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The nonequilibrium dynamics of classical random Ising spin chains with nonconserved magnetization are
studied using an asymptotically exact real space renormalization RBRG. We focus on random field
Ising model(RFIM) spin chains with and without a uniform applied field, as well as on Ising spin glass chains
in an applied field. For the RFIM we consider a universal regime where the random field and the temperature
are both much smaller than the exchange coupling. In this regime, the Imry-Ma length that sets the scale of the
equilibrium correlations is large and the coarsening of domains from random initial conditignsa quench
from high temperatueoccurs over a wide range of length scales. The two types of domain walls that occur
diffuse in opposite random potentials, of the form studied by Sinai, and domain walls annihilate when they
meet. Using the RSRG we compute many universal asymptotic properties of both the nonequilibrium dynamics
and the equilibrium limit. We find that the configurations of the domain walls converge rapidly toward a set of
system-specific time-dependent positions thatiadependent of the initial condition¥hus the behavior of
this nonequilibrium system is pseudodeterministic at long times because of the broad distributions of barriers
that occur on the long length scales involved. Specifically, we obtain the time dependence of the energy, the
magnetization, and the distribution of domain siz&mind to be statistically independentThe equilibrium
limits agree with known exact results. We obtain the exact scaling form of the two-point equal time correlation
function(Sy(t) S,(t)) and the two-time autocorrelatiofiSy(t’)Sy(t)). We also compute the persistence prop-
erties of a single spin, of local magnetization, and of domains. The analogous quantitiesfaf thieg spin
glass in an applied field are obtained from the RFIM via a gauge transformation. In addition to these we
compute the two-point two-time correlation functidBy(t)S,(t)){S(t")S(t")) which can in principle be
measured by experiments on spin-glass-like systems. The thermal fluctuations are studied and found to be
dominated by rare events; in particular all moments of truncated equal time correlations are computed. Physical
properties which are typically measured in aging experiments are also studied, focusing on the response to a
small magnetic field which is applied after waiting for the system to equilibrate for attjm&he nonequi-
librium fluctuation-dissipation rati(t,t,,) is computed. We find that fort -t,,) ~ty, with <1, the ratio
equal to its equilibrium valuX=1, although time translational invariance does not hold in this regime. For
t—t,~ty, the ratio exhibits an aging regime with a nontrivké&& X(t/t,)# 1, but the behavior is markedly
different from mean field theory. Finally the distribution of the total magnetization and of the number of
domains is computed for large finite size systems. General issues about convergence toward equilibrium and
the possibilities of weakly history-dependent evolution in other random systems are discussed.
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[. INTRODUCTION which it is qualitatively understood, to the large free energy
barriers that must be overcome for order to be established on
In many systems, the development of long range order i$ong length scales. Some of the best studied cases both ex-
controlled by the dynamics of domain walls. The coarseningperimentally and theoretically are a variety of random mag-
of domain structures evolving toward equilibrium has beemetic systems, particularly spin glasses and random field
studied extensively in pure systefiis2], but little is known  magnets[3—5|. Both of these systems have engendered a
guantitatively about domain growth in the presence ofgreat deal of controversy about their equilibrium behavior,
guenched disorder. In random systems, the nonequilibriurand the resolution of these controversies has been greatly
dynamics plays an even more important role than in purdnampered by the inability of experiments to reach equilib-
systems, and is most relevant for understanding experimentsum. One might well argue, however, that the most interest-
since many random systems become glassy at low temperarg properties of such random systems are, in fact, not their
tures, with ultraslow dynamics which prevent full thermal equilibrium properties, but the nonequilibrium dynamics in-
equilibrium from being established within the accessiblevolved in their Sisyphean struggle to reach equilibrium.
time scales. This slow dynamics is due, at least in cases in Because of the dominance of the behavior of so many
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random systems by the interplay between equilibrium andvhich both the random field and the temperature are much
nonequilibrium dynamic effects, it is important to find mod- smaller than the exchange coupling, the length and time
els with quenched randomness for which solid results abougcales are sufficiently long, and the random field dominates
dynamics can be obtained. In particular, one would like to behe dynamics. With the random field being weak and the
able to analyze the effects of activated dynamics caused kbigmperature low, the equilbrium correlation length is long
large barriers, and compare results to predictions whicland essentially the same as that at zero temperature—the
come from either phenomenolgical scaling approaches to thienry-Ma length. The coarsening of domains starting from
dynamics—often known somewhat misleadingly as “dropletinitial conditions with only short distance correlations—such
models”[5], or from mean field approachg8]. Many of the  as a quench from high temperature—uwill, after a rapid initial
interesting phenomena go under the general nanagiofy—  transient, be dominated by the randomness over a wide range
the dependence of measurable properties such as correlatiopistime scales.

and responses on the history of the system, in particular on The basic tool that we use in this paper is a real space
how long it has equilibrated: its “age.” For example, one renormalization groufRSRG method which we have de-
would like to compute quantities which probe the violationsveloped recently to obtain exact results for the nonequilib-
of the fluctuation dissipation relations caused by nonequilib+ium dynamics of several 1D disordered systd2fs. Most

rium effects, and compare them with results obtained irof our previous results have been for tB&ai modelthat
mean field model§6]; this was done previously for coarsen- describes the diffusion of a random walker in a fdhdom

ing of pure model$7-9]. static force field which is equivalent to a random potential

One of the simplest nontrivial random models, and one irthat itself has the statistics of a 1D random wi2g]. It can
which coarsening occurs, is the random field Ising modefeadily be seen that individual domain walls in the classical
(RFIM) in one dimension. Although this system does notRFIM diffuse in a random potential of exactly this Sinai
have true long-range order, for weak randomness it exhibits gorm, the complication being that they annihilate upon meet-
wide range of scales over which the dynamics is qualitativelying. As shown in Refd/25,27] the RSRG model can also be
like those of other random systems, especially those lik@pplied to many-domain-wall problems such as that which
two-dimensional random field magnets and two-dimensionatorresponds to the RFIM. A few of the results of this paper
spin glasses, which do not have phase transitions but exhibivere already presented in a short paj®5]; the aim of the
much dynamic behavior qualitatively similar to their three- present paper is to show in detail how the RSRG method
dimensional counterparts which do have phase transitions. lapplies to such disordered spin models, and to explore more
particular, the weakly random one-dimensiofaD) RFIM of its consequences. Although we will give here a detailed
has a wide range of length scales over which the typical sizdiscussion of the RSRG method for the spin model, we will
of ordered domains grows logarithmically with time at low rely on Ref.[28] for many results about the single particle
temperatures. In one-dimensional the RFIM is equivalent taliffusion aspects of the problem; these we will only sketch,
a spin glass in an applied magnetic field; this, or some analoeferring the reader to Reff28] for details.
gous 1D systems, should be conducive to experimental in- As for the single particle problem, the RSRG method al-
vestigation. For a recent review on the RFIM, see e.g. Reflows us to compute a great variety of physical quantities,
[10]. remarkably including even some which are not known for

The equilibrium properties of the 1D RFIM and of the 1D the corresponding pure mod@.g., the domain persistence
spin glass in a field were extensively studid®d—24. Sev- exponentss and ¢). This provides another impetus for the
eral thermodynamic quantities such as the energy, entropgtudy of the random models. Using the RSRG method we
and magnetization were computed exactly at low temperaalso obtain the equilibrium behavior which corresponds to a
ture for a binary distribution of the randomness in REI8—  well defined scale at which the decimation is stopped.

15] and for continuous distributions in Ref22—-24. Re- The RSRG method is closely related to that used to study
sults are also available for distributions of bonds withdisordered quantum spin chaif29—34. The crucial feature
anomalous weight near the oriditi6]. The free energy dis- of the renormalization groufRG) is coarse graining the en-
tribution was studied in Refl17]. Equilibrium correlation ergy landscape in a way that preserves the long time dynam-
functions are harder to obtain, and only a fewplicit exact ics. Despite its approximate character, the RSRG method
results exist. For the binary distribution some results are preyields asymptotically exact results for many quantities. As in
sented in Ref[20]. Certain special limits have been solved, Ref. [31], it works because the width of the distribution of
such as the infinite field strength limit which is related to barrier heights grows without bounds on long length scales,
percolation[24], but for, e.g., higher cumulants of averagesconsistent with the rigorous results of RE26]. It is inter-

of truncated correlations, only the general structure has beegsting to note that an exact RG has also been applied to the
discussed21]. problem of coarsening of thpure 1D soft-spin Ising®*

In this paper we derive a host of exact results for themodel at zero temperature, for which persistence exponents
nonequilibrium dynamicsf the RFIM and for the 1D Ising have been computel85,36. Extensions to higher dimen-
spin glass in a field, and, as a side benefit, also obtain mamsions of the RSRG method for equilibrium gquantum models
equilibrium results, some to our knowledge new. Those ofwvere recently obtainef37]; these introduce hope that other
our results for equilibrium quantities that can be comparedlynamical models could be studied in higher dimensions as
with previously known ones are found to agree with these. well.

Here we focus on the universal regime of the RFIM in  The outline of this paper is as follows. In Sec. 1l we define
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the RFIM and spin glass models and their dynamics, and imattice: on the bond§(i,i +1)} will be indexed by their left-
Sec. Il we summarize some of the main results and théand sitei. A configuration of spingS;} can be represented
physics involved. In Sec. IV we explain how the RSRG as a series of “particles’A corresponding to domain walls
method is applied to the RFIM, give the corresponding equaef type (+|—) at positionsa,, . . . Ay, and “particles” B
tions and fixed point solutions, and discuss the properties Gforresponding to domain walls of type-(+) at positions

the asymptotic large time state. In Sec. V we derive exach, .. by, these must of course occur in an alternating

large time result; fof single time quanytle; suqh as t_he er]éequencea!\BABAB. ...[The relation between the numbers
ergy, the magnetization, and the domain size distribution. |

Sec. VI we obtain the time dependent single-time two—spirrlNA andNg of domain walls depends on the boundary con-

. . . . . ditions: for instance, in a system with periodic boundary con-
correlation functions both with and without an applied f'eld'ditions N.=N= while in a svstem with free boundary con-
In Sec. VIl we compute the two time spin autocorrelation asditions,| NA— NB |’<1 ] y y
well as the two-point two-time correlations. In Sec. VIII we It is veAr usBef\uI t.o introduce theotential “felt” by the
study aging phenomena which necessitate considering raEFomain wglls P y
events which dominate all moments of the therrftalin- '
cated correlations which we obtain, as well as the response X
to a small uniform magnetic field applied after a waiting time V(X)=— 22 hi, (4)
ty as in a typical aging experiment. We also compute the i=1
IIr:J:tuag(la?gig;:r?cpeatlOgrézgﬁigé@th:en ngbg;(b\il;liﬁeiomg?tenoand_ r_ewrite the energy of a c_onfigurati{ﬁ} in terms of the
changes—of a single spin, of the local magnetization and oPOS'tlonS of the set of domain walls as
domains. Finally, in Sec. X we obtain the distribution of the Na Np
total magnetization and of the number of domains for large  H="H,;+2J(Na+Ng)+ >, V(a,) — 2, V(b,), (5
finite size systems. A brief discussion of the possibilities for a=1 a=1
experimental tests of the predictions and speculation on theh is th f th f fi i
applicability of the some of the general features to higherW ere Hief IS the en.ergy of the reference configuration
dimensional systems are presented at the end of the paper\{vhere all spins are<):

Various technical results are relegated to appendixes. In n=N
Appendix A the convergence towards the asymptotic state is Hier=—JI(N—1)— > h; . (6)
shown. In Appendix B the time dependent single-time two- i=1
spin correlation functions in an applied field is derived, while
in Appendix C, the two-point two-time correlations are com-
puted in detail and in Appendix D some of the finite size
properties are analyzed.

Each domain wall costs an energy;2he domain wallsA
feel the random potentiat V(x); whereas theB walls feel
the potential-\V(x), i.e., the two types of domain walls feel
oppositerandom potentials.

Let us first recall some known features of the statics. In

Il. MODELS AND NOTATION the absence of an applied fielti € 0) the system is disor-

A. Random field Ising model dered aff=0, and contains domains with typical size given
by the Imry-Ma length
1. Statics 5
. ) . . L 4
We consider the random field Ising chain consisting of N Ly~ i (7)
spins{S;= = 1};_; 5 with Hamiltonian 9

n=N-1 i=N obtained from the following simple argument: the creation of

H=—1] E SS. - Z hS, (1) a single pair of domain wallsA,B) a distance. apart costs

i=1 = exchange energyJindependent of.. But the random po-

o _ o _ ~ tential has typical variation$V(x) —V(y)|yp~ V49|x—Y|,
with independent random fieldgh;}} with identical distri-  and thus the typical energy that the system can gain on a

bution whose important moments are length L by using a favorable configuration of the random
— potential is of ordern/4gL. The two energies become com-
H=h;, (2 parable forL~L,y and forL=L,y, it becomes favorable
for the system to create domain walls. Thus the ground state
gEFF—Hz, (3)  will contain domains of typical siz&,,, . One should note

the difference between the case of, e.g., bimodal distribu-

so thatH can be considered as a uniform applied field, gnd tions (for which the ground state can be degenerated
is the mean-square disorder strength; here and henceforth wentinuous distributions for which it is nondegenerate; we
denote averages over the quenched randomness—usuallyil generally consider continuous distributions for simplic-
equivalent to averages over different parts of the system—bity.
overbars. At positive temperature without a random field, the ther-

The statics and dynamics of the random field Ising modemal correlation length.~exp(2)/T) gives the typical size
can be studied in terms of domain walls living on the dualof domains in the system in equilibrium at temperatiire
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But in the presence of the random field the equilibrium state B. Ising spin glass in a magnetic field
at finite temperature is dominated by the random fields and |, this paper we also consider the 1D Ising spin glass in a
still given by the Imry-Ma picture provided that uniform field h:
1<y <Ly, 8 i=N-1 N
H:_ I:zl Jio-io-i+l_i§1 hO’i. (16)

which is the regime studied in the present paper. In the pres-
ence of a uniform applied fieldH>0, the system at low
temperature will contain domains of both orientations but
with different typical sizes leading to a finite magnetization
per spinm(g,H)<1.

As is well known, in the case of a bimodal-(J) distri-
bution with equal probabilities for either sign, 1D Ising spin
glasses in a field are equivalent via a gauge transformation to
random field ferromagnets. More precisely, settiher Je;
=+1 for i=1,... N—1, and definingo,;=S; and o;

) ) o =e1- .15 for i=2,... N, the gauge transformation

In this paper we will study the magnetization non- gives the new Hamiltonian
conserving dynamics of the RFIM modgtq. (1)] starting
from a random initial condition at time=0 corresponding i=N-1 N
to a quench from a high temperature state. Although our H=— > JSS.:i—> hS, (17)
results are independent of the details of the dynar(pcs- =1 =1
vided it satisfies detailed balance and is nonconsejyiiog . .
definiteness let us consider the Glauber dynamics, where gghereh;=he;---€_,. Since thee; are independent random

transition rate from a configuratiahto the configuratiort; , v_ariables taking t_he values:1 with probat_)ility 172, _the
obtained fromC by a flip of the spin, is fields h; are also independent random variables taking the

values=h with probability 1/2. Hence the Hamiltonian de-
BAE scribes a f-h) random field Ising model withtH=0 andg
1—tan>‘(7)

2. Nonequilibrium dynamics

e PAE 1 Y
S — , (99 =h%inEq.(1).
ePAE L g BAE 2 The physical interpretation is as follows. The spin glass
chain in zero field K=0) has two ground states, given by
which satisfies the detailed balance condition and where- ¢(%) where o{”)= ¢, -+ €;_;, which correspond, via the
AE=2]§(Sj-11§j+1) T 2h;Sj is the energy difference be- gauge tranformation, to the pure Ising ground st&8s=
tween the two configurations, which takes the following pos-1 1 gng S®=—1. In the presence of a field>0, the
sible values in terms of domain walls: ground state of the spin glass is made out of domains of
_ _ either zero field ground states. Their typical size is thus given
AE {creation of two domain walls=4J=2h;, (100 the Imry-Ma lengthL,, = 4J%/h2. These domains corre-
- ) spond to the intervals between frustrated bonds since at the
AE ({diffusion of one domain waj==2h;,  (11)  position of a domain wall one hako;oi,;=JSS,,<0.

Similarly each domain has magnetization:

AE {annihilation of two domain walls= —4J* 2h;..

(12 1 1
> o=t hi| = 5 IV(aa) = V(b,)],
. . i e domain h i e domain 2h
In this paper we focus on the regimes (18)
{hit<J, (13 which is thus proportional to the absolute value of the corre-
sponding barrier of the Sinai random potential, a property
T<J, (14)  which will be used below.

Via the gauge transformation, the nonequilibrium dynam-
in which Eqg. (8) holds. The randomness will dominate on jcs (e.g., the Glauber dynamicsf the spin glass in a field
length scales that are sufficiently large so that the cumulativetarting either fron(i) random initial conditiongcorrespond-
effect of the random field energies is greater tfiane., for  jng to a quench from high temperati@ from (ii) the pure
scales ferromagnetic statéobtained by applying a large magnetic

o field that is quickly reduced to ble<J) corresponds to the
I>h?/T?. (15  nonequilibrium dynamicge.g., Glauberof the RFIM, also
starting from random initial conditions. Thus in the regime
So that there will be only one basic length and time scale, ih~T<J, many of the universal results obtained for the

is simplest to considefh;}~T. RFIM will hold directly for the spin glass in a field. Thus we
There will be a wide range of time scales during whichwill study the two models in parallel in the present paper.
the domains grow from initial sizes @(1) to sizes of order An important complication in applying the results to 1D

L,m by which time the system will be close to equilibrium. spin glasses is that the strengths of the exchange couplings
Since the Imry-Ma length.,,, is very large, we expect the will in general be random. This provides an extra random
universality of the long time dynamics, as we indeed find. potential for the domain walls which has, however, only

066107-4



NONEQUILIBRIUM DYNAMICS OF RANDOM FIELD. .. PHYSICAL REVIEW E64 066107

short range correlations. The conditions for there to be avall is pseudodeterministic: rescaled by the typical distance
wide regime of validity of the universal coarsening behaviorit has gone, I, the wall's position isasymptotically deter-

found here is that the distribution of exchangesniaerow, ministic at long times.
In a random field Ising chain, the two types of domain
13 max— [ min<| I min. (19 walls move in random potentials which are identical except

for their sign. When walls meet, they annihilate. Not surpris-
ingly, since each wall can move a distance of ordét in

. U N timet and they cannot pass through each other or occupy the
as the domain walls can easily find positions with  ,m6 position, the density of domain walls remaining at time
=|J|min that are near to extrema of the potential caused by s imply of order 1/Ift so that the correlation length start-

the random fields. Having defined the models, before turning, , t,om randontor short-ranae correlateihitial conditions
to the details of the calculations we now briefly decribe the, 9 m ¢ ¢

) : . ) grows as
important physics and summarize our main results.

ideally with |J|max—|J|min~h or smaller. Note that the
equilbrium correlation length will be set BY| i, for smallh

E(t)~T2/g~Int. (21)
I1l. QUALITATIVE BEHAVIOR AND SUMMARY
OF RESULTS This is in sharp contrast to the much faster power-law

. . . ._growth of the correlation length in most nonrandom systems,
As for any Ising system, the static and dynamic propertle?g

of random spin chains can be fully described in terms o
domain walls between “up” and “down” domains. The cru-
cial simplification in one dimension is that the domain walls,
which come in two typeA=(+|—) and B=(—|+), are
point objects. As discussed above, a random field induces
potential that the walls feel which has the statistics of a ran
dom walk so that its variations on a length scalare of

or example the£(t)~ \t for Ising systems with a noncon-
served order parameter.

