PHYSICAL REVIEW E, VOLUME 64, 066115

Enhanced sampling in numerical path integration: An approximation for the quantum statistical
density matrix based on the nonextensive thermostatistics
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Here we examine a proposed approximation for the quantum statistical density matrix motivated by the
nonextensive thermostatistics of Tsallis and co-workers. The approximation involves replacing the physical
potential energy with an effective one, corresponding to a generalized nonextensive statistical ensemble. We
examine the convergence properties of averages calculated using the effective potential, and introduce a related
method for enhanced sampling in numerical path integration. As a necessary measure, path integral energy
estimators are introduced for potentials that involve explicit temperature dependence. This sampling method is
found to be effective for path integral simulations involving broken ergodicity.
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I. INTRODUCTION greater detail in the following section, amounts to replacing

the physical potential appearing in the propagator with an

Path integration is a widely employed means of calculateffective one. Focusing on a pair of simple one-dimensional
ing quantum mechanical averages for thermodynamic obsystems, we compare the convergence properties with those

servables. Much of the utility of this technique in computerof the standard primitive high-temperature approximation to
simulation is related to the well known isomorphi§m2]  the propagator, and develop a Monte Carlo method for en-
between the path integral expression for the partition funchanced sampling in quantum systems with broken ergodicity.

tion of a single quantum particle and that of a classical poly- The paper is organized as follows: In Sec. Il, we review
mer ring havingN pseudoparticle “beads.” Due to this iso- the connection between path integration and the nonexten-

morphism, many of the techniques from classical simulationSiVe thermostatistics of Tsallis and co-workers. In Sec. lll,

may be applied to quantum problems. Difficulties arise how-\We derive energy estimators required for application of our

ever, when the number of beadl§ required to accurately eﬁgctlve potential. Section IV outhnes the two main compu-
tational methods we have used. Section V presents results for
represent the quantum system, becomes |§8je and/or

hen barfi i tential mini hiah. Both E one-dimensional harmonic oscillator and a one-
when barriers separaling potential minima are high. Bt Oy e nsjonal bistable potential, and Sec. VI concludes the
these situations occur at low temperatures. In the forme

case, the bonds between the beads in the isomorphous poly- er

mer chain become stiff, and long simulation times are re-

quired for conformational sampling. In the case of high bar- Il. CONNECTION WITH NONEXTENSIVE
riers, tunneling is restricted and the system may manifest a THERMOSTATISTICS

“broken ergodicity” [4-6)].

To mitigate the problem of stiff bonds in the polymerf
chain, a number of strategies have been developed. Some
these methods enhance the sampling ofNHeead configu-
rations. These include normal mode techniques for the intra-
chain interaction§7], which are closely relateld] to Fourier N
path integral method®—11], and the staging algorithpd.2]. Z:f dXP(X,X;ﬁ)=f dxg- - 'dXNHl (xi|e P N|x;, 1),
Other methods move beyond the so-called primitive high- o 2.1)
temperature approximation to the discretized action, thereby
reducing the required number of beads. Among these tech-
niques are higher-order factorizations of the thermal densityvherex; =xy;1=x, 8=1KkT andp(x,x; 8) is the diagonal
operator[13—15, use of the Wigner-Kirkwood expansion part of the density matrix. To make this formal expression
[16], generating an effective potential with renormalizationuseful, the density operator is factored using the Trotter
group technique§l7], and schemes that make use of exactproduct formula[26,27
harmonic propagatorfsl8—22. Some methods that enhance
sampling of class_,ical systems with high barriers have been e BT+VIIN= o= BTINg=BVIN L O g2/N?). 2.2
successfully applied to path integral simulatigi

In this paper we will explore a formal connection, re-
cently pointed out by Straub and Andriciod®i3,24), be- Based upon a relationship between tblassical density
tween the path integral formulation of quantum statisticalfunction and the Tsallis statistical distribution function,
mechanics and the nonextensive thermostatistics propos&traub and Andricioag23,24 have suggested the following
by Tsallis[25]. This connection, which will be described in a alternative:

In one dimension, the primitive path integral expression
otr the partition function may be constructed beginning with
file identity
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1 - issue ofglobally enhancing the samplinB2]. In contrast,
e  AT+VIIN~ o= ATIN v =e ATNg=AVIN, for g>1 the distribution becomes broader, and manifests
1+ — greater probability in barrier regions of the potential energy
N function. This property has been used to advantage in simu-
(2.3 lations of classical systems with problems of broken ergod-
icity [33,34).
Throughout the rest of this work, we employ a symmetric
) factorization of the density operator

