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Random sequential adsorption of binary mixtures on a line
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A jamming coverage for the random sequential adsorption of binary mixtures of segments on the infinite line
is derived. It always appears to be smaller than the coverage associated with the car parking problem. This has
to be contrasted with dicrete models, where the coverage of the lattice by mixtures of segments of different
sizes is more efficient than by single species.
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I. INTRODUCTION

In the random sequential adsorption model~RSA!, objects
are fixed at random on a substrate if they do not overlap
previously deposited objects. This process, usually initia
on an empty substrate, ends due to blocking and the cove
u(t) reaches a maximal valueu` . This model, used in vari-
ous contexts, is reviewed in Ref.@1#. In the recent past, sub
jects, such as pattern formation@2#, percolation@3#, adsorp-
tion of objects of complicated shape@4#, or with desorption
@5# have been investigated.

Some results have been also obtained for competitive
sorption @6# and in particular for RSA of mixtures of seg
ments of different lengths deposited on lattices of vario
dimensionality@7#. The most striking feature is that mixture
cover the lattice more efficiently than either of the spec
separatly. The exact results available for one-dimensional
tices confirm this fact@8,9#. Our aim here is to investigat
this property for the continuous model, and we find tha
does not hold any more.

We consider binary mixtures of segments on the infin
line. The smallest segments have a lengtha, with 0<a<1,
and are chosen with a probabiltyl, the longest ones being o
unit length and chosen with a probabilitym5l21. These
lengths and probabilities are time independent. We thus
cover the standard car parking~CP! model @10# for l50,
with an asymtotic coverageu150.7476. We exactly derive
the asymptotic coverageu(a,l) as a function of the param
etersa andl and we numerically find thatu(a,l)<u1.

Our derivation uses the method of the empty interv
@1,11# and in Sec. II we give the rate equations of their a
sociated probabilities. In Sec III these equations are solve
order to give the coverage and our numerical results
comments are given in Sec. IV.

II. RATE EQUATIONS FOR THE EMPTY INTERVALS
PROBABILITY

One considers an uncovered interval of lengthx ~which
could be part of a longer empty interval!. The probability to
find such an interval at timet is denoted byP(x,t), with
P(x,0)51 since the line is empty initially. The coverag
u(t) is then given by

u~ t !512P~0,t !, ~1!
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which is a general relation also valid in case of mixtures.
derive P(0,t) one writes the rate equation ofP(x,t), which
expresses the various ways of filling the empty interval in
RSA process. According to the sizex of the interval com-
pared to the size of the deposited segments, there are
cases.

a. Casex>1. One finds

2
]

]t
P~x,t !5$l~x2a!1m~x21!%P~x,t !

12lE
0

a

P~x1y,t !dy12mE
0

1

P~x1y,t !dy,

~2!

where the first term is for the segments falling inside t
interval and the remaining integrals for the depositions h
ing some overlap with it.

The other cases are similar.
b. Casea<x<1.

2
]

]t
P~x,t !5l~x2a!P~x,t !1m~12x!P~1,t !

12lE
0

a

P~x1y,t !dy12mE
0

x

P~11y,t !dy.

~3!

c. Case 0<x<a.

2
]

]t
P~x,t !5l~a2x!P~a,t !1m~12x!P~1,t !

12lE
0

x

P~a1y,t !dy12mE
0

x

P~11y,t !dy.

~4!

Equation~4! with x50 indicates that

2]P~0,t !/]t5laP~a,t !1mP~1,t ! ~5!

and asdu(t)/dt52]P(0,t)/]t from Eq. ~1! we write the
coverage as a sum of two contributions associated w
P(a,t) andP(1,t). In the infinite time limit it reads

u~ t→`!5u~a,l!5u1~a,l!1u2~a,l! ~6!
©2001 The American Physical Society11-1
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with

u1~a,l!5mE
0

`

P~1,t !dt, u2~a,l!5alE
0

`

P~a,t !dt.

~7!

We have to solve Eq.~2! to know P(1,t) and Eq.~3! for
P(a,t). This is detailed in the following section but we ca
make here some comments. The first casex>1 is easy to
solve as all the values ofP(z,t) involved in Eq.~2! corre-
spond toz>x>1, as for a single species: an exact soluti
that we denote byP1(z,t) is available forz>1, which is
needed to solve Eq.~3!. Due to this contribution, we canno
solve analytically Eq.~3!, which is, moreover, complicate
by the term

I ~x,t !5E
0

a

P~x1y,t !dy5E
x

x1a

P~z,t !dz. ~8!

The simplest case corresponds toa>1/2. Whenx varies in
the range@a,1#, the upper limitx1a of the integral defining
I (x,t) varies in the range@2a,11a# and is then always
greater than 1. The termI (x,t) thus splits into two compo-
nents

I ~x,t !5E
x

1

P2~z,t !dz1E
1

x1a

P1~z,t !dz, ~9!

where P2(z,t) denotes the determination ofP(z,t) on the
range 1/2<a<z<1. Collecting the contributionF1(x,t) of
P1(z,t) in Eq. ~3! one arrives at

2]P2~x,t !/]t5l~x2a!P2~x,t !12lE
x

1

P2~y,t !dy

1F1~x,t !, ~10!

whereF1(x,t) is given by

F1~x,t !5m~12x!P1~1,t !12lE
1

x1a

P1~y,t !dy

12mE
0

x

P1~11y,t !dy. ~11!