The time-dependent correlation length can be more pre-
cisely defined from the average nonequilibrium correlation
function. This, and most other nonequilibrium properties, are
sf’caling functions of the ratio of lengths to powers of log-
times, as is characteristic of “activated dynamic scaling”

L o ) . [39] which occurs in many random systems. We find that in
orderyL.. TheA walls te_nd to minima of the potent_la_l, while 7o applied field the average equal-time correlation function
the B walls tend to maxima. If they meet they annihilate but, behaves as

on the time scales of interest here, the probability that a pair
is spontaneously created, “'T can be ignored.

As shown by Sina[26], the motion of a single domain . A48+64(2n+ 1)2W29i
wall in such a random potential is completely dominated by —_ r?
the barriers that have to be surmounted to find low energy <SO(t)SX(t)>:n=2w (2n+1)% 7
extrema. Since the time to surmount a barrier of helgig
of order e”T, and to find a minima a distande away a « @~ (2n+1)?7?29(x/T?) (22)

barrier of orde~h+/L will have to be overcome, the typi-

cal distance a wall moves in timeis only of orderl(t) whose Fourier transform is, at large time,
~In?%. Although this motion is controlled by rare thermal
fluctuations that take the wall over a large barrier, the posi-
tion of a wall that started at a known point can, at long times,
be predicted with surprising accuracy. This is because the
width of the distribution of barriers to go distances of orter 3
is as broad as the magnitude of the lowest barrier which ~ oo R tanif(m\igé&(t)/2)], (23
enabled the wall to move that distance. Thus at long times, mqE(t)

when the barriers become very high, the probability of going . ) . )
first over other than the lowest surmountable barrier that de?/th Re_?’em“”g the re_al part. These results obtain until the
limits the region in which the wall is currently, is extremely nonequilibrium correlation length

small. The position of a single wall at long times is thus _—

determined by its initial position and by the height of the £(t) = TIn"t (24)
maximum barrier, which itould surmount up to that time; 2gm?

this quantity, which we denote

—+ oo

> e(Sy(1)S,(1)

X=—o00

reaches the equilibrium correlation length

I'=Tint, (20
2
yields a well defined region that the wall can explore up to zsi: il—uw _ (25)
time t. The boundaries of the appropriate region that encom- e wlg

passes the wall’s initial position are determinedilfy). The

wall will be in local equilbrium in this “valley” on time It is intriguing that theform of the nonequilibrium correla-
scales of ordet, and thus tend to spend most of its time neartions in the universal scaling limit ardentical to those of
the bottom of the valley. This behavior, as proved bythe equilibrium correlations, the only difference being the
Golosov[38], implies that the long time dynamics of a single correlation length.
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A remarkable property of the coarsening in the RFIMare complications here due to the fact that a small applied
chain was conjectured in RéR5]: the positions of theetof  field needs to be left on to provide the randomness, but the
domain walls and hence all of the correlations in the non-basic physics is similar.
equilibrium state areasymptotically deterministi@at long The single spin autocorrelation function provides some
times. This means that while the evolution of the domaininformation on how much memory the system has of its
wall structure is only logarithmic in time, the domain wall earlier history. More information is provided by the two-spin
configurations of two runs following quenches using thetwo-time correlation function(S(t)S,(t))(Sc(t")Sy(t"))
same sample converge to each other much more rapidly asyghich converges to a scaling function at-y)/&(t) and
power of time. More precisely, the probability that the sping(t’)/&(t), whose Fourier transform inx¢y), D(q,t,t")
configurations of the two runs measured at the same timge compute exactly; to our knowledge, this is the first such
after the quench differ substantially in a region of size ofcomputation for a physical model pure or random. For an
order &(t) decays to zero as a nonuniversal power of timejdeal spin glass in which there are no correlations between
becoming negligible well before the system is anywhere neaghe positions of positive and negative exchanges and the dis-
equilibrium. [Strictly speaking, because in a rare region, asribution of the exchange strengths is symmetridin —J,
discussed later, fluctuations of the position of an individualthis correlation functionD is the average over the
or neighboring pair of domain walls will exist, one will need randomness—or equivalently a positional average over the
to do a certain amount of time averaging for this pseudoderegions being probed by the scattering—of the product of the
terminism to become most evideht. magnetic scattering intensity at tilh@nd wave vectok and

The asymptotic determinism will occur even if the initial that at timet’ and wave vectog— k.
conditions were macroscopically distinct in the two runs: for  Other properties associated with “aging” can also be
example, if one was quenched from a high temperature staigmputed exactly; we study the thermal fluctuations around
in zero applied field, and the other from a high temperaturehe configurations at two different times, and the dynamic
state with a small net magnetization caused by a uniforminear response to a uniform magnetic field that is turned on
applied field. This pseudodeterminism in a system with manyfter waiting for some time for the system to equilibrate. In
degrees of freedom is a dramatic effect; it implies that theequilibrium, these are related by the fluctuation dissipation
history dependence can, even under strongly nonequilibriuntheorem but we find, as expected, that this relation generally
conditions, be weak; one might thereby be fooled into think-ajls except in the limit that the time difference is much less
ing that such history independence implies equilibrium.  than the waiting time. The behavior we find is, however,

While equal-time correlations during coarsening converggather different from that found in mean-field mod@#9],
to an equilibriumlike form, two-time quantities show an in- and we discuss the contrasts between these results.
teresting history dependence, generally dependingath In random systems controlled by zero temperature fixed
times rather than just the time difference as they would do ipoints, such as is the case in the regime of scales studied
equilibrium. There are typically three regimes: the later timehere, thermal fluctuations and linear response functions are
t, much longer than the earlier, tinté, the two times of the  both dominated by rare spatially isolated regions of the
same order, and theifferencebetween the two timest( system—although which regions dominate depends on the
—t") much smaller than either time. The scaling variables intime scales and properties of interest. The study of these thus
these three regimes aretlfint, t'/t, and In¢—t')/Int, re-  involves thecorrectionsto the deterministic approximation
spectively. In the first and third of these, the condition forto the dynamics that led, as discussed above, to exact
asymptopia, that the scaling variable is small, is very difficultasymptotic results for many other quantities. The dominant
to attain in practice; thus knowing the full form of the scaling events are rare by a factor of, typically, 1lrbut neverthe-
functions is essential for analyzing experimental or numeri{ess still lead to universal results.
cal data. Note that only in the last of these regimes should “Persistence” properties provide another probe of how
one expect to find an equilibriumlike behavior characteristicmuch memory a system retains of its initial configuration, for
of the local equilibrium that is being probed. example, what the probability is that a spin has never flipped.

In this paper we compute a variety of correlations andSurprisingly, this and other related quantities—including
response functions that illustrate some of the interesting norsome which are not known in pure systems—can also be
equilibrium behaviors. The simplest of these is the temporatomputed exactly for the RFIM chains.
autocorrelations of a single spin. With no applied field, the
average autocorrelation function is found to decay as a
power of the ratio of the correlation lengths at two times,

IV. REAL-SPACE RENORMALIZATION METHOD

The coarsening process taking place in nonequilibrium
£\ dynamics of the RFIM starting from random initial condi-
(Sx(t)Sx(t’)>~<W) , (26)  tions can be thought of as a reaction-diffusion process in a
¢ 1D random environmentSinai landscapefor the domain
walls. Indeed, in the regim&<J considered in this paper,
for t>t" with the exponent=1/2. In a three-dimensional the creation of pairs of domain walls is highly suppressed.
spin glass, the autocorrelation function determines the norfhe dynamics of the domain walls is thus dominated by the
equilibrium decay of the magnetization after a large uniformrandom field as follows. The domains walsquickly fall to
field is turned off below the transition temperat{is¢. There  the local minima of the random potentM(i)=V,, whereas
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FIG. 1. (a) Energy landscape in the Sinai modb} decimation FIG. 2. The four possible cases of evolution under the decima-
method: the bond with the smallest barrfey;,= F, is eliminated tion of the middle bond of the domain walls, given the constraint of
resulting in three bonds being grouped into one. alternating sequence of domaifsandB denote the domain walls

(+|-) and (—|+), respectively, denotes no domain wall
present at the top or bottom of the renormalized bond, waile

the B walls quickly move 1o the local maxima &f; . Then represents eitheB or & andD represents eithek or J.

they slowly diffuse by going over barriers oppositeSinai

potentials* V; . When aA andB walls meet, they annihilate This defines a renormalized landscape at stalevhere all

preserving the altematingBAB. .. sequence. barriers smaller thal’ have been eliminated.
We can thus use the real-space renormalisation procedure Since the distribution of barriers is found to become

introduced in Ref.[28] to study the Sinai diffusion of a broader and broad¢B1] an Arrhenius argument implies that

single particle, and extend it to take into account the annlhl’[he diffusion of a particle becomes better and better approxi-

lation processes. In the single particle case this procedur ated at large time by the following “effective dynamics”

was shown to be gsymptotically exact at long Iength_ an 25,28. The positionx(t) of a particle that started ad, at
time scales. H(_ere it IS also gxpected_ to_ be asympt.ot|call =0 coincides with—or is at least very close to—the bottom
exact at large time, since, as in the Sinai case, we find thq)tf the renormalized bond at scale

the the effective distribution of the random barrier heights
become infinitely broad in the limit of large scales. Thus the I=Tint, (29)
motion over the barriers becomes more and more determin-
istic at long times. which containsx,. Note that we choose time units so as to
set the microscopionuniversalinverse attempt frequency
A. Definition of the real space renormalization procedure to unity [25,28. This RG procedure is thus essentially deci-
) _ o . mation intime Processes that are faster than a given time
We briefly outline the renormalization procedure, detailedg51e are decimated away and assumed to be in local equi-
in Refs.[25,28, for the diffusion of a particle in the Sinai |iprium.
landscapev; . Grouping segments with the same sign of the |, he presence of domain walls of typésand B, we
random field, one can start with no loss of generality from &y st keep track of both the diffusion and the possible reac-
“zigzag” potential V; where each segmeritbond”) is  {ions of the domain walls that occur during the decimation.
characterized by an energy barriEf=|V;—=Vi,1| and a ypon the decimation of bond &ee Fig. 1, there are four
length ;. From the independence of the random fields onyossible cases, illustrated in Fig. 2, according to whether or
each site, the pairs of bond variablds,l) are independent qt there is a typeA wall at the bottom of bond2), and
from bond to bond and are chosen from a distribuf{ft.l)  \whether or not there is a tyg@ wall at the top of bond2).
normalized to unity. ) ) _If (i) there are no typé or B walls, then one simply renor-
~ The RG procedure which captures the long time behaviopajizes the bond and nothing happens to the domain walls. If
in a given energy Iar_ldsc_ape is illustrated in Fig. 1. It consistgjj) there is anA wall but noB wall, then theA wall goes to
barrier, and hence the shortest time scale for domain walls tQya1| and noA wall then theB walll goes to the top of the new
overcome i 25,28. This smallest barrier, sa¥,, together  renormalized bond. And ifiv) there is both am\ wall and a
with its neighbors, the two bonds 1 and 3, are replaced by & wall, then the two domain walls meet and annihilate upon
single renormalized bond with barrier decimation. This annihilation will occur at a time of order
e'’'T determined by the barrier of the decimated bond: by

Fi=F1=FatFs @n assumption]” at this scale.
The only truly new process compared to the single par-
and length ticle diffusion is the casév). The above RG rule is consis-
tent with the large time dynamics in this case for the follow-
I"=11+1,+15. (28 ing reason. Sinc@ andB domains diffuse with independent
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thermal noises, the time it takes for them to meet is again
T Int=F (accurate on a log scaldndeed the probability that
they meet at a point at potentidl is ~exp(—(F—V)/
T)exp(—VIT)=exp(—FIT) [as can be seen from considering
the equivalent @ diffusion problem(of the pair of wall po-
sitions with an absorbing wall ax+y=1].

The second difference from the procedure in the case of g 3. Fyll state in the renormalized landscape; as we show,
the single particle, is that it must be stopped when the renofps corresponds to the state at large tifsee the test The top and
malisation scald” reaches the energy cost of creation of apottom of the bonds are occupied ByandA domain walls, respec-

pair of domain walls: tively. The correponding spin orientations are also indicated for the
L RFIM. Decimation under an increase bBfcorresponds to an anni-

I'=I;=4J. (30) hilation of the domain with the smallest barrier. For the spin glass

Indeed beyond this scaléInt>T, one must take into ac- Lhoendpsosmon of the domain walls corresponds to the frustrated

count creation of pairs of domain walls. As will be shown

below, the statait I'=1I"; gives the final equilibrium state. ur(p)=+p+ &coti I'Jp+ 6?5 6
B. RG equations and statistical fixed point of the landscape . Vp+ &° - oT
. . Ur(p)= ———F—-¢"". 3
Independently of whether the bonds contain domain walls r(p) sinH T Vp+ 6] 37

(A or B) or not, which is studied in Sec. V, one can study the . )
evolution under RG of the landscape. Since the RG ruled his exact knowledge of the renormalized landscape will be

preserve the statistical independence of the variatfiel) ( Used below to extract physical quantities for the spin models.
from bonds to bonds, it is possible to write closed RG equa-
tions for the landscape, i.e., f& ({=F—T,l) and Py (¢
=F—T,I) which denote the probabilities thatta renormal-

C. Convergence toward “full” states:
Asymptotic determinism

ized bond at scal& has a barrier Even armed with the statistical properties of the renormal-
ized landscape, we still have to determine the long time dis-
F=I'+{>T (31)  tribution of the occupation of the extrema of this landscape
, o g o g by A andB domain walls. At first sight this seems a difficult
and a lengt, each normalized byod{/odIPr(4,1)=1, problem. Indeed, the positions 8fandB walls can be cor-

related over many bonds of the renormalized landscape since
there area priori empty maxima and minima and the domain
” wall positions must respect the alternating constraint
+ Pﬁ(g,l)f dl’(PF(0J")—PE(0O)")), (33 ABABARB However, the RG analysis becomes simple if the

0 system reaches at some stage a “full” state which hasfone
wall at each minimum and or8 wall at each maximum of
the renormalized landscape, as illustrated in Fig. 3. It is easy

. . to see that such a “full” state is preserved by the RG pro-
convoluted denoted by dots. As discussed in Rg3$,28, cedure. Also note that this “full” state would be obtained

the solutions of these RG equations depend on an assymely, n the beginning if, for instance, the initial condition were

parametew defined as the nonvanishing root of the equatloncompletly antiferromagnetic.

Generally, we consider random initial conditions and thus

(ar =3 )P (&N =Pr(0,)* 1P (., )* (iPr(,) (32

where % denotes a convolution with respect it@nly and
* 1 With respect to bothy and | with the variables to be

—4sh_
€ =L (34) the initial state is ot a “full” state. However, one can show
which reduces in the limit of weak bids to that the system convergesgponentiallyin I toward a “full”
state, as we now discuss.
H The renormalization procedure for the coarsening process
o= 5 (39 of the RFIM has the following important property: the con-

figuration for the spins at scale depends only on theenor-
with =0 in the absence of a uniform applied field. Our malizedlandscape af and on thenitial configuration of the

results are valid for long times as long as spins (e.g., equilibrium at high temperature before the
quench att=0). In particular, it does not depend on the
oT<1. (36 initial landscape or—except occasionally at early times be-

fore the barrier distribution becomes very broad—on the

For largel’, the Laplace transform of the distributioRy  \yhole history of the reaction-diffusion processes of domain
take the following form, in the scaling regime of sméaland  y5)is.

smallp with &T" fixed andpI™? fixed [31]: Let us first consider one ascending bond with extremities
. (x,y) of the renormalized landscape and assume that there
f d|PFi(§’|)e—q|:Ul§(i> ~¢ur (ar29) were initially n domain walls in the intervalx,y). Neglect-
0 2 ing for the time being the influence of the two neighboring
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bonds, it is easy to see that the statd’as determined only 1/~ 1/In’t—we restrict consideration in what follows to the
by n and does not depend on the order in which the reactionanalysis of full states. Note that our results for the biased
between domain walls have occured: indeed, it is determinedase in which there is a small uniform field applied in addi-
by the parity of n and by the nature of the domain wall tion to the random field do yield a power law growth of the

closest to the bottom end. There are several cases. correlation length with time; however, in the regime of va-
(i) If n=0, then the final state of the occupation of thelidity of these results, the power law is very small, and again
end points of the bond ig4,J). the effects of “missing” domain walls are negligible at long

(i) If nis odd, and if the domain wall closest to the times.
bottom is of typeA, then the final state isA,&)

(iii) If nis odd, and if the domain wall closest to the D. Convergence toward equilibrium
bottom is of typeB, then the final state ig4,B)

(iv) If nis even withn=2 and the domain wall closest to
the bottom is of typeA, then the final state isA,B)

(v) If nis even withn=2 and the domain wall closest to [=T;=4J, (39)
the bottom wall is of typeB, then the final state iS{,).