Sg DML (1-asv],

(2.9 e ATHVIN_ o~ BVINg~ BTINg= BVI2N | O g3/N3),

where

B
+ =
1+ 35V

V: N|
=—In
B

andq=1+ 1/N. Equation(2.4) defines the nonextensive ef- (2.9

fective potential we will use throughout this paperhas the .
P 9 bap In terms of calculating averages for observables that com-

obvious and important property that gy _oV=V;inthe e with v(x), Eq. (2.9, although a better high-

high temperature limit, Eq2.3) will become equivalent with temperature approximation, gives no advantage over equa-

Eq. (2'2)'. . i tion (2.2), due to the cyclic invariance of the trace. It does,
Classically, Eq(2.3) is the so-called Maxwell-Tsallis sta- however, preserve the Hermitian property of the density op-

tisti_cal distributior_1[28,2_3,24, a product of the TsaIIi_s d.istri.— erator, and will be advantageous when directly calculating
bution over configurations and the Boltzmann distributiony,, average kinetic energy.

over momenta. The effective potential characterizes the clas- £, 5 particle of mass, substitution of Eq(2.9) into Eq.

sical configurational distribution (2.1 gives
“BVO)  q
pa(X)= = - [1- (1~ PV YD, 29 .
a Z, Z, ’ z=f dx1~-~deHl pO(x; ,Xi+1:BIN), (2.10
=

where
mN

28h?

N/2
) f dxq- - -dxyexg —P(Xq, ... Xy 1,
(2.1)

Zq:f dx(1—(1—q)BV(x) "~ (2.6

is the generalized partition function. This distribution is ob-

tained as a result of extremizing the “generalized entropy”VNere
[25],
mN B
k o D(Xq, ... -XN):Zl [2 hz(xl_xi+l)2+ m[v(xi)
quq_—lf dxpg(X){1—[py(x)1%" 1}, (2.7 = B
subject to the constraints, +V(Xi+1)]] (212
f dxpy(x)=1, f dX[pg(X)]19V(x)=V,. (2.8) s the action, and
In the limit thatg— 1 (N— ), the Boltzmann distribution is pO(xi Xi+1:BIN) = AYOIMNpo(x; X 1: BIN)
recovered. Fog# 1 however, although many of the proper- xexd —BV(xi+1)/2N]. (2.13

ties of the Gibbs-Boltzmann statistical mechanics are pre-

served, thermodynamic state functions like the entropy and , i
internal energy are no longer extensive functions of the sys! he free particle propagator is
tem. Note that the second constraint in E38) is one of the

several forms that have been explored within the context opq(X; ,xiH;ﬁ/N)E(xi|e‘ﬁT’N|xi+l>
the nonextensive thermostatisti&9,30.

Of particular relevance to this work is the transformation _ mN 5 5
of the Tsallis distribution forg different from unity. When Y Zﬁhzexd_mN(Xi—Xiu) 1284.7].
g<1 (not possible wherg=1+1/N), the configurational
distribution becomes localized around minima on the physi- (2.19

cal potential, and presents a cutoff for high energ%31].
While this may be advantageous flmcal sampling of the We use the primitive actiofEq. (2.12] and its effective
configuration space, we do not expect 1 to mitigate the potential counterpart
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thermodynamic counterpaf85,36, as N is increased. For
(X —Xj41)2+ N [V(x ) temperature-dependent potentials, the virial estimator is

a(xl,.. XN) = 2[

28h?
(25 [ i+ 850 i
+V(Xi+1)]] (2.15 “\N& (Xi,BIN) ﬁaﬂ (X, BIN)
- 1 aV(x,BIN)
throughout this paper. 5% ! . 3.4

Ill. ENERGY ESTIMATORS . . .
For the Tsallis effective potential, E¢3.4) becomes
Using any method for evaluating path integrals, estimat-

ing the energy requires special attention, since the Hamil- 1 V(X))
tonian is not diagonal in the position representafigri1]. NG| V(X)) + =X
Because our effective potentidtq. (2.4)] depends explicitly E = 1 2 20X 3.5
on temperature, we will need to generalize the standard v (= B ’ '
estimators. 1+ NV(Xi)]
A. Thermodynamic estimator By construction, the averages calculated with either the ther-

