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Random sequential adsorption of binary mixtures on a line
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A jamming coverage for the random sequential adsorption of binary mixtures of segments on the infinite line
is derived. It always appears to be smaller than the coverage associated with the car parking problem. This has
to be contrasted with dicrete models, where the coverage of the lattice by mixtures of segments of different
sizes is more efficient than by single species.
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[. INTRODUCTION which is a general relation also valid in case of mixtures. To
derive P(0t) one writes the rate equation &f(x,t), which
In the random sequential adsorption mod@EA), objects  expresses the various ways of filling the empty interval in the
are fixed at random on a substrate if they do not overlap th®SA process. According to the sizeof the interval com-
previously deposited objects. This process, usually initiateghared to the size of the deposited segments, there are three
on an empty substrate, ends due to blocking and the coveragases.

0(t) reaches a maximal valug, . This model, used in vari- a. Casex=1. One finds

ous contexts, is reviewed in Rél]. In the recent past, sub- 5

jects, such as pattern formatip®|, percolation3], adsorp- ¢ _ o+ .

tion of objects of complicated shap4], or with desorption ot P.={A(x=a)+u(x=1)}P(x.1)

[5] have been investigated.

Some results have been also obtained for competitive ad- +2)\faP(x+y tHdy+ Zﬂflp(X‘Fy t)dy
sorption[6] and in particular for RSA of mixtures of seg- 0 ’ 0 e
ments of different lengths deposited on lattices of various o)

dimensionality{ 7]. The most striking feature is that mixtures

cover the lattice more efficiently than either of the speciesyhere the first term is for the segments falling inside the
separatly. The exact results available for one-dimensional lainterval and the remaining integrals for the depositions hav-
tices confirm this facf8,9]. Our aim here is to investigate ing some overlap with it.

this property for the continuous model, and we find that it The other cases are similar.

does not hold any more. b. Casea<x<1.

We consider binary mixtures of segments on the infinite
line. The smallest segments have a lengttwith O=a<1,
and are chosen with a probabilty the longest ones being of
unit length and chosen with a probabiligy=\—1. These
lengths and probabilities are time independent. We thus re-
cover the standard car parkin@P) model[10] for A =0,
with an asymtotic coveragé,=0.7476. We exactly derive
the asymptotic coverag® a,\) as a function of the param- G
eterse and\ and we numerically find tha@(a,\)=<#6,. c. Case BEX<a.

Our derivation uses the method of the empty intervals
[1,11] and in Sec. Il we give the rate equations of their as- ¢
sociated probabilities. In Sec Il these equations are solved in~ - P(X;t) =A(a—=X)P(a,t) + u(1-x)P(1}t)
order to give the coverage and our numerical results and
comments are given in Sec. IV.

— %P(x,t) =AX—a)P(X,1)+u(1—x)P(1})

o X
+2)\f P(x+y,t)dy+ 2,uJ' P(1+y,t)dy.
0 0

X X
+2)\J P(a+y,t)dy+2,uf P(1+y,t)dy.
0 0

Il. RATE EQUATIONS FOR THE EMPTY INTERVALS (4)

PROBABILITY . . o
_ _ ) Equation(4) with x=0 indicates that
One considers an uncovered interval of lengtfwhich

could be part of a longer empty interyalhe probability to —dP(0t)/gt=NaP(a,t)+uP(1}) 5)

find such an interval at timé is denoted byP(x,t), with

P(x,00=1 since the line is empty initially. The coverage and asdé(t)/dt=—aP(0t)/dt from Eq. (1) we write the

6(t) is then given by coverage as a sum of two contributions associated with
P(a,t) andP(1t). In the infinite time limit it reads

0(t)=1—P(0}), (1) O(t—%o)=0(a,N)=61(a,\)+ 0(a,\) (6)
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with B 1
I+(x,t)=J P,(z,t)dz+J’ P.(zt)dz
X B

ﬁl(a,)\)=,u,f:P(1,t)dt, 02(a,)\)=a)\foxp(a,t)dt. +Jx+ap (z.0dz S 13
@ , aEhen s pEEt

We have to solve Eq(2) to know P(1t) and Eq.(3) for The rate equation on the rangesxs'l thus appears as a
P(a,t). This is detailed in the following section but we can couple of two eq.u.a_tlons that generalize E2() to the two
make here some comments. The first casel is easy to unknown probabilitiesP_(x,t) and P+(X’t.)' Morg gener-
solve as all the values d?(z,t) involved in Eq.(2) corre- ally, for 1/(N+_1)$a$1/N we must consider a Imear_sys-
spond toz=x=1, as for a single species: an exact solutiont®™ OfN. eguatlons. On t_he oth.er hand, as we show in _Sec.
that we denote byP,(z,t) is available forz=1, which is IV, the limit =0 is easily derived and the corresponding

needed to solve Ed3). Due to this contribution, we cannot numerical results are in agreement with our findings for the

solve analytically Eq(3), which is, moreover, complicated simplest case 1#2_a$1. We thus restrict in the following
by the term our analysis to this case.