Of course, to obtain the real occupation of the top and thejince at this scale one must start to take into account the
bottom ends of one renormalized bond, one also needs ténergetic benfits of creation of pairs of domain walls. At a
consider what happens on the two neighboring renormalizegcalel' =T, the typical domain size is the Imry-Ma length
bonds, and to compute the probabilities of the various states, \ =432/, and the energy cannot be lowered further by
taking properly care of the alternating constrahWBAB.  any process in the full state. Indeed, moving the domains
This is done in Appendix A. It is found that the crucial walls without changing their number cannot lower the total
feature is that in order for a bond not to have both end%nergy, since domain walls a|ready occupy all tops and bot-
occupied by domain walls, either it or one of its neighboringtoms of the renormalized potential. Decreasing the number
bonds must have hago domain walls on it initially. Since of domain walls by two also cannot lower the energy, since
the bonds tend to become progressively longer with time, thehe gain is 4 while the loss due to the random field for walls
chance of this occuring drops rapidly with increasIngThis  separated by a bond of barriEris F>T"=4J. Similarly, to
will be true even if the positions of the domain walls have 54 the two walls the cost isJand the gain iF<I'=4J,
some local correlations, in particular for the case of an initialsince the only positions they can occupy are by definition
state that corresponds to a high temperature configuration i§eparated by a barriecI” which has already been deci-

a small magnetic field so that there is an initial magnetizationnated. Thus if the renormalization is stopped’at in the
and the typical distances between a neighbofirpdBwall  small field, lowT scaling limit the configuration of the walls
will depend on which of the two is on the left. corresponds precisely to the ground state and, up to negli-

We thus find that the system converges towards thgjiple thermal fluctuations, to the thermeduilibrium state
“full” state of the renormalized landscape exponentially fast Thys we are able to compute equilibrium properties straight-
in I', with a nonuniversal coefficient that depends on thefonywardly from the renormalization group analysis.
initial concentration of domain walls, on the inital magneti-  Thys the RG approach allows one to study the approach
zation, and on the strength of the randomness. This corrgy equilibrium starting from any initial condition character-
sponds to gower lawdecay in time, a$™ 7 with 7 nonuni-  jzed by typical domain sizesye?”To<L,, , whereT, rep-
versal, of the probability that a maximum or minimum of the resents the temperature before the quench. As explained
renormalized landscape at times unoccupied. The posi- apove, under these conditions the relaxation towards equilib-
tions of the full set of domain walls at long times are thusjym always takes place by diffusion and annihilation of do-

asymptotically deterministic and independent of the initialyain walls before any domain creation can occur.
conditions provided these have only short range correlations.

Concretely, this asymptotic determinism can be character-
ized by the typical mean distance between “missing” do-
main walls, i.e., deviations from the deterministic full state.
The distance between these “errors” will grow exponen- A qualitatively different type of evolution towards equi-
tially in ' and hence as a power of time. The only exceptiondibrium takes place in the other liminot studied herng
to this are associated with fluctuations in theminally) full )
states: because of the rare times or configurations in which L~e2Tos | :ﬂ (39)
. . . . 0 M y

domain walls are either about to annihilate or are spending g
substantial fractions of their time in more than one valley;
these fluctuation induced “errors” we will study in detail still imposingh<T,. This is a regime of initial temperatures
later; they decay far more slowly with time than any persis-low enough that the initial density of domains is very small.
tent initial condition induced differences between runs. In this case a very different relaxation process toward the

Since all the universal quantities that we will study havesame equilibrium stateliscussed above takes place: for
length scales that grow much more slowly—typically <I";=4J well separated domain walls diffuse independently
logarithmically—in time, or probabilites of occurring which with very rare annihilations. Wheh reached’; many do-
decay much more slowly with time—typically as powers of main walls are “suddenly”—uwithin a factor of 2 or so in

As mentioned earlier, the RG procedure must be stopped
at

E. Approach to equilibrium from more ordered initial
conditions
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time—created, and the large initial domains break into many 4g
smaller ones of sizk,y, . Thus, the relaxation is more abrupt =—J+ 2(2J—T Int), (47)
in this case than in the more interesting one studied in the (Tint)

resent paper.
P pap where (F)r denotes the averaged barrier at scBleThis

formula holds up to timee,~exp(4)/T) where the ground

V. ENERGY, MAGNETIZATION, AND DOMAIN SIZE L . .
state energy at equilibrium is reached:

DISTRIBUTION
. . . g
From the knowledge of the fixed point for renormalized Egs=—J— 27 (48)
landscapé¢Eg. (37)] and the fact that the system reaches the
full state(expc_)nentially fastil’) where each top_ is occupied gjnce we consider the reginge<J, this result is expected to
by a B domain and each bottom by A& domain, we can pe exact to first order ig/J. It does indeed agrees with the
immediately compute several simple quantities. We willeyact result of Ref19] concerning the bimodal distribution,
compare t_hese results with the existing exact results knOW@xpanded to first order ig. To obtain higher orders in the
in the statics. expansion ing/J one would need to compute within the RG
higher orders in a 17 expansion.
A. RFIM without applied field Note that the entropy per spin @t=0 computed in Ref.
Specializing Eq(37) to the cases=0 in the absence of [19] for =h distributions originates from degenerate con-

an applied field, the fixed point of the RG equatiofds,31  figurations occuring from short scales and is thus nonuniver-
sal. If the distribution is continuous we expest-T from

_ Js o short scales, also nonuniversal.
p* ( 77’)\) — LTS_i)\ . e~ ms coth \s) ’ (40)
sinhy/s 3. Distribution of lengths of domains
where we have introduced the dimensionless rescaled vari- Since the bond lengths in the renormalized landscape are
ables for barriers, uncorrelated, we obtain the result that the lengths of the do-
mains in the RFIM(both in the long time dynamics and at
n=(F-=T)/T, (4)  equilibrium) are independent random variablegNote that
this is different from the exact result for the dynamics of the
and for bond lengths, pure Ising chain obtained in Ref41].)
Moreover, during the coarsening process, the probability
)\Zzgl_. (42  distribution of the rescaled length=2g1/T?=2gl/T?In’t is
I obtained as
1. Number of domain walls per unit length B P* (N) = LTpiA( 1 ) (49)
Thus for largeI’=TInt, the average bond length., costi\/p)
equal to the average distance between two domain walls, .
behaves as .3 (n+ 1) (= 1) P+ (12
n=-—ow 2
T=tr2= =722y (43)
" 49" 4g ' 1 1
== 2 ()" m+3
The number of domain walls per unit length decays as VT AF2m= e 2
ag x @~ (IM)[M+(1/2)7 (50)
=—0, (44)
T?In?t The distribution of the length of domains at equilibrium is
) ] S also given byP(\¢g), where
up to timeteq~exp(4)/T) at which equilibrium is reached,
and N -
1 o rs 2L '
n(teq) = neq:m- (45

B. Spin glass in a field

2. Energy density Using the gauge transformation described in Sec. Il B, the

The energy per spin as a function of tintiee., of I above results readily apply also to the spin glass in a field.

=TInt) is simply given by Let us recall that a domain in the RFIM corresponds in the
. SG to an interval between two frustrated bonds. Using the
Er=—-J+np(23—3(F)r) (46)  above expressions for the zero applied field RFIM and re-
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placing g—h?, we thus obtain the averaged size of thesewherey=TI"6=6TIntandl'=TInt. In the long time limit it
domains from Eq(43), their number per unit length from is these are
Egs.(44) and(45), and their distribution of lengths from Egs.

(49) and (51). Toa Tint (56
The distribution Pr(M) of the magnetization M I~ oy
=3¢ qomar@i| Of each domain is obtained from the distri-
bution of barriers as o g
F~ TG, (57)

M 2H?

1 M
PF(M)=M—FeX%— M, )G(M—MF), (52

Note that the fact that the length of domains with spins in the
T opposite direction from the applied field still grow, on aver-
MF=%, (53 age, is simply due to the fact tha_lt the_sr_nallest ofveish
barriers smaller thait Int) keep being eliminated.

with T'=TlInt. In equilibrium the same result holds with The number of domain walls per unit length thus decays

Mr—2J/h. Note that since this variable is proportional to as
the barrier, there are no domains of magnetization smaller

than M. Similarly the joint distribution of magnetization n(t) == 2_ =4g & (58)
and length is given by Eq40) in Laplace transform and fHIr sintf?(sTInt)
rescaled variableg= (M —Mp)/Mp and\=2h?/T"?, with
again the property of statistical independence of domainsand the magnetization per spin grows as
Finally, the energy per spin is given by express{di), re- o
placingg— h?. IF=Ir H
Note that the results here are, strictly speaking, restricted m(t):|_+ = :M[ET Int|, (59
r r

to the case in which the mapping to a random field Ising
model is exact: the case in which all of the exchange inter-
actions have the same magnitude and only differ in sign. _ _ Y

Nevertheless, in the more general case with a distribution of MLy]=coth(y) Sinr(y)Z' (60
[J|’s, the universal aspects of the nonequilibrium behavior

will be the same as long as there is a nonzero lower bound tBhe function M[ y] starts asM[y]~ %y for small v, and
this distribution, |J|hin. However, at times longer than goes exponentially tovi=1 for largey.

T Int=|J|in, domain walls will no longer necessarily be an-  These results hold up to time,,~exp(4)/T) at which
nihilated; whether they are or not will depend on the latal equilibrium is reached. The number of domain walls per unit
as well as on the renormalized potential. This will, of course Jength in the equilibrium state is thus

also affect the equilibrium positions of domain walls, but

because there will always tend to be weak exchanges near to 52

the extrema of the potential caused by the random fields, the neq249T, (62)
changes in the positions of the walls will be negligible on the sinkr(46J)
scale of the correlation length. . .
with averaged sizes
C. RFIM in an applied field _ 2]
In a similar manner to the above analysis, we obtain re- ! oy (62)
sults when a small uniform fieltl is applied. Solution$37)
of the RG equations now depend on the paraméteefined - g
as the nonvanishing root of E¢34), equal tod=H/(2g) in |l oq™ —ze‘”H’g. (63)
the small field limit for which our results will be asymptoti- 2H
cally exact. . o L
The equilibrium magnetization per spmng is
1. Number of domain walls and magnetization .
The averaged sizes of domains Y (with spins oriented Mgg=M(teq) =M —} (64)
respectively against and along the fielte found both to 9
grow with time as :
2. Energy per spin
— 1 sin i i hve
=12 1- n(y) e, (54) The energy per spin as a function of tinfee., of I'
4vyg v =TInt) is simply
— 1 sinh(y) 1
I+=F2—(e7 —1), 55 Er=—J—H+np| 2J— =(F)_ (65)
r 4'}’g y ( ) T r 2< >
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L, 1, 1, 1 whereQ{"(x) is defined as the probability that poirtbe-
- longs to the bonch given that the point 0 belongs to the

N bond 0 of the renormalized landscafsee Fig. 4. We have

0 Y, X the normalizationz._,Q{"(x)=1. Forn=0, the probabil-

ity that x is on the same renormalized bond as 0 is
FIG. 4. Renormalized landscape at schle T Int, indicating
sites 0 andk of two spins and the bonds between them.

1 (= I |
Q0=+ [REXEIR Jyfdyﬁ(x—(yz—yl»,
70

45% [ 1
=—J-H+ ———|2)— =
sint?(dT) 2

1
_ a2l
F+25(1 e ))

(66)  and thus, after rescaling the variables, we find

where (F)_ denotes the averaged barrier of bonds against o
the field at scald’. This obtains up to scal&'e,=4J, at QY (x)=qo
which equilibrium is reached with ground state energy

X=29 i), (72)
FZ

59 where

E,o=—J-H—-——
98 sint(4J6)

(1—e 89, (67)
G002 [ dolho-XP ) (72
This result is compatible with the result E¢B0) of

Derrida-Hilhorst[18] obtained from studying products of ;. tarms of the fixed point solutioR* (\) given in Eq.(49)

random matrices, as can be checked with the correspondangs the distribution of rescaled lengthe=2g1/T'2. For n
apy=24. In addition, here we obtain the explicit scaling =1, we have
form in the smallé limit with 8J fixed. We have checked
that this scaling form is also consistent with the exact result X
[Eq. (8) in Ref.[19]] for the bimodal distribution at leading QM (x)=gqp xzzg_), (73)
order in é. 2

3. Distribution of domain lengths F(l) with

As in the zero field case, the lengths of the domains are
independent random variables. Their probability distribu- qn(x)zzf P*(Ng)P*(Nq)- - - P*(An_1)P*(Np)
tions can be obtained from Laplace inversion of E3Y). For Y1,¥2,1>0

+ domains they read (74)
P*(1) § =) (y)e ) 69 SX= (Yt At hot -+ A1 +Y2)0(No— Y1)
= C. S, e "ni\Y
Ao " Y)sn Y < B(r=yy). s

where y= 8T Int, and the functions, (y) ands; (y) are  The Laplace transforms read
given in Eqgs.(50—(53) of Ref.[28].
o 2 S
_ —SX, _
VI. EQUAL-TIME TWO-SPIN CORRELATION FUNCTION do(s)= fo dXe *® qO(X)_§< P*(s) =1+
(So(T)S(T)) IN THE RFIM

, (76)

dXe $%g,(X)

We can compute the disorder averaged two spin correla- q (S)_f
J(s)=
0

tion function by noting that, in a given environment, the
equal-time two-spin thermal correlatiofSy(t)S,(t)) is
equal to+1 if the points 0 andk are at scald’=TInt on 1-P*(s)
renormalized bonds of the same orientatioe. both ascend- - (T
ing or both descendingand is equal to- 1 otherwise.

2
)[P*(S)]”_1 for n=1, (77

and thus
A. Zero applied field
: . - - 1 4[1-P*(s)
~ The average over the environments is, in zero fidld D (—1)”qn(S)=———2 _ (79)
=0, n=0 S s\ 1+P*(s)
(S(DS(1)) = —1)"QM(x), 69 Now using the explicit solutiorP* (s) = 1/cosh(/s), we
(So(08(V)= 2, (1" (x) 69 i ally obtain
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1 4 Js IR
(So()S(1)) = LTSHX 202 3 tank? ) C/ T (x)+C/ ~(x)=Prolsgi Sy(t)]=+1}== T
(79 (86)
. B -
. 48+64(2n+ 1)2772glr—2| C,  (X)+C/(x)=Prob{sgr Sp(t)]=— 1}—— |_
:nZE—x (2n+1)*x* @
o (2n+1P220(T?) (80 and we can thus write the correlation function as

: . , _ (So(1)Sd(1) —(So(1))  (Sx(1))
with I'=TInt. The leading long-distance behavior of the _ )
equal time correlation function is proportional x& /¢ 1oact () (IF I;)

rather than a simple exponential. The Fourier transform of T (88)
the spin-spin correlation function is simply roor

. Performing an analysis similar to the case of zero field, we

:2_ (S (0)S,(1)) = q8§( - R tanf(riGED/2)]. obtain the Laplace transform
» 1-P} 1-Pr
(81) f dxe C; ™ (x) = _+( _ FEQ))( : F(Q_)) .
. . ) . 0 (It +10)g“(1—Pr(q)Pr(a))
with Re denoting the real part. As explained previously, the (89

renormalization procedure has to be stoppefl &l ;=4J,
i.e., t~teq~exp(4UT) where the equilibrium state has been The Laplace inversion can be performed as in 28]. The
reached. Thus Eq80) with ['=T, gives the mean equilib- correlation decays as a sum of exponentials, and the term
rium spin correlation function. The correlation lengift) is ~ Which dominates the asymptotic decay gives a correlation
given by the decay of then=0) term which dominates at ength
large distances

1"2
&)= ——, (90)
T2In2t 295 (7)
&)= 5 (82
2gm where'=TInt, y=45TInt, and the functiors; (y) is de-

fined by Eqgs.(50) and (52) in Ref. [28]. In particular the
up to scaleT Int,=1"3=4J, and we obtain the correlation asymptotic behavior for large is

length at equilibrium:

82 2 EO~17~ %t””g. (91)
geq: g(teq):T: _2LIM . (83 2H
Ty

Note that even for the equilibrium case= 61" ;=44J), this

This formula is in agreement with the lintit<J of the exact ~ corelation length

result for the equilibrium correlation of Rgi20] in the case
of a bimodal distribution £ h). Finally, note that the RFIM o ieAHJ/g (92)

. . M e eq 2
two-point correlation function(S;(t)S;,,(t)) also corre- 2H
sponds for the spin-glass to the following correlation func-
tion involving the zero-field=0 ground stateri(o): does not seem to have been obtained previously; it is very
different from the correlation length of theéruncated
correlations—i.e., that of the thermal fluctuations—
computed for bimodal distribution if20] and discussed here

(S()S (1) =0V D(ai(Doik(D). (89

in Sec. VIII A,
B. Nonzero applied field
In the presence of an applied field>0, one defines VII. AGING AND TWO-TIME CORRELATIONS
Ct'"(x) as the probability that s§y(t)]=e, and Some of the most interesting properties of random sys-
sgriS,(t)]=€,. One has tems involve “aging,” the dependence of measured quanti-

e o L ties on the history of the system, particularly on how long it
(So(S(1)=C¢ () +C (x)=2C{ (x), (85  has been equilibrated for. In this section we study one of the
fundamental properties which show the effects of aging:

We know already that two-time nonequilibrium correlations. As before, the system
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is quenched from a random initial condition at titve0, and  together with initial conditions a&=1,
we study the aging dynamics at late times between time
=t,—the waiting time—and, botht’ andt>t’" being large. °°d *
. . , . ; ANP*(7,)\)
We first consider the autocorrelation function of a given . 1 Jo
spin, from which one can extract the autocorrelation expo-  Pa-1(7)=3 T g(1+2me7,
nent\. Note that since this is a single site quantity it applies

directly to both the random field and spin glass problems. (99
andP_;(#)=0. The solutions are
A. Spin autocorrelations in zero applied field

We gonsider the_autc_)correlations of the random field Ising Pt (7)= E(A§+ + 7B )e T, (100

model in zero applied fieldi=0: 2
C(t,t) =(SI(HS(t")). (93 with

Except at short times the system is in the “full” state, and T 111 101

henceC(t,t") is simply the probability that the siie—which * T6 3a  6a?’ (101

we take to be the origin—belongs at both tideand timet
to renormalized bonds with the same orientation. Thus this L1
quantity can in principle be obtained from the result in Ref. B;+=§i3 , (102
[28] for the probabilityP(x,t;x’'t’|0,0) that a particle diffus-
ing in a Sinai landscape starting at O at tive0 is atx’ at which obey the normalization conditioizdn(P:*(7)
t’ andx att. IndeedC(t,t") (since it is computed in the full —+( 7)=%. Since with H=0 we have P> ()
state is simply related to the probability that a particles pos- _ “
titions X(t) and X(t’) have the same sign. However, it can
also be obtained through a much simpler direct computation, o
which we now present. C(t,t’)=f dp(PL () +PL (9)—PL () =P, ()
We definePy. 1, (£). (Py 1 (£)) as the probability that the 0

(), We obtain

origin is on a descending bond Bt, and is on a descending (103

(ascending bond of strengthy at a later stagel’. The RG 4 1

equations read =A2"+B3 A "-B, "= 3. 3.2 (109
a o

*++ _ ¥ *+
(Ir=3)Pr 1/(§)=—=2Pr(0)Pr 1, () and thus the autocorrelation function of the RFIM in zero
+2PF(0)P§(-)*§P§},(') applied field at large times=t’ is

FPE( ) PECIPEL(0)  (94) EOsT= o ('m‘t) ('I”H_tt)z (108

together with the initial conditions
In particular the asymptotic behavior for fixet is

IPr/ (¢
PL ()= fdl - (95) [T\
" (SI(DS(t))e o (106
Pr 1 (0)=0. (96) _ . o .
wherel (t) ~Int is the characteristic length of the coarsening
We introduce the scaling variable in the RFIM, and where thautocorrelation exponeris

I Int A=3. (107
a= —, = —,- (97)

' Int The autocorrelation being invariant under gauge transforma-

tions, for the spin glass we immediately obtain
Since for largd™’, Py, has reached its fixed point valligq.