One common energy estimator for path integrals is demodynamic or the virial estimator must be the same for all
rived by using the thermodynamic expression for the internaN. In Appendix B, to underscore the importance of {Be

energy derivative term in Eq(3.4), we calculate the internal energy
for a semiclassical approximation to the harmonic oscillator
J -1 4 density matrix
Ei=——=InZ=— —Z g '
. P . . . C. Hamiltonian estimator
Taking theB derivative inside the integral in our expression

for the partition functio{Eqg. (2.11)], we arrive at The previous two estimators are both derived from ther-
modynamic considerations, but we can also calculate the av-
N Nm 1 erage energy by a direct application of the Hamiltonian to
Ei= 28 g 21 (X=X 41)°+ N 2 V(x;,BIN) the density operator. As mentioned earlier, because the ki-
B = netic energy operator is not diagonal in the position repre-

> sentation, the symmetry of the Trotter factorizatifaq.

N N

(3.2 (2.9] is important when we directly apply the operator to
Eg.(2.11. Since the Hamiltonian estimator does not involve
any temperature derivatives, however, generalizing it to

The terms inside the average constitute the thermodynamigmperature-dependent potentials is trivial. The Hamiltonian
estimator for systems with temperature-dependent potentialastimator is

The last term in this estimator vanishes for temperature-
independent potentials, giving the standard thermodynamic Eh=<T>+(V>, (3.6)
estimator{2]. With the Tsallis effective potential, we have

V(X| .BIN)

Pop

where[37]
£/ N Z (X;—X
t ZB 2h2,32 i I+1 L N
< > <2:8 ZfL ,3 E (X| X|+l) - z (X|
1 V(X;)
' r1+ NV(xi)] ~Xir1)g V(X' BN+ 2 N g V(X' BIN)
— 2
We confirm that for3/N small, equation3.3) goes to the B h2p? [ aV(x;,BIN) 37
standard estimator. 8mN2 X ' :
B. Virial estimator L N
As an alternative to the thermodynamic estimator, Her- (V) <N > V(X ,ﬂ/N)>. (3.9
man, Bruskin, and Bernf85] developed an estimator based =1

on the quantum virial theoreitsee Appendix A for detaijs
This estimator may have better statistical properties than itSustitution of the Tsallis effective potential gives
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IV. METHODS
N In this paper, path integrals are evaluated using two dif-
En= 25 2 (Xi—Xi41)2+ = Z In[ ferent numerical schemes. For the simple one-dimensional
B 202 B systems we are working with, it proves convenient to make

use of an established technique, based on numerical quadra-
tures. We use this method to evaluate and compare results
based on Eq92.12 and(2.15. The technique is described

B 1N (Xi— XI+1)5X| V(x;) below.
+ Y )] N > B To address the problem of broken ergodicity in path inte-
=t 1+_V(Xi)] gral simulations, we develop a path integral Monte Carlo
N (PIMC) technique. We describe our Monte Carlo method,
pr based on generalized parallel sampljdg], below.
7B ax?v(x')
+ AmN B A. Numerical matrix multiplication
1+ NV(Xi)] Numerical matrix multiplicatiolNMM) [41,42 is an ac-
curate and efficient way of evaluating density matrices for
2 low-dimensional system$43]. The technique is not well
37,232 KV(xi) suited for many-dimensional systems, but for the one-
_ B ! _ (3.9 dimensional systems studied here, it is completely equivalent
8mN? B to and much more efficient than Monte Carlo methods.
1+ NV(Xi) NMM is based on the observation that

This estimator is seldom used in path integral simulations on

account of the spatial derivatives of the potential which must ) ) )

be computed37]. In general, the Hamiltonian estimator will P(Xl’XZ’ﬁ):f dXzp(X1,X3;B12)p(X3,X2; BI2).

converge withN to the exact energy differently than two 4.1
previous estimators, even in the primitive approximation to

the path integral. In particulai,, converges from above,

while E; and E, converge from below38]. This property When the density matrix is discretized and stored as a ma-
has been used previously to judge the convergence of thigix, one can find the density matrix #/2 by repeated itera-
energy with respect tdl [39]. tions of Eq.(4.1),

P(X1:X3§ﬁ/2):f dXap(Xy,Xq; BI4) p(X4,X3; B14),

4.2

p(X1, X1 1; 812" 1) = f A%+ 20 V(X1 Xn 123 812" p O (X2 X+ 13 8127). (4.3

The subscripts on the dummy integration variables are sim- M

ply indicated for consistency, with being the number of p(iAjA;B)=A 2 p(iAkA;BI2)p(KA,jA; BI2).