Ill. SOLUTION OF THE RATE EQUATIONS

a X+ a
0= fo P(x+y,hdy= L P(zt)dz ®) The casex=1 appears as a very simple generalization of

the CP model, and the probability is found to be

The simplest case correspondsde 1/2. Whenx varies in P(x )= —(X— ah— ) G(t 14
the rangd «,1], the upper limitx+ « of the integral defining (D) =expl=(x=ak =p)tiG(), 14

[(x,t) varies in the rangé2a,1+«] and is then always where G(t)=g*(t)g(at) and g(t) is a function already

greater than 1. The teri(x,t) thus splits into two compo-  gppearing in the CP model, defined by
nents

t

N o g(t)=exp[—2fo(1—e—“)du/u]=exp{2Ei(—t)—2y}/t2.

I(x,t)=f P,(z,t)dz+ L P,(z,t)dz, 9 (15)
X

In the previous expressiony is the Euler constant and

where P,(z,t) denotes the determination &f(z,t) on the E(t)=/" .e'du/u. This givesP(1t) and through Eq(7)
range 1/Za<z=<1. Collecting the contributiofr;(x,t) of o partial coverag®,(a,\) according to

P,(z,t) in Eqg. (3) one arrives at
P(1t)=e M1-9G(t),
1
—dP,(X,t)/ dt=N(X— a)Pz(x,t)+2>\f Psy(y,t)dy o
X ﬂl(a.h)=uf e MIm9ige(t)gM(at)dt. (16)
0
+F(x1), (10)

One checks that;(a,\=0)=60,, the CP model coverage.
whereF,(x,t) is given by More generally, one can observe that the asymptotic limit is
reached ag M1~ 9Yt2 that is to say more quickly than for
continuous or lattice models.

+a
Fl(x,t)zu(l—x)Pl(l,t)+2fo P,(y,t)dy Considering now th(_a casesxs<l1, wi_th a>_1/2, we first
1 expressF4(x,t) appearing in Eq(11) by inserting the result
N of Eqg. (14). One finds
+2,u,f Pi(1+y,t)dy. (12)
o Fo(xt)=e M@t (t) {20 (1— e~ O @ DY/t + u(1—x

_ A~ Xt
The next case corresponds to £/@<1/2 where we have to +2l1-e T/ (17)

divide the interva[ a,1] into| _=[a,B] andl . =[S, 1] with - 54 46 1o this term we cannot find the solution of Ed)

B=1-a and to consider the determinatioﬁs(x,t_) and closed form. Instead we use this equation to generate the

P.(x,t) of P(x,t) onl_ andl. , respectively. The integral g, ansion ofP(x,t) [from now on we omit the subscript

I(x,t) reads on these intervals since it is clear that in Eq10) we searchP(x,t) =P,(x,t)],
which reads

B X+a
I,(x,t)zf P,(z,t)dz+f P.(z,t)dz, asx=p
X B

12 P(x,t)=1+n§l P, ()t". (18
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The corresponding expansion Bf(x,t) is TABLE I. Numerical values of the asymptotic coverages. For
fixed values ofa and \, the first line isf;(a,\), the second line
0,(a,\), and the third one is their sum, i.e, the total coverage

F1<x,t>=n§0 Qn()t", 19 gan.

where theQ,(x) are (h+ 1)th order known polynomialgor A= 0.1 03 0.5 0.7 0.9
example, Qu(X)=u—2N(1—a)+x(n+2N)]. Inserting la

these expressions in EGLO) and equating the coefficients of 0.664 0.509 0.361 0.215 0.071
t™ in the two members give the recursive relation 0.9 0.074 0.222 0.371 0.522 0.672
0.738 0732 0.732 0.737 0.744
Pm+2(X)=~ [ A(X= @) Pm(X)+Qm(x) 0660 0504 0357 0213  0.071
0.8 0.072 0.219 0.368 0.519 0.671
1

+2)\f Pm(y)dy] / (m+1), 0.732 0.723 0.725 0.732 0.742
X 0.656 0.502 0.356 0.214 0.071
m=0 (20 0.7 0.070 0.214 0.363 0.515 0.670
o 0.726 0.716 0.719 0.729 0.741
which gives theP,(x) as nth-order polynomials. For ex- 0.655 0.502 0.378 0.216 0.072
ample Py(X)= —(x+u+a\). Large order formal expan- q¢ 0066 0206 0354 0509  0.668
sions can easily be derived usimgPLE (up ton=20 which 0.720 0.707 0.712 0.725 0.740

is sufficien). We thus obtairP(«,t) as a finite sum, but we
also know its asymptotic behavior agoes to infinity. In this 0.654 0.504 0.362 0.219 0.074
regime one find$(x,t)=C exd —\(x—a)t])/t?> as the result 0.5 0.061 0.194 0.341 0.500 0.666
of Eg. (100 when the nonleading termF(x,t) 0.715 0.698 0.702 0.719 0.740