(40)], in terms of the rescaled variablg= /T one has

1. 1
4 <0'i(t)0'i(t')>:<Si(t)si(t')>~ W with )\ZE.
(@dy=(1+7)d,+1)P, " (n) 108

n ! + ’ — x . .
=2f dn'e (7" 7IPL T (n')+ e 7P 7 (0), Note that this value ok saturates the lower bound df2 in
0 contrast to the pure 1D Ising case which saturates the upper
(98)  bound ofA=d [5].
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B. Autocorrelations for the RFIM in an applied field This result is valid, strictly, to leading order #T. In general

In the presence of an applied fiet>0 the calculation is the exponent for the power law decay in time which occurs

similar to the above; it is detailed in Appendix B. Using the h€ré and for other quantities in the presence of a uniform
scaling variables applied field will haveO(8°T?) corrections.

y=6I'~ ;T Int, (109 C. Two-point two-time correlation function for the spin glass

In order to characterize the spatial aspects of aging dy-
namics in the spin glass we have computed the correlation

H
y' =6~ ETlnt’ (110  function
for smallH, and the magnetization per spin, (So(t)Sx(t)XSo(t’)Sx(t’)):F(%;%), (114

e Y
(S()=mt)=M(y)=cothy- =, (11D
Y with t>t’; this becomes, at long times, a scaling function of

the result for the autocorrelation function is

(S()S)—(S(1) (St X=— (115
L T?2In%t’
= m((%f— Y IM(y")+vy' cothy’ —1). o
(112
The long time asymptotic behavior is a=Int/Int'=1. (119
(SIS —(SD)) (St))= 4HTIntm(t,). We compute the scaling functioR[ X,«] in Appendix C.
gthT/e For simplicity we have set@=1. In Laplace transform vari-
(113 ables we have
|
w 1 4 2
Flp,a]= f dXe PF(X;a)=——— tanr?( ﬁ _ cothz(a—\/g) [8+3p
0 P p? a?p® sintt(\/p) 2
avNp
16 N2
— 16 coslivp) +8+/p sinh Vp) + (8+5p)costi2p) — 12v/p sinh 2v/p)]— R
a™p p
2 Jp 16
X(l—\/Bcotr(\/B))(?tam‘(7 —1) - (1—p coth Vp))2. (117
p

avp
a?p3sint? -

Because the change of correlations between two points ig~ 1, corresponding to I=Int’, we have the following ex-
caused only by passing of domain walls through one of théyansjon to orde®(a—1):
end points, the two-time correlation function decays at large

x to the square of the autocorrelation functiGtng), i.e., B &
lim,_~opF[p,a]l=(4a—1)%/(9a*). The spatial decay to dXe PXF(X;a)= 1 (a—1) E( 1— —p) _

this constant value is determined by the closest poles to the 70 p p? sinh( \/6)
imaginary axis in the complep plane. This yields an expo- (118
nential decay with a characteristic length which is the maxi-

mum of £(t")=(I''/7)? and&(t)/4= (I'/27)2. In the regime Note that in experiments one could in principle measure
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FIG. 5. Value atg=0 of the Fourier transfornti(q=0,a) (y q

axis) as a function ofx=Int/Int’ (x axis). ) . ] )
FIG. 6. Fourier transforni (q,«) (y axig of the scaling func-

the Fourier transform which is related to the Cross_tlon for the two-point two-time spin glass correlation as a function

correlations of the scattering speckle patterns at two differen’ 9 (X @i for four different values otx=1.25, 2, 5, and 20.

times. It reads . . S o
effective dynamics, which just places each wall at a specific

+oo location at each time. Indeed, in the effective dynamics, the
D (So()Se(H))(So(t!)S(t'))el local magnetizatior(i.e., the thermal averagéS,(t)) at a
X=== given pointx is given by the orientation of the renormalized
Int bond containing the point at scalel’, and is thus eithet- 1
=(TInt")2A q=Q(TInt")2,a=—|, or —1. Thus truncated correlations are zero to leading order,
nt’ and to estimate them one needs to consider the rare events in
which a domain wall can be found with substantial probabili-
ties at two different positions. Such events occur with a prob-
. B . 2 4 ability 1/T", and the two positions of the domain wall when
H(d,a)=2R(F[p,a]=(4a=1)*(9a"p))lp=iqc 9#0,  they do occur are typically separated by distance of ofder
(120 For example, for the single point Edwards-Anderson order
parameter these lead to corrections to the zero temperature
value of unity of order

(119

where R denotes the real part and theplpart has been
substracted to get rid of thé(q) part. The value of the
Fourier transform ag—0 is
— 1

_ 25—

—6+40a — 59— 20a + 45a* 1= (S0 Oclnt'
, (121
135a*

(122

H(g=0,a)=

In this section, to simplify the notation somewhat, we set
which is plotted in Fig. 5. The Fourier transform is plotted in 2g=1.
Fig. 6 for several values ok. Note the maximum agj>0
which develops for larger and which is related to the non-
monotonic behavior of the correlation as a functiorxof he )
fact that the above correlation indeed reaches its limit by The rare events that are important for the RFIM turn out
below can be seen as follows for large Forx<I'?, 0 and 0 be the sameas far as the energy landscape is concerned
x belong to the same domain, and thus the above two poinfS the ones that we considered in our previous study of the
W_ However, this decays exponentially with ferent physical interpretation and different observables to be
x/T"2 (and thus exponentially i if one chooses/T2 computed. There are two typg42] of such rare events that

fixed but very smajlwhile the asymptotic valugEq. (105]  Occur with probability 1", denoted(a) and(c) in Ref.[28].

; We now describe them.
decays only algebraically.
4 yay y Events (a)concern bonds which contain two almost de-

generate extremésee Fig. 7. In the following, we will use
the probabilityD(Ff)F,(x) that two points 0 anck>0 belong
to a renormalized bond dt which has two degenerate ex-

In this section we compute time dependent ther(tran-  trema separated by a barrier smaller tHansuch that the
cated correlations as well as the response to a uniform fieldwo points are both located between the two degenerate ex-
applied at timet,,. For this one needs to go beyond the trema. This is, using the calculations of REZ8],

A. Description of the important rare events

VIIl. RARE EVENTS, TRUNCATED CORRELATIONS
AND RESPONSE TO A FIELD
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FIG. 7. Rare event&) and(c) discussed in the text

# o\

D&, (0= Prt-y)y— [ aroi| 2
PE T2 )iy e | o riir?

(123
4 1 y
=Tz (y=x)—G —,Z>
y>X F 3 F
;T
_ 1er 1 e—(x/r’2)k27r2, (124)

1"2 K=1 k27T2

where the function§(Y) and G(Y) were defined in Egs.
(E5-8 and (174 of Ref.[28].

In event(a), the corresponding domain walA(or B) will
fluctuate thermally between the two extre(sae Fig. 7. At

equilibrium, the thermal probabilities of finding the domain

wall in the two positions arg and (1-p) with p=1/(1

PHYSICAL REVIEW E64 066107

+ o

:i E (—1)k+t 1 e—(x/rz)kzﬂz_
T =1 k27T2
(127

For eventdc) associated with a barridi+ €, the probability

p. that the two corresponding domain walls have not yet
annihilated af” is given byp.=exp(—e~“"). In the follow-
ing, we will need

_ +edz
(1) =@p 1Py =T4" [ Tea-e sy

n-1

=T22”k20 ck_iIn , (128

1 1
+k+n

where we have used that the distribution dnis uniform
arounde=0.

B. Two point truncated equal time correlations

1. Nonequilibrium behavior

We consider the various moments of the truncated equal
time correlation function defined as

Cn(x,1)=[{So(t)Sx(1)) = (So(1) ){(Sx(1))]"; (129
C,(x,t) is the sum of two contributions. The first contribu-
tion C@(x,t) originates from eventga) described above,
where we havgSy(t)S,(t))=+1, while (Sy(t))=(S(t))

=+ (1-2p) because the domain wall fluctuates between the
two extrema(see Fig. 7. We thus obtain the first contribu-
tion as

CA(x,t)=cy(T)D} (%), (130

+eYT) andu representing the energy difference betweenyith =T Int.

the two minima. The random variableis distributed uni-
formly aroundu=0. In the following, we will need

co(T)=(4p(1- ))”—3T4nj+wdz A
nl = EPETRT=S o (1+z2)*"
I
=TJFL]1, (125
F n+§

the factor 1/2 arises as the integral is of8] overu>0.

Events (c)correspond to bonds about to be decimated,

with a barrierI'+ e~I". The probabilityD{”(x) that the
segmenf0x], x>0 belongs at scal€ to a bond of barrier
I' (i.e., {=0):

2
DIP(x)=—

=) Pr(e=0D1-x)

(126)

—Zermd)\)\P* =0\+ X
_F 0 =5 FZ

The second contributio&{®(x,t) originates from events
(c) described above, where we ha\&(t) S (t))=+1 while
(So(t))=(S(t))==(1—2p,). The second contribution is
thus given by

CL(x,1)=dy(T)DE(x). (131
The final result for the moments of the truncated equal time
correlations is thus

4 O A+ (=1 dy(T))
Ca(x,t)= Tint gl K272

% e—|x|k2w2/(T In t)z’ (132

wherec,(T) andd,(T) are given in Eqs(125 and(128.
Note that to this order in I/ the n dependence is only con-
tained in the prefactor and in particular the correlation length
En()=(T Int)¥7? extracted from Eq(132 doesnot de-
pend onn and is equal to resulB2). For the spin glass, the
above formula gives thevenmomentsC,,(x,t). For the
following sections, we will need
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X= 4o

Cut)= 2 Cax1)=

32+ 14| 2>T2I t. (133 ! e 1+e €T t
5 45n nt. (133 p(t)—1+e_6/T+1+e_E/Tex —(1+e )E’

(136
2. Equilibrium truncated correlations
— —_a(Iy=T)T

To compute the equilibrium truncated correlations the?Vnere INteq=13/T, and one has/te,=e =, Integrat-
method is very similar. One must stop the RG at sdaje "d OVere, one obtains that the crossover to equilibrium for
=43, and again consider eventa) (which give the same [~ leq S described by
contribution as above replacidg by I';) and eventgc) but
with a different interpretation and result since there are now Ca(x,t)=C®(x)+C(x), (137
at equilibrium. Indeed in the renormalized landscape at scale
I'; the only thermal fluctuationgapart from the(a) eventg
come from barriersI'=I";+e~I";. The barriers much Cga)(x)zcn(T)D(F?'FJ(x), (138
larger thanI"; are occupied by a pair of domains with a
probability of almost 1, while the barriers well beloly,
(which have been decimated at previous stages occupied
with a probability of almost 0. The barriers with=1I";+ €
~T; are occupied with a probabilig=1/(1+e T). Thus  with
we now have the equilibrium truncated correlations:

CH0=en(T,0Df (), (139

(eq) a c en(T,t)=4p(t)(1—p(t))
Ch ' (x)=cn(T)(Dr, r(X)+Dr (X))

+o Zn—l
+ kel =4"T J dz—
:%CnmE e 2 12) ) o Kiaia?, o (1+2*
k=1 ke X(1_e—(1+z)t/teq)n(1+Ze—(1+z)t/teq)n
(134 (140
Here, as above, the correlation lengtif'=16J%/ 7> ex- 0o
tracted from Eq(134) to this order inl"; doesnotdepend on — 4T —1)kckCPITn+
n. Since it was argued in Ref21] that the correlation kZO pzo( )CnCalIn+p]
lengths of theC*?(x) generically depend on, our results .
suggest that here this dependence is subleadirdg; inOur xU| n+p,1+p—n,(k+p) —
result for the correlation length &{*%(t) coincides with the teq
result of Ref.[20] and with result(83) with 2g=1 [44]. « @~ (K+p)(Uteg) (141)

However, the detailed form of the functior®®*?(x) ob-

tained here depends explicitly on ) )
where Int,;=4J/T. This expression crosses over from

3. Approach to equilibrium for truncated correlations e“(T’t/teq<1)Hd”(T) and e“(T’t/teq>1)HC“(T)'

Since the equal time result far<I";=4J and the equi-
librium result differ only by substitutingl,,(T) by c,(T) in
the (c) events, there should be a nontrivial crossover near We now consider the truncated two-point two-time corre-
I'=T"; toward equilibrium controlled by even{g), which lations
we now analyze. Let us consider a bond with barfer
=I';+e. WhenI'=TInt is close toI'; this bond can be Cn(X,t,t) = ((So(t) S(tw)) = (So(t) ){Sx(tw) )"
either occupiedwith probability p(t)] or empty[with prob- (14
ability 1—p(t)]. One has

C. Two-point two-time truncated correlations

The calculation is very similar to the equal-time truncated
correlations. We first consider the events of typg where

d 1 1
L —(1—p(t))——p(t), (135  we have now to keep track of the barrigg between the two
dt m T2 almost degenerate extrema. There is a nonvanishing contri-
bution if the barrierl’y is smaller thanl",, but larger than
where r;=e'7/T is the inverse rate of creation of a pair of I'=TIn(t—t,), so that equilibration cannot take place be-

domain walls(which immediately migrate to the end points tweent,, andt. In that case we havéSy(t,)S,(t))=+1

of the bond and r,=e{!3"9/T is the inverse rate of annihi- while (Sy(t,))=(S(t))=*+(1-2p), where p=1/(1
lation of the pair of domain walls located at the end points of+e~“T) as introduced above in the description of events of
the bond. Thus, substituting=e'’", one finds type (). These events lead to the contribution
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ca”(x,t,tW):cn(T)if Pr(1—y)(y—x)
I2J)i>y,y>x

xjrwdr Lol X
. —r| —
r OFé r3

=Cp(T)(DF 1, ()~ D #(X),

(143

(144

wherec,(T) and D?‘Fw(x) are given above. Note that the

contribution of these events vanishes whithecomes equal
tol'y,.
We now consider events of tyge), which give different

contributions and must be examined separately, in the scal-

ing regimeszIn(t—t\,v)<TInt\,\,=1“W and the scaling re-
gimet—t,~t,, i.e, I'=T,.

We first considel’<T'y,. In that regime the events of
type (c) should be considered at scdlg, where we have
(So(tw)Sk(t))=+1 while (Sp(ty))=(S(t))==(1-2p)
which, together with théa) events, gives the total contribu-
tion

Ca(X,t,tw) =CP(X,t,t,) +dy(T)DF, (x); (145

this formula holds fod" =T In(t—t,)<T Int,=T,,.

In the regimet—t,,~t,, i.e.,I'=I",, the(c) events also
start to equilibriats, which we now study. Leqi.(t,)
=expe ") the probability that the domain walls separated
by the barried",+ € have not yet annihilated &f,. Let

~on

be the probability that they also have not yet annihilated at
One has(with x and 0 belonging to the bond being deci-
mated

_tW —€lT

e —€lT

t
-—e
tw

t
pc(t) =pc(ty) eXF{ -

w

(Sx(tw)) =1—-2p¢(ty), (146
(Sx(1))=1—2pc(t), (147
<SO(t)Sx(tw)>:1_2pc(tw)+2pc(t)a (148

(So(1)Su(tw)) = (So(1))(Sx(tw)) =4Pc(1) (1= Pe(tw)).
(149

Thus in the regimé—t,,~t,,, one obtains the total contri-
butions

Ca(X,t,tw) = dn(T,t,t,)DF.(X), (150

dn(T,t,ty,))= (4pc(t)1_ pc(tw))n

tedz _ B
=T4n | —e "Whi(l-e )" (151
0
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In the limitt>t,, these truncated correlations decay, for fixed
x/(TInt,)? asCy(xt,t,)~(t,/t)". They decay to zero as
there are no other contributions for later tiheln the fol-
lowing we will need

Cl(t,tW)Z:;z::: Ci(x,t,ty) (152
Z%TZ Int,,— —(|n((l:]—tvt;v2))3> + AlT:;lTZ In2Int,,
for 0<m(|;+:/W) (153
=i—gT2IntWIn(l+tTW for W~
(154
=}2T2tTWIntW for W>l. (155

D. Response to an applied field

In order to compare with typical aging experiments, we
will consider the following two histories for the system and
compare them.

(i) Apply H>0 starting fromt=0: the magnetization per
spinm(t) will then grow in time as computed i(60) up to
time te~e*'T, wherem,,, is reached.

(i) KeepH=0 betweent=0 andt,,, and then apphH
>0 for t>t,: in this case the magnetization per spin
m(t,t,) remains O up to time,,, and then grows to again
reachmgq in the large time limit.

We now estimaten(t,t,) in the casq(ii) in the “small
applied field regime,” whereH~1/F3v. It is convenient to
define

t=t—t,, (156)
and introduce the ratio between
[=TInt=TIn(t—t,) (157)
andl',=TInt,:
. T Intt-t,)
T, Int, (158

We separately discuss the three regimes0<1, a~ 1, and
a>1.