iterations. The hierarchy is closed by E¢8.13 and(2.14) k=-M

with 2"=N. (4.4
Thirumalai, Bruskin, and Berng42] give a useful pre- e need to choose two & A, andM, such that we reach

scription for these calculations, which we follow. A grid for convergence. In the calculations presented here, we started
our integrations is initially set up withiM +1 points in each by setting

direction, running from—S/2 to S/2 and with spacingA. o
This impliesS=MA. Writing out the numerical integration S—8 h coth( Bh/2N) 4.5
rule gives 2Mmo ' '
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TABLE I. Summary of NMM grid discretization parameters at J —InZ(B+86)+InZ(B— )
different temperatures. Ei=——=InZ~= +0(6?%),
d 26

N 2a? 2a® 4.9

2 10°5 1073 where §=10"%. The Hamiltonian estimator was calculated
4 10°4 102 with formula (3.6), and
8 104 102 1

16 10° 510 2 V=3 | axVxppx0), @10
32 103 10! Z
64 103 5x10°* , , )

128 10°2 7.5x10° Py 14 J
256 10! (M=2m =" z2m) PPy 4.19
512 101 yex

1024 3><10111 In the last integral above, the second derivative was taken
2048 7.5¢10 along one of the dimensions of the density matrix before

settingy=x. We performed this differentiation numerically

“Low temperature, e.g., harmonic oscillator witi=1 and%iwB sing a five-point approximation for the second derivative.

=?°- _ _ ) To ensure that the numerical error in the derivative was
®High temperature, e.g., harmonic oscillator with=1 and#wp At ;
1 P small, the second derivative was also taken by successive

iterations of a five-point approximation to the first derivative.
o o _ The difference between these two approximations to the sec-
which is eight standard deviations from the average positioynd derivative was kept small.

for a quantum harmonic oscillator of massat the highest The virial estimate of the energy was calculated using the

temperature. A grid spacing was determined, keeping in obvious quadraturésee Appendix B
mind the breadth of the Gaussian in .14

B. Generalized parallel sampling

S mN A Along with a direct comparison of the rates of conver-
poliAJABINI =\ wp A a7, (49 J o
T

gence inN, based on Eq92.12 and(2.15, we also inves-
tigate application of the Tsallis effective potential as part of
a proposed Monte Carlo method for enhanced sampling. In
classical simulations where broken ergodicity is present,
Straub and Andricioaei have developed methods for calcu-
—mNA? lating Maxwell-Boltzmann averages using Tsallis statistical
= W (4.7 distributions[ 23]. One of their methods is umbrella sampling
[45], which is generally not efficient when there is insuffi-
cient overlap between the sampling distribution and the
We chooseA small enough that the free particle density physical ondatq=1, for examplg. Parallel tempering46—
matrix is sampled well in the space dfandj. That is,@  50] is an alternative method in which several Monte Carlo

where

should be small. Rewriting Eq4.7), we have simulations are performed simultaneously at different tem-
peratures. With a given probability, pairs of configurations at
A=%2aB/mN. (4.9  different temperatures may be exchanged. Such exchanges
are accepted with probability
We setA implicitly by choosinga in Eq. (4.8). All other P1.(X1) pr. (Xo)
parameters on the right hand side are determined by the p=min 1—————|, (4.12
system. P, (X1)Pr,(X2)

Ordinarily, one begins a calculation by choosimgo that
the high temperature approximation in E&.13 is valid. ~ wherepr (X)) is the probability of configuratiopat tempera-
Since we are addressing the quality of this approximation, agure T;. The composite Markov chain of all random walks,
it depends upon the treatment of the potential energy, wéncluding the exchanges, is itself a Markov procp4g].
start by assigning and « instead. Table | summarizes the  Just as the sampling distribution need not be related to the
values ofa used in our NMM calculations. We choaeboth  natural distribution in the umbrella sampling method, we can
to expedite our computations and to have a quantitativalso generalize the parallel tempering method. Instead of a
agreementin the primitive approximationwith the analytic  series of distributions at different temperatures, the method
finite-N harmonic oscillator averag¢$7,44]. may be generalized by incorporating a number of simulta-
Adapting the energy estimators of the preceding section tmeous Monte Carlo simulations, each of which may sample a
NMM, we calculated the thermodynamic estimator using adifferent probability distribution. In the present context, we
three-point approximation to the derivative generate these distributions using a family of effective po-
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tentials, each parametrized by a different valuegah Eg. 3 . . T
(2.4). Equation(4.12 becomes o5bL
(X1) o, (Xs) 2

