any small deformation of the system has ao be rigid with high probability for stiff fiber15]. This can
nonzero response. A system is nonrigid or floppy if it can bebe accomplished, e.g., by using networks of densjty
continuously deformed without loss of energy. The number=2q.. We then begin to add fibers in a random fashion, and
of (linearly) independent motions that do not cost energy isuse the pebble-game algorithm to check the rigidity of the
called the number of floppy modes of the system. system. Adding a fiber means adding a constraint between all

We use the idea of generic rigidify9,10] to study the neighboring crossing points on that fidepnnectednegsind
rigidity transition in the low-density fiber network. Arandom between all second-nearest crossing points on that fiber
network is inherently generic because the random construgstifiness. We connect the left and the right sides of the
tion takes care of the geometrical singularities, i.e., the probnetwork to rigid bars and add a fictitious bond between these
ability of geometrical singularities is zero. Replacing the fi-bars[24]. Once this fictitious bond becomes redundant, i.e.,
ber segments in the network by Hookean springs will lead t@verconstrained, we know to have created a rigittess-

a situation where the network is never rigeD]. Additional  bearing structure that spans over the system. We then record
constraints are then requir¢d5] for rigidity. We consider  the density of fibers, and from that get the fractal dimension
here a model in which the crossing fibers are connected iof the stress-bearing backbone at the transition point, and
such a way that the positions of the crossing points are fixethdirectly the correlation length exponent

but the angles between the fibers can vary. The fibers are stiff We have checked that the concepts of generic rigidity
so that they cannot be bent without cost of energy. Thisapply. The strategy we use to make the fibers Btif., add-
means that, unlike if15], there is only one independent ing second-nearest-neighb@NN) springg would leave the
angle at each crossing point. There is a transition from aetwork shaky[15] (i.e., not first-order rigigl If we use ge-
floppy to a rigid structure in this model when the density of neric fibers in which the crossing points are deviated slightly
fibers is increased, and we analyze the correlation length arfdom their original positions then generic rigidity models ap-
the fractal dimension of the system at this transition. Theply. A different way to view this method is to say that these

transition density is found using finite-size scaling. SNN bonds just simulate stiffness, because they will always
produce the same number of degrees of freedom as stiff
fibers.
Il. METHODS
In the analysis of rigidity in 2D random fiber networks we Ill. RESULTS

use here a matching algorithi22], more specifically the
pebble game by Jacobs and Thofpg This algorithm maps To check rigidity one basically needs to check whether the
the overconstrained areas and determines the number ofimber of independent constraints exceeds the number of
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degrees of freedom in the system. If one ignores the fact that 1
constraints are not necessarily independent of one another,
the calculations simplify significantly. This approach is due

to Maxwell [25] and is called Maxwell counting. 306 - ] 306 -
Consider first the connectivity percolation in which the T/ ; L= ] 1 Sof 2

number of degrees of freedom per fiber is one, i.e., fiber is
either connected or not. Each crossing point binds now one
degree of freedom, i.e., connects two fibers. The density of
fibers isq=N;/A, whereN; is the number of fibers andl is
the area of the systefmotice that area here is dimensionless
and measured as a function of the unit afga=| X1, where

| the length of a fiber The number of crossing points is
N.=N¢q/m [15,23. We get an estimate for the transition
thresholdq, by equalling the number of constraints with the
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FIG. 2. (a) Probability of finding a spanning rigid cluster in a
network of sizeL X L and of densitygy. (b) Probability of finding
a spanning cluster plotted as a function of the scaled variaple (

number of degrees of freedom, —Omin)LY”. We use here,,;,=1.168 and 1#=0.85, which give the
N q best data collapse. Data collapse is satisfied within the estimated
N¢=N.= ;_ ¢ Qo= (1)  error.

This estimate underestimatas because it suoposes that all We can also use finite-size scaling to find another estimate
9e PP for the correlation length exponent. This can be done when

constraints are independent, and overestimates it becausetH (inean size of the system is less than the correlation
supposes that all the degrees of freedom need to be bound f%r

; . ngthé&. This happens close to the transition threshold. Since
spanning a connected network. Which of these effects i H([q— i LYY for 151, i.e., forq close tog,,
stronger depends on the topology of the problem in questionwe get min T min»
and for random networks one finds that in fggt=5.71[23].