1. Response at early times<v<1 from degenerate wells

We first study the scaling limit of smali and largel",,
with HT'2, fixed and 0<a=(Int/Int,)<1 fixed. In this re-
gime the dominant contributions come from bonds with near
degenerate extrema, i.e., the rare events of (gpdescribed
in Sec. VIII A,
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Let us consider an ascending bond with a secondary mini- 2. Response at timea=1
mum separated by a distangand a barriel’ at a potential

Whent—t,, is of ordert,, a second effect adds to the one
Eomputed above. It corresponds to the events of tpe
described in Sec. VIII A where the barrier of a bondgtis
equal tol'y,+ e where e=0(1) (of arbitrary sign. In the

_ _ * absence of the field the pair of domains at the endpoints of
r, (¥, To)dlody=26(T'w=T'o)Pr(0.)%,Pry(0,.)dl'ody. the bond have not yet annihilated at tiye, with a prob-

159 ability p.(t,)=exp(—e “T). When adding the field a, the

Just beford™,,, there is thermal equilibrium between the two Parriers suddenly either increasiésr descending bondlsor
extrema, and thus the probability that the primary extremunfl€creasegascending bondsoy 2HI wherel is the length of
is Occupied by arA domain wall ispeq(u)=1/(1+e_””). the”bond. Fort>t,, [and SL.JCh that—tW~O(tW)] the prob—
The thermally averaged total magnetization of the segment @bility pe(t) that the domain has not yet annihilated depends
is then(M)=y(1—2p,(u)). One now turns the field on at O"H and is
r,, and the thermally average_d_magnetizat_ipn of.the seg- t—t
mentAremams the santap to negligible probabilityuntil the pe(t) = pc(tw)exr{ _( t w) e~ e 2HN/T
timeI'=1I"y when a new equilibrium is attaindtiere we can W

neglect the equilibration time scaleJust afterf=1“0 the  for descending and ascending bonds respectively. Events
occupation probability of the left minimum is nopgq(u’) thus result in a difference in magnetization compared to the
=1/(1+e Y"'T), whereu’ =u—2Hy. The new magnetiza- Zero field case equal to
tion is (M)' =y(1—2pc,(u—2Hy)). Similarly, the contri- )
bution of a descending bong@vith y,I'y) is given by the (© :_jw f“ * T
same formula witru<0. Finally the contribution of degen- Mt ) rfv 0 dl —w deP™(ODT exp(—e"7)
eracy of hills—fluctuations of thB domains—yields an over-

ex;{ _th e(1rr)(52H|))

ty

Ref.[28] we find that the probability that an ascending bond
of this type atl",, (before the field is turned 9ns

(164)

all factor of two. The total contribution of all these events to
the magnetization per spin is

m(t,t,) =m@(t,t,) —eXP( - t_twe(ln)(’e+2Hl))) (169
t

w

X

1 f‘ + 0 + o
=2F_2Jo drojo dyjO du rrw(y,Fo)y 2T [

2 =r—f dAP* (=00
X (1= 2peg(u—2Hy) +1—2pe( —u—2Hy)). o

2
160 ty+ (t—t,)e2M /T
(160 xln( wt (7t — | (166)
This gives twt(t=ty)e v
m(t,t,) =m®(t,t,) The total magnetization is now
1 bw 1t W
1 T [+= oo 1 — m@ (©) ¥ ©
—4— —| dyvay) dul = m(t,t,) =m¥(t,t,)+m (t,tW)—45HTIntW+m (t,ty).
I'yTywlo 0 1+ elu=2HT?Y)/T
e (167
_ 1 (161) Note that in the present regime the magnetization as a scal-
1+e(u+2HF2Y)/T ing function ofHI‘\fV is complicated and nonlinear.
In the limit whereHT'2 is small, one has
=8(Hf‘2)i ifﬂcol\(\/ze(\() (162 © 8 petTltw(= . 2
Ty Twlo m (t,tw):F—WHFWT . dAP*(7=0\)\
“a5" 12~ s MW (163 14 t—t, ,
w = zgHlw——+ O((HT'%)?), (168

In this regime, the magnetization as a scaling function of
Hl“fv is thusexactly linear It can be shown that a nonlinear where we have useff;d\ P* (7=0\)\?=7/180.
response itHT"2, couples to the curvature of the distribution  Although the above functiofEq. (166)] is complicated,
of difference of potential near zero and is of higher order inat the special time such that-t,=t,, it takes the simple
ir,. value
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We write, to linear order P;(F,I)=P;(F,)

4 0
m<°>(2tw.tw>=—HF3Vf dAP* (7=0))\? . . . o
Ly 0 +2HQf(F,I), with the initial condition in Laplace trans-

7 form variables ale“w,
:—HFW. (169)
® Qr,(£:P)=—3d(Ur, (P)ur, (P e ¢ruP)

- —ur 20~ Lur(P)
3. Response at timea=a>1 Ur, (0)Ur (p)°fe "

For time differencest—t,>>t,,, corresponding tox +2Ur (0)Ur (pe~tr®, (174
=a>1, the response of the RFIM chain to an applied field
will be dominated by the effective dynamics described by the Qr (£,p)=—0Qf (Z,p). (175

RSRG procedure. When the field>0 is turned on, the

descending bonds withF(l) become E+2HI,I) and the To compute the magnetization we are interested only in
ascending bonds becomB £ 2H1,1) except ifT'<F<T'w  pX(E |y_p:(F 1)=2HQ:(F.I) where  Qp(F.,l)
+2HI, since in this case they must be immediately deci- ' . ' r- o "
mated. Technically, from the point of view of the landscape,= Qr (F:1) ~ Qy (F.1) satisifes the linearized RG equation

it is more convenient to symmetrize the initial condition at (05— 3)Q(£.p) = — OH(OP)PH.p)* uPr(ip)
I'=T,, which amounts to artificially reintroducing the de- Q6P == QrOP)Pr(-.P)" aPr(- P
scending bondd",—2HI<F<TI',, (these bonds, being re- +2Pr(0,p)Qr(.,p)* Pr(..p)
decimated immediately, do not introduce any errors dor X i

>1). This corresponds to the following initial distributions +2Qr(0,0Pr(¢,p). (176

atl'=T,,: The solution therefore has the form
Qi (£,p)=(Ai(p) +{Bi(p))e ), (177

Pf, (F.)=Pr (F,)=2HI 3Py (F,1) . _
w W W where the coefficientAr(p) and Bp(p) satisfy the RG

+2HPr *¢ Pr % (1P, (0))) equations
° IrAr(p) = —up(p)Ar(p) +Br(p) +2Ur(p)Ar(0),
—4HPy (F,I)J dl’'l"Pr (0l"), (170 (178
w 0 w
IrBr(p)=—up(p)Br(p), 179
Pr, (F.)=Pr (F.1)+2HIdPr (F,I) with initial condition atl'=T,:
—2HPy *g Pr, *1(IPr (0))) Ar,(P)==23y(Ur (p)ur, (p))+4Ur (p)Ur (0),
® (180
+4HPy (F,| f di'l’Py (0)7). (171 , ,
r(FD g dPVPr, O (70 g 5y =20, (p)ur (P)uf. (P)—2Ur (92U}, (p).
(181
We now check that the magnetization corresponding to thid he solutions are
initial condition is the one at the end of the=1 regime inh(T", \p
[i.e., thet— +co limit of Eq. (168)]. It is, to first order inH, Bi(p)=By (p)M, (182
" sinh(T p)
i ” + - . sinh[',,\/p)
) Jo dll Jo d{[Pr, (&) —=Pr (£.D)] AMP)=(Ar (p)+(I'=T)Br (P)——=—
Mer(I'=Ty, ') = To - sinh(T" \/6)
| an | Caaei en+r A %
0 0 —2(I'-Ty)————. (183
(172 sinhT'v/p)
In the limit f>FW, we have
SHFan (T, YT Jp
=5 r wil)= ¢ w -
rzJo 45 Bi(p)= — % —, (184
(173 sinhT'\/p)
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R
sinh(T'vp)

and recover the first order linearization &of the biased
fixed point solution§ Egs.(37)]:

Aj(p)=-T (185

PE(£,p)=Uf(p)e TP =Py(£,p)(1F 8T) (1% 80)

=Pr({p)+2(5¢=8T) = P e cfpoon ),

inh(I'vp)
(186)
The magnetization at first order i is given by
+ oo 0 + _
| e[ Caareian-picen
Mef(I') =— = N B (187
| an [Caapien+pin
2H (= [~
=22 [ Can | “acorcan
r2Jo 0
2H At Br
i £(p) gr(p)) ‘ (188
r ur(p) U /| g
_pf| 2= 15[ L 3 189
- §_Z5 ? ( )
It grows from
- 14
Meg(I'=T)= 7zHT, (190
to the asymptotic regime for IargE>FW,
~ 2 A
meff(F>FW)= §HF (191)

PHYSICAL REVIEW B4 066107

E. Fluctuation-dissipation violation ratio

Having computed truncated correlations and the response
to an applied field, we now discuss the fluctuation-
dissipation violation ratio, a measure of the nonequilibrium
behavior of the system. For two observabkesnd B, the
fluctuation-dissipation-theoreffDT) violation ratioX is de-
fined ag[6,40]

TRaB(ttw) =Xa (t,tw)d; Ca(tity), (195

whereC, g(t,t,,) represents the truncated correlation
Cas(t,ty) =(A1)B(ty)) — (A X(B(tw)),

andRy g(t,t,,) represents the response in the observatze
timet to a fieldHg linearly coupled to the observabkin
the Hamiltonian through a term of the formHgB:

_ AWM
RA B( ' W) aHB(tW)

(196)

(197

Here we have computed the magnetization resulting from
an uniform magnetic fielti, so that the observablésandB
are given byA= (1/L)E _,S andB= E _1S, respectively.
From the magnetization

E<s<t>> (So(h)= Hf duR(t,u)
(198

m(t,t,,

and the truncated correlation

L L
Ci(tty) = ;1 121 [(Si(DSj(tw)) = (S(D)(S;(tw))]

|~

2 (DS(tw)) —(So(D)(Sc(ty)), (199

one obtains the fluctuation-dissipation ra¢t,t,,) as
atwm(t,tw)/H

X(t,ty) = _T—ﬂtwcl(t.tw) :

(200

that corresponds to the behavior of the magnetization of the

biased case at first order h[Eq. (60)].

Note that we have used the infinite size limit to replace trans-

We now summarize our results for the magnetization inlational averages by disorder averages.

the regimest<1, a=1, anda>1:

32 . I
m(F ry)= HFWa for a:F—<1, (192

w

—ty, .

f = r 1
or a= F—W_ ,
(193

32Hr Har!
45 t

m(F ry)=

32 ~ I 1
a—l_,—w> .

(194

We have computedC,(t,t,) [Egs. (153—(155] and
m(t,t,) [Egs.(192-(194)] in the three regimes Qa<1,
a~1, anda>1, and obtained the following expressions for
the fluctuation dissipation violation ratio at large tines,
>1:

~ In(t_tw)
X(t,t,)=1 for O<a= |—< 1, (201
nty
t+t, t—t _
X(t,t,)= for a fixed number
t ty
(a=1), (202
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regime of length scales studied here for a system—the 1D
RFIM—with no phase transition.
It is also interesting to compare our results with the
fluctuation-dissipation ratiX in pure systems presenting do-
. In(t—t) 1 20 main growth, typically ferromagnets below their critical tem-
@= Int,, -4 (203 peratureT<T. [7-9] or at T=T.. The ratioX is usually
computed by considering the local observables B=S,
The behavior ofX upon increasing the time differende  but to compare with the present study we will translate these
—t,, is as follows. First, of course, one expects, when results for a spatially uniform applied field.
—1t,, is a fixed number, a nonuniversal equilibrium regime Let us briefly recall whyX=0 in the large time scaling
(not studied hepewhere time translational invariance and the regime forT<T, (X decays to O for largg,). When initial

FDT is obeyed. Increasing the time differencet aﬁwwt\%\“ conditions(high temperaturé’_>Tc) before the quench are
in the regime 6<a<1, we find thathe FDT theorem is still chosen to have zero magnetizatid,(S(t))=0] the spin

obeyedo leading order, which is quite interesting since time;utocotrrel_agon gc>t|n|<(:|des ‘.N'thl the I_trun]f:atlgd correlation
translational invariance doe®t hold in that regime. Next, in x(Sx(1))=0, and takes a simple scaling foifrh]

the regime&= 1, t/t,, fixed, X becomes a nontrivial scaling

241n%t,,

= — |1+
Xt ) twlntw(l 7 Int

function of (t—t,,)/t,,, which interpolates betweex=2 for CPUe(t,t,) = >, <So(t)sx(tw)>z|_(tw)dfl<ﬂ)'
(t—ty)/t,—0 andX=1 for (t—t,)/t,— +. In order to X L(t)
match the valueX=1, there is thus a nontrivial crossover (207)

regime between the end of the quasiequilibrium regi&ne

<1 and the beginning of the=1 regime. This crossover
occurs for ¢—t,)~t,/Int,, and is given by

whereL (t) is the typical size of domains at tintean d the
dimension of space. On the other hand, the magnetization
when a uniform field has been applied betwdgn andt

X(t,ty) =F1((t—t,)Int,/t,), (204) behaves af8,9,4q
L (tw)
Fi(y)= 1;5:5: : (205 Maum(t,tw)~L(tW)daf2( L((t) ) (208

Finally, for very separated times, in the regime-1, we  With a=1 for Ising order parametdi7—9] anda=d—2 (d
find that X grows toward+. This occurs again after a >2) for O(N) model [9]. Note the reduction oM with
crossover between the end of the-1 and thea>1 regime respect toC, by a factor 1L(t,) in ferromagnets, which

. . o immediately impliesX=0 in the scaling regimel(t
which occurs on time scale~-t,Int,,, whereX is given by ~L(1) (X=y0 aspsoon am>0). As is usgally %rguefj Wihe

origin of this factor can be seen by considering the system at

X(t,tw)=1+7m, (209  t=t,, and focusing on the immediate response to a small

w i tw applied pulse field46] (here ind=1 for simplicity): each
interface responds by a fact@(1) and since they occupy
only a portion 1L(t,) of the system this yield a total re-
sponse 1/(t,). In contrast, note thagxactly at criticality
T=T,, there is a nontriviaX= X(t/t,,) which appears as a
scaling variable. On the other hand, contrary to mean fieléj'men‘e"rc:nleSS amplltUdehratlllo, by al d|_ffer$nt m_echr::uﬂgj?1
models, the raticX here is never a function of onig4(t,t,,), For t e_RFIM case, théull correlation function has the
. . i same scaling form as ER07) [as can be seen by general-
in the regimea=1 because of the extra power oftln  i;ing the result for the autocorrelation computed in Eq.

C,(t,ty), and in general because of the presence of bothy05)] but the truncateddoes not since we have obtained
scales {,t,,) and (Int,Int,). In addition,X here is found to be [Egs.(153—(155)]

nonmonotonic, and the values taken Xyare not within the
interval[ 0,1]. In particularX tends to+ o in the asymptotic (In(t—t )) In(t—t,,)
w w
for

which matches both the required limits.

We can now compare with the mean field modds]. As
in the mean field6,40], here we find an aging regime where
X is nontrivial, and fort/t,, fixed it is a function of this

regimet~t, with «>1 since truncated correlations become C,(t,t,)=Int,¢;

very small compared to the response in that this regime. Int,

Int,,

Since the ratioX has an interpretation in some contexts as an (209
inverse effective temperatube= 1/T . [40], one would find

here thafl.;s— 0 at large time separations, in contrast to the —Int, ¢ (t_w) for In(t—ty) ~

result thatT.¢;— + in mean field models. Although this w2l ¢ Int,, '

might appear surprising at first sight, one should remember (210

that in finite dimensions many of the properties of the RFIM
are controlled—in the the renormalization group sense—by avhereas for the RFIM magnetization we have fodids.
zero temperature fixed point; this includes the intermediaté192)—(194)]
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R In(t—t,,) . T IM(t)~1(t)~? with 6=26,=1. (214
m(F,FW)—Inthpl(W> o N . .
(211) Thls should be compared with the_resLdt?] for the pure
Ising model, wher&= 2 [corresponding there to the charac-
teristic lengthl(t)~+/t]. This out of equilibrium behavior
=1 (212 holds up to timet=t., corresponding to renormalization
scalel’=T"; at which equilibrium is reached.

In the presence of an applied fiehtt>0, we can use our
previous resul{28] for the biased Sinai diffusion. We have
found that the probabilitiesl; (t) [I1; (t)] that a given Si-

(213 nai particle remains on the riglieft) of its starting point up

to timet, in the case of a drift in thé+) direction, behave as
These expressions are rather different from that for the fer-

romagnef Eq. (207)], first because bothand Int appear in 25

these scaling forms. The only domain growthlike nontrivial I ()~ — (215
scaling regime withL (t)=TIn?% occurs fora>1. In this 1-e

regime the magnetization has a form similar to E208

~ tw -
m(I',I"y,) =Int, ¢, T for a=

[.Ty)=I nt for a= r
m(I',T",)=Int,¥s m or a—r—w>1.

with a reduction factor 4/L(t,,) [rather than 1(t,) in the _ 26
pure systerh Using the discussion of Sec. VIII D 3 one un- (1)~ 2 (216)

derstands that the origin is quite different from the pure case.

In the immediate response to an applied figf. (173]

only a small fraction of domains ILj,~ 1/y/L(t,,) responds,

but their response isery large since the full domain, of

length ~L(t,) flips. The truncated correlation on the other

hand is very small and does not take the scaling fOEm. H2

(207]. This yield a valueX= 4+ in this regime. M (t)~—, (217
Similarly, the origin of the nontrivial value oKX in the

regimet~t,, (a=1) is very different from the pure case.

Both the response and correlations originiate from rare H2

events and take the form (1AgL(t,)f(t/t,), where now the ] (t)~ —Zt*ZHT’g. (218

factor 1/Int, is the probability of the rare event aridt/t,,) g

its contribution to activated dynamics. Since they are of the

same order this yield a nontrivia. B. Persistence of the local time-averaged magnetization

These give the probabilitieH = (t) that a given spin in the
RFIM keeps the valuex) up to timet, which in the limit of
large 6T Int>1 behaves as

In addition to the persistence of a single spin, one can also
obtain the statistics of the flips of the thermal average of the
We now turn to a study of thpersistenceproperties of local magnetization, i.e(S(t)), at a given sitex. As ex-
the random field Ising model, which have received substanplained in Ref[28] in the context of the Sinai model, quan-
tial attention for other systems evolving towards equilibrium.tities averaged over many runs behave very differently than
Two of the primary properties of interest in this context arequantities for a single run; in particular while the spin of
the time decay of the probability thatsain has never flipped interest in one run may flip many times, if the same spin is
up to timet and the time decay of the probability that a €xamined in many runs with statistically similar initial con-
domain has survivedp to timet. The results for the single ditions, the average over the runs at a given time into the
spin persistence for the RFINSecs IX A and IX B below  runs will flip far less often.
are also valid for the spin glass. The large time limit of these The local magnetization will successively be equal to 1
quantities can be computed from the asymptotic full staténd —1 with only very small probability, at large times, of
(see Fig. 3 on which we focus below. being be equal to an intermadiate value. The sequence of
flips is given by the sequence of changes of orientation of a
bond during the renormalisation procedure extensively stud-
ied in Ref.[28]. From that analysis, we obtain the following
In zero applied field the probabilitf (t) that a giverspin  results for the REIM.
atx=0 has never flipped up to tinten a single run, is equal In zero fieldH =0, we denote bk the number of changes
side, nor the nearegbpposite typgdomain wall on the other  istribution of the rescaled variable
side have crossed=0. In Ref.[28], we found that the prob-
ability II,4(t) that a given Sinai particle does not cross its k k

IX. PERSISTENCE PROPERTIES OF THE RFIM

A. Persistence of a single spin

starting point up to time decays adl,(t)~1(t)~’ with T In(TInY) (219
0,=1/2. We thus obtain thafl(t) in the zero field RFIM
decays as is characterized by the asymptotic decay
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Prok k)~ (1)~ ), (220 t=0
where the generalized expone?(tx) is \>
w _KI 5 N 2+5 +3 k 1 2+5
(K)—2n k| K+ \/ K 7 7272 2\« T7
(221
The exponeng(x) is a positive convex function : it decays
from 6(x=0)=(3—5)/4 to 6(3)=0, and then grows m=3 m=1
again forx>1/3. This implies, in particular, that t
k 1 . . . FIG. 8. Temporal evolution of domains in the RFIM. For each
K= IN(TInt) -3 (with probability 1 at large time surviving domain at tim¢, m denotes the number of ancestor do-

(222 mains in the initial condition at=0.