Pq,(X1)Pq, (X2

p=min 1,& , (4.13 SRy
pql(xl)pqz(xz) = 1}
05}

where, in our path integral case, ST

o 10 100 1000
. N
Pg(X)cexd —P(x)]. (4.14

FIG. 2. Internal energy estimates for the quantum mechanical
harmonic oscillatorN is the number of “beads” in the path inte-
The same technical concerns that one has with the stagral. We havem=1 and%»B8=20. Shown are the data from the
dard parallel tempering method carry over to this generalizastandard primitive approximation using the Hamiltonian estimator
tion, which we call generalized parallel samplit@P9 [40]. (*) or the thermodynamic estimatéi) and from use of the Tsallis
These concerns include ensuring that there is sufficient ovegffective potential with the Hamiltonian estimatdrlf or the ther-
lap among the various distributions that exchanges are fremodynamic estimatorX).
guently accepted. Furthermore, at least one of the simula-
tions (say at the highes value should quickly converge to V. RESULTS AND DISCUSSION

its equilibrium distribution. That is, the largegtshould be We first applied the effective potential substitution to the
chosen such that there is no broken ergodicity associateghe.dimensional harmonic oscillator. NMM calculations
with samplingp,(x). , were performed to determine the convergence behavior, with
In our simulations we ran PIMC in parallel dnsystems, N of path integral averages. We compared these results with
each withq set according to those calculated using the primitive approximation. We re-
peated these NMM calculations for a bistable one-
| I~ D/(=1) dimensional potential.
(;) —-1]/+1, (4.15 In addition, for the bistable potential, we applied the GPS
method described in the preceding section. The GPS results
were compared with calculations done using standard PIMC
where, I<j<k. For n~e, the q;’'s are approximately lin- methods.
early related. For the GPS calculations, we did not require
that g=1+ 1/N. Instead, for the highesi we haveq,=1 A. Harmonic oscillator
+1/vy, from Eq.(4.195. When exchanges are not attempted,
each distribution(4.14 was sampled using the standard
PIMC. 1
Choosing thegs according to Eq4.15 allows for close V(X)= Emwzxz, (5.1
spacing between low values gf which can mitigate any

correlation between the distributionsat andqy. Although o have calculated the free ener§y= 8~ 1InZ, along with

we have not found it necessary here, it is also possible t§,s internal energy(using the three estimators described

choose the set afs in a more systematic way, based on thegpgyg and the standard deviation of the position operator.
acceptance ratio for exchange moy4s. For the harmonic oscillator, all of these observables can be

€

" y(n—e)

g;

For the harmonic oscillator

pE——

0.9
0.8
0.7
o~ 06
0.5
0.4
0.3 NN BT - 6 Lt

1 10 100 1000 1 10 100
N N

exact

T
F / F exact

FIG. 1. Estimates of the Helmholtz free energy of the quantum FIG. 3. Estimates of the Helmholtz free energy of the quantum
mechanical harmonic oscillatoX is the number of “beads” in the mechanical harmonic oscillatdX is the number of “beads” in the
path integral. We haven=1 and 7o B=20. Both the standard path integral. We haven=1 and#oB=1. Both the standard
primitive approximation+) and use of the Tsallis effective poten- primitive approximation(+) and use of the Tsallis effective poten-
tial (X) are shown. tial (X) are shown.
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1.25 . : — 1
1.2+ p 0.9 -
L15F J 08l J
3 7k 4
HEBRES y 3 0
& & 0.6 .
~— — -
o 105 = 05h §
1 N 0.4 4
0.95 - E 0.3k a
" N PETTrSr I | M " PEEPErErae | 2 P sl " MR | 1 "
0-9; 10 100 02 10 100 1000
N N

FIG. 4. Internal energy estimates for the quantum mechanical FIG. 6. Estimates for the Helmholtz free energy of a quantum
harmonic oscillatorN is the number of “beads” in the path inte- mechanical bistable potential is the number of “beads” in the
gral. We havem=1 and%wB=1. Shown are the data from the path integral. We hava=1, m=1, A=1, w?=8%/ma? and 8
standard primitive approximation using the Hamiltonian estimator=20. Both the standard primitive approximation) and use of the
(*) or the thermodynamic estimat¢#) and from use of the Tsallis Tsallis effective potential X) are shown.

