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Enhanced sampling in numerical path integration: An approximation for the quantum statistical
density matrix based on the nonextensive thermostatistics

T. W. Whitfield and J. E. Straub
Department of Chemistry, Boston University, Boston, Massachusetts 02215

~Received 10 July 2001; published 20 November 2001!

Here we examine a proposed approximation for the quantum statistical density matrix motivated by the
nonextensive thermostatistics of Tsallis and co-workers. The approximation involves replacing the physical
potential energy with an effective one, corresponding to a generalized nonextensive statistical ensemble. We
examine the convergence properties of averages calculated using the effective potential, and introduce a related
method for enhanced sampling in numerical path integration. As a necessary measure, path integral energy
estimators are introduced for potentials that involve explicit temperature dependence. This sampling method is
found to be effective for path integral simulations involving broken ergodicity.
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I. INTRODUCTION

Path integration is a widely employed means of calcu
ing quantum mechanical averages for thermodynamic
servables. Much of the utility of this technique in compu
simulation is related to the well known isomorphism@1,2#
between the path integral expression for the partition fu
tion of a single quantum particle and that of a classical po
mer ring havingN pseudoparticle ‘‘beads.’’ Due to this iso
morphism, many of the techniques from classical simulati
may be applied to quantum problems. Difficulties arise ho
ever, when the number of beadsN, required to accurately
represent the quantum system, becomes large@3#, and/or
when barriers separating potential minima are high. Both
these situations occur at low temperatures. In the form
case, the bonds between the beads in the isomorphous
mer chain become stiff, and long simulation times are
quired for conformational sampling. In the case of high b
riers, tunneling is restricted and the system may manife
‘‘broken ergodicity’’ @4–6#.

To mitigate the problem of stiff bonds in the polym
chain, a number of strategies have been developed. Som
these methods enhance the sampling of theN-bead configu-
rations. These include normal mode techniques for the in
chain interactions@7#, which are closely related@8# to Fourier
path integral methods@9–11#, and the staging algorithm@12#.
Other methods move beyond the so-called primitive hi
temperature approximation to the discretized action, ther
reducing the required number of beads. Among these te
niques are higher-order factorizations of the thermal den
operator @13–15#, use of the Wigner-Kirkwood expansio
@16#, generating an effective potential with renormalizati
group techniques@17#, and schemes that make use of ex
harmonic propagators@18–22#. Some methods that enhanc
sampling of classical systems with high barriers have b
successfully applied to path integral simulations@7#.

In this paper we will explore a formal connection, r
cently pointed out by Straub and Andricioaei@23,24#, be-
tween the path integral formulation of quantum statisti
mechanics and the nonextensive thermostatistics prop
by Tsallis@25#. This connection, which will be described in
1063-651X/2001/64~6!/066115~11!/$20.00 64 0661
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greater detail in the following section, amounts to replac
the physical potential appearing in the propagator with
effective one. Focusing on a pair of simple one-dimensio
systems, we compare the convergence properties with th
of the standard primitive high-temperature approximation
the propagator, and develop a Monte Carlo method for
hanced sampling in quantum systems with broken ergodic

The paper is organized as follows: In Sec. II, we revie
the connection between path integration and the nonex
sive thermostatistics of Tsallis and co-workers. In Sec.
we derive energy estimators required for application of o
effective potential. Section IV outlines the two main comp
tational methods we have used. Section V presents result
a one-dimensional harmonic oscillator and a on
dimensional bistable potential, and Sec. VI concludes
paper.

II. CONNECTION WITH NONEXTENSIVE
THERMOSTATISTICS

In one dimension, the primitive path integral expressi
for the partition function may be constructed beginning w
the identity

Z5E dxr~x,x;b!5E dx1•••dxN)
i 51

N

^xi ue2bH/Nuxi 11&,

~2.1!

wherex15xN115x, b51/kT andr(x,x;b) is the diagonal
part of the density matrix. To make this formal expressi
useful, the density operator is factored using the Tro
product formula@26,27#

e2b(T1V)/N5e2bT/Ne2bV/N1O~b2/N2!. ~2.2!

Based upon a relationship between theclassical density
function and the Tsallis statistical distribution functio
Straub and Andricioaei@23,24# have suggested the followin
alternative:
©2001 The American Physical Society15-1
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e2b(T1V)/N'e2bT/NS 1

11
bV

N
D 5e2bT/Ne2bV̄/N,

~2.3!

where

V̄5
N

b
lnS 11

b

N
VD5

1

b~q21!
ln@12~12q!bV#,

~2.4!

andq5111/N. Equation~2.4! defines the nonextensive e
fective potential we will use throughout this paper.V̄ has the
obvious and important property that lim(b/N)→0V̄5V; in the
high temperature limit, Eq.~2.3! will become equivalent with
Eq. ~2.2!.

Classically, Eq.~2.3! is the so-called Maxwell-Tsallis sta
tistical distribution@28,23,24#, a product of the Tsallis distri-
bution over configurations and the Boltzmann distributi
over momenta. The effective potential characterizes the c
sical configurational distribution

pq~x!5
e2bV̄(x)

Zq
5

1

Zq
@12~12q!bV~x!#1/(12q), ~2.5!

where

Zq5E dx~12~12q!bV~x!!1/(12q) ~2.6!

is the generalized partition function. This distribution is o
tained as a result of extremizing the ‘‘generalized entrop
@25#,

Sq5
k

q21E dxpq~x!$12@pq~x!#q21%, ~2.7!

subject to the constraints,

E dxpq~x!51, E dx@pq~x!#qV~x!5Vq . ~2.8!

