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Nonequilibrium dynamics of random field Ising spin chains: Exact results
via real space renormalization group
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The nonequilibrium dynamics of classical random Ising spin chains with nonconserved magnetization are
studied using an asymptotically exact real space renormalization group~RSRG!. We focus on random field
Ising model~RFIM! spin chains with and without a uniform applied field, as well as on Ising spin glass chains
in an applied field. For the RFIM we consider a universal regime where the random field and the temperature
are both much smaller than the exchange coupling. In this regime, the Imry-Ma length that sets the scale of the
equilibrium correlations is large and the coarsening of domains from random initial conditions~e.g., a quench
from high temperature! occurs over a wide range of length scales. The two types of domain walls that occur
diffuse in opposite random potentials, of the form studied by Sinai, and domain walls annihilate when they
meet. Using the RSRG we compute many universal asymptotic properties of both the nonequilibrium dynamics
and the equilibrium limit. We find that the configurations of the domain walls converge rapidly toward a set of
system-specific time-dependent positions that areindependent of the initial conditions. Thus the behavior of
this nonequilibrium system is pseudodeterministic at long times because of the broad distributions of barriers
that occur on the long length scales involved. Specifically, we obtain the time dependence of the energy, the
magnetization, and the distribution of domain sizes~found to be statistically independent!. The equilibrium
limits agree with known exact results. We obtain the exact scaling form of the two-point equal time correlation
function ^S0(t)Sx(t)& and the two-time autocorrelations^S0(t8)S0(t)&. We also compute the persistence prop-
erties of a single spin, of local magnetization, and of domains. The analogous quantities for the6J Ising spin
glass in an applied field are obtained from the RFIM via a gauge transformation. In addition to these we
compute the two-point two-time correlation function^S0(t)Sx(t)&^S0(t8)Sx(t8)& which can in principle be
measured by experiments on spin-glass-like systems. The thermal fluctuations are studied and found to be
dominated by rare events; in particular all moments of truncated equal time correlations are computed. Physical
properties which are typically measured in aging experiments are also studied, focusing on the response to a
small magnetic field which is applied after waiting for the system to equilibrate for a timetw . The nonequi-

librium fluctuation-dissipation ratioX(t,tw) is computed. We find that for (t2tw);tw
â with â,1, the ratio

equal to its equilibrium valueX51, although time translational invariance does not hold in this regime. For
t2tw;tw the ratio exhibits an aging regime with a nontrivialX5X(t/tw)Þ1, but the behavior is markedly
different from mean field theory. Finally the distribution of the total magnetization and of the number of
domains is computed for large finite size systems. General issues about convergence toward equilibrium and
the possibilities of weakly history-dependent evolution in other random systems are discussed.

DOI: 10.1103/PhysRevE.64.066107 PACS number~s!: 05.50.1q
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I. INTRODUCTION

In many systems, the development of long range orde
controlled by the dynamics of domain walls. The coarsen
of domain structures evolving toward equilibrium has be
studied extensively in pure systems@1,2#, but little is known
quantitatively about domain growth in the presence
quenched disorder. In random systems, the nonequilibr
dynamics plays an even more important role than in p
systems, and is most relevant for understanding experime
since many random systems become glassy at low temp
tures, with ultraslow dynamics which prevent full therm
equilibrium from being established within the accessi
time scales. This slow dynamics is due, at least in case
1063-651X/2001/64~6!/066107~41!/$20.00 64 0661
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which it is qualitatively understood, to the large free ener
barriers that must be overcome for order to be establishe
long length scales. Some of the best studied cases both
perimentally and theoretically are a variety of random ma
netic systems, particularly spin glasses and random fi
magnets@3–5#. Both of these systems have engendere
great deal of controversy about their equilibrium behavi
and the resolution of these controversies has been gre
hampered by the inability of experiments to reach equil
rium. One might well argue, however, that the most intere
ing properties of such random systems are, in fact, not t
equilibrium properties, but the nonequilibrium dynamics i
volved in their Sisyphean struggle to reach equilibrium.

Because of the dominance of the behavior of so ma
©2001 The American Physical Society07-1
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random systems by the interplay between equilibrium a
nonequilibrium dynamic effects, it is important to find mo
els with quenched randomness for which solid results ab
dynamics can be obtained. In particular, one would like to
able to analyze the effects of activated dynamics caused
large barriers, and compare results to predictions wh
come from either phenomenolgical scaling approaches to
dynamics—often known somewhat misleadingly as ‘‘drop
models’’ @5#, or from mean field approaches@6#. Many of the
interesting phenomena go under the general name ofaging—
the dependence of measurable properties such as correla
and responses on the history of the system, in particula
how long it has equilibrated: its ‘‘age.’’ For example, on
would like to compute quantities which probe the violatio
of the fluctuation dissipation relations caused by nonequi
rium effects, and compare them with results obtained
mean field models@6#; this was done previously for coarse
ing of pure models@7–9#.

One of the simplest nontrivial random models, and one
which coarsening occurs, is the random field Ising mo
~RFIM! in one dimension. Although this system does n
have true long-range order, for weak randomness it exhib
wide range of scales over which the dynamics is qualitativ
like those of other random systems, especially those
two-dimensional random field magnets and two-dimensio
spin glasses, which do not have phase transitions but ex
much dynamic behavior qualitatively similar to their thre
dimensional counterparts which do have phase transition
particular, the weakly random one-dimensional~1D! RFIM
has a wide range of length scales over which the typical
of ordered domains grows logarithmically with time at lo
temperatures. In one-dimensional the RFIM is equivalen
a spin glass in an applied magnetic field; this, or some an
gous 1D systems, should be conducive to experimenta
vestigation. For a recent review on the RFIM, see e.g. R
@10#.

Theequilibriumproperties of the 1D RFIM and of the 1D
spin glass in a field were extensively studied@10–24#. Sev-
eral thermodynamic quantities such as the energy, entr
and magnetization were computed exactly at low tempe
ture for a binary distribution of the randomness in Refs.@13–
15# and for continuous distributions in Refs.@22–24#. Re-
sults are also available for distributions of bonds w
anomalous weight near the origin@16#. The free energy dis-
tribution was studied in Ref.@17#. Equilibrium correlation
functions are harder to obtain, and only a fewexplicit exact
results exist. For the binary distribution some results are p
sented in Ref.@20#. Certain special limits have been solve
such as the infinite field strength limit which is related
percolation@24#, but for, e.g., higher cumulants of averag
of truncated correlations, only the general structure has b
discussed@21#.

In this paper we derive a host of exact results for
nonequilibrium dynamicsof the RFIM and for the 1D Ising
spin glass in a field, and, as a side benefit, also obtain m
equilibrium results, some to our knowledge new. Those
our results for equilibrium quantities that can be compa
with previously known ones are found to agree with thes

Here we focus on the universal regime of the RFIM
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which both the random field and the temperature are m
smaller than the exchange coupling, the length and t
scales are sufficiently long, and the random field domina
the dynamics. With the random field being weak and
temperature low, the equilbrium correlation length is lo
and essentially the same as that at zero temperature—
Imry-Ma length. The coarsening of domains starting fro
initial conditions with only short distance correlations—su
as a quench from high temperature—will, after a rapid init
transient, be dominated by the randomness over a wide ra
of time scales.