effective potential with the Hamiltonian estimatady or the ther- . ) . . .
modynamic estimatorx). the convergence is relatively poor in comparison with the

standard primitive approximation. Figures 3 and 4 show that

worked out analytically for ani [17,44,38. We reproduced the relative convergence due to the application of the effec-
the analytical results using NMM and then repeated the caltive potential does not improve at higher temperatures.
culations using the effective actidiq. (2.19]. Having computed\x= \(x?) — (x)Z we can draw a com-

We looked at the harmonic oscillator at a low temperatureparison between the standard and effective potential ap-
(hwB=20), where the number of beads required to get googbroaches. In Fig. 5, we see that while the width of the dis-
approximations for the observables was relatively high, andribution in the standard approximation decreases for small
also at a higher temperaturkgB=1). Our results are sum- N, the opposite behavior is observed for the path integral
marized in Figs. 1-4. Since the thermodynamic and virialusing the effective action. Note, however, that since we have
estimators give the same averages by construction, diffeiy=1+ 1/N in these calculationg] increases with decreasing
ences between the two estimates of the internal energy IN.
simulations are due to the statistical issues not present in The decrease afx for smallN in the primitive approxi-
NMM. These two estimators are, therefore, equal to one anmation, along with that of the free energy and the thermody-
other in NMM calculations. Differences i&; and Ey, in- namic estimate for the internal energy, is well kno,2]
stead, give an indication of the sufficiency Nf[38], and and has been described as ‘“classical collappé4], since
disappear afl—=. The free energy, by contrast, does notthe configurational distribution tends toward the classical
depend on selecting an estimator and gives a direct measuoae. Using the effective action appears to mitigate this col-
of the convergence of the path integral approximation to théapse, at least foAx. In any case, the fact that the quantum
partition function. mechanical configurational distribution becomes broadened

As expected, Figs. 1 and 2 show that the free energy andith increasingq suggests that the effective potential may
the internal energy converge to the exact result for lalge prove useful as part of an enhanced sampling scheme in sys-
when we use the Tsallis effective potential. We also note thatems with high barriers.

12 T
10 -
1.3 VIERRERRAAL T MMM T S 8 B
1.2F . =
6 J
L1 - Py
T 1r 7 4r 7
5 0.9F . ol i
D os} . e PP
4 o7k . 0 T e
: 1 10 100 1000
0.6 — N
05 7] . .
0.4 Y N IR E— FIG. 7. Internal energy estimates for a quantum mechanical
1 10 100 1000

bistable potentialN is the number of “beads” in the path integral.
We havea=1, m=1, #=1, v?>=8%,ma?, andB=20. Shown are

FIG. 5. Root-mean-squared deviation of the distribution in po-the data from the standard primitive approximation using the
sition. N is the number of “beads” in the path integral. We have Hamiltonian estimator (*) or the thermodynamic estimdtey and
m=1 andZwB=20. Both the standard primitive approximation from use of the Tsallis effective potential with the Hamiltonian
(+) and use of the Tsallis effective potentiak] are shown. estimator (J) or the thermodynamic estimatoKk().

N

066115-7



T. W. WHITFIELD AND J. E. STRAUB PHYSICAL REVIEW E64 066115

0.45
0.4
0.35

-4 -2

0 0.5 1 1.5 2 2.5%107

FIG. 8. Probability distribution for the quantum mechanical

double well. The solid curve is fog=1 and the dotted curve for FIG. 10. x as a function of numb(_er of Monte Carlo moves
q=2. We haveN=8, a=3, m=1, A=1, w?=40k/ma2, and 3 The number of Monte Carlo moves is the total number, summed

-4 over all particles in all polymer walkers in each simulation. The
GPS y is calculated for the walker aj=1. The solid line is a
B. Quartic bistable potential typical GPS run and the dotted line is a standard PIMC simulation.
We have investigated a bistable potential the configurational distribution af=1 (physical potential
1 2 in contrast to the distribution aj=2 (effective potentigl
_tMe” 2 2 has little probability of being in the barrier region. This is
(x—a)“(x+a)-. (5.2 k ol ; .
8 a? precisely the type of situation in which a parallel sampling

method is useful.

First, using the same approach as with the harmonic oscilla- Based on NMM calculations, it was determined thsat
tor, we compared the convergence of thermodynamic aver=g was adequate for simulation of this system in the primi-
ages between the standard primitive approximation and us@/e approximation. In the GPS calculation therefore, each of
of the effective potential. The results are summarized in Figsthe parallel walkers was a polymer ring with eight beads.
6 and 7. Again, observables converge fasteNiwhen cal- There werek=5 different gs, set according to Eq4.15
culated using the standard primitive approximation. The refyjjth ¢e=1073, y=1 and »=1000. Exchanges were made
erence energies in these figur@sg. Fer) come from the  among the five walkers, between rings of neighboring
fully converged NMM calculations, and are essentially exactSych exchanges were attempted with probability 0.025.