The next case corresponds to 1/3<a<1/2 where we have to
divide the interval@a,1# into I 25@a,b# andI 15@b,1# with
b512a and to consider the determinationsP2(x,t) and
P1(x,t) of P(x,t) on I 2 and I 1 , respectively. The integra
I (x,t) reads on these intervals

I 2~x,t !5E
x

b

P2~z,t !dz1E
b

x1a

P1~z,t !dz, a<x<b

~12!
06611
I 1~x,t !5E
x

b

P2~z,t !dz1E
b

1

P1~z,t !dz

1E
1

x1a

P1~z,t !dz, b<x<1. ~13!

The rate equation on the rangea<x<1 thus appears as
couple of two equations that generalize Eq.~10! to the two
unknown probabilitiesP2(x,t) and P1(x,t). More gener-
ally, for 1/(N11)<a<1/N we must consider a linear sys
tem of N equations. On the other hand, as we show in S
IV, the limit a50 is easily derived and the correspondin
numerical results are in agreement with our findings for
simplest case 1/2<a<1. We thus restrict in the following
our analysis to this case.

III. SOLUTION OF THE RATE EQUATIONS

The casex>1 appears as a very simple generalization
the CP model, and the probability is found to be

P~x,t !5exp$2~x2al2m!t%G~ t !, ~14!

where G(t)5gm(t)gl(at) and g(t) is a function already
appearing in the CP model, defined by

g~ t !5expH 22E
0

t

~12e2u!du/uJ 5exp$2Ei~2t !22g%/t2.

~15!

In the previous expression,g is the Euler constant and
Ei(t)5*2`

t eudu/u. This givesP(1,t) and through Eq.~7!
the partial coverageu1(a,l) according to

P~1,t !5e2l(12a)tG~ t !,

u1~a,l!5mE
0

`

e2l(12a)tgm~ t !gl~at !dt. ~16!

One checks thatu1(a,l50)5u1, the CP model coverage
More generally, one can observe that the asymptotic limi
reached ase2l(12a)t/t2, that is to say more quickly than fo
continuous or lattice models.

Considering now the casea<x<1, with a>1/2, we first
expressF1(x,t) appearing in Eq.~11! by inserting the result
of Eq. ~14!. One finds

F1~x,t !5e2l(12a)tG~ t !$2l~12e2(x1a21)t!/t1m~12x

12@12e2xt#/t% ~17!

and due to this term we cannot find the solution of Eq.~10!
in closed form. Instead we use this equation to generate tt
expansion ofP(x,t) @from now on we omit the subscrip
since it is clear that in Eq.~10! we searchP(x,t)5P2(x,t)#,
which reads

P~x,t !511 (
n>1

Pn~x!tn. ~18!
1-2
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The corresponding expansion ofF1(x,t) is

F1~x,t !5 (
n>0

Qn~x!tn, ~19!

where theQn(x) are (n11)th order known polynomials@for
example, Q0(x)5m22l(12a)1x(m12l)#. Inserting
these expressions in Eq.~10! and equating the coefficients o
tm in the two members give the recursive relation

Pm11~x!52H l~x2a!Pm~x!1Qm~x!

12lE
x

1

Pm~y!dyJ Y ~m11!,

m>0, ~20!

which gives thePn(x) as nth-order polynomials. For ex
ample P1(x)52(x1m1al). Large order formal expan
sions can easily be derived usingMAPLE ~up ton520 which
is sufficient!. We thus obtainP(a,t) as a finite sum, but we
also know its asymptotic behavior ast goes to infinity. In this
regime one findsP(x,t).C exp@2l(x2a)t#/t2 as the result
of Eq. ~10! when the nonleading termF1(x,t)
.0„exp@2l(12a)t#… is neglected. The constantC is ob-
tained by the continuity constraint atx51 of this asymptotic
expression with the exact oneP(1,t)5e2l(12a)tG(t)
'exp@2l(12a)t22g22l ln(a)#/t2. This gives C5exp
@22g22l ln(a)# and thusP(a,t).C/t2, which also means
that asymptoticallyP(a,t).G(t).

We are thus left with a standard problem of summat
and the most efficient way that we have found is to use
parametrization

P~a,t !5G„tF~ t !… ~21!

whereG(t)5gm(t)gl(at) andF(t) is a rational expression
in t, such thatF(t→`)51, and whose parameters are d
fined in such a way that the coefficients of thet expansion of
G„tF(t)… are equal to thePn(a) previously computed. Usu
ally more than five parameters do not improve the numer
accuracy of this parametrization, also obtained with the h
of MAPLE. We have checked thattF(t) is a monotonic in-
creasing function oft, and we finally obtain

u2~a,l!5alE
0

`

G„tF~ t !…dt. ~22!