The basic tool that we use in this paper is a real sp
renormalization group~RSRG! method which we have de
veloped recently to obtain exact results for the nonequi
rium dynamics of several 1D disordered systems@25#. Most
of our previous results have been for theSinai modelthat
describes the diffusion of a random walker in a 1Drandom
static force field, which is equivalent to a random potenti
that itself has the statistics of a 1D random walk@26#. It can
readily be seen that individual domain walls in the classi
RFIM diffuse in a random potential of exactly this Sin
form, the complication being that they annihilate upon me
ing. As shown in Refs.@25,27# the RSRG model can also b
applied to many-domain-wall problems such as that wh
corresponds to the RFIM. A few of the results of this pap
were already presented in a short paper@25#; the aim of the
present paper is to show in detail how the RSRG meth
applies to such disordered spin models, and to explore m
of its consequences. Although we will give here a detai
discussion of the RSRG method for the spin model, we w
rely on Ref.@28# for many results about the single partic
diffusion aspects of the problem; these we will only sketc
referring the reader to Ref.@28# for details.

As for the single particle problem, the RSRG method
lows us to compute a great variety of physical quantiti
remarkably including even some which are not known
the corresponding pure model~e.g., the domain persistenc
exponentsd and c). This provides another impetus for th
study of the random models. Using the RSRG method
also obtain the equilibrium behavior which corresponds t
well defined scale at which the decimation is stopped.

The RSRG method is closely related to that used to st
disordered quantum spin chains@29–34#. The crucial feature
of the renormalization group~RG! is coarse graining the en
ergy landscape in a way that preserves the long time dyn
ics. Despite its approximate character, the RSRG met
yields asymptotically exact results for many quantities. As
Ref. @31#, it works because the width of the distribution o
barrier heights grows without bounds on long length sca
consistent with the rigorous results of Ref.@26#. It is inter-
esting to note that an exact RG has also been applied to
problem of coarsening of thepure 1D soft-spin IsingF4

model at zero temperature, for which persistence expon
have been computed@35,36#. Extensions to higher dimen
sions of the RSRG method for equilibrium quantum mod
were recently obtained@37#; these introduce hope that othe
dynamical models could be studied in higher dimensions
well.

The outline of this paper is as follows. In Sec. II we defi
7-2
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the RFIM and spin glass models and their dynamics, an
Sec. III we summarize some of the main results and
physics involved. In Sec. IV we explain how the RSR
method is applied to the RFIM, give the corresponding eq
tions and fixed point solutions, and discuss the propertie
the asymptotic large time state. In Sec. V we derive ex
large time results for single time quantities such as the
ergy, the magnetization, and the domain size distribution
Sec. VI we obtain the time dependent single-time two-s
correlation functions both with and without an applied fie
In Sec. VII we compute the two time spin autocorrelation
well as the two-point two-time correlations. In Sec. VIII w
study aging phenomena which necessitate considering
events which dominate all moments of the thermal~trun-
cated! correlations which we obtain, as well as the respo
to a small uniform magnetic field applied after a waiting tim
tw as in a typical aging experiment. We also compute
fluctuation dissipation ratioX(t,tw). In Sec. IX we compute
the persistence properties—the probabilities of
changes—of a single spin, of the local magnetization and
domains. Finally, in Sec. X we obtain the distribution of t
total magnetization and of the number of domains for la
finite size systems. A brief discussion of the possibilities
experimental tests of the predictions and speculation on
applicability of the some of the general features to hig
dimensional systems are presented at the end of the pa

Various technical results are relegated to appendixes
Appendix A the convergence towards the asymptotic stat
shown. In Appendix B the time dependent single-time tw
spin correlation functions in an applied field is derived, wh
in Appendix C, the two-point two-time correlations are com
puted in detail and in Appendix D some of the finite si
properties are analyzed.

II. MODELS AND NOTATION

A. Random field Ising model

1. Statics

We consider the random field Ising chain consisting of
spins$Si561% i 51,N with Hamiltonian

H52J (
i 51

n5N21

SiSi 112 (
i 51

i 5N

hiSi , ~1!

with independent random fields$$hi%% with identical distri-
bution whose important moments are

H[h̄i , ~2!

g[h̄i
22H2, ~3!

so thatH can be considered as a uniform applied field, ang
is the mean-square disorder strength; here and hencefort
denote averages over the quenched randomness—us
equivalent to averages over different parts of the system—
overbars.

The statics and dynamics of the random field Ising mo
can be studied in terms of domain walls living on the du
06610
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lattice: on the bonds$( i ,i 11)% will be indexed by their left-
hand sitei. A configuration of spins$Si% can be represente
as a series of ‘‘particles’’A corresponding to domain wall
of type (1u2) at positionsa1 , . . . ,aNA

, and ‘‘particles’’ B

corresponding to domain walls of type (2u1) at positions
b1 , . . . ,bNB

; these must of course occur in an alternati

sequenceABABAB. . . . @The relation between the numbe
NA and NB of domain walls depends on the boundary co
ditions: for instance, in a system with periodic boundary co
ditions,NA5NB , while in a system with free boundary con
ditions uNA2NBu<1.#

It is very useful to introduce thepotential ‘‘felt’’ by the
domain walls,

V~x!522(
i 51

x

hi , ~4!

and rewrite the energy of a configuration$Si% in terms of the
positions of the set of domain walls as

H5Hre f12J~NA1NB!1 (
a51

NA

V~aa!2 (
a51

NB

V~ba!, ~5!

where Hre f is the energy of the reference configuratio
where all spins are (1):

Hre f52J~N21!2 (
i 51

n5N

hi . ~6!

Each domain wall costs an energy 2J; the domain wallsA
feel the random potential1V(x); whereas theB walls feel
the potential2V(x), i.e., the two types of domain walls fee
oppositerandom potentials.

Let us first recall some known features of the statics.
the absence of an applied field (H50) the system is disor-
dered atT50, and contains domains with typical size give
by the Imry-Ma length

LIM '
4J2

g
, ~7!

obtained from the following simple argument: the creation
a single pair of domain walls (A,B) a distanceL apart costs
exchange energy 4J independent ofL. But the random po-
tential has typical variationsuV(x)2V(y)u typ;A4gux2yu,
and thus the typical energy that the system can gain o
length L by using a favorable configuration of the rando
potential is of orderA4gL. The two energies become com
parable forL;LIM and for L>LIM , it becomes favorable
for the system to create domain walls. Thus the ground s
will contain domains of typical sizeLIM . One should note
the difference between the case of, e.g., bimodal distri
tions ~for which the ground state can be degenerate! and
continuous distributions for which it is nondegenerate;
will generally consider continuous distributions for simpli
ity.

