
PHYSICAL REVIEW E, VOLUME 64, 066117
Rigidity of random networks of stiff fibers in the low-density limit

M. Latva-Kokko and J. Timonen
Department of Physics, University of Jyva¨skylä, P.O. Box 35, FIN-40351 Jyva¨skylä, Finland

~Received 16 August 2001; published 20 November 2001!

Rigidity percolation is analyzed in two-dimensional random networks of stiff fibers. As fibers are randomly
added to the system there exists a density thresholdq5qmin above which a rigid stress-bearing percolation
cluster appears. This threshold is found to be above the connectivity percolation thresholdq5qc such that
qmin5(1.169860.0004)qc . The transition is found to be continuous, and in the universality class of the
two-dimensional central-force rigidity percolation on lattices. At percolation threshold the rigid backbone of
the percolating cluster was found to break into rigid clusters, whose number diverges in the limit of infinite
system size, when a critical bond is removed. The scaling with system size of the average size of these clusters
was found to give a new scaling exponentd51.6160.04.
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I. INTRODUCTION

Scalar percolation@1# is a simple model describing th
transfer of a scalar conserved quantity, e.g., an elec
charge, across a randomly diluted system. In two dimens
the geometric exponents of connectivity scalar percola
are known exactly@1,2#. Elastic percolation is not in genera
equivalent to scalar percolation@3#, and the similarities and
differences between the scalar percolation and the t
dimensional central-force rigidity transition have been st
ied extensively@4–16#. The results obtained for the latter ca
be divided roughly into three different scenarios. The rigid
transition can be discontinuous, i.e., of first order@10,12–
14,16#. This is true for the square lattice with randomly d
luted diagonals, for Cayley trees, and for the random-b
model. The rigidity transition can be continuous and belo
to a different universality class than that of the tw
dimensional~2D! scalar percolation@9,11,14–16#. This is
true for generic bond diluted lattices and for random fib
networks. Here the decisive quantities are the central fo
and the multiple connectivity of the structures. The transit
can also be continuous and belong to the 2D sca
percolation universality class. In this case angular forces
present, only singly connected paths are required for rigid
and hence the geometric properties of the elastic backb
are exactly the same as those of the scalar percolation p
lem @17,18#. What sets these three different cases apart
the case of 2D scalar percolation the percolation cluste
broken into two separate parts once a critical connectio
removed. Removing a critical connection in Cayley tre
leads, on the other hand, to the so-called house of c
effect, and the percolation cluster is broken into infinite
many clusters@12–14,16#. In the case of diluted lattices an
random networks, it is diffucult to analyze the effects on t
percolation cluster of removing a critical connection, but o
can easily construct situations in which the rigid cluster
broken into three, four, or an even higher number of rig
clusters once a critical connection is removed. There is a
another related question: can one type of behavior chang
another~e.g., a discontinuous transition to a continuous o
2D central-force rigidity percolation to 2D scalar perco
tion! when the model is continuously interpolated betwe
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two known models. This has been answered in the case
model which can vary between a braced square lattice a
triangular lattice@16#. It was shown that the continuous 2
central-force rigidity percolation applies when the model
even slightly deviated from the braced square lattice. T
properties of the percolation cluster and different limits
the models introduced seem thus a possible way to probe
properties that differentiate the three basic cases.

Two-dimensional random network is a geometrical stru
ture. It can be used, e.g., to model planar structures that
composed of randomly positioned thin linelike objects~e.g.,
fibers in a sheet of paper!. The statistical properties of thi
kind of 2D random networks are well known@19#. In our
model the 2D fiber network is generated by randomly pl
ing one-dimensional~1D! objects of equal length on a plan
so that both thex and y coordinates and the orientatio
angles of the fibers are taken from a uniform distribution. W
use periodic boundary conditions in they direction, and a
box of linear sizeL plus one fiber length in thex direction to
minimize the boundary effects and to keep the fiber den
unchanged on the boundaries. A typical 2D random netw
is shown in Fig. 1.