In the limit thatq→1 (N→`), the Boltzmann distribution is
recovered. ForqÞ1 however, although many of the prope
ties of the Gibbs-Boltzmann statistical mechanics are p
served, thermodynamic state functions like the entropy
internal energy are no longer extensive functions of the s
tem. Note that the second constraint in Eq.~2.8! is one of the
several forms that have been explored within the contex
the nonextensive thermostatistics@29,30#.

Of particular relevance to this work is the transformati
of the Tsallis distribution forq different from unity. When
q,1 ~not possible whenq5111/N), the configurational
distribution becomes localized around minima on the phy
cal potential, and presents a cutoff for high energies@29,31#.
While this may be advantageous forlocal sampling of the
configuration space, we do not expectq.1 to mitigate the
06611
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issue ofglobally enhancing the sampling@32#. In contrast,
for q.1 the distribution becomes broader, and manife
greater probability in barrier regions of the potential ener
function. This property has been used to advantage in si
lations of classical systems with problems of broken erg
icity @33,34#.

Throughout the rest of this work, we employ a symmet
factorization of the density operator

e2b(T1V)/N5e2bV/2Ne2bT/Ne2bV/2N1O~b3/N3!.
~2.9!

In terms of calculating averages for observables that co
mute with V(x), Eq. ~2.9!, although a better high-
temperature approximation, gives no advantage over eq
tion ~2.2!, due to the cyclic invariance of the trace. It doe
however, preserve the Hermitian property of the density
erator, and will be advantageous when directly calculat
the average kinetic energy.

For a particle of massm, substitution of Eq.~2.9! into Eq.
~2.1! gives

Z5E dx1•••dxN)
i 51

N

r (0)~xi ,xi 11 ;b/N!, ~2.10!

5S mN

2b\2D N/2E dx1•••dxNexp@2F~x1 , . . . ,xN!#,

~2.11!

where

F~x1 , . . . ,xN!5(
i 51

N H mN

2b\2
~xi2xi 11!21

b

2N
@V~xi !

1V~xi 11!#J ~2.12!

is the action, and

r (0)~xi ,xi 11 ;b/N!5e2bV(xi )/2Nr0~xi ,xi 11 ;b/N!

3exp@2bV~xi 11!/2N#. ~2.13!

The free particle propagator is

r0~xi ,xi 11 ;b/N![^xi ue2bT/Nuxi 11&

5A mN

2b\2
exp@2mN~xi2xi 11!2/2b\2#.

~2.14!

We use the primitive action@Eq. ~2.12!# and its effective
potential counterpart
5-2
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F̄~x1 , . . . ,xN!5(
i 51

N H mN

2b\2
~xi2xi 11!21

b

2N
@V̄~xi !

1V̄~xi 11!#J ~2.15!

throughout this paper.

III. ENERGY ESTIMATORS

Using any method for evaluating path integrals, estim
ing the energy requires special attention, since the Ha
tonian is not diagonal in the position representation@2,11#.
Because our effective potential@Eq. ~2.4!# depends explicitly
on temperature, we will need to generalize the stand
estimators.

A. Thermodynamic estimator

One common energy estimator for path integrals is
rived by using the thermodynamic expression for the inter
energy

Et52
]

]b
ln Z5

21

Z

]

]b
Z. ~3.1!

Taking theb derivative inside the integral in our expressio
for the partition function@Eq. ~2.11!#, we arrive at

Et5K N

2b
2

Nm

2\2b2 (
i 51

N

~xi2xi 11!21
1

N (
i 51

N F V̄~xi ,b/N!

1b
]

]b
V̄~xi ,b/N!G L . ~3.2!

The terms inside the average constitute the thermodyna
estimator for systems with temperature-dependent potent
The last term in this estimator vanishes for temperatu
independent potentials, giving the standard thermodyna
estimator@2#. With the Tsallis effective potential, we have

Et5K N

2b
2

Nm

2\2b2 (
i 50

N21

~xi2xi 11!2

1
1

N (
i 51

N F V~xi !

H 11
b

N
V~xi !J G L . ~3.3!

We confirm that forb/N small, equation~3.3! goes to the
standard estimator.

B. Virial estimator

As an alternative to the thermodynamic estimator, H
man, Bruskin, and Berne@35# developed an estimator base
on the quantum virial theorem~see Appendix A for details!.
This estimator may have better statistical properties than
06611
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thermodynamic counterpart@35,36#, as N is increased. For
temperature-dependent potentials, the virial estimator is

Ev5K 1

N (
i 51

N F V̄~xi ,b/N!1b
]

]b
V̄~xi ,b/N!

1
1

2
xi

]V̄~xi ,b/N!

]xi
G L . ~3.4!

For the Tsallis effective potential, Eq.~3.4! becomes

Ev5K 1

N (
i 51

N F V~xi !1
1

2
xi

]V~xi !

]xi

H 11
b

N
V~xi !J G L . ~3.5!

By construction, the averages calculated with either the th
modynamic or the virial estimator must be the same for
N. In Appendix B, to underscore the importance of theb
derivative term in Eq.~3.4!, we calculate the internal energ
for a semiclassical approximation to the harmonic oscilla
density matrix.