At positive temperature without a random field, the the
mal correlation lengthLT;exp(2J/T) gives the typical size
of domains in the system in equilibrium at temperatureT.
7-3



at
an

re

u
on

n-

ou

t

e
-
s

n
tiv

,

ch

.

.

n a

in
n to

the
-

ss
y

of
en

-
the

re-
rty

m-

ic

e
e

e
.
D
lings
m
ly

FISHER, LE DOUSSAL, AND MONTHUS PHYSICAL REVIEW E64 066107
But in the presence of the random field the equilibrium st
at finite temperature is dominated by the random fields
still given by the Imry-Ma picture provided that

1!LIM !LT , ~8!

which is the regime studied in the present paper. In the p
ence of a uniform applied fieldH.0, the system at low
temperature will contain domains of both orientations b
with different typical sizes leading to a finite magnetizati
per spinm(g,H),1.

2. Nonequilibrium dynamics

In this paper we will study the magnetization no
conserving dynamics of the RFIM model@Eq. ~1!# starting
from a random initial condition at timet50 corresponding
to a quench from a high temperature state. Although
results are independent of the details of the dynamics~pro-
vided it satisfies detailed balance and is nonconserving!, for
definiteness let us consider the Glauber dynamics, where
transition rate from a configurationC to the configurationCj ,
obtained fromC by a flip of the spinj, is

W~C→Cj !5
e2bDE

ebDE1e2bDE
5

1

2 F12tanhS bDE

2 D G , ~9!

which satisfies the detailed balance condition and wh
DE52JSj (Sj 211Sj 11)12hjSj is the energy difference be
tween the two configurations, which takes the following po
sible values in terms of domain walls:

DE $creation of two domain walls%54J62hj , ~10!

DE $diffusion of one domain wall%562hj , ~11!

DE $annihilation of two domain walls%524J62hj .
~12!

In this paper we focus on the regimes

$hi%!J, ~13!

T!J, ~14!

in which Eq. ~8! holds. The randomness will dominate o
length scales that are sufficiently large so that the cumula
effect of the random field energies is greater thanT, i.e., for
scales

l @h̄2/T2. ~15!

So that there will be only one basic length and time scale
is simplest to consider$hi%;T.

There will be a wide range of time scales during whi
the domains grow from initial sizes ofO(1) to sizes of order
LIM by which time the system will be close to equilibrium
Since the Imry-Ma lengthLIM is very large, we expect the
universality of the long time dynamics, as we indeed find
06610
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B. Ising spin glass in a magnetic field

In this paper we also consider the 1D Ising spin glass i
uniform field h:

H52 (
i 51

i 5N21

Jis is i 112(
i 51

N

hs i . ~16!

As is well known, in the case of a bimodal (6J) distri-
bution with equal probabilities for either sign, 1D Ising sp
glasses in a field are equivalent via a gauge transformatio
random field ferromagnets. More precisely, settingJi5Je i
561 for i 51, . . . ,N21, and definings15S1 and s i
5e1•••e i 21Si for i 52, . . . ,N, the gauge transformation
gives the new Hamiltonian

H52 (
i 51

i 5N21

JSiSi 112(
i 51

N

hiSi , ~17!

wherehi5he1•••e i 21. Since thee i are independent random
variables taking the values61 with probability 1/2, the
fields hi are also independent random variables taking
values6h with probability 1/2. Hence the Hamiltonian de
scribes a (6h) random field Ising model withH50 andg
5h2 in Eq. ~1!.

The physical interpretation is as follows. The spin gla
chain in zero field (h50) has two ground states, given b
6s i

(0) , where s i
(0)5e1•••e i 21, which correspond, via the

gauge tranformation, to the pure Ising ground statesSi
(0)5

11 and Si
(0)521. In the presence of a fieldh.0, the

ground state of the spin glass is made out of domains
either zero field ground states. Their typical size is thus giv
by the Imry-Ma lengthLIM 54J2/h2. These domains corre
spond to the intervals between frustrated bonds since at
position of a domain wall one hasJis is i 115JSiSi 11,0.
Similarly each domain has magnetization:

U (
i P domain

s i
(0)U5 1

h U (
i P domain

hiU5 1

2h
uV~aa!2V~ba!u,

~18!

which is thus proportional to the absolute value of the cor
sponding barrier of the Sinai random potential, a prope
which will be used below.

Via the gauge transformation, the nonequilibrium dyna
ics ~e.g., the Glauber dynamics! of the spin glass in a field
starting either from~i! random initial conditions~correspond-
ing to a quench from high temperature! or from ~ii ! the pure
ferromagnetic state~obtained by applying a large magnet
field that is quickly reduced to beh!J) corresponds to the
nonequilibrium dynamics~e.g., Glauber! of the RFIM, also
starting from random initial conditions. Thus in the regim
h;T!J, many of the universal results obtained for th
RFIM will hold directly for the spin glass in a field. Thus w
will study the two models in parallel in the present paper

An important complication in applying the results to 1
spin glasses is that the strengths of the exchange coup
will in general be random. This provides an extra rando
potential for the domain walls which has, however, on
7-4
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NONEQUILIBRIUM DYNAMICS OF RANDOM FIELD . . . PHYSICAL REVIEW E64 066107
short range correlations. The conditions for there to b
wide regime of validity of the universal coarsening behav
found here is that the distribution of exchanges benarrow,

uJumax2uJumin!uJumin , ~19!

ideally with uJumax2uJumin;h or smaller. Note that the
equilbrium correlation length will be set byuJumin for smallh
as the domain walls can easily find positions withuJu
>uJumin that are near to extrema of the potential caused
the random fields. Having defined the models, before turn
to the details of the calculations we now briefly decribe
important physics and summarize our main results.

III. QUALITATIVE BEHAVIOR AND SUMMARY
OF RESULTS

As for any Ising system, the static and dynamic proper
of random spin chains can be fully described in terms
domain walls between ‘‘up’’ and ‘‘down’’ domains. The cru
cial simplification in one dimension is that the domain wal
which come in two typesA[(1u2) and B[(2u1), are
point objects. As discussed above, a random field induc
potential that the walls feel which has the statistics of a r
dom walk so that its variations on a length scaleL are of
orderAL. TheA walls tend to minima of the potential, whil
theB walls tend to maxima. If they meet they annihilate b
on the time scales of interest here, the probability that a
is spontaneously created,e24J/T can be ignored.