All of the moments ofx will be dominated by the typical and we thus recover that the numlkesf changes of S,(t))
behavior; i.e.{«™=3"" for all m. The full dependence on grows as If'=Inint and that the rescaled variable

« of the 6(«x) function describes theails of the probability = K/IN(TInt) is equal to 1/3 with probability 1, as in Eg.

distribution of«, i.e., the large deviations. Note also that the (222). )
probability that(S,(t)) doesn’t flip up to timet decays as These results can be extended to the RFIM in the presence
I_(t)*;with exponent of an applied fieldH>0. The total number of flips in this

case saturates to a finite value given by a scaling function of
35 H andJ identical to the one given in Sec. IV E in R¢28]
0= 0( == (223  for the total number of returns to the origin in the Sinai
4 model.
which is significantly smaller than the corresponding decay
exponentd=1 in Eq.(214) for a single spin.

Since the renormalization procedure has to be stopped at Persistence can also be defined for larger scale patterns. In
I'=T", at which the equilibrium is reached, and that at laterthe RFIM the simplest pattertbeyond a single spjnis a
times no more changes occur in the local magnetization wdomain. When a domain of, e.g., consecutivespins disap-
obtain that thetotal number of flips is pears, the two nearest domains-ofspins merge. Thus do-

mains can either grow by merging with other domains, or
1 die, and this leads to interesting survival properties, that were
ktot—>§|”(43)’ (224 studied by Krapivsky and Ben Naif#8] for the pure Ising
model. Here we slightly change their definitions of the expo-
the decay of the tails of the probability distribution ef ~ Nnents to adapt to the logarithmic characteristic length scale

— Kk, /IN(4J), being described by the same functigfk) as | (1)=1r~(TInt) of the RFIM.

C. Domain persistence

above in terms of the |engﬂ3|M . Of all the domains which still exist at time we define
Another result from Ref.28] is the characterization of the Rm(t) as the number of domains which were formed out of
full sequence of the timeB,;=TInt,, ... I',=TInt where M of the initial domains. This is illustrated in Fig. 8. Then

the local magnetizatiotS,(t)) flips. The sequence of scales ZmRm(t) =N(t), the total number of domains at timeand
{T'\} is a multiplicative Markovian processonstructed with the fraction of initial domains which have a descendent still
the simple rulel',, ;= eIy, where{e,} are independent “alive” at tis S(t)=3mRy(t)=(m)N(t). Following Ref.
identically distributed random variables of probability distri- [48], one defines the exponents

bution p(«): N(t)~l_(t)‘1, (227
3+5 _

pla)=_ s yo(@h —a™™) with .= ZJ—. S(H~1(t) ", (229
(229 _

Ry(H)~1(t) 72, (229

As a consequencd, = a,_jay_,---ayl’y is simply the .
product of random variables; thus we obtain, using the cenin terms of the mean domain lengttft). Asymptotically,
tral limit theorem, that Rmn(t) has a scaling form

i Iy
im | ——

K— 0

>=<|n a)=3, (226) Rm(t)~|_(t)¢2ﬁ(l_(t;?_¢). (230
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The scaling function behaves, in the pure caseR&s X. FINITE SIZE PROPERTIES

~2z7 for smallzand as an exponential at largeOne finds The real-space renormalization procedure can also be
the exponent relatiod= v+ (v—¢)(1+0). used analytically to study large finite size systel8g,29.

Let us now study the RFIM using decimation. In the we will extensively use the analysis of the Sinai walker with
asymptotic statefull state), domains coincide with bonds, either absorbing or reflecting boundary counditif?8]. For
and when a bond is decimated the domain on this bond dieshe random field Ising model, one may consider several
and the two neighbors merge into a new domdire new  boundary conditionsi) Fixed spins at the ends: this corre-
bond. We thus associate with each bond an auxiliary vari-sponds for the Glauber dynamics of the RFIM to domain
able m counting the number of initial domains which are walls which behave like Sinai walkers with reflecting bound-
ancestors of the domain supported by the bond. Upon deciry conditions.(ii) Free boundary conditions: this corre-

mation of bond 2, the rule for the variablesis simply sponds to absorbing boundary conditions for the domain
walls. Here we give some results foy, whose derivation is
m’=my+ms. (23)  detailed in Appendix D, and discusi) at the end.
It turns out that this rule coincides with the magnetization A. Fixed spins at both ends
rule of the RFTIC[31] and thus one has the scaling

o ) Assume, for definiteness, that spins at both extremities are
~T'® with ¢=(1+5)/2, leading to fixed to the valuesS,=+1 and S, =—1, whereL is the
system size. There is thus an even number of domains in the
system, and one can describe its statistics at large time using
the following generating function. Let us defihg(k;I") as
probability that the system of size at timet (i.e., at scale
This should be compared with the value for the pure Isingi=TInt) contains exactlyn=2k+2 domains, withk

= Tﬁ =0.190983. (232

model, which has only been determined numericpdig] as =0,1,2 . ... Oneobtains(see Appendix D the generating

~0.252. function in Laplace transform with respect to the lengtas
Here it is interesting to note that we have found thiat .

=4, i.e., the general exact boungl< ¢ is saturated27]. Joche—qL A1 (kT

This bound forys comes from the fact that a point that has 0 kZO (D)

never been crossed by any domain wall up to tinfier the _

effective dynamics, necessarily belongs to a domain that has . sintf(I'\p+ 6°)

gdgscendant still living up to timte In the effective dynam- _p cosi(I" \/WH 82— z2(p+ &) '

ics in the “full” renormalized landscape, we have also the

reciprocal property: a domain wall surviving betweérand (239

t necessarily contains points that have never been crossed R)ﬁerepzq/Zg.
any domain wall betweeti andt. Note that the equality/
= ¢ also appears in the coarsening of domains for the 1
T=0 Landau-Ginzburg)* soft-spin Ising mode]35] for the

In the case of zero applied field=0 (6=0) one easily
%erforms the Laplace inversion, and obtains

same reason. The strict inequaligy< 6 requires the possi- i « ey 1 sink?(I’ \/E)
bility that a domain wall can survive betwe€handt even if = Z0L(KT)=LTy g p(cosk(T \/B)—Z)
all points inside it at” get crossed by a domain wall between
t’ andt (see Ref[27] for examples e e (2gUr?)(atnm?
We now study the probabilityr,(t) that a domain has =tan «) E " ,
survived up to timet without merging with any other do- n=- arnm
main. This requires that the two domain wallsindB living (235

at the boundaries of this domain do not meet any other do- )
main wall up to timet. In the asymptotic full state, these wherea=arccosyze (0,m/2) for ze (0,1). In particular we

conditions imply that three consecutive bonds cannot b@Ptain the average and mean squared total number of do-
decimated. Thus the domain in the middle cannot grow andh@ins in the system at time
the probability that it survives upon decimation thus decays L 4
exponentially inl". (ny=2(k), p+2=4g— + = +0(L"), (236
We thus obtain thaR,(t) decays exponentially ifi (and ' rz 3
thus with a nonuniversal power of time determined by the

initial condition which determines the convergence towards 8gL
(") r—(n)r)?=— +0O(LY),

the asymptotic stajelt thus corresponds to 3r2 (237)
5=+, (233  with '=TInt. Again, the same quantities at equilibrium are
simply obtained by settingf =4J in the above formulas.
As a consequence, the scaling functi®fz), not computed In the presence of an applied field>0 (6>0), one
here, has an essential singularity at the origin. similarly obtains
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’ 1—ycothy
(M=2(k) r+2=4gL = . +2+0(L9),
| sinify sinify

(239

2 2(1— h

(n?)_ r—({ny_r)?=8gL— (1+ (1 -YCOt y))

’ ' sintfy sinfy

oL, (239

with y= 6T Int.
We have also obtained the probability distribution
FL(M;T") of the total magnetization of the system:

(=)', (240
In a Laplace transform with respect toand M, it is

+oo +L
f dLe‘qLJ dMe "™F (M;T)
0 —-L

Ef(a+r)Er(g—r)
"1-Pi(q+n)Pr(g-T)’

(241)

where
5ei oI

" sinh(oT)(Vp+ 62 coth T \p+ 69) 7 8)
(242

*

Er(a)

r

Pii(a)= proet
sinh(\/p+ &) (Vp+ 82 coth T p+ 62 7 8)
(243
where p=q/2g. Note thatq+r and g—r are simply the
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I+ 1,

A

FIG. 9. RG rule near a free boundary, as explained in the text.
The same rule holds when the first renormalized bond is descending
by exchangingA andB.

and length(and becomes the new bond 1). IRt(1) be the
probability distribution of the lengthof the absorbing zone.
It satisfies the RG equation

arR$(|>=P%<0,~>*|RF<->—R§(|>f dI'P7(0)").
(244)

In the symmetric case the solution in Laplace transform is

fp)_

r(r_

——=tan

I'Vp

Interestingly the shape of the size distribution is the same as
for the Sinai particle with absorbing boundaries but with a

Rr(p)= (245)

2

Laplace variables associated with the total rescaled positivlobal length rescaling by a factor 1/4. A similar study can

and negative lengths.

B. Free boundary conditions

be made in the biased case.

Let us close by noting that the approach to equilibrium
will be modified near a free boundary, as compared with the
bulk. Indeed, near the free boundary it is possible to create a

Free boundary conditions in the RFIM correspond to absingle domain wall with energy cost 2J. Thus, for times such

sorbing boundary conditions for the diffusing domain walls.

that 2J<I'=T In t<4J one must consider different rules for

However, the study is slightly different from the one carriedthe first renormalized bond.

in Ref.[28] because now there are particlés ¢r B) both at
the bottom and the top.

The structure of the renormalized landscapé’ @&nd the
full state near the boundary is now the followitgge Fig. 9.
There is an absorbing zone of lendth Then there is a first
bond (barrier F; length |;) of arbitrary sign(contrary to

XI. DISCUSSION AND FUTURE PROSPECTS

In this paper we have shown how a powerful real space
dynamical renormalization group method can be used to
study the properties of the one dimensional random field

Sinai's case, where the first bond was always descendinglsing model and 1D spin glasses in a field. We have recov-
The first particle at the common endpoint of the first bondered many known results for the long tineguilibrium be-

and the second bond and is either ai particle(descending havior, and obtained what we believe are some new ones.
first bond or a B particle (ascending first bond The RG  But the main advantages of this method is that it enables the
procedure is unchanged in the bulk. The new case is whecomputation and physical understanding of many nonequi-
bond 1 is decimated. Then the absorbing zone becomes tibrium features of the coarsening process. Although the
length 1o+14, while the domain wall A or B) leaves the RSRG method is approximate, it retains all the information

system(as the cluster formed by the absorbing zone and th@eeded to obtain exact results for universal long time, large
previously first bond flips Bond 2 keeps the same barrier distance quantities. As exemplified by the calculations of the
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response and truncated correlations, it has the great advawith ay a microscopic scale. Thus the correlation length can
tage over many more formal methods by virtue of providingbe controlled by a combination of increasing time, increasing
a clear physical interpretation of the origins of the processe§, and decreasing. To obtain a wide range of(t), it is
(e.g., particular types of rare eventhat dominate many beneficial to start witth large enough that the shortest time
properties of interest. In this last section we address twacales which can be measured still correspond to microscopic
issues: the potential observability of some of the onedengths and then decrease the field gradually.
dimensional physics that we have studied in detail; and the While some of the nonequilibrium properties studied here
crucial issue of which features of these one-dimensional syshould be amenable to conventional experimental probes in
tems might apply in higher dimensional random systems. magnetic systems, some of the most interesting predictions
will probably not be: how the specific set of domain walls
A. One-dimensional systems depends on equilibration time and how it varies—or does not

Although random field Ising ferromagnets are not directlyVary—from run to run on the same sample. For these one
realizable experimentally, other systems in the same univefl®€ds either microscopic imaging probes—perhaps with
sality class should be. For random antiferromagnets, an agh@gnetic atomic force or tunnelling microscopy—or scatter-
plied magnetic field couples to the antiferromagnetic ordeind data with enough resolution that speckle patterns from a
parameter as a random field, most simply if the local magjlnltg spot size can be measured. As mentlongd earlier, the
netic moments vary randomly; such systems have the 0b\,ﬁ_patlal Fourier transf_orm of the two-point two-time correla-
ous advantage of the strength of the dominant randomnedi©n calculated here is, for spin glasses, related to the corre-
being readily adjustable. Similarly, spin glasses, althougHations between the speckle patterns at the two different
unfrustrated in zero field, do exist in quasi-one-dimensionafimes. While measuring this with magnetic x-ray or neutron
systems. In both these types of systems, rapid quenché&§attering may not be possible, it should be feasible via light
could be performed by decreasing the field at low temperaSCattering on systems in the same universality class in which
tures down to a value of orddr<J at which coarsening can (he length scales are sufficiently long.
take place. In practice, other types of randomness in, for ©One system on which light scattering measurements

example, antiferromagnetic or frustrated two-leg spin-laddefight be possible is a nematic liquid crystal in a long thin
systems in an applied field may have advantages. tubes with a square crossection and heterogeneities on the

There is one physical phenomenon of which one must psurfaces which Would'couplle randomly to the two ppssible
wary: in many random systems—especially spin-glasse§yMmetry related orientations of the nematic director.
[5l—the equilibrium states toward which the system strives/Vhether this or other systems can be formed in a regime in
depend hypersensitively on macroscopic parameters such ¥4ich the dynamics are sufficiently fast to allow a wide
the temperature and the magnetic field; this is often referrefNge of length scales to equilibrate is a question whose an-
to—somewhat confusingly—as “chaog49]. If this were ~ SWer must rely on a quantitative analysis of the physics on

the case here, then changing the temperature or the magnem? scale of the domain wall structures that should occur.

field would not correspond simply to speeding up the dynam-
ics, but would instead drive the system toward a new equi-
librium which might differ on the scales being probed from
the original one. Indeed, this effect is the origin of much of Many of the qualitative features of the coarsening process
the most interesting aging phenomena seen in thredn RFIM chains are also expected to obtain in higher dimen-
dimensional spin glass€$,3]. Fortunately—although less sional random systems. These are particularly interesting in
interestingly—this effect does not occur in random field systems in which, in contrast to the one-dimensional models,
chains: although the effective local random fields couldtrue long-range order should exist in equilibrium. Neverthe-
change in a nonuniform way with temperature or with ap-less, the characteristics of the coarsening process in one-
plied field, this will lead only to smooth modifications of the dimensional models with weak randomness should have
large scale potential and thus, provided the changes are madaich in common with such systems as long as consideration
sufficiently slowly, will not change the universal aspects ofis restricted, as we have primarily done, to time scales such
the coarsening provided all lengths are scaled appropriatelyhat the full equilibrium correlation length cannot be at-
The most obvious difficulty for any experiment is one thattained.
is ubiquitous in random systems: how does one obtain a Features that are common to many higher dimensional
reasonable range of length scales if the correlations armndom systems—random exchange ferromagnets, random
growing only logarithmically in time? The situation here is field magnets and, although more controversially, spin
not quite as bad as it might seem as on macroscopic timglasses—include the growth of some kind of domain struc-
scalest~In?t is not all that short: with a microscopic timg  ture by thermal activation over barriers that grow with length
of the order of picoseconds, 1 min corresponds to coarseningcale and are broadly distributed and the existence of aging
by a factor of 1000 in length scale. But for one-dimensionaland other history dependent phenomena. From a renormal-
random-field systems, one can do much better: the correlazation group point of view, these features are general char-
tion length is of order acteristics of systems controlled by random zero-temperature
fixed points[5,39]. The notions of local equilibrium within
constraints caused by large barriers, and of domination of the
dynamics at any given long time scale by rare regions of the

B. Higher-dimensional systems

&(t)~a, (246)

T In(t/ro)> 2
—
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sample in which the rate for going over barriers is of orderdeep potential wells come, as in one dimension, from long-
the frequency being probed, are both important. In generalvavelength slowly varying components; thus coarse graining
these will, as in the one-dimensional models, result in threghe potential, to yield approximate dynamics which are
different regimes for two-time properties depending onasymptotically exact, should be possible. We should empha-
whether the difference between the times is much smaller, ¢¥ize, however, that it is by no means established even for this
order of, or much larger than, the earlier time. simple model of a random walk in a smoothly varying
One of the most intriguing questions concerns the pseudd>aussian random potential that the conclusion argued
determinism found in the one-dimensional random models@bove—that the dynamics will be asymptotically
Will this exist in some higher dimensional systems in whichdeterministic—will be valid in high dimensions. What hap-
the domain walls are lines or surfaces whose evolution iPens in three dimensional random magnetic systems in
time will involve topological changes, rather than pointswhich there are truly many degrees of freedom, we must
which can simply move or annihilate? That is, will domain leave as an important open question.
walls tend to lie, at long times, in similar sample-and-time-
specific positions which are only weakly dependent on the ACKNOWLEDGMENTS
initial conditions? Or will they evolve in different runs in
very distinct ways—perhaps by retaining much more memor
of the initial conditions?
Two examples of asingle random walker diffusing in
random potentials illustrate some of the difficulties of draw-

ing any definitive conclusions. Consider, first, a random po- APPENDIX A: CONVERGENCE TOWARD THE FULL

One of us(D.S.F), thanks the National Science Founda-
Yion for support via DMR-9976621 and Harvard’s Materials
Research Science and Engineering Center.

tential which is independently random at each site with a STATE
long power law tail ot the distribution of the depth of the ) . )
potential wells. The deep wells will give rise to a subdiffu- !N this appendix we analyze the rapid convergence to-

sive behavior; indeed, simple considerations of the time tovards thefull state that was discussed in Sec. IV C. We
find a deep trap and the time to escape it imply that thé)O_ﬂSldgr, for_5|mpI|C|ty2 rand(_)m initial conf|gurat|c_>r_ls of the
typical distance the walker will diffuse in timeonly grows ~ SPins, in which there is an independent probabilitythat
as a power of In. But the statistics of theet of siteghe  €ach intersite position is occupied by a domain wall, and a
walker visits by the time it has made a given number Ofpro.bablllty 1-w that it is not. Su'ch'random_ln!tlal configu-
jumps from one site to another will be identical to that of arations describe, for example, initial equilibrium before a
normal free random walker:; it is just tiime spenbn each  duench from a temperatufi, which is high enough that the
site that causes the slow diffusion. Since a pair of randoni@ndom fields are negligible and the system behaves like a
walkers in dimensions higher than 4 have a nonzero probPure chain. This corresponds T¢=1/8o~J>{h,} and the
ability of never visiting any sites in common, it is clear that choicew=e~#02%/(1+e~#02)). In particular, initial condi-
the long time behavior isiot deterministic in high dimen- tions where all spins are independent and take valdewith
sions: two different runs starting from the same point will Probability 1/2 corresponds to infinite temperatysg=0,
have a probablity that vanishes at long times of the twoandw=1/2.
walkers being at the same site. In two dimensions, in con- For these type of initial configurations, the probability
trast, the pair of walkers will be very likely to be trapped at that there exish=0, . .. | domain walls among consecu-
the same site at long timeéThe three-dimensional case is five lattice spacings is simply given by the binomial distri-
more subtle but will be more like the high dimensional thatbution
the low-dimensional case.