The model is discussed in more detail in@15,20#. The
rigidity properties of this type of structure are discussed
@15# in the case when the fibers are not totally stiff~i.e., they

FIG. 1. A typical 2D random network with densityq52qc ~see
the text for the definitions ofq andqc!.
©2001 The American Physical Society17-1
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can bend at crossing points! nor are there connections be
tween the directions of segments across crossing points~i.e.,
there are no angular forces between adjacent segments!. At
low densities, adding of angular constraints~e.g., upon dry-
ing in the case of paper composed of wood fibers! or stiff-
ening of fibers in this kind of structure leads to a continuo
rigidity transition in the central-force rigidity universalit
class. At very low densities almost all fibers need to be s
to achieve rigidity, i.e., to resist bending. It might thus
assumed that in this case the same rigidity transition wo
be found by having only stiff fibers in the system right fro
the beginning. It is, however, unclear whether connectiv
percolation of stiff fibers occurs at the same point as
rigidity percolation. This question is further motivated b
noticing that the elasticity properties of random networks
different for stiff-fiber and for fixed-angle~angular forces are
present, angles between crossing fibers are fixed! networks
@21#. If the angles are not fixed, the network has far low
elastic constants at a given low density. The question the
whether the rigidity transition threshold is also the same
stiff-fiber and for fixed-angle networks. There is also t
question of whether or not stiff fibers require multiple co
nectivity for the rigidity percolation. Constraint countin
seems to indicate different percolation thresholds for the
cases. We will show below that the percolation thresholds
indeed different and that the connectivity and rigidity perc
lations for stiff fibers definitely belong to different universa
ity classes.

A system is rigid if it cannot be deformed without cost
energy, i.e., if any small deformation of the system ha
nonzero response. A system is nonrigid or floppy if it can
continuously deformed without loss of energy. The num
of ~linearly! independent motions that do not cost energy
called the number of floppy modes of the system.

We use the idea of generic rigidity@9,10# to study the
rigidity transition in the low-density fiber network. A random
network is inherently generic because the random const
tion takes care of the geometrical singularities, i.e., the pr
ability of geometrical singularities is zero. Replacing the
ber segments in the network by Hookean springs will lead
a situation where the network is never rigid@20#. Additional
constraints are then required@15# for rigidity. We consider
here a model in which the crossing fibers are connecte
such a way that the positions of the crossing points are fi
but the angles between the fibers can vary. The fibers are
so that they cannot be bent without cost of energy. T
means that, unlike in@15#, there is only one independen
angle at each crossing point. There is a transition from
floppy to a rigid structure in this model when the density
fibers is increased, and we analyze the correlation length
the fractal dimension of the system at this transition. T
transition density is found using finite-size scaling.

II. METHODS

In the analysis of rigidity in 2D random fiber networks w
use here a matching algorithm@22#, more specifically the
pebble game by Jacobs and Thorpe@9#. This algorithm maps
the overconstrained areas and determines the numbe
06611
s

ff

ld

y
e

e

r
is
r

o
re
-

a
e
r
s

c-
-

-
o

in
d

tiff
is

a
f
nd
e

of

floppy modes in the system. It basically represents the
grees of freedom in a system with pebbles. Once a degre
freedom is bound, a pebble is bound, and hence one can
track of rigidity in a recursive fashion.

There are several ways by which rigidity can be intr
duced in a random spring network. Of the possible mec
nisms one should choose those which are relevant for ph
cal applications. We use stiff fibers whose positions are fix
by the crossing points between the fibers. A stiff fiber can
bend but can rotate if there is only one crossing point.
alternative strategy would be to weld some crossing poi
i.e., to fix the angles between the crossing fibers. The firs
these strategies corresponds to a situation in which the c
sion inside~or equivalently on the surface of! the fiber is
larger than the forces between the fibers. The welding st
egy corresponds to a situation in which two bonded fib
cannot move relative to one another but can still bend. T
formation of a paper web in the paper-making process
combination of these two mechanisms but typically the o
entational~i.e., welding type! mechanism is dominant. Othe
random networks could have a stronger tendency for s
ness. It is known that in~completely! welded networks the
connectivity and rigidity transition densities are the same
this work we show that for stiff fibers this is not the case

We generate a random network by randomly placingNf
fibers of lengthl in an area ofL3L. We use as the contro
parameter the density of fibersq5Nf /L2, and denote byqc
the density at the connectivity-percolation threshold@23#.