As shown by Sinai@26#, the motion of a single domain
wall in such a random potential is completely dominated
the barriers that have to be surmounted to find low ene
extrema. Since the time to surmount a barrier of heightb is
of order eb/T, and to find a minima a distanceL away a
barrier of orderb;hAL will have to be overcome, the typi
cal distance a wall moves in timet is only of order l (t)
; ln2t. Although this motion is controlled by rare therm
fluctuations that take the wall over a large barrier, the po
tion of a wall that started at a known point can, at long tim
be predicted with surprising accuracy. This is because
width of the distribution of barriers to go distances of ordeL
is as broad as the magnitude of the lowest barrier wh
enabled the wall to move that distance. Thus at long tim
when the barriers become very high, the probability of go
first over other than the lowest surmountable barrier that
limits the region in which the wall is currently, is extreme
small. The position of a single wall at long times is th
determined by its initial position and by the height of t
maximum barrier, which itcould surmount up to that time
this quantity, which we denote

G[T ln t, ~20!

yields a well defined region that the wall can explore up
time t. The boundaries of the appropriate region that enco
passes the wall’s initial position are determined byG(t). The
wall will be in local equilbrium in this ‘‘valley’’ on time
scales of ordert, and thus tend to spend most of its time ne
the bottom of the valley. This behavior, as proved
Golosov@38#, implies that the long time dynamics of a sing
06610
a
r

y
g

e

s
f

,

a
-

,
ir

y
y

i-
,
e

h
s,
g
e-

-

r

wall is pseudodeterministic: rescaled by the typical dista
it has gone, ln2t, the wall’s position isasymptotically deter-
ministic at long times.

In a random field Ising chain, the two types of doma
walls move in random potentials which are identical exc
for their sign. When walls meet, they annihilate. Not surpr
ingly, since each wall can move a distance of order ln2t in
time t and they cannot pass through each other or occupy
same position, the density of domain walls remaining at ti
t is simply of order 1/ln2t so that the correlation length star
ing from random~or short-range correlated! initial conditions
grows as

j~ t !;G2/g; ln2t. ~21!

This is in sharp contrast to the much faster power-l
growth of the correlation length in most nonrandom system
for example thej(t);At for Ising systems with a noncon
served order parameter.

The time-dependent correlation length can be more p
cisely defined from the average nonequilibrium correlat
function. This, and most other nonequilibrium properties,
scaling functions of the ratio of lengths to powers of lo
times, as is characteristic of ‘‘activated dynamic scalin
@39# which occurs in many random systems. We find that
zero applied field the average equal-time correlation funct
behaves as

^S0~ t !Sx~ t !&5 (
n52`

` 48164~2n11!2p2g
x

G2

~2n11!4p4

3e2(2n11)2p22g(x/G2) ~22!

whose Fourier transform is, at large time,

(
x52`

1`

eiqx^S0~ t !Sx~ t !&

;
8

p2q2j~ t !
Re@ tanh2

„pAiqj~ t !/2…#, ~23!

with Re denoting the real part. These results obtain until
nonequilibrium correlation length

j~ t !5
T2 ln2 t

2gp2
~24!

reaches the equilibrium correlation length

jeq5
8J2

p2g
5

2

p2
LIM . ~25!

It is intriguing that theform of the nonequilibrium correla-
tions in the universal scaling limit areidentical to those of
the equilibrium correlations, the only difference being t
correlation length.
7-5
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A remarkable property of the coarsening in the RF
chain was conjectured in Ref.@25#: the positions of thesetof
domain walls and hence all of the correlations in the n
equilibrium state areasymptotically deterministicat long
times. This means that while the evolution of the dom
wall structure is only logarithmic in time, the domain wa
configurations of two runs following quenches using t
same sample converge to each other much more rapidly
power of time. More precisely, the probability that the sp
configurations of the two runs measured at the same t
after the quench differ substantially in a region of size
order j(t) decays to zero as a nonuniversal power of tim
becoming negligible well before the system is anywhere n
equilibrium. @Strictly speaking, because in a rare region,
discussed later, fluctuations of the position of an individ
or neighboring pair of domain walls will exist, one will nee
to do a certain amount of time averaging for this pseudo
terminism to become most evident.#

The asymptotic determinism will occur even if the initi
conditions were macroscopically distinct in the two runs:
example, if one was quenched from a high temperature s
in zero applied field, and the other from a high temperat
state with a small net magnetization caused by a unifo
applied field. This pseudodeterminism in a system with ma
degrees of freedom is a dramatic effect; it implies that
history dependence can, even under strongly nonequilibr
conditions, be weak; one might thereby be fooled into thin
ing that such history independence implies equilibrium.

While equal-time correlations during coarsening conve
to an equilibriumlike form, two-time quantities show an i
teresting history dependence, generally depending onboth
times rather than just the time difference as they would do
equilibrium. There are typically three regimes: the later tim
t, much longer than the earlier, timet8, the two times of the
same order, and thedifferencebetween the two times (t
2t8) much smaller than either time. The scaling variables
these three regimes are lnt8/ln t, t8/t, and ln(t2t8)/ln t, re-
spectively. In the first and third of these, the condition
asymptopia, that the scaling variable is small, is very diffic
to attain in practice; thus knowing the full form of the scalin
functions is essential for analyzing experimental or num
cal data. Note that only in the last of these regimes sho
one expect to find an equilibriumlike behavior characteris
of the local equilibrium that is being probed.

In this paper we compute a variety of correlations a
response functions that illustrate some of the interesting n
equilibrium behaviors. The simplest of these is the tempo
autocorrelations of a single spin. With no applied field, t
average autocorrelation function is found to decay a
power of the ratio of the correlation lengths at two times

^Sx~ t !Sx~ t8!&;S j~ t8!

j~ t ! D l

, ~26!

for t.t8 with the exponentl51/2. In a three-dimensiona
spin glass, the autocorrelation function determines the n
equilibrium decay of the magnetization after a large unifo
field is turned off below the transition temperature@5#. There
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are complications here due to the fact that a small app
field needs to be left on to provide the randomness, but
basic physics is similar.

The single spin autocorrelation function provides so
information on how much memory the system has of
earlier history. More information is provided by the two-sp
two-time correlation function^Sx(t)Sy(t)&^Sx(t8)Sy(t8)&
which converges to a scaling function of (x2y)/j(t) and
j(t8)/j(t), whose Fourier transform in (x2y), D(q,t,t8)
we compute exactly; to our knowledge, this is the first su
computation for a physical model pure or random. For
ideal spin glass in which there are no correlations betw
the positions of positive and negative exchanges and the
tribution of the exchange strengths is symmetric inJ→2J,
this correlation function D is the average over the
randomness—or equivalently a positional average over
regions being probed by the scattering—of the product of
magnetic scattering intensity at timet and wave vectork and
that at timet8 and wave vectorq2k.

Other properties associated with ‘‘aging’’ can also
computed exactly; we study the thermal fluctuations arou
the configurations at two different times, and the dynam
linear response to a uniform magnetic field that is turned
after waiting for some time for the system to equilibrate.
equilibrium, these are related by the fluctuation dissipat
theorem but we find, as expected, that this relation gener
fails except in the limit that the time difference is much le
than the waiting time. The behavior we find is, howev
rather different from that found in mean-field models@40#,
and we discuss the contrasts between these results.

In random systems controlled by zero temperature fix
points, such as is the case in the regime of scales stu
here, thermal fluctuations and linear response functions
both dominated by rare spatially isolated regions of
system—although which regions dominate depends on
time scales and properties of interest. The study of these
involves thecorrectionsto the deterministic approximation
to the dynamics that led, as discussed above, to e
asymptotic results for many other quantities. The domin
events are rare by a factor of, typically, 1/lnt, but neverthe-
less still lead to universal results.