C. Hamiltonian estimator

The previous two estimators are both derived from th
modynamic considerations, but we can also calculate the
erage energy by a direct application of the Hamiltonian
the density operator. As mentioned earlier, because the
netic energy operator is not diagonal in the position rep
sentation, the symmetry of the Trotter factorization@Eq.
~2.9!# is important when we directly apply the operator
Eq. ~2.11!. Since the Hamiltonian estimator does not invol
any temperature derivatives, however, generalizing it
temperature-dependent potentials is trivial. The Hamilton
estimator is

Eh5^T&1^V̄&, ~3.6!

where@37#

^T&5K N

2b
2

mN

2\2b2 (
i 51

N

~xi2xi 11!22
1

N (
i 51

N F1

2
~xi

2xi 11!
]

]xi
V̄~xi ,b/N!1

\2b

4mN

]2

]xi
2
V̄~xi ,b/N!

2
\2b2

8mN2 S ]V̄~xi ,b/N!

]xi
D 2G L , ~3.7!

^V̄&5K 1

N (
i 51

N

V̄~xi ,b/N!L . ~3.8!

Sustitution of the Tsallis effective potential gives
5-3
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Eh5K N

2b
2

mN

2\2b2 (
i 51

N

~xi2xi 11!21
1

b (
i 51

N

lnH 1

1
b

N
V~xi !J 2

1

N (
i 51

N F 1

2

~xi2xi 11!
]

]xi
V~xi !

H 11
b

N
V~xi !J

1
\2b

4mN

]2

]xi
2

V~xi !

H 11
b

N
V~xi !J

2
3\2b2

8mN2 S ]

]xi
V~xi !

11
b

N
V~xi !

D 2G L . ~3.9!

This estimator is seldom used in path integral simulations
account of the spatial derivatives of the potential which m
be computed@37#. In general, the Hamiltonian estimator wi
converge withN to the exact energy differently than tw
previous estimators, even in the primitive approximation
the path integral. In particular,Eh converges from above
while Et and Ev converge from below@38#. This property
has been used previously to judge the convergence of
energy with respect toN @39#.
im

r
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IV. METHODS

In this paper, path integrals are evaluated using two
ferent numerical schemes. For the simple one-dimensio
systems we are working with, it proves convenient to ma
use of an established technique, based on numerical qua
tures. We use this method to evaluate and compare re
based on Eqs.~2.12! and ~2.15!. The technique is describe
below.

To address the problem of broken ergodicity in path in
gral simulations, we develop a path integral Monte Ca
~PIMC! technique. We describe our Monte Carlo metho
based on generalized parallel sampling@40#, below.

A. Numerical matrix multiplication

Numerical matrix multiplication~NMM ! @41,42# is an ac-
curate and efficient way of evaluating density matrices
low-dimensional systems@43#. The technique is not wel
suited for many-dimensional systems, but for the on
dimensional systems studied here, it is completely equiva
to and much more efficient than Monte Carlo methods.

NMM is based on the observation that

r~x1 ,x2 ;b!5E dx3r~x1 ,x3 ;b/2!r~x3 ,x2 ;b/2!.

~4.1!

When the density matrix is discretized and stored as a
trix, one can find the density matrix atb/2 by repeated itera-
tions of Eq.~4.1!,
r~x1 ,x3 ;b/2!5E dx4r~x1 ,x4 ;b/4!r~x4 ,x3 ;b/4!,

A ~4.2!

r~x1 ,xn11 ;b/2n21!5E dxn12r (0)~x1 ,xn12 ;b/2n!r (0)~xn12 ,xn11 ;b/2n!. ~4.3!
rted
The subscripts on the dummy integration variables are s
ply indicated for consistency, withn being the number of
iterations. The hierarchy is closed by Eqs.~2.13! and ~2.14!
with 2n5N.

Thirumalai, Bruskin, and Berne@42# give a useful pre-
scription for these calculations, which we follow. A grid fo
our integrations is initially set up with 2M11 points in each
direction, running from2S/2 to S/2 and with spacingD.
This impliesS5MD. Writing out the numerical integration
rule gives
-
r~ iD, j D;b!5D (

k52M

M

r~ iD,kD;b/2!r~kD, j D;b/2!.

~4.4!

We need to choose two ofS, D, andM, such that we reach
convergence. In the calculations presented here, we sta
by setting

S58F \

2mv
coth~b\/2N!G1/2

, ~4.5!
5-4



tio

n

ity

t

, a
w
e

tiv

n

d

ken
re

y
e.
as
sive
e.
sec-

the

r-

of
. In
nt,

lcu-
cal
g

fi-
the

rlo
m-
at

nges

s,

the
an

of a
hod
lta-
le a
e
o-

at
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which is eight standard deviations from the average posi
for a quantum harmonic oscillator of massm at the highest
temperature. A grid spacingD was determined, keeping i
mind the breadth of the Gaussian in Eq.~2.14!

r0~ iD, j D;b/N!5A mN

2p\2b
exp@2a~ i 2 j !2#, ~4.6!

where

a5
2mND2

2\2b
. ~4.7!

We chooseD small enough that the free particle dens
matrix is sampled well in the space ofi and j. That is, a
should be small. Rewriting Eq.~4.7!, we have

D5\A2ab/mN. ~4.8!

We setD implicitly by choosinga in Eq. ~4.8!. All other
parameters on the right hand side are determined by
system.