=0(exd —\(1—a)t]) is neglected. The consta@® is ob-
tained by the continuity constraint &&= 1 of this asymptotic et ot
expression with the exact ond®(1t)=e M1~ iG(t) A=1, P(xtH)=e * 9G(t)=e * 'g(at) (29
~exgd—N1—-a)t—2y—2\In(@) 2. This gives C=exp o
[—2y—2\In(a)] and thusP(a,t)=C/t2, which also means and thusP(«,t) =g(at) [we have checked that in this case
that asymptoticallyP(a,t)=G(t). ®(t)=1] and then

We are thus left with a standard problem of summation e wtoe
and the most efficient way that we have found is to use the ¢,(a,\=1)= af g(au)duzf g(u)du=#6;,.
parametrization 0 0

(24)
Pla,) =G (1) 21) We thus have
whereG(t) =g*(t)g"(at) andd(t) is a rational expression
in t, such thatb(t—«~)=1, and whose parameters are de-
fined in such a way that the coefficients of thexpansion of  \yhich is the obvious property of scale invariance of the cov-
G(td(t)) are equal to th@,(a) previously computed. Usu- grage when only one species is present. However, we ob-

accuracy of this parametrization, also obtained with the help

of MAPLE. We have checked thatb(t) is a monotonic in- 01(a,\)=~0s(a,1—\) (26)
creasing function of, and we finally obtain

01(a,N=0)= 0,(a,\=1), (25)

on the whole range ok, at least wherw=1/2. These nu-

* merical results are given in Table | where for fixed values of
O2(a,\)=ak JO G(td(1))dt. (22 4 and, the first line isf1(a,\), the second ling,(a,\)
and the third one their sum, i.e., the total cover@@e,\).

The numerical results of the integrations defined in Eg6). These results also show that in spite of the important
and(22) are given in the following section. variation of 6;(«,\) and 6;(e,\) with \, their sumé(a,\)

is slowly varying and always smaller thah.

This has to be contrasted with the situation known for
discrete lattice$7,9]. In order to emphasize this point, we
We have already observed théi(a,A=0)=6,, where consider deposited segments of arbitrary lengthendL,,
0,=0.7476 is the CP model coverage at jamming. On thewith L;<L,. We denote byd(L;) the asymptotic coverage
other hand, whein=1, (v=0), Eq.(2) and Eq.(3) are the  for RSA of the single speciek;, and by #(L;L,,\) the
same, which implies that on the whole range « their so-  asymptotic coverage for RSA of tHe,— L, mixture, the
lution is given by Eq(14), i.e., probability A corresponding td_; and 1-\ to L,. In the

IV. NUMERICAL RESULTS AND CONCLUSION
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continuum case, scale invariance of the coverage impliea=0, which corresponds to RSA of a mixture of pointlike
O(Ly)=0(L,)=10, and O(Ly,Lo N)=6(L1/Ly,1N) particles and segments of fixed lengtin a lattice one ob-

= 0(a,\) with a=L, /L,. We have obtained in addition that tains full coveragg In this case the solution of the rate equa-
6(L,,Lo,\)<6; and that 6(L,,L,, A=0)=6(L;,L,,N  tions is very simple to obtain and B(a,t)=e *g~(t),

=1)= Ql. In the discret.e case, the Iength§ andL, mea- \yhich implies that 6;(a,\)=puf5e Mg#(t)dt and

sured in lattice spacing units are integers afli)  g,(x,\)=0, in agreement with the particular scaling limit
>@(L,). For example,§(0)=1 (th_e monomer depOSItIOn considered in Ref8]. Pointlike particles do not contribute to

and 6(<)=0;. In case of mixtures one findg9] e total coverage, but once adsorbed they forbid some depo-
O(L1,L2,M)=0(Ly, Ly A=1)=0(L1)>6(Ly) for any  gjinng of the large size particles. They affect the deposition
value of the probabilityr, including the limith =0, which ., a55 is such that the total coverage decreases as the popu-

indx:%'g?s thaﬂ(%l,Lz,t)r\]=0) Is strtir(]:tlyl gtjtr_eater tham%'.‘%)' " lation of pointlike particles increases: one finds, for example,
roirary mixtures thus cover the ‘atlice more EtCIently yat  9(a=01)=1{0.67,0.55,0.42,0.27,0.1 when X
than either of species. It is exactly the opposite in the con-

tinuous model. For the lattice case, the increase of the cov?{o'l’o'?”o'S.’0'7’0}9 respectively. :
In conclusion, one can say from our numerical results that

erage is due to the smallest particles that fill the gaps in a . hani ists f lueanfand that th |
better way. For the continuous model, the smallest particle 'S mechanism persists for any valueatand that the tota

seem to work in an opposite fashion. This feature is wellCOVerage in th_e continuum is always smaller than it is with
understood by observing the behavior of the coverage whefnly one species.
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