‘‘Persistence’’ properties provide another probe of ho
much memory a system retains of its initial configuration,
example, what the probability is that a spin has never flipp
Surprisingly, this and other related quantities—includi
some which are not known in pure systems—can also
computed exactly for the RFIM chains.

IV. REAL-SPACE RENORMALIZATION METHOD

The coarsening process taking place in nonequilibri
dynamics of the RFIM starting from random initial cond
tions can be thought of as a reaction-diffusion process i
1D random environment~Sinai landscape! for the domain
walls. Indeed, in the regimeT!J considered in this paper
the creation of pairs of domain walls is highly suppress
The dynamics of the domain walls is thus dominated by
random field as follows. The domains wallsA quickly fall to
the local minima of the random potentialV( i )[Vi , whereas
7-6
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the B walls quickly move to the local maxima ofVi . Then
they slowly diffuse by going over barriers inoppositeSinai
potentials6Vi . When aA andB walls meet, they annihilate
preserving the alternatingABAB . . . sequence.

We can thus use the real-space renormalisation proce
introduced in Ref.@28# to study the Sinai diffusion of a
single particle, and extend it to take into account the ann
lation processes. In the single particle case this proced
was shown to be asymptotically exact at long length a
time scales. Here it is also expected to be asymptotic
exact at large time, since, as in the Sinai case, we find
the the effective distribution of the random barrier heig
become infinitely broad in the limit of large scales. Thus t
motion over the barriers becomes more and more determ
istic at long times.

A. Definition of the real space renormalization procedure

We briefly outline the renormalization procedure, detai
in Refs. @25,28#, for the diffusion of a particle in the Sina
landscapeVi . Grouping segments with the same sign of t
random field, one can start with no loss of generality from
‘‘zigzag’’ potential Vi where each segment~‘‘bond’’ ! is
characterized by an energy barrierFi5uVi2Vi 11u and a
length l i . From the independence of the random fields
each site, the pairs of bond variables (F,l ) are independen
from bond to bond and are chosen from a distributionP(F,l )
normalized to unity.

The RG procedure which captures the long time beha
in a given energy landscape is illustrated in Fig. 1. It cons
of the iterative decimation of the bond with thesmallest
barrier, and hence the shortest time scale for domain wall
overcome it@25,28#. This smallest barrier, say,F2, together
with its neighbors, the two bonds 1 and 3, are replaced b
single renormalized bond with barrier

F85F12F21F3 ~27!

and length

l 85 l 11 l 21 l 3 . ~28!

FIG. 1. ~a! Energy landscape in the Sinai model~b! decimation
method: the bond with the smallest barrierFmin5F2 is eliminated,
resulting in three bonds being grouped into one.
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This defines a renormalized landscape at scaleG, where all
barriers smaller thanG have been eliminated.

Since the distribution of barriers is found to becom
broader and broader@31# an Arrhenius argument implies tha
the diffusion of a particle becomes better and better appr
mated at large time by the following ‘‘effective dynamics
@25,28#. The positionx(t) of a particle that started atx0 at
t50 coincides with—or is at least very close to—the botto
of the renormalized bond at scale

G5T ln t, ~29!

which containsx0. Note that we choose time units so as
set the microscopic~nonuniversal! inverse attempt frequenc
to unity @25,28#. This RG procedure is thus essentially de
mation in time. Processes that are faster than a given ti
scale are decimated away and assumed to be in local e
librium.

In the presence of domain walls of typesA and B, we
must keep track of both the diffusion and the possible re
tions of the domain walls that occur during the decimatio
Upon the decimation of bond 2~see Fig. 1!, there are four
possible cases, illustrated in Fig. 2, according to whethe
not there is a typeA wall at the bottom of bond~2!, and
whether or not there is a typeB wall at the top of bond~2!.
If ~i! there are no typeA or B walls, then one simply renor
malizes the bond and nothing happens to the domain wall
~ii ! there is anA wall but noB wall, then theA wall goes to
the bottom of the new renormalized bond. If~iii ! there is aB
wall and noA wall then theB wall goes to the top of the new
renormalized bond. And if~iv! there is both anA wall and a
B wall, then the two domain walls meet and annihilate up
decimation. This annihilation will occur at a time of orde
eG/T determined by the barrier of the decimated bond:
assumption,G at this scale.

The only truly new process compared to the single p
ticle diffusion is the case~iv!. The above RG rule is consis
tent with the large time dynamics in this case for the follo
ing reason. SinceA andB domains diffuse with independen

FIG. 2. The four possible cases of evolution under the decim
tion of the middle bond of the domain walls, given the constraint
alternating sequence of domains.A andB denote the domain walls
(1u2) and (2u1), respectively,B denotes no domain wal
present at the top or bottom of the renormalized bond, whileC
represents eitherB or B andD represents eitherA or B.
7-7
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thermal noises, the time it takes for them to meet is ag
T ln t5F ~accurate on a log scale!. Indeed the probability tha
they meet at a point at potentialV is ;exp„2(F2V)/
T)exp(2V/T)5exp(2F/T… @as can be seen from considerin
the equivalent 2d diffusion problem~of the pair of wall po-
sitions! with an absorbing wall atx1y5 l #.

The second difference from the procedure in the case
the single particle, is that it must be stopped when the ren
malisation scaleG reaches the energy cost of creation o
pair of domain walls:

G5GJ54J. ~30!

Indeed beyond this scaleT ln t.GJ one must take into ac
count creation of pairs of domain walls. As will be show
below, the stateat G5GJ gives the final equilibrium state.

B. RG equations and statistical fixed point of the landscape

Independently of whether the bonds contain domain w
(A or B) or not, which is studied in Sec. V, one can study t
evolution under RG of the landscape. Since the RG ru
preserve the statistical independence of the variables (F,l )
from bonds to bonds, it is possible to write closed RG eq
tions for the landscape, i.e., forPG

1(z5F2G,l ) and PG
2(z

5F2G,l ) which denote the probabilities that a6 renormal-
ized bond at scaleG has a barrier

F5G1z.G ~31!

and a lengthl, each normalized by*0
`dz*0

`dlPG
6(z,l )51,

~]G2]z!PG
6~z,l !5PG

7~0,.!* l PG
6~ .,.!* z,l PG

6~ .,.! ~32!

1PG
6~z,l !E

0

`

dl8„PG
6~0,l 8!2PG

7~0,l 8!…, ~33!

where *l denotes a convolution with respect tol only and
* z,l with respect to bothz and l with the variables to be
convoluted denoted by dots. As discussed in Refs.@31,28#,
the solutions of these RG equations depend on an assym
parameterd defined as the nonvanishing root of the equat

e24dh51, ~34!

which reduces in the limit of weak biasH to

d.
H

2g
, ~35!

with d50 in the absence of a uniform applied field. O
results are valid for long times as long as

dT!1. ~36!