Ordinarily, one begins a calculation by choosingn so that
the high temperature approximation in Eq.~2.13! is valid.
Since we are addressing the quality of this approximation
it depends upon the treatment of the potential energy,
start by assigningS and a instead. Table I summarizes th
values ofa used in our NMM calculations. We chosea both
to expedite our computations and to have a quantita
agreement~in the primitive approximation! with the analytic
finite-N harmonic oscillator averages@17,44#.

Adapting the energy estimators of the preceding sectio
NMM, we calculated the thermodynamic estimator using
three-point approximation to the derivative

TABLE I. Summary of NMM grid discretization parameters
different temperatures.

N 2a a 2a b

2 1025 1023

4 1024 1022

8 1024 1022

16 1024 531022

32 1023 1021

64 1023 531021

128 1022 7.531021

256 1021

512 1021

1024 331021

2048 7.531021

aLow temperature, e.g., harmonic oscillator withm51 and \vb
520.
bHigh temperature, e.g., harmonic oscillator withm51 and\vb
51.
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Et52
]

]b
ln Z'

2 ln Z~b1d!1 ln Z~b2d!

2d
1O~d2!,

~4.9!

whered51024. The Hamiltonian estimator was calculate
with formula ~3.6!, and

^V̄&5
1

ZE dxV̄~x,b!r~x,x!, ~4.10!

^T&5
^p2&
2m

52
1

Z

\2

2mE dx
]2

]x2
r~x,y!U

y5x

. ~4.11!

In the last integral above, the second derivative was ta
along one of the dimensions of the density matrix befo
settingy5x. We performed this differentiation numericall
using a five-point approximation for the second derivativ
To ensure that the numerical error in the derivative w
small, the second derivative was also taken by succes
iterations of a five-point approximation to the first derivativ
The difference between these two approximations to the
ond derivative was kept small.

The virial estimate of the energy was calculated using
obvious quadrature~see Appendix B!.

B. Generalized parallel sampling

Along with a direct comparison of the rates of conve
gence inN, based on Eqs.~2.12! and ~2.15!, we also inves-
tigate application of the Tsallis effective potential as part
a proposed Monte Carlo method for enhanced sampling
classical simulations where broken ergodicity is prese
Straub and Andricioaei have developed methods for ca
lating Maxwell-Boltzmann averages using Tsallis statisti
distributions@23#. One of their methods is umbrella samplin
@45#, which is generally not efficient when there is insuf
cient overlap between the sampling distribution and
physical one~at q51, for example!. Parallel tempering@46–
50# is an alternative method in which several Monte Ca
simulations are performed simultaneously at different te
peratures. With a given probability, pairs of configurations
different temperatures may be exchanged. Such excha
are accepted with probability

p5minF1,
pT2

~x1!pT1
~x2!

pT1
~x1!pT2

~x2!G , ~4.12!

wherepTi
(xj ) is the probability of configurationj at tempera-

ture Ti . The composite Markov chain of all random walk
including the exchanges, is itself a Markov process@48#.

Just as the sampling distribution need not be related to
natural distribution in the umbrella sampling method, we c
also generalize the parallel tempering method. Instead
series of distributions at different temperatures, the met
may be generalized by incorporating a number of simu
neous Monte Carlo simulations, each of which may samp
different probability distribution. In the present context, w
generate these distributions using a family of effective p
5-5
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tentials, each parametrized by a different value ofq in Eq.
~2.4!. Equation~4.12! becomes

p5minF1,
pq2

~x1!pq1
~x2!

pq1
~x1!pq2

~x2!G , ~4.13!

where, in our path integral case,

pq~x!}exp@2F̄~x!#. ~4.14!

The same technical concerns that one has with the s
dard parallel tempering method carry over to this general
tion, which we call generalized parallel sampling~GPS! @40#.
These concerns include ensuring that there is sufficient o
lap among the various distributions that exchanges are
quently accepted. Furthermore, at least one of the sim
tions ~say at the highestq value! should quickly converge to
its equilibrium distribution. That is, the largestq should be
chosen such that there is no broken ergodicity associ
with samplingpq(x).

In our simulations we ran PIMC in parallel onk systems,
each withq set according to

qj5
e

g~h2e! F S h

e D ( j 21)/(k21)

21G11, ~4.15!

where, 1, j ,k. For h'e, the qj ’s are approximately lin-
early related. For the GPS calculations, we did not requ
that q5111/N. Instead, for the highestq we haveqk51
11/g, from Eq. ~4.15!. When exchanges are not attempte
each distribution~4.14! was sampled using the standa
PIMC.

Choosing theqs according to Eq.~4.15! allows for close
spacing between low values ofq, which can mitigate any
correlation between the distributions atq1 andqk. Although
we have not found it necessary here, it is also possible
choose the set ofqs in a more systematic way, based on t
acceptance ratio for exchange moves@40#.

FIG. 1. Estimates of the Helmholtz free energy of the quant
mechanical harmonic oscillator.N is the number of ‘‘beads’’ in the
path integral. We havem51 and \vb520. Both the standard
primitive approximation~1! and use of the Tsallis effective poten
tial (3) are shown.
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V. RESULTS AND DISCUSSION

We first applied the effective potential substitution to t
one-dimensional harmonic oscillator. NMM calculation
were performed to determine the convergence behavior, w
N, of path integral averages. We compared these results
those calculated using the primitive approximation. We
peated these NMM calculations for a bistable on
dimensional potential.