The numerical results of the integrations defined in Eqs.~16!
and ~22! are given in the following section.

IV. NUMERICAL RESULTS AND CONCLUSION

We have already observed thatu1(a,l50)5u1, where
u150.7476 is the CP model coverage at jamming. On
other hand, whenl51, (m50), Eq.~2! and Eq.~3! are the
same, which implies that on the whole rangex>a their so-
lution is given by Eq.~14!, i.e.,
06611
n
e
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l51, P~x,t !5e2(x2a)tG~ t !5e2(x2a)tg~at ! ~23!

and thusP(a,t)5g(at) @we have checked that in this cas
F(t)51# and then

u2~a,l51!5aE
0

t→`

g~au!du5E
0

at→`

g~u!du5u1 .

~24!

We thus have

u1~a,l50!5 u2~a,l51!, ~25!

which is the obvious property of scale invariance of the co
erage when only one species is present. However, we
serve more generally an approximate symmetry

u1~a,l!'u2~a,12l! ~26!

on the whole range ofl, at least whena>1/2. These nu-
merical results are given in Table I where for fixed values
a andl, the first line isu1(a,l), the second lineu2(a,l)
and the third one their sum, i.e., the total coverageu(a,l).

These results also show that in spite of the import
variation ofu1(a,l) andu2(a,l) with l, their sumu(a,l)
is slowly varying and always smaller thanu1.

This has to be contrasted with the situation known
discrete lattices@7,9#. In order to emphasize this point, w
consider deposited segments of arbitrary lengthsL1 andL2,
with L1,L2. We denote byu(Li) the asymptotic coverage
for RSA of the single speciesLi , and by u(L1L2 ,l) the
asymptotic coverage for RSA of theL12 L2 mixture, the
probability l corresponding toL1 and 12l to L2. In the

TABLE I. Numerical values of the asymptotic coverages. F
fixed values ofa and l, the first line isu1~a,l!, the second line
u2~a,l!, and the third one is their sum, i.e, the total covera
u ~a,l!.

l→ 0.1 0.3 0.5 0.7 0.9
↓a

0.664 0.509 0.361 0.215 0.071
0.9 0.074 0.222 0.371 0.522 0.672

0.738 0732 0.732 0.737 0.744

0.660 0.504 0.357 0.213 0.071
0.8 0.072 0.219 0.368 0.519 0.671

0.732 0.723 0.725 0.732 0.742

0.656 0.502 0.356 0.214 0.071
0.7 0.070 0.214 0.363 0.515 0.670

0.726 0.716 0.719 0.729 0.741

0.655 0.502 0.378 0.216 0.072
0.6 0.066 0.206 0.354 0.509 0.668

0.720 0.707 0.712 0.725 0.740

0.654 0.504 0.362 0.219 0.074
0.5 0.061 0.194 0.341 0.500 0.666

0.715 0.698 0.702 0.719 0.740
1-3
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continuum case, scale invariance of the coverage imp
u(L1)5u(L2)5u1 and u(L1 ,L2 ,l)5u(L1 /L2,1,l)
5u(a,l) with a5L1 /L2. We have obtained in addition tha
u(L1 ,L2 ,l)<u1 and that u(L1 ,L2 ,l50)5u(L1 ,L2 ,l
51)5u1. In the discrete case, the lengthsL1 and L2 mea-
sured in lattice spacing units are integers andu(L1)
.u(L2). For example,u(0)51 ~the monomer deposition!
and u(`)5u1. In case of mixtures one finds@9#
u(L1 ,L2 ,l)>u(L1 ,L2 ,l51)5u(L1).u(L2) for any
value of the probabilityl, including the limitl50, which
indicates thatu(L1 ,L2 ,l50) is strictly greater thanu(L2).

Arbitrary mixtures thus cover the lattice more efficient
than either of species. It is exactly the opposite in the c
tinuous model. For the lattice case, the increase of the c
erage is due to the smallest particles that fill the gaps
better way. For the continuous model, the smallest parti
seem to work in an opposite fashion. This feature is w
understood by observing the behavior of the coverage w
.

E

06611
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n

a50, which corresponds to RSA of a mixture of pointlik
particles and segments of fixed length~on a lattice one ob-
tains full coverage!. In this case the solution of the rate equ
tions is very simple to obtain and isP(a,t)5e2ltgm(t),
which implies that u1(a,l)5m*0

`e2ltgm(t)dt and
u2(a,l)50, in agreement with the particular scaling lim
considered in Ref.@8#. Pointlike particles do not contribute t
the total coverage, but once adsorbed they forbid some d
sitions of the large size particles. They affect the deposit
process is such that the total coverage decreases as the
lation of pointlike particles increases: one finds, for examp
that u(a50,l)5$0.67,0.55,0.42,0.27,0.1% when l
5$0.1,0.3,0.5,0.7,0.9%, respectively.

In conclusion, one can say from our numerical results t
this mechanism persists for any value ofa, and that the total
coverage in the continuum is always smaller than it is w
only one species.
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