Next, we applied the GPS technique to the system angyhen an exchange was attempted, walkers not involved in
compared with the standard PIMC method. In these calculage exchange were updated with standard PIMC moves.

tions, we did not maintaig=1+1/N in the effective poten- Wwhen no exchange was attempted, all walkers attempted
tial, but rather set the variows according to Eq4.15. The  PIMC moves.

parameters of the simulation were adjusted such that broken As a measure of convergence, we have Ca|cu|qted
ergodicity would be present. Looking at Fig. 8, we note thatwhere[7]

(a) p(X,X;N)  pexact X,X)|?
2 . N exact”™
4 T T T T ] X (n)—f dx - y (53)
% Z(n) Zeyact
= 1r . . . . e
£ of - andp(x,x;n)/Z(n) is the normalized spatial probability dis-
® j% B ] tribution aftern Monte Carlo moves.
3 -
4k | ] I ]
0 05 1 15 2 25x107 09 ' ' ' oA
n 0.8} i 1
(b) 0.7 4
0.6 -
T 05 Pl .
A 04fF A .
0.3 -
0.2} ~
0.1f s
0 1 ]
0 05 1 1.5 2 25x107 -4 -2 0
k23 xT
FIG. 9. Position of the path integral centroig, as a function of FIG. 11. Probability distribution for the double well potential.

number of Monte Carlo moven. The number of Monte Carlo The thick solid is the “exact” result, calculated from NMM. The
moves is the total number, summed over all particles in all polymethin solid curve is the GPS disribution and the dotted curve is the
walkers in each simulation. The GPS centroid is for the walker astandard PIMC result. We hawd=8, a=3, m=1, =1, w?
g=1. Simulations aréa) PIMC and(b) GPS. =40h/ma?, and B=4.
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TABLE Il. Summary of PIMC and GPS results for the quartic godicity, the underlying reason for its success—that broken

bistable potential. ergodicity is not present at higlp—suggests that other en-
hanced sampling schemes involving the Tsallis effective po-
NMM PIMC GPS tential could also be usefully adapted to path integral simu-
¥ 5.452¢ 10~ 1 7 699% 10" 2 lations. For example, the d-jumping” method of

B i Andricioaei and Straub34], which is a special case of GPS
‘T_Z(X) 1.580< 107? 2.048¢<10°° [40]. It would be interesting to compare the numerical effi-
Ax 2.924 4.79% 10_ 2.880 - ciency of such alternative approaches with that of GPS.
o?(Ax) 3.026<10°° 2.063<10° For path integral simulations involving the Tsallis effec-
tive potential, in the form given by Eq$2.3), (2.4), and
(2.15, we have introduced three estimators for the internal

In Fig. 9, we see that the center of mdssentroid of the | hi | simulati h K fth
g=1 walker in our GPS simulation crosses the barrier freSnergy. N path integral simulations that make use of the

guently compared with that of the standard PIMC simulation Tsallis effective potential, agreement betwdgnand E, (or

which is completely trapped in one of the wells. All plots E,) can be useful to judge the sufficiencyNfjust as is the

related to the Monte Carlo simulations are normalized forcooc the primitive approximation. Indeed, the same crite-

computer time. That is, the number of Monte Carlo moves i rion is broadly applicable and can be extended, using estima-

the same for the single chain in the standard PIMC simuIasté?;zrgreesri?afg_ggrz’ntgei?iﬁzgt]i\'/gte%rtzlnst;gulatlon involving
tion as the total number over all chains in the GPS simula- P P P )
tion.

From Fig. 10 we see that the GPS distribution is converg- ACKNOWLEDGMENTS

ing to the exact one. From the standard PIMC simulation, 5 g 5 acknowledges the generous support of the National
x(n) is not converging. The distributions after representativeg jance FoundatiofGrant No. CHE-9975494
GPS and standard PIMC simulations are shown in Fig. 11. ' '

Each simulation involved a total of X410’ Monte Carlo
moves.