A second type of random potential yields different behav- I
ior: a Gaussian random potential with mean zero and R(n|l)= mw“(l—w)"”, (A1)
[V(X)—V(y)]°~|x—y|* with £>0. A pair of random ' '
walkers in such a potential will tend to be trapped in the . .
samedeep valley at long times. This can be argued by con- N the renormalized landscape, the lengtf d_escegdlng
sidering the borders of valleys which are surrounded by barta@scending bonds at scalel’ is distributed with Py (1)
riers of at least a heiglt. If these typically do not have alot [Pr(l)], whose Laplace transforms are obtained after inte-
of fine-scale structure, then they should act as effective trap@ration over{ in Eq. (37). The probability that there had
for all walkers in the vicinity. All the walkers will then tend been initiallyno domain walls in the interval occupied by a
to eventualy leave such a valley over the same barrier, andescendindascendingbond of the renormalized landscape
hence end up in the same next-larger-scale valley as welplays an important role; it is
The behavior would then be asymptotically deterministic as
in the one-dimensional Sinai model. oo o0

The crucial feature that distinguishes these two cases, rj, (T)=>, P;()R(0|)=>, Pr(l)(1—-w)".
seems to be the smoothness of the potential: in the first ex- =1 =1
ample, the deep potential wells come from very short- (A2)
wavelength fluctuations, and there is thus no useful notion of
a coarse-grained potential. But in the second example, th€he probability that there had been an odd number
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o | o +
. . L 1-(1-2w) - Mzerd 1)
road)=2 Pi(D) 2 R(H=2 Pr()————, V%E“H:{2—}>=(1—rzem(r>)(1— =
=1 n odd =1
A3 _
A9 ) r:em<r>rzem<r>)
and the probability that there had been a nonvanishing even 2
number is - 2
(M zerd 1))
. . . + —Ze'; reen),  (AlD)
rgven(r):1_r5dd(r)_r;ero(r)' (Ad)
I erd I
To characterize the statistical properties of the spin con- V3eSq 4 {+ —1)=V4eS(+:{— +1)= zerd 1)
figurations on the renormalized landscape, we focus on one 2
renormalized bond at scale—call it “2”"—and its local (t . T))>
environment which determines whether or not the maximum — L(rz*em(l“)Jrre*ven(l“)),
and minimum at the ends of bond 2 are occupied by domain 2
walls. We introduce the probabilitie&/$*{e,;{e;,€3}) (A12)
[V59(es;{€1,€3})], Wwhereg;= = | that a descendingesp.
ascendingbond of the renormalized landscape at sdalis q (Nerd1))?
in phasee,= =+, with its left neighboring bond in phasg ViS {2+ =——%— ( 7erd D) + T apen(D)),
and its right neighboring bond in phagg. The normaliza- (A13)

tion conditions are
and similarly forascendingbonds by exchanging — .
deso The important property of these probabilities is that apart
52+ EZ+ 62+ Vi**Texi{er, e3}) =1, (AS)  from VeS(+:{——1}) and V&(—;{++}), which corre-
S spond to locally full configuration of the domain walls, all
the allowedV haver,,(I') as a factor, i.e., to have a bond
Y 2 X Ve eh) =1, (A6) 2 that does not have domain walls at both its extremities
=T €=* e3== requires that at least one of the three bofii&, or 3 had
exactly zero domain walls in the initial configuration.
If e,=— on a descending bond, then it is not possible to  Using the fixed point solutiofEqg. (37)], we find that
have e;= +, since this would correspond to a domain wall
of type A at a maxima, and similarly it is not possible to have * I T PR -
€3=+ since this would correspond to a domain wall of type Mzerd )= fo diPr(D(1-w)'= Pr<q— In( 1—w) )
B at a minima; thus we have immediately that (A14)

Vgesc(_;{_'__})zvlcjest(_;{_+}):quest‘(_;{2+}):0_ and thus this an'd thg probabilities of non-full bonds con-
(A7)  verges exponentially if" to O,

. TR
Similarly we have [ yerd T)~e T(Pr o7 (A15)

asc . ase ase B with p=(1/2g)In[1/(1—w)].
Ve =)=V D =V {2 _(%8) Thus the system converges towards the “full” state of the
renormalized landscape exponentiallylin with a non uni-
, versal coefficient depending on the initial concentration of
If, however, e,=+ on a descending bonde{=— on a  jomain walls through the parameterand on the strength of
ascending bondthen all four possible neighborhoods of this e gisorder througly. For the symmetric case of no applied
bond can occur. Since it is a bit lengthy to give the full g4 (5-0), the fraction of the extrema of the renormalized

enumeration of all possible cases with their correspondinq;amdscape at time that are not occupied by a domain wall
probabilities, we give here only the final results goes to zero as powerof time

r;—ero(r)

1
Vi (—i{——-h= > (A9) Prol missing domain walk o (A16)
r-. (T with
VECH{+ )= T() (A10)
_4 /M2 (A17)
and e 2h?
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Note that in the initial state for the landscape, and in thentroducing the sun¥ ;" ., =A; ", + AL 1, and the difference

symmetric casédi=0, h, is positive or negative with prob-

ability 1/2, and thus after grouping the consecutiyeof the

same sign to give the initial zig-zag landscape, we have, for

an initial distribution of length,

1
PO(I):E for 1=1,2,...¢0. (A18)
This corresponds to
1-w
lerd ' =0)= m (A19)

As an example, fow=3%, we haver,.('=0)=%, and
d .
Vrisoc(_’{__}):%-
APPENDIX B: AUTOCORRELATIONS IN THE RFIM
WITH AN APPLIED FIELD

We have now to solve RG equatio®}) given in the text
with the initial conditions

= IPL(LD
PHY (D)= | dI—=~ B1
() fo ™ (B1)
Pr 1 (£)=0. (B2)

Since for largel’, P~ have reach their fixed point values

[Eq. (37)], we obtain[using the simplified notationsi;
=Uur (p=0)=U; (p=0)]

(dr—3)Pr 1(O)=—=2uf Py 1 (0)

+2u§u$f dg'e urOprl )
0 :

+(uf)?e TPy 1 (0), (B3)
together with the initial conditions
Pitr,<§>=|—%eg“F'(—apUHp)
+ UL (Pdpur (PDlp-0, (B4
P (0)=0. (B5)
The solutions are thus of the form
PE,F,<§>=I—3Fe4”F ur(Arf+{Brf),  (B6)
where the coefficients satisfy
Brr=drAr (B7)
TRALF = U ur (AT AL ). (88)

;Vr,zAi},—A;}, , We obtain the decoupled equations
FFAL 1 =0, (B9)
PR [TRITHD SR (B10)
together with the boundary conditions
+ + 2+ 1 ’ '
AF’,F’:EF’,F’:AF’,F’:ﬁ(V CO'[h)/ _l),
(B11
3FA;,rr|r=r':5r2;,rr r=r’
_ptt __ T ’r_ ')’,
—BF/’FI_Z(S(COth'y —S|nh2’y, y
(B12)
wherey'=6I'" as usual. In terms of the function
p(y)=ycothy—1, (B13)
and its derivative with respect tp,
M(y)=cothy— — (B14)
Y Y Sinty
we finally obtain
£+ 1 ’ NN— A,/ ’
Arr =252 PN EYMY)Zp(y)Fy M),
(B15)
*+ 1 ’
BF,F’:IS(M(‘Y)iM(’y ). (816)

In the same way we obtain the solutions for theinitial
condition,

+ — 1 — = 4 + — + —
Pf,rr@):l——e i up (Ap o +¢Brr)
r

(B17)

with Af [, =A[ [, and By ., =B[},. We may check the
normalizations

o N . 1
| e 0P 5as M. @19
The autocorrelation is
(Si(t")Si(1))

- [Cae®E @+ Pt - Pl 0P 0

(B19)
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B-+

2+
(Br,r'_ rr’

)

(B20)

1+1
uf o up

1
= 2(AT L — AT+
r

r

1
=(cothy) M(y")+ m(?’M(Y')+P(7')
—y' M(y")).

Note that (S(t'))=M(y’) and (S(t))=M(y)=cothy
—vlsintPy.

(B21)

APPENDIX C: TWO-POINT TWO-TIME CORRELATIONS
(So(t) Sc()){(So(t") Sx(t"))

1. Definitions

Two points at 0 an&k>0 are given. To compute the two
spin two time correlation we introduce the following quanti-
ties. LetQ 'y (£o.l0idal1, -+ - idonil2niX), N=0,1,2. . .,
[and, respectively, Q?'}T(go,lo;gl,ll, e ilonilon )]
be the probability that al’’, x, and 0 are on bonds of
same orientation(respectively different orientation and
that atI', x, and O are on bonds of same orientation,
with a configuration {y,1q;¢1,11, - - . ;{on.l2n). ONe simi-
larly defines Q2 (Zo.lo;¢a.l1, -+ ilansaians1iX), N
=0,1,2... ,[respectivel;&)??;,l’_(go,Io;gl,l1, coilonits
l,,+1;%)] be the probability that, df’, x and 0 are on bonds
of same orientatiordifferent orientationsand that, afl", x

and 0 are on bonds of different orientations, with a configu-

ration ({o,lo;¢1:l1, -+ - 3ont1slons1)-
Initial condition atl’'=TI"" (for all n=0):

QP (Godlorailay - - ianalon i), (€Y
=Pr:(Lo:lo)Pr(L1.11) - . . Pr(Lan 1 2n) Wr
2n
X |o,|2n,20 Ii—x), (C2
I:
Qiq}lr'i(go,lo;ﬁ,'la —lansnlant13%), (C3
=Pr:(£o,l0)Pr({1.11) - - . Pr(Lons1.l2ns 1) Wi
2n+1
X |oa|2n+1ai20 Ii_X)- (C4
with the notation
2 (11 I
Wil b =5 [ Cay [ Cayest vy (9

%[min(ll,L)— max0,L—1,)]6[min(l,,L)

—max0.L—1I,)]. (Co)
2n+1,+ =0.

We have, of coursd,l?'?‘;FQF, o
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In the end we are interested in the probabiliﬁefgfr',(x)
that (Sy(t")S,(t"))=€" and (Sy(t)Si(t))=€. We have the
normalization

P (X)+Pr () +Pri () +PL i (x)=1. (C7)

The correlation function is

(So(1)S(1))(So(t")Sc(t"))

=P (X) 4+ PR () = Pr i (X) = Prp (X).

(C8
In terms of the function$), we have

P+,+,(X):2 QZI‘I,J/r

r.r n=0 J¢5.lo. .. Lon.lon mr
X(Loloid1ila, - idanilonix),  (C9)

PLr (0= o

r.r n=0 J¢5.lo. .. Zonulon r.r
X(§01|0;§l1|11'--;gznrlzn;x)a (Clo)

©

-+ _
PF,F/(X)_E J
n=0 J{o.lo, - -{an+1.l2n+1

XOTE (Loloida 1 -+ ilansnilne13%),
(C1D
Pri(x)=2
n=0 J{o.lo, - -font1.lon+1
XQ??;rl'7(§O,|oi§1,|1, ol 2ne13X).

(C12

2. RG equations

The RG equations forQ?’lf’, for €=+ and m
=0,1,2... read

((9F_k20 3{,() erpjlfl/(é/Ovlo;glall; codmilmix)

2PH({=0)Q 1 (Louloin i - LlmiX)

(C13
- ’
+k§=:0 Jz,|+|'+|~_|k9?,+r%e
X(Lolor v ilue1alko1:2,01;00 "5 4,
—z1”; il i X) (C14

066107-32



NONEQUILIBRIUM DYNAMICS OF RANDOM FIELD. ..

m+1,e’
+J . Prlo—zhor e
Zl+lg+11=1g '

X(0)g:z,03:81.015 - idmimiX) (C19
+J Qe

zl+ =l
X(§0,|o; e ;gm—lalm—l;Z,Ir,n;oillfn+1;X)
XPr({m—2z1) (C16

0

+f L PHzDPHOINQNE (Lo
z,1+1 +I0:I

=zlg;¢1,01; il X) (C17

m,e’ . . .
+f . Qr'r(oilos - i8m-1:lm-1;
I+ =1

Xz, X)Pr(0))Pr(Lp—2,1). (C18

In particular, form=0, we have

(9= 37 )25 (Lol 0iX)

= —2Pp({=0)Q2F, (Lo, 0%) (C19

f ’ " !' ”]:,(Z’I;O'I,;go_z,l,,;x)
T | IO

+f Pp(go—z,I)Q%’EF’,(O,I{);z,Ii;x)
zl+lg+11=1g ’
(C21)

+j Q%‘GF’,(Z,I”;O,I’;x)Pr(go—z,I)
zl+1"+1" =1y
(C22

f "+ PF(Z'I)PF(OJI)qu’,el“/'(fo—ZJ(I);X)
zl+1"+1p=1g
(€23

f Q%EF,/(Z’I(,)?X)Pr(oyl')|3F(§o—z,l)
z,I(’,+|’+|:|0 '
(C249

o I S EAR LN
O (C25
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3. Form of solutions

Forn=1 ande’' ==, we set

2n,e’ . . .
Qr 1 (Loilos - 58anilan %)
2n
+,€e’ . .
=E ,rr(§0'|o:§2n,|2n',zo li—x
“

XPr(&i,ly) - Pr(on-1.l2n-1),

2n+1,€’ . . .
Qrr (Qoulos -+ idan+l2n+15%)

2n+1

—€ . .
:Er,r/(§0-|0y§2n+1:|2n+1y 20 li—x
“

XPr(L1,01) - .. Pr(Zanslan),

and also

(C26)

(C27)

Q%',Err(go,'o?él,'lix):E;,’;r(équoifl"li|o+|1—X),

(C29

whereP(¢,l) satisfy the bond equation, and whétesatis-

fies the RG equations
(071“_3gl_3g2)E?,Fr(§11|1;§2,|2§|-)
=—2Pp({=0)E; 5 (L1.l1:d0,053L)

+Pr(0,)*1 Pr(.,)* o 1, Er i (il il
+Pr(0,0* PR, )* 1 Er o (a1, L)
+f E?F:(O,|';§2,|2;L—|)

1 +1p=1
XPr(.1)* ¢ Pr(.1")

+f E?F:(§1,|1;0,|’;L_|)
L +10=1,

XPr(, )% Pr(.l")

v BRI,
[+ +1=1p

XPr(.,1)Pr(0l")

+f , EEF’(gllll"Ié’L_I_I,)*{Z
[+ +l=1,

XPr(.,1)Pr(0l"),

with the initial conditions
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E;’f,rr(gla'l;fz"z;L)
=0 P (L1,11)Pr ({2,120 Wri(14,15,L).