For largeG, the Laplace transform of the distributionsPG
6

take the following form, in the scaling regime of smalld and
small p with dG fixed andpG2 fixed @31#:

E
0

`

dlPG
6~z,l !e2ql5UG

6S q

2gDe2zuG
6(q/2g)
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6~p!5Ap1d2coth@GAp1d2#7d

UG
6~p!5

Ap1d2

sinh@GAp1d2#
e7dG. ~37!

This exact knowledge of the renormalized landscape will
used below to extract physical quantities for the spin mod

C. Convergence toward ‘‘full’’ states:
Asymptotic determinism

Even armed with the statistical properties of the renorm
ized landscape, we still have to determine the long time d
tribution of the occupation of the extrema of this landsca
by A andB domain walls. At first sight this seems a difficu
problem. Indeed, the positions ofA andB walls can be cor-
related over many bonds of the renormalized landscape s
there area priori empty maxima and minima and the doma
wall positions must respect the alternating constra
ABABAB. However, the RG analysis becomes simple if t
system reaches at some stage a ‘‘full’’ state which has onA
wall at each minimum and oneB wall at each maximum of
the renormalized landscape, as illustrated in Fig. 3. It is e
to see that such a ‘‘full’’ state is preserved by the RG p
cedure. Also note that this ‘‘full’’ state would be obtaine
from the beginning if, for instance, the initial condition we
completly antiferromagnetic.

Generally, we consider random initial conditions and th
the initial state is n&ot a ‘‘full’’ state. However, one can show
that the system convergesexponentiallyin G toward a ‘‘full’’
state, as we now discuss.

The renormalization procedure for the coarsening proc
of the RFIM has the following important property: the co
figuration for the spins at scaleG depends only on therenor-
malizedlandscape atG and on theinitial configuration of the
spins ~e.g., equilibrium at high temperature before t
quench att50). In particular, it does not depend on th
initial landscape or—except occasionally at early times
fore the barrier distribution becomes very broad—on
whole history of the reaction-diffusion processes of dom
walls.

Let us first consider one ascending bond with extremit
(x,y) of the renormalized landscape and assume that th
were initially n domain walls in the interval (x,y). Neglect-
ing for the time being the influence of the two neighbori

FIG. 3. Full state in the renormalized landscape; as we sh
this corresponds to the state at large time~see the text!. The top and
bottom of the bonds are occupied byB andA domain walls, respec-
tively. The correponding spin orientations are also indicated for
RFIM. Decimation under an increase ofG corresponds to an anni
hilation of the domain with the smallest barrier. For the spin gla
the position of the domain walls corresponds to the frustra
bonds.
7-8
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bonds, it is easy to see that the state atG is determined only
by n and does not depend on the order in which the react
between domain walls have occured: indeed, it is determi
by the parity of n and by the nature of the domain wa
closest to the bottom end. There are several cases.

~i! If n50, then the final state of the occupation of t
end points of the bond is (B,B).

~ii ! If n is odd, and if the domain wall closest to th
bottom is of typeA, then the final state is (A,B)

~iii ! If n is odd, and if the domain wall closest to th
bottom is of typeB, then the final state is (B,B)

~iv! If n is even withn>2 and the domain wall closest t
the bottom is of typeA, then the final state is (A,B)

~v! If n is even withn>2 and the domain wall closest t
the bottom wall is of typeB, then the final state is (B,B).

Of course, to obtain the real occupation of the top and
bottom ends of one renormalized bond, one also need
consider what happens on the two neighboring renormal
bonds, and to compute the probabilities of the various sta
taking properly care of the alternating constraintABAB.
This is done in Appendix A. It is found that the cruci
feature is that in order for a bond not to have both en
occupied by domain walls, either it or one of its neighbori
bonds must have hadno domain walls on it initially. Since
the bonds tend to become progressively longer with time,
chance of this occuring drops rapidly with increasingG. This
will be true even if the positions of the domain walls ha
some local correlations, in particular for the case of an ini
state that corresponds to a high temperature configuratio
a small magnetic field so that there is an initial magnetizat
and the typical distances between a neighboringA andB wall
will depend on which of the two is on the left.

We thus find that the system converges towards
‘‘full’’ state of the renormalized landscape exponentially fa
in G, with a nonuniversal coefficient that depends on
initial concentration of domain walls, on the inital magne
zation, and on the strength of the randomness. This co
sponds to apower lawdecay in time, ast2h with h nonuni-
versal, of the probability that a maximum or minimum of th
renormalized landscape at timet is unoccupied. The posi
tions of the full set of domain walls at long times are th
asymptotically deterministic and independent of the init
conditions provided these have only short range correlatio
Concretely, this asymptotic determinism can be charac
ized by the typical mean distance between ‘‘missing’’ d
main walls, i.e., deviations from the deterministic full sta
The distance between these ‘‘errors’’ will grow expone
tially in G and hence as a power of time. The only exceptio
to this are associated with fluctuations in the~nominally! full
states: because of the rare times or configurations in w
domain walls are either about to annihilate or are spend
substantial fractions of their time in more than one valle
these fluctuation induced ‘‘errors’’ we will study in deta
later; they decay far more slowly with time than any pers
tent initial condition induced differences between runs.

Since all the universal quantities that we will study ha
length scales that grow much more slowly—typica
logarithmically—in time, or probabilites of occurring whic
decay much more slowly with time—typically as powers
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1/G;1/ln2t—we restrict consideration in what follows to th
analysis of full states. Note that our results for the bias
case in which there is a small uniform field applied in ad
tion to the random field do yield a power law growth of th
correlation length with time; however, in the regime of v
lidity of these results, the power law is very small, and ag
the effects of ‘‘missing’’ domain walls are negligible at lon
times.

D. Convergence toward equilibrium

As mentioned earlier, the RG procedure must be stop
at

G5GJ54J, ~38!

since at this scale one must start to take into account
energetic benfits of creation of pairs of domain walls. At
scaleG5GJ the typical domain size is the Imry-Ma lengt
LIM 54J2/g, and the energy cannot be lowered further
any process in the full state. Indeed, moving the doma
walls without changing their number cannot lower the to
energy, since domain walls already occupy all tops and b
toms of the renormalized potential. Decreasing the num
of domain walls by two also cannot lower the energy, sin
the gain is 4J while the loss due to the random field for wal
separated by a bond of barrierF is F.G54J. Similarly, to
add the two walls the cost is 4J and the gain isF,G54J,
since the only positions they can occupy are by definit
separated by a barrier,G which has already been dec
mated. Thus if the renormalization is stopped atGJ , in the
small field, lowT scaling limit the configuration of the walls
corresponds precisely to the ground state and, up to ne
gible thermal fluctuations, to the thermalequilibrium state.
Thus we are able to compute equilibrium properties straig
forwardly from the renormalization group analysis.