In addition, for the bistable potential, we applied the G
method described in the preceding section. The GPS res
were compared with calculations done using standard PI
methods.

A. Harmonic oscillator

For the harmonic oscillator

V~x!5
1

2
mv2x2, ~5.1!

we have calculated the free energy,F5b21 ln Z, along with
the internal energy~using the three estimators describ
above! and the standard deviation of the position operat
For the harmonic oscillator, all of these observables can

FIG. 2. Internal energy estimates for the quantum mechan
harmonic oscillator.N is the number of ‘‘beads’’ in the path inte
gral. We havem51 and\vb520. Shown are the data from th
standard primitive approximation using the Hamiltonian estima
(*) or the thermodynamic estimator~1! and from use of the Tsallis
effective potential with the Hamiltonian estimator (h) or the ther-
modynamic estimator (3).

FIG. 3. Estimates of the Helmholtz free energy of the quant
mechanical harmonic oscillator.N is the number of ‘‘beads’’ in the
path integral. We havem51 and \vb51. Both the standard
primitive approximation~1! and use of the Tsallis effective poten
tial (3) are shown.
5-6



ca

ur
o
n

-
ria
ffe
y
t
a

o
s
th

an
e
th

he
hat
ec-

ap-
is-
all
ral

ave
g

dy-

cal
ol-
m
ned
ay
sys-

ic
-
e
to

o
e
n

um

ical
l.

the

n

ENHANCED SAMPLING IN NUMERICAL PATH . . . PHYSICAL REVIEW E64 066115
worked out analytically for anyN @17,44,38#. We reproduced
the analytical results using NMM and then repeated the
culations using the effective action@Eq. ~2.15!#.

We looked at the harmonic oscillator at a low temperat
(\vb520), where the number of beads required to get go
approximations for the observables was relatively high, a
also at a higher temperature (\vb51). Our results are sum
marized in Figs. 1–4. Since the thermodynamic and vi
estimators give the same averages by construction, di
ences between the two estimates of the internal energ
simulations are due to the statistical issues not presen
NMM. These two estimators are, therefore, equal to one
other in NMM calculations. Differences inEt and Eh, in-
stead, give an indication of the sufficiency ofN @38#, and
disappear asN→`. The free energy, by contrast, does n
depend on selecting an estimator and gives a direct mea
of the convergence of the path integral approximation to
partition function.

As expected, Figs. 1 and 2 show that the free energy
the internal energy converge to the exact result for largN
when we use the Tsallis effective potential. We also note

FIG. 4. Internal energy estimates for the quantum mechan
harmonic oscillator.N is the number of ‘‘beads’’ in the path inte
gral. We havem51 and \vb51. Shown are the data from th
standard primitive approximation using the Hamiltonian estima
(*) or the thermodynamic estimator~1! and from use of the Tsallis
effective potential with the Hamiltonian estimator (h) or the ther-
modynamic estimator (3).

FIG. 5. Root-mean-squared deviation of the distribution in p
sition. N is the number of ‘‘beads’’ in the path integral. We hav
m51 and \vb520. Both the standard primitive approximatio
~1! and use of the Tsallis effective potential (3) are shown.
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the convergence is relatively poor in comparison with t
standard primitive approximation. Figures 3 and 4 show t
the relative convergence due to the application of the eff
tive potential does not improve at higher temperatures.

Having computedDx5A^x2&2^x&2 we can draw a com-
parison between the standard and effective potential
proaches. In Fig. 5, we see that while the width of the d
tribution in the standard approximation decreases for sm
N, the opposite behavior is observed for the path integ
using the effective action. Note, however, that since we h
q5111/N in these calculations,q increases with decreasin
N.

The decrease ofDx for small N in the primitive approxi-
mation, along with that of the free energy and the thermo
namic estimate for the internal energy, is well known@17,2#
and has been described as ‘‘classical collapse’’@44#, since
the configurational distribution tends toward the classi
one. Using the effective action appears to mitigate this c
lapse, at least forDx. In any case, the fact that the quantu
mechanical configurational distribution becomes broade
with increasingq suggests that the effective potential m
prove useful as part of an enhanced sampling scheme in
tems with high barriers.

al

r

-

FIG. 6. Estimates for the Helmholtz free energy of a quant
mechanical bistable potential.N is the number of ‘‘beads’’ in the
path integral. We havea51, m51, \51, v258\/ma2, and b
520. Both the standard primitive approximation~1! and use of the
Tsallis effective potential (3) are shown.

FIG. 7. Internal energy estimates for a quantum mechan
bistable potential.N is the number of ‘‘beads’’ in the path integra
We havea51, m51, \51, v258\,ma2, andb520. Shown are
the data from the standard primitive approximation using
Hamiltonian estimator (*) or the thermodynamic estimator~1! and
from use of the Tsallis effective potential with the Hamiltonia
estimator (h) or the thermodynamic estimator (3).
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B. Quartic bistable potential

We have investigated a bistable potential

V5
1

8

mv2

a2
~x2a!2~x1a!2. ~5.2!