(C36)
The RG equation foﬂ?’}r, becomes
(9= 37 )25 (Lol 0iX)
= —2Pp(£{=0)02,(£0,10;%) (C37

+f EFFf(z,I;§o—z,l”;lo—X)Pp(o,|')
I+ "=y

(C39
+J PR Q00 x)
I+1g+11=1g
(C39
+J oy Q%,Er'(-alé;O,H?X)*gopr(-,')
I+1g+11=1g
(C40
+2Pp(0,)%) Pr(,)% ¢ 1, 205 (%) (c41)
PR )% g 1P )1, Q05 (0,.0), (C42)

with the initial condition

Q%/E,r/@o,'o;X): 55',+1Pr'(§0,|0)Wr'(|o,|0,|o_x)-

(C43)
Using the form of the solutions, we thus obtain
P (0= J QXY (Louloi) (C44
¢o:lo
+2 J J E;,I:r(go,'o;é“zn,
n=1 J{g.lond Lo,y l2n
2n
XIZn;Lw(L—(E h—x))
i=o
XPr(ly)---Pr(l2n-1) (C49
PF,’E(X):J QY (Lo l0ix) (C46)
¢oslo
2 f f Er o (Zoloidan,
n=1 J{o.lon/ Lilgily -+ lan
2n
XIZn;Lw(L—(E |i—x))
=0
XPr(l1) - Pr(lan-1) (C47)
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Pri (%) (C48

oo

-
RN O N
n=0 J{o.lon+17 Lot lonst

2n+1
X(§Oa|0;§2n+lv|2n+l;|—)5( L—( i:EO |i—X))
XPr(l1)---Pr(lzn) (C49
P (X) (C50

oo

=> E.
r.rr
n=0 J{Ov§2n+lJL'|0!|lvl2n+l

X(Lo.losdont1:lons1:L) 0

X

2n+1
L—( 20 Ii—x))Pral)---Pr(IZn). (C51)

4. Laplace transforms

It is convenient to introduce the Laplace transforms

E;‘}’,(gllpl;gz,pz;p)

= food|1fmd|2fwd|_e*pl|rpz|2*p|-
0 0 0

XEr,r(1,11:82,12:L). (C52
Using the fixed point solution
Pr(£,p)=Ur(p)e <P, (C53
the RG equation foE becomes
(0r= 0z, = ;) EpF/(¢1.P13¢2.P2;P)
= —2Ur(0)E; 5 (¢1,P1id2,P2iP) (C54)

& + ¢!
+U%(p1)fo dze (=AU PIE € (2,p1:45,P2:P)
(C59

Q + €
+U%(pz)fo dze (272U (PIE € (£,,p1;2,P2:P)
(C56)
e~ f1ur(P1tp) — g=41ur(Py)

ur(p1) —ur(py+p)

+Ur(p))Ur(p1+p)

XE[5(01:42,p2:P) (C57)
e~ faur(p2tp) — g=Zour(py)

ur(p2) —ur(p2+p)

+Ur(p2)Ur(p2+p)

XE; 1 (41,P1;0P:P) (C59
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+Ur(p1+p)J dze (@~ Z)Ur(Dl+D)Ei €

X(z,p1;2.,P2;P) (C59

S Y

+ U%(p2+ p) J;) dee*(é'z*Z)Ur(FJz*P)Eivlf,
X(£1,P1;2,P2;P), (C60

with the initial conditions

Ef 1 (£1,P1340,P2iP) = 8c s —5—[Ups(py)e {210 (PD)

F!Z 2
—Up/(py+p)e tir(Prep]
(C6)
[Ur/(pp)e 2 (P — Uy, (py+p)eé2ur (P2t P)],
(C62
Also defining
?T < (L0.Po:P)

= fo dloe*pO'OfO dxe PQ7) 20 (£0,10:%),

(C63
the RG equation becomes
(0= 0:) QL5 (£0.PoiP)
= — 2002, (£0,Po;P) (C64)

+ f E; 1 (2,Po+ P; do—2,Po+ P; — P)Pr(0,pg+ p)
zZ
(C65H

gO &'
Ur(po)jo dze (o= AUrPI O (0,p9;2,P0;P)
(C66)

+Ur(po)f dze (o~ Z)ur(po)ﬂ rre (Z Po;0,Po;P)

(C67)
{o o
+2u§(p0)f0 dze (072w CIOLT, (2,po;p)
(C68
+U12~(p0)§oe §our(Po)QOe ,(0,00:D), (69

with the initial condition
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Q870 (Lo.Posp)
5ef,+1r,2 5[Ur/(po+p)e <ot (PotP)
_Url(po)effour’(po) (C70
= Pdp,(Uri(po)e” ‘o (Po)]. (C7Y)
In Laplace terms
P;;’,(q)zf dxe PR (x) (C72
! 0

relations(C51) become
Pri(@= | 0% (o
0

Pr(a)

— Ep p(1,0:42,0,—0),
1-P2(q) e, DI

(C73
+,- _ 0,— i
Pr,rr(Q) - j{OQF’Fr(§OyO,q)

Pr(q)

PN E+_'(§ !qrg !q;_Q)!
1-PA(a) e T

(C79

1 -+
TZ(C])LV ; Err(£1,0:42,0;—q),
r 1.42
(C79

Pri(q)=

Err(£1,0:¢2,0,—a).
(C76

1
P‘Tun=——————f
b 1-Piq) e

Thus for the function&, we need to solve only the case
p1=p,=q=—p, i.e., with the notationU(p=0)=ur(p
:0): ur,
(Ir=dg,= I, )Er ./ (£1,0: 42,05 = Q)

=~ 2urEy (41,082,805~ 0) (€77

& + ¢!
+ U%(q)fo dze (™A (@DE 19 (2,0;45,0;—q)
(C78

i + ¢
+U%(q)JO dze_(ZZ_Z)UF(Q)EF_"F,(gl,q;ziq;_q)
(C79
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e {1ur — g~ {1urp(a)

ur(q)—ur

— !

Er 5 (04:¢2,9;—q)
(C80)

+Ur(q)ur

e {aur — g~ {aur(a)

‘U Ef 5 (40,9,00:—
A T ((::)8)
1
14 +,€e
+u%J dze (TINET £(2,0:45,0: )
. :
(C82
¢ e
+u%foZdze—(iz—Z)UrEE';,(gl,q;z,q;—q),
(C83

and with the initial conditions

ER 0 (0,0:2.0-0)

= 56’67 m[ur,(q)e_glur'(@_urre—glur/]
q
(C84
[UF/(q)eigzuF’(q)_uF/e*{ZUFr]. (C85)

Forn=0 we need to solve only the casgs=p,=0 and
p=q, i.e., the equation

(ar= ) Q05 (£6,0:0)

= —2up Q05 (£0,0:0) (C86)
+Ur(q)fEF,F,(z,q;zo—z,q;—q) (C87)
z
14 '
+ur fo°dze—@o-Z)qu;’},(o,o;z,o;q) (C89
fo —({o—2)up 1€ . ;
+up . dze 01%.(2,0;0,0Q) (C89
14 '
+2uf foOdze’“O’Z)“FQ?’},(z,O;q) (C90
+u? —Zour ) 0€’ .
Fgoe errr(O,O,Q). (Cgl)
with the initial conditions
QY 1 (£0,0:0)
2
=08c 1155 Ur(q)e” @ —yp, e i (C92
, F/2q2
—Pdp,(Urr(po)e™ 20U (Pol)[, _q]. (€93
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5. Solution for the functions E

Using the symmetry in{;,¢,), we set

ErT(£1,9:42,9,—0)
2 pee ~£1ur(@) g £2ur(a)
ZE(AF,F/(q)e 1UriQ)g= 2y
+ Blf’}’,(q)e’glurefbuf(q)

(C99

! ’
+B§‘},(q)e faur(dg ézur_}.D;"fF,(q)e ¢1Ureg=é2ur),

(C99H

It is in fact more convenient to use the following combi-

nations:

€€ 1“2 €€’
IET(@) =5 ERr(£42=00:,=0g;—q) (C99

= AR, (0)+2BES,(9)+DES(a),
(C97)

€€’ Iz e €€’
‘]F"F,(q): 7[0 dngF',’F,(§1=0,q;§2 ,q;—d)

(C98
CARS@ ( 1 i)
~ ur(q) *Brr(a) UF(Q)+UF
De,e',
SRt N (q), (C99
ur

€€ I"Z * * €€
KF”I‘f(Q): 7f0 dglfo ngEr’rvrr(glaq;gzyq;_q)

(C100
CARf(@  BRf.(a) Dff.(a)
uz(q) ur(Q)up uz
(C101
They satisfy the system of equations
Irl (@)= —2(up+up(@)l 15 (@) +2upur(Q)dr 5 (a),
(C102
+,€’ U%(q) +. €' + €'
Irdr i (Q)= m—up(q) Jrr(@—=1rr(a)
+.€ Ur(q) *,€
+UFUF(Q)Kr,r'(q)+ er,rf(q)1

(C103
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e [ Uk@
ﬂFKF,r'(q)_ ZUF(Q) +2UF Kryrr(q)_z*]r’rr(q)
UF(Q) F e
+2———J+.(q), C10
o) Ui (@ (C104

and the initial conditions

, 1
I;’/E,[‘/(q)zge,e’@[UF’(q)_uF’]Zr (C105

€€’ 1 UI"(q)
I p () =96, —[Ur(q)—u ,]{ -1},
et @ " upi(a)
(C106
1[up(g |
K;‘reyrr(q)z(séve/_z L _l‘| . (C107)
Ur(q)

It is convenient to introduce the following sums and dif-

ferences:
S’ +,€’ —€'
Il—*r‘l—*r(q):Irrlrl(q)—‘rll"r’l"r(q)! (Cloa
D,e’ +,€e’ —€'
Il—*r‘l—*r(q):Irrlrl(q)_ll"r’l"r(q)! (C]-Og
R @)= 0@+ (@), (CL10
I =355 () =3 S(@),  (C11D

K (@ =K 5 (@) +Kp (@), (CL12
KRS (@) =Ky 5 (@) —Kp (@), (C113

Then, fore’ fixed, the three functionsS€’, JS¢€', andK S’
satisfy the system of equations

arl (@)= —2(ur+ur(@)I 7 1.(@) + 2urur(@) 37 (a),

(C114
aIv @)= L:f((g)) —w(q))J?}ﬁ(q)—l?}ﬁ(q)
+upup()KE () + t’FFT(qq))I 2e(a),
(C115
K (a)= ( 255((3)) +2up | K5 (@) —235.(a)
%J?}Kq), (C116

with the initial conditions
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S,e’ 1 2
'r’/,rf(Q)=¥[Urf(q)—urf] : (C117
' 1 Ur(q)
R (@)= [Ur (@) —u { - —11,
r’r q q2[ r(q F] ur,(q)
(C1189
2
/ 1| Up,
Kprp(@)== F(Q)—ll; (c119
a”L Ur/ (g
thus the solutions are simply
S,e’ 1 2
|r,r'(Q):?[UF(Q)—Ur] , (C120
se, 1 Ur(q)
Jr,r'(Q)—E[Ur(Q)—UF] ) } (C12y
S,e’ _ 1 UF(q) 2
Kr,rf(Q)—g Q) —1} (C122

For €' fixed, the three functions®<’, J°¢', and KP-¢’
satisfy the system of equations

Il e (@)= —2(up+ up(@)I 25 (@) + 2urup(@)IDE (a),

(C123
E' UZ(Q) E’ Er
ﬁF‘JE,‘F’(q): U;(Q) _UF(Q))J?,'rr(Q)—|Efrr(Q)
¢ Ur(a) p
FUrlp(@KP () = o IR,
(C124
¢ £(a) p .
aFKE;F,(q)=(2UFF(q) +2ur [KPE (9) =230 (9)
_ UI‘(q) D,e’
25(g) Jrr (@ (C129

with the initial conditions

D,e’ e’ 1 2
IF;,F’(q):(_l) ?[UI"(Q)_UF/], (C126

, 1 Ur(q)
R (@)=(-1)¢ S[Up(q)—u { g,

r.r q q2[ (g F] ur,(q)

(C127
2
, 1 Up
KR (@)=(-1)¢ = ﬂﬂl . (c128
a”L Urr(q

Three linearly independent solutions of the system read
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IRY(q)=[Ur(q)+ur]?, (C129
U
IPH@)=[Ur(q)+ur] UFF((S)) +1),  (C130
D1 UI‘(Q) 2
Kr(aq)= T(q)ﬂ , (C132
Ur(q)+ur
|?2(Q):2Urm, (C132
U
(Qur+Ur(q) UFF((:;)) +1}
D2 _
O g T ©1
[LLF(Q) +1}
K?Z(q)=2%, (C134

Ur(@)[2uf+ (up+Ur(q)(ur(q) +Ur(a)]
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It is useful to consider the matrix formed by these solu-
tions,

IRYa)  1IR%(@)  1R%q)
Ne=| JPHa) P4 IR¥w) |,
KR'a) KP%a) KpR3(q)

whose determinant gives the WronskMf of the three lin-
ear independent solutions:

U(a)

Wr=defNp]=— .
r ( F] u]gi(q)

(C138

The solution satisfying the initial conditions we are inter-
ested in will be obtained as a linear combination,

) 12i(q) A (9)
3
FE@ [ =2 N @] R@ | =N A |,
! Di !
KR (@) Kr'(q) N(q)

IP3(q)= where the coefficienta ¢ (q) are determined by the initial
(Ur(@)+ Ur(@) ()’ Ur(a)?) where ihe r (@ Y
(C13H
)\15’ ID,e/
103(q) = Dr@Rur U@ U@ r (a) v (Q)
r - 2_ 2 ! e _ e
ur(q) (ur(aq)“—Ur(q)?)) N2 (a) | =Nt J?;‘F,(q) (C139
3e’ D,e’
2Ur(q) )\I" (q) K]"/YI"(q)
KR3(a) = . (c13y _ .
ur(a)?(up(q) —Ur(a)) The inverse of the matrif is
2ur(q) ~2up(9)(2upur(g) + Up(a)fup(a) +Ur(a)]) up(a)?(2ufur(q) + Up(q)[2up+U () [up(q) +Ur(a)])
Ur(@)2 ur(a)—Ur(a)] Ur(a)(up(a)?=Ur(q)?) Ur(a) [ up(a)+Ur(a)][up(a)?=Ur()?]
N ~ (ur(q)+Ur(a)) ur(q)(2ur+Ur(q)) B urur(9)?ur+Ur(q)]
g Ur(a)? Up(g)? Ur(@)Zup(a)+Ur(a)]
B [ur(q)+Ur(g)]? 2up(q)[ur+Ur(a)][ur(q)+Ur(a)] _ ur(a)Fur+Up(q)]?
Ur(a)? Ur(a) Ur(q)?
(C140
and, finally, we obtain the coefficients
, {=8uf,up (@) +[up (@) + U (q) ][ = 5ur(q)+UF,(a) +4ur (Bur (q) — Ur (a)) ]}
)\%f (@)= (~1)¢ rUr r r r r r r r (C141)

9*(ur(a)=Ur(a)Ur(q) +Ur(a))?)
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A2 (@)
(1) 2(up,—up/(q))ur —up(q) —Ur(q))
g?(urs(a)+Uri ()
(C142
o ,A(up —up(Q))?
A (@=—(-)7 . (€143
In the end we are interested in
Pr(q)
Py =f 021 (0000 + = —— —K[ (@),
r,r (Q) % r,r (go Q) quz 1_P12~(C]) r,r (Q)
(C144
B _ Pr(q) .
P+’/ :f QO’ ’ ;Oy + - 5 +’/ y
rr (Q) % rr (50 Q) quz 1—P12~(Q) r,r (Q)
(C145
PL(a)= 2 : Krp (), (C146
T rg 1o
Pri(a)= 2 ! K (a) (C147
r.rld _quz 1-P2(q) rrd)
Since we have the relations
Ko (@) =K (a), (C148
KR (o) ==K (a), (C149

we can express the four functioﬂéﬁ'}l,(q) in terms of
KP 1 (g) andKP(q) only as

KES (@) =3 K E (@) +(— D= 1) KR (@)

(C150
Since we have the constraints
PL(@)+PLR(a) =P (a), (C159
PR (@) +Pr () =Pr(9), (C152
PLr (@) +Pri (@) =Pl(q), (C153
P (A)+Pr (@) =P, (a), (C154
where
1 2 1-Pr(q)
PrQ)==— 55—, C15
_ 1-Pr(q)

Pr(q)= L (C156

[2g2 1+Pr(q)’
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we do not have to compute the functioﬁlsg”},(go,o;q)
separately. Indeed, we obtain

Pr(q)= Loﬂii'},(go.o;qw Lon%pwo,o;q)

L2 Pr@ s

s (Q), C15
2 1
Pr(a)=— ———Kpn(q),  (C158
' 1-Pr(@)
1
P;(Q)ZLOQ%}(%,OJQ)WLEF%(Q)

X[(L+Pr(@)KF 1 (a) = A= Pr(a)KL L (a)],
(C159

_ _ 1
Pr(a)= LOQ?’,F,(io,O;qH 2 F%(q)

X[+ Pr(q)Ky (@) + (1= Pr(q))

XKL ()], (C160

The second equation is satisfied sinKé’},(q)z(l/
g%)[1—P(q)]?. The three other are compatible, and give

1 2 1-Pr:(q) 1
o a4 TI'’'“g°1+Pr/(q) TI'“q

1
X(1—=Pr(q)+ 2 15PrQ)
XKL (a), (C163

2 1_P1"/(q) .
I''2g? 1+ Pr.(q)

L Q?j},(zo,o;q)= 1-Pr(q))
0

F2q2
1 1

2 mK?,’F«q). (C162

6. Final result

The Laplace transform of the correlation function can
now be obtained as
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J:dxe‘qX<so(t>sx(t>><so(t')sx<t'>>

=P (@) + P (@) = Pr (@) = Pr(9)

(C163
1 4 1-Pr(q) 4 1
a4 122 - +_2—2K?,';/(Q)’
a T'“g°1+Pr.(q) TI“1-Py(q)
(C169
and thus the final explicit expression is
fo dxe” P(Sp(t) S())(So(t")Sk(t"))
1 4 r'Jq
_a_l“’zqzt nr?(T) (C16H
cotanh ——
4 rva| . 2
+— cotanl| —— | Ay, (o) + —
Ir2 2 2 \/a
xx2*<q>+i;x3*<q) (C166
r 2 qu r '
qsint?| —
2
where
1+ 1 12
A (Q)= [8+3I''“q

2123 sink(I'’ \q)

—16 coshil’’ v/q) + 8T \g sinn T’ V)
(C167

+(8+5I"2q)cosh 2T’ q)

— 120" g sinh(2I" q)] (C168
2+ 2 1

M@= | Vg coth(I" Vo)

2 F’\/a)_ )
I‘,\/atan?‘( 5 1 (C169

X

2
, 41
A (q)=—?<F—ﬁcoth(r'da)>. (C170

This leads to the scaling form given in the text in E(sl4)
and(117).
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APPENDIX D: FINITE SIZE PROPERTIES

In this appendix we sketch the derivation of the finite size
results from the finite size measure for the RFIM. If spins at
both ends are fixed to have the safopposite value, there
are an oddeven number of bonds in the finite size measure.

Assuming for definitness that spins at both extremities are
fixed to the valuesSy=+1 and S,=—1. Then domains
closest to the boundaries are domain walls of typehich
as Sinai walkers see reflecting boundary conditions. In this

case, as explained in Ref[28], the probability
NZ2(11,15, ... lao) that the system at scalé has (X
+2) bonds k=0,1,...), with respective lengths
(I1, ... loksn), is
NEC 2102, - o)
=Er ()P ()P (l3) . P (1)
2k+2
><Er<|2k+2>lra(L— > Ii), (DD

wherePj (1) are the bulk length distributiorf€q. (68)], |-
=l 415, andEf (1) the length distribution of boundary
bonds(see Ref[28]). The normalization is

e}

> f N%I,(fzﬂla'z'---a|2k+2):1- (D2)
k=0 Jiy. s

The probability that the system hask22) domains at
scalel is

|L<k;r>=fI E{1P) P ()
Loeeed 2k+2

. 2k+2
XEF(I2k+2)IF5<L— 2,1 Ii), (D3)

so that the Laplace transform with respect to the length of the
generating function is

% ~ _  Ef(g/20)Er(g/2

f dLeqL(Z zkIL(k;F))z - r(il 9)Er (4/20)
0 k=0 1-zPr(q/29)Pr(a/29)
29 1-P/(q/2g)Pr (a/2g)
a9 1-zP{(q/29)Py (a/29)’
(D4)

wherep=q/2g. This leads to the results given in the text.

The magnetization can also be obtained. In the “full”
renormalized landscape, the magnetization is giverivhy
=3!122k+*2(_1)i*1]. The probability that it has valu
simply is
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k=4 2k+2 i=2k+2

FLUMT)= 2 E*(1)P (IP*(l3)--- |F5(|—_E h)&(M— > (-7 ). (D8
k=0 [ oo =1 i=1
XPT (I 1)E (ks 2) (D5)  This leads to the result given in the text.
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