Thus the RG approach allows one to study the appro
to equilibrium starting from any initial condition characte
ized by typical domain sizesL0e2J/T0!LIM , whereT0 rep-
resents the temperature before the quench. As expla
above, under these conditions the relaxation towards equ
rium always takes place by diffusion and annihilation of d
main walls before any domain creation can occur.

E. Approach to equilibrium from more ordered initial
conditions

A qualitatively different type of evolution towards equ
librium takes place in the other limit~not studied here!,

L0;e2J/T0@LIM 5
4J2

g
, ~39!

still imposingh!T0. This is a regime of initial temperature
low enough that the initial density of domains is very sma
In this case a very different relaxation process toward
same equilibrium statediscussed above takes place: forG
,GJ54J well separated domain walls diffuse independen
with very rare annihilations. WhenG reachesGJ many do-
main walls are ‘‘suddenly’’—within a factor of 2 or so in
7-9
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time—created, and the large initial domains break into ma
smaller ones of sizeLIM . Thus, the relaxation is more abru
in this case than in the more interesting one studied in
present paper.

V. ENERGY, MAGNETIZATION, AND DOMAIN SIZE
DISTRIBUTION

From the knowledge of the fixed point for renormaliz
landscape@Eq. ~37!# and the fact that the system reaches
full state~exponentially fast inG! where each top is occupie
by a B domain and each bottom by aA domain, we can
immediately compute several simple quantities. We w
compare these results with the existing exact results kn
in the statics.

A. RFIM without applied field

Specializing Eq.~37! to the cased50 in the absence o
an applied field, the fixed point of the RG equation is@30,31#

P̃* ~h,l!5LTs→l
21 S As

sinhAs
e2hAs cothAsD , ~40!

where we have introduced the dimensionless rescaled
ables for barriers,

h5~F2G!/G, ~41!

and for bond lengths,

l52g
l

G2
. ~42!

1. Number of domain walls per unit length

Thus for largeG5T ln t, the average bond lengthl̄ G ,
equal to the average distance between two domain w
behaves as

l̄ G5
1

4g
G25

1

4g
T2 ln2 t. ~43!

The number of domain walls per unit length decays as

n~ t !5
4g

T2 ln2 t
, ~44!

up to time teq;exp(4J/T) at which equilibrium is reached
and

n~ teq!5neq5
1

LIM
. ~45!

2. Energy density

The energy per spin as a function of time~i.e., of G
5T ln t) is simply given by

EG.2J1nG~2J2 1
2 ^F&G! ~46!
06610
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52J1
4g

~T ln t !2
~2J2T ln t !, ~47!

where ^F&G denotes the averaged barrier at scaleG. This
formula holds up to timeteq;exp(4J/T) where the ground
state energy at equilibrium is reached:

Egs.2J2
g

2J
. ~48!

Since we consider the regimeg!J, this result is expected to
be exact to first order ing/J. It does indeed agrees with th
exact result of Ref.@19# concerning the bimodal distribution
expanded to first order ing. To obtain higher orders in the
expansion ing/J one would need to compute within the R
higher orders in a 1/G expansion.

Note that the entropy per spin atT50 computed in Ref.
@19# for 6h distributions originates from degenerate co
figurations occuring from short scales and is thus nonuniv
sal. If the distribution is continuous we expectS;T from
short scales, also nonuniversal.

3. Distribution of lengths of domains

Since the bond lengths in the renormalized landscape
uncorrelated, we obtain the result that the lengths of the
mains in the RFIM~both in the long time dynamics and a
equilibrium! are independent random variables. ~Note that
this is different from the exact result for the dynamics of t
pure Ising chain obtained in Ref.@41#.!

Moreover, during the coarsening process, the probab
distribution of the rescaled lengthl52gl/G252gl/T2ln2t is
obtained as

P* ~l!5LTp→l
21 S 1

cosh~Ap!
D ~49!

5 (
n52`

` S n1
1

2Dp~21!ne2p2l[n1(1/2)]2

5
1

Ap l3/2 (
m52`

`

~21!mS m1
1

2D
3e2(1/l)[m1(1/2)]2. ~50!

The distribution of the length of domains at equilibrium
also given byP(leq), where

leq5
2gl

GJ
2

5
l

2LIM
. ~51!

B. Spin glass in a field

Using the gauge transformation described in Sec. II B,
above results readily apply also to the spin glass in a fie
Let us recall that a domain in the RFIM corresponds in
SG to an interval between two frustrated bonds. Using
above expressions for the zero applied field RFIM and
7-10
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placing g→h2, we thus obtain the averaged size of the
domains from Eq.~43!, their number per unit length from
Eqs.~44! and~45!, and their distribution of lengths from Eqs
~49! and ~51!.

The distribution PG(M ) of the magnetization M
5u( i P domains i u of each domain is obtained from the distr
bution of barriers as

PG~M !5
1

MG
expS 2

M2MG

MG
D u~M2MG!, ~52!

MG5
G

2h
, ~53!

with G5T ln t. In equilibrium the same result holds wit
MG→2J/h. Note that since this variable is proportional
the barrier, there are no domains of magnetization sma
than MG . Similarly the joint distribution of magnetization
and length is given by Eq.~40! in Laplace transform and
rescaled variablesh5(M2MG)/MG andl52h2l /G2, with
again the property of statistical independence of doma
Finally, the energy per spin is given by expression~47!, re-
placingg→h2.

Note that the results here are, strictly speaking, restric
to the case in which the mapping to a random field Is
model is exact: the case in which all of the exchange in
actions have the same magnitude and only differ in si
Nevertheless, in the more general case with a distributio
uJu ’s, the universal aspects of the nonequilibrium behav
will be the same as long as there is a nonzero lower boun
this distribution, uJumin . However, at times longer tha
T ln t5uJumin, domain walls will no longer necessarily be a
nihilated; whether they are or not will depend on the locaJ
as well as on the renormalized potential. This will, of cour
also affect the equilibrium positions of domain walls, b
because there will always tend to be weak exchanges ne
the extrema of the potential caused by the random fields,
changes in the positions of the walls will be negligible on t
scale of the correlation length.

C. RFIM in an applied field

In a similar manner to the above analysis, we obtain
sults when a small uniform fieldH is applied. Solutions~37!
of the RG equations now depend on the parameterd defined
as the nonvanishing root of Eq.~34!, equal tod5H/(2g) in
the small field limit for which our results will be asymptot
cally exact.

1. Number of domain walls and magnetization

The averaged sizes of domains (7) ~with spins oriented
respectively against and along the field! are found both to
grow with time as

l̄ G
25G2

1

4gg S 12
sinh~g!

g
e2gD , ~54!

l̄ G
15G2

1

4gg S eg
sinh~g!

g
21D , ~55!
06610
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s.

d
g
r-
.

of
r
to

,
t
to

he

-

whereg5Gd5dT ln t andG5T ln t. In the long time limit it
is these are

l̄ G
2'

T ln t

2H
, ~56!

l̄ G
1'

g

2H2
tTH/g. ~57!

Note that the fact that the length of domains with spins in
opposite direction from the applied field still grow, on ave
age, is simply due to the fact that the smallest ones~with
barriers smaller thanT ln t) keep being eliminated.