We first map all the crossing points in a network we kno
to be rigid with high probability for stiff fibers@15#. This can
be accomplished, e.g., by using networks of densityq
52qc . We then begin to add fibers in a random fashion, a
use the pebble-game algorithm to check the rigidity of
system. Adding a fiber means adding a constraint betwee
neighboring crossing points on that fiber~connectedness! and
between all second-nearest crossing points on that fi
~stiffness!. We connect the left and the right sides of th
network to rigid bars and add a fictitious bond between th
bars@24#. Once this fictitious bond becomes redundant, i
overconstrained, we know to have created a rigid~stress-
bearing! structure that spans over the system. We then rec
the density of fibers, and from that get the fractal dimens
of the stress-bearing backbone at the transition point,
indirectly the correlation length exponentn.

We have checked that the concepts of generic rigid
apply. The strategy we use to make the fibers stiff@i.e., add-
ing second-nearest-neighbor~SNN! springs# would leave the
network shaky@15# ~i.e., not first-order rigid!. If we use ge-
neric fibers in which the crossing points are deviated sligh
from their original positions then generic rigidity models a
ply. A different way to view this method is to say that the
SNN bonds just simulate stiffness, because they will alw
produce the same number of degrees of freedom as
fibers.

III. RESULTS

To check rigidity one basically needs to check whether
number of independent constraints exceeds the numbe
7-2
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RIGIDITY OF RANDOM NETWORKS OF STIFF FIBERS . . . PHYSICAL REVIEW E 64 066117
degrees of freedom in the system. If one ignores the fact
constraints are not necessarily independent of one ano
the calculations simplify significantly. This approach is d
to Maxwell @25# and is called Maxwell counting.

Consider first the connectivity percolation in which th
number of degrees of freedom per fiber is one, i.e., fibe
either connected or not. Each crossing point binds now
degree of freedom, i.e., connects two fibers. The densit
fibers isq5Nf /A, whereNf is the number of fibers andA is
the area of the system~notice that area here is dimensionle
and measured as a function of the unit areaAu5 l 3 l , where
l the length of a fiber!. The number of crossing points i
Nc5Nf q /p @15,23#. We get an estimate for the transitio
thresholdqc by equalling the number of constraints with th
number of degrees of freedom,

Nf5Nc5
Nf qc

p
→qc5p. ~1!

This estimate underestimatesqc because it supposes that a
constraints are independent, and overestimates it becau
supposes that all the degrees of freedom need to be boun
spanning a connected network. Which of these effects
stronger depends on the topology of the problem in quest
and for random networks one finds that in factqc55.71@23#.

For rigidity percolation in 2D the number of degrees
freedom per fiber is three, i.e., the fiber has two translatio
and one rotational degree of freedom. Each crossing betw
fibers binds two degrees of freedom~the relative transla-
tions!. Hence we get

3Nf52Nc5
2Nfqmin

p
→qmin5

3

2
p, ~2!

whereqmin is the rigidity transition threshold. Notice in pa
ticular that this estimate is32 times the similar estimate fo
the connectivity percolation threshold, i.e.,qmin51.5qc .

We generated 100 to 1000 networks of sizes 10310 to
3003300. To find the transition threshold and the expone
associated with the rigidity transition, we first determined
probability of having a spanning rigid cluster as a function
density and system size. This was done by adding stiff fib
at random and by checking the redundancy of the fictitio
bound that connected the left and the right sides of the
work. The probability of finding a spanning cluster at givenq
andL was approximated by the number of spanning confi
rations divided by the total number of configurations. F
each network we used 1000 different ways to add the s
fibers.