For rigidity percolation in 2D the number of degrees of
freedom per fiber is three, i.e., the fiber has two translational
and one rotational degree of freedom. Each crossing between

— ; v i
fibers binds two degrees of freedofthe relative transla- >C €l0S€ 100=0pi,, dw/dq diverges ad.™". This means
tions). Hence we get that the standard deviation

2N+0min 3 Ac1min:< V(dest Jay) > 5
T

_)qminzz'”'v (2

dm/dg=L""¢"([d— dmn]L""). 4

3N;=2N.=

scales as. Y. Hereq,is the density of spanning cluster
whereq, is the rigidity transition threshold. Notice in par- for each of the configurations amg, is the average of these
ticular that this estimate i$ times the similar estimate for densities. We plot the standard deviation in Fig. 3. Fitting a
the connectivity percolation threshold, i.€yi,=1.5qc - straight line to this log-log plot gives=1.17+0.02, which

We generated 100 to 1000 networks of sizes<10 to s definitely in the universality class of the 2D central-force
300x 300. To find the transition threshold and the exponentsigidity percolation[11,14,13. The previous data collapse
associated with the rigidity transition, we first determined theconfirms this observation.
probability of having a spanning rigid cluster as a function of
density and system size. This was done by adding stiff fibers r
at random and by checking the redundancy of the fictitious oo — 0.65 00
bound that connected the left and the right sides of the net- '
work. The probability of finding a spanning cluster at gixen 0
andL was approximated by the number of spanning configu-
rations divided by the total number of configurations. For
each network we used 1000 different ways to add the stiff
fibers.

In Fig. 2 we plot the probabilityr(q,L) of finding a
spanning rigid cluster as a function of densifyand linear 001 7
size L. All these curves can be collapsed to one curve via
[1,11]

AQmin

0.006

77'(q_QminyL):QS([q_Qmin:“-llv)a € 20 50 1(;0 200

in which v is the correlation length exponent. We look for the L

best data collapse whep,, and v are let to vary, and find in FIG. 3. The standard divergence @f;,, i.e., AQmin, plotted as
this way thatg,,=1.168), and 1#=0.85, which givesr  a function of system size. The slope of the line is-1/v and will
=1.18. hence give thes exponent.
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FIG. 4. Estimation of the transition threshold. The fitted lines L

intersect forL — o at q,;,=1.1698t0.0004. ) . . .
FIG. 5. Breaking of the rigid backbone when one critical bond is

removed. The backbone always breaks iMNQ+ Ny, Stress-
bearing clusters, in whicN,q is the number of critical bonds and
Nyiob the number of overconstrained regions. The circles denote the
number of critical nearest neighbor connections, the squares the

The t iti threshol b luated b lotti number of critical second nearest neighbor connections, the tri-
e transition thresholdjy;, can be evaluated by plotting angles the number of critical bonds, the diamonds the number of

Ax(L), wherem(q,(L),L)=x for some fixedx<1. Thed,  qyerconstrained regions, and the asterisks the total number of
can now be called the effective threshold value since.at  syress-bearing clusters. The lines are linear fits to the data

on the average, a fractionof the networks have a spanning points, from which we find thaN,e~L%86-9-02= | 1 and Ny,
rigid cluster. Expanding nowm(q,L)=&([q—gmnlLY”) 16004
aroundq=qm,n, We find that

How does one identifyg,,, from a finite sample? Since
the sample is finite there is a finite probability of finding a
spanning cluster at any>qy,=1/L. Now that we know the
correlation length exponent, we can proceed as follows.

stress-bearing clusters. Each bond belonged to exactly one
rigid cluster. The number of these rigid clusters was deter-
where the constant depends enand is positive forx ~ Mmined. All of this was done to networks of sizesX.00 to
> (i) and negative fox<m(q,). More exactly this 200X200. When a red bond was removed the backbone was
holds only asymptotically fot. —oo. If qy(L) is plotted as a  always broken into many rigid clusters. These clusters could
function ofL =, we get a series dasymptotically straight ~ be classified as rigid blobs in the backbo@e., overcon-
lines that intersect aj= g, This plot is shown in Fig. 4, Strained regionsor red bonds. Red bonds form rigid clusters
and we find from it thaty;,=(1.1698+ 0.0004Y].. . of size one, and the sizes of the rigid blobs increase as the
There is one more test that we are able to do, and this iSyStem size is increased. It did not matter which red bond
the fractal dimension of the percolation cluster. In the case ofvas removed, the rigid backbone always broke into the same
rigidity the fractal dimension of the rigid backbone is much number of rigid blobsthe same blobsand red bondsthe
easier to find than the fractal dimension of the total percolaS@Me red bondsOf course in different configurations differ-