Data averaged over ten independent simulations are pre- Below, we follow Herman, Bruskin, and Berne’s deriva-

sented in Table Il. Relative to the standard PIMC approachtjon of the virial estimatof35]. We start by rewriting Eq.
the GPS simulations converged to a significantly smaller av¢3 )

eragey, and were able to predict the root-mean-square de-

viation of the configurational distribution with a reasonable N
accuracy. In all of the PIMC simulations, the isomorphic Et:<ﬁ_aN+)\N+ 5N>, (A1)
polymer chain remained trapped on one side of the barrier.

APPENDIX A

where
VI. CONCLUSIONS

fective potential into the path integral does not generally aN:ZﬁZ

enhance convergence. In the simple one-dimensional sys-

tems investigated here, neither the free energy nor the inter-

nal energy converged more rapidly M after making the AN=
substitution. We did note however, that the configurational

distributions of quantum systems undergo broadening similar

to that observed in classical systefi#,28,23,24 asq is _
increased from unity. This broadening has been used as the INTN izl B@V(Xi B). (A4)
basis for a generalized parallel sampling technique for path

integrals. . ... Next, consider the following average:
For a simple quantum system where broken ergodicity

N
; ituti is ef- Nm
We have shown that direct substitution of the Tsallis ef ,32 .Zl (Xi_xi+l)21 (A2)

N
21 V(xi,B), (A3)

Z| -

N

prohibits convergence of standard PIMC methods, we have N U

successfully applied a Monte Carlo method for enhanced N fdxl...de > xi—N —BUN
sampling, GPS, to path integrals. This method dramatically E o dUn\ =1 X

enhances the frequency of barrier crossing for the isomorphic = Thox | a0 '
polymer chain. It does not, however, mitigate the problem of J dxg - - -dxye PN

stiff bonds asN becomes large. For simulations requiring (A5)

large N, and where broken ergodicity is present, the GPS

technique can readily be combined with the existing pathwhere

integral methods for stiff bonds—normal mode techniques,

for example. Un=antA\y- (A6)
Although GPS allows for accurate sampling of the quan-

tum configurational distribution in systems with broken er-Since
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Uy 1 ge PUn
“BUny. —— " — Ty
e~ PNy, X, IBX, P (A7)
an integration by parts gives
N N
Uy 1 X N
— ) == — ) ==, A8
<ile, axi> Bi21<(9x|> B (A8)
or
N N
ﬁaN &)\N N
<i21Xi(9_X|>+<i21Xif7_Xi>_E (Ag)

Since ay is a homogeneous function of degree 2 of all the
X, Euler's theorem can be invoked,

2, x

. ax, ay. (A10)
Equation(A9) can be recast as
N
N 1 IN(X;,B)
<ﬁ—a,\,> <2N2 Xl9—X|> (A1l1)

Substitution back into EqAL) yields Eq.(3.4).

APPENDIX B

To emphasize the necessity of including Balerivative
term in Eq.(3.4), we examine an application of the general-

PHYSICAL REVIEW E64 066115

1/2
p<x,x>=( ) exd — BV(x,8)] (B4)

m
2mh?B
in the semiclassical analysis that we consider here. In our
NMM calculations, howeverp(x,x) is determined numeri-
cally and will converge to the exact diagonal of the density
matrix after sufficiently many iterations. In that case, Eq.
(B3) will give the exact quantum internal energy.

But considering now the semiclassical approximation to
the diagonal, the partition function is

ized virial estimator to a semiclassical approximation for the

harmonic oscillator distribution function. To begin, consider
the following effective potential:

Bhw)?
24

V(x B)= —mw 2x2+ (B1)

from a variational approach of Feynmsil,52.

We verify that the internal energy calculated using our
virial estimator, Eq(3.4), agrees with that calculated directly
from the partition function(i.e., E;). We begin by writing

our estimator in a form appropriate for averaging over the

density matrix

1 — 1
Ev=zf dx V(x,mwwwx B+ 5X fy Do),
(B2)
=l;+1,+13, (B3)

The density matrix appearing above will be

e—(ﬁﬁw)2/24
ZZJ pr(X,X)ZIBﬁ—w, (BS)
which helps us to write
- 1 B(hw)? 56
1_ﬁ 24 ’ ( )
B(fiw)?
I2 o (B7)
3= ! B8
SRPYE (B8)
and finally
_1 i) -
Instead, from the partition function,
E= I Z=— ! —ﬁ(hw)z B10

Equation(B5) leads to a well-known semiclassical estimate
for the free energy of the quantum mechanical harmonic os-
cillator [51,52. For the virial estimator to give the corre-
sponding internal energy, the term involving tBelerivative

I, must be included.
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