First, using the same approach as with the harmonic osc
tor, we compared the convergence of thermodynamic a
ages between the standard primitive approximation and
of the effective potential. The results are summarized in F
6 and 7. Again, observables converge faster inN when cal-
culated using the standard primitive approximation. The r
erence energies in these figures~e.g. Fre f) come from the
fully converged NMM calculations, and are essentially exa

Next, we applied the GPS technique to the system
compared with the standard PIMC method. In these calc
tions, we did not maintainq5111/N in the effective poten-
tial, but rather set the variousqs according to Eq.~4.15!. The
parameters of the simulation were adjusted such that bro
ergodicity would be present. Looking at Fig. 8, we note th

FIG. 8. Probability distribution for the quantum mechanic
double well. The solid curve is forq51 and the dotted curve fo
q52. We haveN58, a53, m51, \51, v2540\/ma2, andb
54.

FIG. 9. Position of the path integral centroidxc , as a function of
number of Monte Carlo movesn. The number of Monte Carlo
moves is the total number, summed over all particles in all polym
walkers in each simulation. The GPS centroid is for the walke
q51. Simulations are~a! PIMC and~b! GPS.
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the configurational distribution atq51 ~physical potential!,
in contrast to the distribution atq52 ~effective potential!,
has little probability of being in the barrier region. This
precisely the type of situation in which a parallel sampli
method is useful.

Based on NMM calculations, it was determined thatN
58 was adequate for simulation of this system in the prim
tive approximation. In the GPS calculation therefore, each
the parallel walkers was a polymer ring with eight bea
There werek55 different qs, set according to Eq.~4.15!
with e51023, g51 and h51000. Exchanges were mad
among the five walkers, between rings of neighboringq.
Such exchanges were attempted with probability 0.0
When an exchange was attempted, walkers not involved
the exchange were updated with standard PIMC mov
When no exchange was attempted, all walkers attemp
PIMC moves.

As a measure of convergence, we have calculatedx,
where@7#

x2~n!5E dxFr~x,x;n!

Z~n!
2

rexact~x,x!

Zexact
G2

, ~5.3!

andr(x,x;n)/Z(n) is the normalized spatial probability dis
tribution aftern Monte Carlo moves.

l

r
t

FIG. 10. x as a function of number of Monte Carlo movesn.
The number of Monte Carlo moves is the total number, summ
over all particles in all polymer walkers in each simulation. T
GPS x is calculated for the walker atq51. The solid line is a
typical GPS run and the dotted line is a standard PIMC simulat

FIG. 11. Probability distribution for the double well potentia
The thick solid is the ‘‘exact’’ result, calculated from NMM. Th
thin solid curve is the GPS disribution and the dotted curve is
standard PIMC result. We haveN58, a53, m51, \51, v2

540\/ma2, andb54.
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ENHANCED SAMPLING IN NUMERICAL PATH . . . PHYSICAL REVIEW E64 066115
In Fig. 9, we see that the center of mass~centroid! of the
q51 walker in our GPS simulation crosses the barrier f
quently compared with that of the standard PIMC simulati
which is completely trapped in one of the wells. All plo
related to the Monte Carlo simulations are normalized
computer time. That is, the number of Monte Carlo move
the same for the single chain in the standard PIMC simu
tion as the total number over all chains in the GPS simu
tion.

From Fig. 10 we see that the GPS distribution is conve
ing to the exact one. From the standard PIMC simulati
x(n) is not converging. The distributions after representat
GPS and standard PIMC simulations are shown in Fig.
Each simulation involved a total of 43107 Monte Carlo
moves.

Data averaged over ten independent simulations are
sented in Table II. Relative to the standard PIMC approa
the GPS simulations converged to a significantly smaller
eragex, and were able to predict the root-mean-square
viation of the configurational distribution with a reasonab
accuracy. In all of the PIMC simulations, the isomorph
polymer chain remained trapped on one side of the barr

VI. CONCLUSIONS

We have shown that direct substitution of the Tsallis
fective potential into the path integral does not genera
enhance convergence. In the simple one-dimensional
tems investigated here, neither the free energy nor the in
nal energy converged more rapidly inN after making the
substitution. We did note however, that the configuratio
distributions of quantum systems undergo broadening sim
to that observed in classical systems@34,28,23,24#, as q is
increased from unity. This broadening has been used as
basis for a generalized parallel sampling technique for p
integrals.

For a simple quantum system where broken ergodi
prohibits convergence of standard PIMC methods, we h
successfully applied a Monte Carlo method for enhan
sampling, GPS, to path integrals. This method dramatic
enhances the frequency of barrier crossing for the isomor
polymer chain. It does not, however, mitigate the problem
stiff bonds asN becomes large. For simulations requirin
large N, and where broken ergodicity is present, the G
technique can readily be combined with the existing p
integral methods for stiff bonds—normal mode techniqu
for example.

Although GPS allows for accurate sampling of the qua
tum configurational distribution in systems with broken e

TABLE II. Summary of PIMC and GPS results for the quart
bistable potential.

NMM PIMC GPS

x̄ 5.45231021 7.69931022

s2(x) 1.58031028 2.04831023

Dx 2.924 4.79931021 2.880

s2(Dx) 3.02631028 2.06331023
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godicity, the underlying reason for its success—that brok
ergodicity is not present at highq—suggests that other en
hanced sampling schemes involving the Tsallis effective
tential could also be usefully adapted to path integral sim
lations. For example, the ‘‘q-jumping’’ method of
Andricioaei and Straub@34#, which is a special case of GP
@40#. It would be interesting to compare the numerical ef
ciency of such alternative approaches with that of GPS.