In Fig. 2 we plot the probabilityp(q,L) of finding a
spanning rigid cluster as a function of densityq and linear
size L. All these curves can be collapsed to one curve
@1,11#

p~q2qmin ,L !5f~@q2qmin#L
1/n!, ~3!

in which n is the correlation length exponent. We look for th
best data collapse whenqmin andn are let to vary, and find in
this way thatqmin51.168qc and 1/n50.85, which givesn
51.18.
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We can also use finite-size scaling to find another estim
for the correlation length exponent. This can be done wh
the ~linear! size of the system is less than the correlati
lengthj. This happens close to the transition threshold. Si
p5f(@q2qmin#L

1/n) for j.L@1, i.e., for q close toqmin ,
we get

dp/dq5L1/nf8~@q2qmin#L
1/n!. ~4!

So close toq5qmin , dp/dq diverges asL1/n. This means
that the standard deviation

Dqmin5^A~qest2qav!2& ~5!

scales asL21/n. Hereqest is the density of spanning cluste
for each of the configurations andqav is the average of thes
densities. We plot the standard deviation in Fig. 3. Fitting
straight line to this log-log plot givesn51.1760.02, which
is definitely in the universality class of the 2D central-for
rigidity percolation @11,14,15#. The previous data collaps
confirms this observation.

FIG. 2. ~a! Probability of finding a spanning rigid cluster in
network of sizeL3L and of densityq0 . ~b! Probability of finding
a spanning cluster plotted as a function of the scaled variableq
2qmin)L

1/n. We use hereqmin51.168 and 1/n50.85, which give the
best data collapse. Data collapse is satisfied within the estim
error.

FIG. 3. The standard divergence ofqmin , i.e., Dqmin , plotted as
a function of system sizeL. The slope of the line is21/n and will
hence give then exponent.
7-3
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How does one identifyqmin from a finite sample? Since
the sample is finite there is a finite probability of finding
spanning cluster at anyq.q051/L. Now that we know the
correlation length exponentn, we can proceed as follows
The transition thresholdqmin can be evaluated by plottin
qx(L), wherep„qx(L),L…5x for some fixedx,1. The qx
can now be called the effective threshold value since atqx ,
on the average, a fractionx of the networks have a spannin
rigid cluster. Expanding nowp(q,L)5f(@q2qmin#L

1/n)
aroundq5qmin , we find that

qx~L !5const•L21/n1qmin , ~6!

where the constant depends onx and is positive forx
.p(qmin) and negative forx,p(qmin). More exactly this
holds only asymptotically forL→`. If qx(L) is plotted as a
function ofL21/n, we get a series of~asymptotically! straight
lines that intersect atq5qmin . This plot is shown in Fig. 4,
and we find from it thatqmin5(1.169860.0004)qc .

There is one more test that we are able to do, and th
the fractal dimension of the percolation cluster. In the cas
rigidity the fractal dimension of the rigid backbone is mu
easier to find than the fractal dimension of the total perco
tion cluster~because of the dangling ends! @19#. We map the
number of fibers in the backbone at the transition thresh
as a function ofL. This quantity scales likeNbb;Ldbb. We
find dbb51.7960.04, which also agrees with the centra
force universality class.

In view of the possible factors that determine the nature
rigidity transition, we also studied what happens to the ri
backbone when one of the critical bonds~red bonds! is re-
moved. The main interest here was to see into how m
rigid clusters the backbone breaks. We first constructed a
network that was at the rigidity threshold. The red fibe
created at the last addition of a fiber, the fibers that belon
to the rigid backbone, and the red bonds were determin
Then we used the pebble game to create only the rigid b
bone without the red bonds. The red bonds were therea
added so that each time one of them was left out. We k
track of the recognized overconstrained regions that
pebble game mapped, and thereby constructed a lis