tion cluster(because of the dangling end49]. We map the €nt bonds are critical and hence the number of rigid clusters
number of fibers in the backbone at the transition thresholdat the backbone breaks into is different. We checked how

as a function ofL. This quantity scales liké,,~L%b, We this number of C_Iusters increases as the system size is in-

find dp,=1.79+0.04, which also agrees with the central- creased. We noticed t_hat both the num_ber of plobs and the

force universality class. numbgr of red bonds increases as the linear size of the sys-
In view of the possible factors that determine the nature of€™ raised to some power. The power law for red bonds was

iaidi it : N o g~ LYY= 1086004 and for rigid blobsNyq,~ L6004

rigidity transition, we also studied what happens to the rigid'“red - ng blob™ L

backbone when one of the critical bon@ed bonds is re- Notice the higher exp_onent in the latter quan.t|ty. The Iqttgr

moved. The main interest here was to see into how manfoWwer law would also imply that the average size of the rigid

rigid clusters the backbone breaks. We first constructed a 2810bs which will form thf ”%'gl bag'ig’toonﬁ scales just below

network that was at the rigidity threshold. The red fiberstransition threshold like oo™ ==L ="*==*% The results are

created at the last addition of a fiber, the fibers that belonge&hown in Fig. 5.

to the rigid backbone, and the red bonds were determined.

Then we used the pebble game to create only the rigid back-

bone without the red bonds. The red bonds were thereafter

added so that each time one of them was left out. We kept The main motivation for this work was to analyze the

track of the recognized overconstrained regions that theigidity percolation for stiff fibers at low densities. The den-

pebble game mapped, and thereby constructed a list afity at which rigidity percolates in this case must be at least

ay(L)=const-L ™"+ quin, (6)

IV. CONCLUSIONS
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that of connectivity percolation, but is it higher? Our resultsresults[10]. On the other hand, the number of rigid blobs
show that it definitely is higher but only slightly. Npion has not been considered before, and its scaling with
In an earlier wor15] we analyzed the rigidity percola- system sizeNp.,~ L% defines a new exponed=1.61,
tion in random networks of nonstiff fibers, in which case thewhose possible relation to the previously determined scaling
percolation threshold was approached by, e.g., randomlgxponents of 2D central-force rigidity percolation is not
adding next-nearest-neighbor constraints along individual fiknown at the moment. Notice also that the results reported
bers, i.e., by making them stiff. Rigidity percolation was here indicate that),~wq., a result which appears a coin-
found in this case to be continuous and to belong to the 2[zidence as we have not found any reason for why the corre-
central-force universality class independent of the stiffenindation length exponent should determine the transition den-
mechanism. We therefore expected the rigidity percolation irsity.
the random network of stiff fibers, reached by increasing the As for possible future work we only note here that it
density of fibers, also to be continuous and in the same uniwould be instructive to consider the relation above the rigid-
versality class. This turned out to be the case. As the transity transition of the elastic properties of the system and its
tion occurred now at a lower density of fibers, we were intopological rigidity properties. If such a relation would exist,
fact able to consider larger systems than before, and founid would provide new insight into the formation of macro-
therefore more reliable estimates for the scaling exponentsscopic elasticity. Also, topological tools are quite efficient for
We also determined the number of rigid clusters intolarge systems, which are difficult to analyze B initio
which the rigid backbone at percolation threshold is brokemumerical methods.
if one of the critical bonds is removed. This number diverges
rapidly with system size and is determined by rigid blobs,
whose number increases much faster than the number of
rigid clusters formed by just one fiber. So there appears to be We would like to thank Michael Thorpe for the Jacobs-
in this system a similar house-of-cards effect as in the Cayleyrhorpe “pebble game” code. We would also like to thank
tree problem, which, however, displays a first-order rigidity Cristian Moukarzel for interesting comments. This work has
transition. been supported by the Academy of Finland under the Finnish
The scaling with system size of the number of single-fiberCenter of Excellence Program 2000-20@Broject No.
clusters was found to be L'”, in agreement with previous 44879, and under the MaDaMe Program.
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