For path integral simulations involving the Tsallis effe
tive potential, in the form given by Eqs.~2.3!, ~2.4!, and
~2.15!, we have introduced three estimators for the inter
energy. In path integral simulations that make use of
Tsallis effective potential, agreement betweenEh andEt ~or
Ev) can be useful to judge the sufficiency ofN, just as is the
case in the primitive approximation. Indeed, the same cr
rion is broadly applicable and can be extended, using esti
tors presented here, to any path integral simulation involv
a temperature-dependent effective potential.
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APPENDIX A

Below, we follow Herman, Bruskin, and Berne’s deriv
tion of the virial estimator@35#. We start by rewriting Eq.
~3.2!

Et5 K N

2b
2aN1lN1dNL , ~A1!

where

aN5
Nm

2\2b2 (
i 51

N

~xi2xi 11!2, ~A2!

lN5
1

N (
i 51

N

V̄~xi ,b!, ~A3!

dN5
1

N (
i 51

N

b
]

]b
V̄~xi ,b!. ~A4!

Next, consider the following average:

K (
i 51

N

xi

]UN

]xi
L 5

E dx1•••dxNF(
i 51

N

xi

]UN

]xi
Ge2bUN

E dx1•••dxNe2bUN

,

~A5!

where

UN5aN1lN . ~A6!

Since
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e2bUNxi

]UN

]xi
52

1

b
xi

]e2bUN

]xi
, ~A7!

an integration by parts gives

K (
i 51

N

xi

]UN

]xi
L 5

1

b (
i 51

N K ]xi

]xi
L 5

N

b
, ~A8!

or

K (
i 51

N

xi

]aN

]xi
L 1K (

i 51

N

xi

]lN

]xi
L 5

N

b
. ~A9!

SinceaN is a homogeneous function of degree 2 of all t
xi , Euler’s theorem can be invoked,

(
i 51

N

xi

]aN

]xi
52aN . ~A10!

Equation~A9! can be recast as

K N

2b
2aNL 5K 1

2N (
i 51

N

xi

]V̄~xi ,b!

]xi
L . ~A11!

Substitution back into Eq.~A1! yields Eq.~3.4!.

APPENDIX B

To emphasize the necessity of including theb-derivative
term in Eq.~3.4!, we examine an application of the genera
ized virial estimator to a semiclassical approximation for
harmonic oscillator distribution function. To begin, consid
the following effective potential:

V̄~x,b!5
1

2
mv2x21

b~\v!2

24
~B1!

from a variational approach of Feynman@51,52#.
We verify that the internal energy calculated using o

virial estimator, Eq.~3.4!, agrees with that calculated direct
from the partition function~i.e., Et). We begin by writing
our estimator in a form appropriate for averaging over
density matrix

Ev5
1

ZE dxF V̄~x,b!1b
]

]b
V̄~x,b!1

1

2
x

]V̄~x,b!

]x
Gr~x,x!,

~B2!

[I 11I 21I 3 , ~B3!

The density matrix appearing above will be
06611
e
r

r

e

r~x,x!5S m

2p\2b
D 1/2

exp@2bV̄~x,b!# ~B4!

in the semiclassical analysis that we consider here. In
NMM calculations, however,r(x,x) is determined numeri-
cally and will converge to the exact diagonal of the dens
matrix after sufficiently many iterations. In that case, E
~B3! will give the exact quantum internal energy.

But considering now the semiclassical approximation
the diagonal, the partition function is

Z5E dxr~x,x!5
e2(b\v)2/24

b\v
, ~B5!

which helps us to write

I 15
1

2b
1

b~\v!2

24
, ~B6!

I 25
b~\v!2

24
, ~B7!

I 35
1

2b
, ~B8!

and finally

Ev5
1

b
1

b~\v!2

12
. ~B9!

Instead, from the partition function,

Et52
]

]b
ln Z5

1

b
1

b~\v!2

12
. ~B10!

Equation~B5! leads to a well-known semiclassical estima
for the free energy of the quantum mechanical harmonic
cillator @51,52#. For the virial estimator to give the corre
sponding internal energy, the term involving theb derivative
I 2 must be included.
.

@1# D. Chandler and P. G. Wolynes, J. Chem. Phys.74, 4078
~1981!.

@2# M. P. Allen and D. J. Tildesley,Computer Simulation of
Liquids ~Oxford University Press, Oxford, 1987!.
@3# B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem.37,
401 ~1986!.

@4# R. G. Palmer, Adv. Phys.31, 669 ~1982!.
@5# D. Thirumalai, R. D. Mountain, and T. R. Kirkpatrick, Phys
5-10



J.

es

y

-
-

a-

d
lar

4

on

m
ial
tage
f a
n-
b-
her-

ys.

ys.

. G.

m.

m.

s

h

ENHANCED SAMPLING IN NUMERICAL PATH . . . PHYSICAL REVIEW E64 066115
Rev. A39, 3563~1989!.
@6# R. D. Mountain and D. Thirumalai, Physica A210, 453~1994!.
@7# J. Cao and B. J. Berne, J. Chem. Phys.92, 1980~1990!.
@8# R. D. Coalson, J. Chem. Phys.85, 926 ~1986!.
@9# J. D. Doll and D. L. Freeman, J. Chem. Phys.80, 2239~1984!.