FIG. 4. Estimation of the transition threshold. The fitted lin
intersect forL →` at qmin51.169860.0004.
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stress-bearing clusters. Each bond belonged to exactly
rigid cluster. The number of these rigid clusters was de
mined. All of this was done to networks of sizes 10310 to
2003200. When a red bond was removed the backbone
always broken into many rigid clusters. These clusters co
be classified as rigid blobs in the backbone~i.e., overcon-
strained regions! or red bonds. Red bonds form rigid cluste
of size one, and the sizes of the rigid blobs increase as
system size is increased. It did not matter which red bo
was removed, the rigid backbone always broke into the sa
number of rigid blobs~the same blobs! and red bonds~the
same red bonds!. Of course in different configurations differ
ent bonds are critical and hence the number of rigid clus
that the backbone breaks into is different. We checked h
this number of clusters increases as the system size is
creased. We noticed that both the number of blobs and
number of red bonds increases as the linear size of the
tem raised to some power. The power law for red bonds w
Nred;L1/n5L0.8660.04 and for rigid blobsNblob;L1.6160.04.
Notice the higher exponent in the latter quantity. The lat
power law would also imply that the average size of the rig
blobs which will form the rigid backbone scales just belo
transition threshold likeLdbb21.615L0.1860.04. The results are
shown in Fig. 5.

IV. CONCLUSIONS

The main motivation for this work was to analyze th
rigidity percolation for stiff fibers at low densities. The de
sity at which rigidity percolates in this case must be at le

FIG. 5. Breaking of the rigid backbone when one critical bond
removed. The backbone always breaks intoNred1Nblob stress-
bearing clusters, in whichNred is the number of critical bonds an
Nblob the number of overconstrained regions. The circles denote
number of critical nearest neighbor connections, the squares
number of critical second nearest neighbor connections, the
angles the number of critical bonds, the diamonds the numbe
overconstrained regions, and the asterisks the total numbe
stress-bearing clusters. The lines are linear fits to the d
points, from which we find thatNred;L0.8660.025L1/n and Nblob

;L1.6160.04.
7-4
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RIGIDITY OF RANDOM NETWORKS OF STIFF FIBERS . . . PHYSICAL REVIEW E 64 066117
that of connectivity percolation, but is it higher? Our resu
show that it definitely is higher but only slightly.

In an earlier work@15# we analyzed the rigidity percola
tion in random networks of nonstiff fibers, in which case t
percolation threshold was approached by, e.g., rando
adding next-nearest-neighbor constraints along individua
bers, i.e., by making them stiff. Rigidity percolation wa
found in this case to be continuous and to belong to the
central-force universality class independent of the stiffen
mechanism. We therefore expected the rigidity percolation
the random network of stiff fibers, reached by increasing
density of fibers, also to be continuous and in the same
versality class. This turned out to be the case. As the tra
tion occurred now at a lower density of fibers, we were
fact able to consider larger systems than before, and fo
therefore more reliable estimates for the scaling exponen

We also determined the number of rigid clusters in
which the rigid backbone at percolation threshold is brok
if one of the critical bonds is removed. This number diverg
rapidly with system size and is determined by rigid blob
whose number increases much faster than the numbe
rigid clusters formed by just one fiber. So there appears to
in this system a similar house-of-cards effect as in the Cay
tree problem, which, however, displays a first-order rigid
transition.

The scaling with system size of the number of single-fib
clusters was found to be;L1/n, in agreement with previous
o-
J

v

tt

06611
ly
-

D
g
in
e
i-
i-

nd
.

n
s
,
of
e
y

r

results@10#. On the other hand, the number of rigid blob
Nblob has not been considered before, and its scaling w
system size,Nblob;L1.61, defines a new exponentd51.61,
whose possible relation to the previously determined sca
exponents of 2D central-force rigidity percolation is n
known at the moment. Notice also that the results repor
here indicate thatqmin'nqc , a result which appears a coin
cidence as we have not found any reason for why the co
lation length exponent should determine the transition d
sity.

As for possible future work we only note here that
would be instructive to consider the relation above the rig
ity transition of the elastic properties of the system and
topological rigidity properties. If such a relation would exis
it would provide new insight into the formation of macro
scopic elasticity. Also, topological tools are quite efficient f
large systems, which are difficult to analyze byab initio
numerical methods.
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