@10# D. L. Freeman and J. D. Doll, J. Chem. Phys.80, 5709~1984!.
@11# M. Eleftheriou, J. D. Doll, E. Curotto, and D. L. Freeman,

Chem. Phys.110, 6657~1999!.
@12# M. Sprik, M. L. Klein, and D. Chandler, Phys. Rev. B31, 4234

~1985!.
@13# H. De Raedt and B. De Raedt, Phys. Rev. A28, 3575~1983!.
@14# M. Suzuki, J. Stat. Phys.43, 883 ~1986!.
@15# M. Suzuki, Commun. Math. Phys.163, 491 ~1994!.
@16# D. Thirumalai and B. J. Berne, J. Chem. Phys.79, 5029

~1983!.
@17# K. S. Schweizer, R. M. Stratt, D. Chandler, and P. G. Wolyn

J. Chem. Phys.75, 1347~1981!.
@18# R. A. Friesner and R. M. Levy, J. Chem. Phys.80, 4488

~1984!.
@19# C. H. Mak and H. C. Andersen, J. Chem. Phys.92, 2953

~1990!.
@20# J. Cao and B. J. Berne, J. Chem. Phys.92, 7531~1990!.
@21# M. Messina, B. C. Garrett, and G. K. Schenter, J. Chem. Ph

100, 6570~1994!.
@22# C. E. Chao and H. C. Andersen, J. Chem. Phys.107, 10 121

~1997!.
@23# J. E. Straub and I. Andricioaei, Braz. J. Phys.29, 179 ~1999!.
@24# I. Andricioaei and J. E. Straub, inNonextensive Statistical Me

chanics and Its Applications, edited by S. Abe and Y. Oka
moto, Lecture Notes in Physics Vol. 560~Springer-Verlag, Ber-
lin, 2001!, Chap. IV.

@25# C. Tsallis, J. Stat. Phys.52, 479 ~1988!.
@26# L. S. Schulman,Techniques and Applications of Path Integr

tion ~Wiley, New York, 1981!.
@27# A. K. Rajagopal and C. Tsallis, Phys. Lett. A257, 283 ~1999!.
@28# J. E. Straub and I. Andricioaei, inProceedings of the Secon

International Symposium on Algorithms for Macromolecu
Modelling, Berlin, 1997, edited by P. Deuflhardet al., Lecture
Notes in Computational Science and Engineering Vol.
~Springer-Verlag, Berlin, 1998!, Chap. 11.

@29# C. Tsallis, R. S. Mendes, and A. R. Plastino, Physica A261,
534 ~1998!.

@30# In particular, there exists a normalized version of the sec
06611
,

s.

d

constraint@29#, leading to a different equilibrium distribution
from Eq. ~2.5!, and hence a different effective potential fro
Eq. ~2.4!. For our purposes, however, the effective potent
corresponding to the normalized constraint has a disadvan
over the present choice; it must be defined in terms o
‘‘renormalized’’ temperature involving integrals over the co
figurational distribution. This renormalized temperature o
scures the formal connection between the nonextensive t
mostatistics and the thermal density matrix@23,24#, and makes
the subsequent computations less tractable.

@31# B. M. Boghosian, Braz. J. Phys.29, 91 ~1999!.
@32# I. Andricioaei and J. E. Straub, Phys. Rev. E33, 3055~1996!.
@33# I. Andricioaei and J. E. Straub, Physica A247, 553 ~1997!.
@34# I. Andricioaei and J. E. Straub, J. Chem. Phys.107, 9117

~1997!.
@35# H. F. Herman, E. J. Bruskin, and B. J. Berne, J. Chem. Ph

76, 5150~1982!.
@36# A. Giansanti and G. Jacucci, J. Chem. Phys.89, 7454~1988!.
@37# D. M. Ceperley, Rev. Mod. Phys.67, 279 ~1995!.
@38# T. W. Whitfield and J. E. Straub, J. Chem. Phys.115, 6834

~2001!.
@39# K. J. Runge and G. V. Chester, Phys. Rev. B38, 135 ~1988!.
@40# T. W. Whitfield, L. Bu, and J. E. Straub, Physica A~submitted!.
@41# R. G. Storer, J. Math. Phys.9, 964 ~1968!.
@42# D. Thirumalai, E. J. Bruskin, and B. J. Berne, J. Chem. Ph

79, 5063~1983!.
@43# E. L. Pollock and D. M. Ceperley, Phys. Rev. B30, 2555

~1984!.
@44# S. K. Kauffmann and J. Rafelski, Z. Phys. C24, 157 ~1984!.
@45# G. M. Torrie and J. P. Valleau, J. Comput. Phys.23, 187

~1977!.
@46# E. Marinari and G. Parisi, Europhys. Lett.19, 451 ~1992!.
@47# C. J. Geyer and E. A. Thompson, J. Am. Stat. Assoc.90, 909

~1995!.
@48# M. C. Tesi, E. J. Janse van Rensburg, E. Orlandini, and S

Whittington, J. Stat. Phys.82, 155 ~1996!.
@49# J. P. Neirotti, F. Calvo, D. L. Freeman, and J. D. Doll, J. Che

Phys.112, 10 340~2000!.
@50# F. Calvo, J. P. Neirotti, D. L. Freeman, and J. D. Doll, J. Che

Phys.112, 10 350~2000!.
@51# R. P. Feynman,Statistical Mechanics: A Set of Lecture

~Addison-Wesley, Reading, MA, 1972!.
@52# R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Pat

Integrals ~McGraw-Hill, New York, 1965!.
5-11