The number of domain walls per unit length thus deca
as

n~ t !.
2

l̄ G
11 l̄ G

2
54g

d2

sinh2~dT ln t !
, ~58!

and the magnetization per spin grows as

m~ t !5
l̄ G

12 l̄ G
2

l̄ G
11 l̄ G

2
5MF H

2g
T ln t G , ~59!

M@g#5coth~g!2
g

sinh~g!2
. ~60!

The functionM@g# starts asM@g#; 2
3 g for small g, and

goes exponentially toM51 for largeg.
These results hold up to timeteq;exp(4J/T) at which

equilibrium is reached. The number of domain walls per u
length in the equilibrium state is thus

neq.4g
d2

sinh2~4dJ!
, ~61!

with averaged sizes

l̄ eq
2 '

2J

H
, ~62!

l̄ eq
1 '

g

2H2
e4JH/g. ~63!

The equilibrium magnetization per spinmeq is

meq5m~ teq!5MF2JH

g G . ~64!

2. Energy per spin

The energy per spin as a function of time~i.e., of G
5T ln t) is simply

EG52J2H1nGS 2J2
1

2
^F&2D ~65!
7-11
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52J2H1
4d2g

sinh2~dG!
F2J2

1

2 S G1
1

2d
~12e22Gd! D G ,

~66!

where ^F&2 denotes the averaged barrier of bonds aga
the field at scaleG. This obtains up to scaleGeq54J, at
which equilibrium is reached with ground state energy

Egs52J2H2
dg

sinh2~4Jd!
~12e28Jd!. ~67!

This result is compatible with the result Eq.~80! of
Derrida-Hilhorst @18# obtained from studying products o
random matrices, as can be checked with the correspond
aDH52d. In addition, here we obtain the explicit scalin
form in the smalld limit with dJ fixed. We have checked
that this scaling form is also consistent with the exact re
@Eq. ~8! in Ref. @19## for the bimodal distribution at leading
order ind.

3. Distribution of domain lengths PG
Á(l)

As in the zero field case, the lengths of the domains
independent random variables. Their probability distrib
tions can be obtained from Laplace inversion of Eq.~37!. For
6 domains they read

P6~ l !5 (
n50

1`

cn
6~g!sn

6~g!e2 lsn
6(g), ~68!

where g5dT ln t, and the functionscn
6(g) and sn

6(g) are
given in Eqs.~50!–~53! of Ref. @28#.

VI. EQUAL-TIME TWO-SPIN CORRELATION FUNCTION
ŠS0„T…Sx„T…‹ IN THE RFIM

We can compute the disorder averaged two spin corr
tion function by noting that, in a given environment, th
equal-time two-spin thermal correlation̂S0(t)Sx(t)& is
equal to11 if the points 0 andx are at scaleG5T ln t on
renormalized bonds of the same orientation~i.e. both ascend-
ing or both descending!, and is equal to21 otherwise.

A. Zero applied field

The average over the environments is, in zero fieldH
50,

^S0~ t !Sx~ t !&5 (
n50

`

~21!nQG
(n)~x!, ~69!

FIG. 4. Renormalized landscape at scaleG5T ln t, indicating
sites 0 andx of two spins and the bonds between them.
06610
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whereQG
(n)(x) is defined as the probability that pointx be-

longs to the bondn given that the point 0 belongs to th
bond 0 of the renormalized landscape~see Fig. 4!. We have
the normalization(n50

` QG
(n)(x)51. For n50, the probabil-

ity that x is on the same renormalized bond as 0 is

QG
(0)~x!5

1

l̄ G

E
0

`

dl0PG~ l 0!E
0

l 0
dy1E

y1

l 0
dy2d„x2~y22y1!…,

~70!

and thus, after rescaling the variables, we find

QG
(0)~x!5q0S X52g

x

G2D , ~71!

where

q0~X!52E
X

`

dl0~l02X!P* ~l0! ~72!

in terms of the fixed point solutionP* (l) given in Eq.~49!
for the distribution of rescaled lengthsl52gl/G2. For n
>1, we have

QG
(n)~x!5qnS X52g

x

G2D , ~73!

with

qn~X!52E
y1 ,y2 ,l i.0

P* ~l0!P* ~l1!•••P* ~ln21!P* ~ln!

~74!

d„X2~y11l11l21•••1ln211y2!…u~l02y1!

3u~ln2y2!. ~75!

The Laplace transforms read

q0~s!5E
0

`

dXe2sXq0~X!5
2

s2 S P* ~s!211
s

2D , ~76!

qn~s!5E
0

`

dXe2sXqn~X!

52S 12P* ~s!

s D 2

@P* ~s!#n21 for n>1, ~77!

and thus

(
n50

`

~21!nqn~s!5
1

s
2

4

s2 S 12P* ~s!

11P* ~s!
D . ~78!

Now using the explicit solutionP* (s)51/cosh(As), we
finally obtain
7-12
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^S0~ t !Sx~ t !&5LTs→X52g ~ uxu/G2!

21 F1

s
2

4

s2
tanh2SAs

2 D G
~79!

5 (
n52`

` 48164~2n11!2p2g
uxu

G2

~2n11!4p4

3e2(2n11)2p22g(uxu/G2) ~80!

with G5T ln t. The leading long-distance behavior of th
equal time correlation function is proportional toxe2x/j(t)

rather than a simple exponential. The Fourier transform
the spin-spin correlation function is simply

(
x52`

1`

eiqx^S0~ t !Sx~ t !&5
8

p2q2j~ t !
Re@ tanh2

„pAiqj~ t !/2…#,

~81!

with Re denoting the real part. As explained previously,
renormalization procedure has to be stopped atG.GJ54J,
i.e., t;teq;exp(4J/T) where the equilibrium state has bee
reached. Thus Eq.~80! with G5GJ gives the mean equilib
rium spin correlation function. The correlation lengthj(t) is
given by the decay of the (n50) term which dominates a
large distances

j~ t !5
T2 ln2 t

2gp2
~82!

up to scaleT ln teq5GJ54J, and we obtain the correlatio
length at equilibrium:

jeq5j~ teq!5
8J2

p2g
5

2

p2
LIM . ~83!

This formula is in agreement with the limith!J of the exact
result for the equilibrium correlation of Ref.@20# in the case
of a bimodal distribution (6h). Finally, note that the RFIM
two-point correlation function^Si(t)Si 1x(t)& also corre-
sponds for the spin-glass to the following correlation fun
tion involving the zero-fieldT50 ground states i

(0) :

^Si~ t !Si 1x~ t !&5s i
(0)s i 1x

(0) ^s i~ t !s i 1x~ t !&. ~84!

B. Nonzero applied field

In the presence of an applied fieldH.0, one defines
Ct

e1 ,e2(x) as the probability that sgn@S0(t)#5e1 and
sgn@Sx(t)#5e2. One has

^S0~ t !Sx~ t !&5Ct
11~x!1Ct

22~x!22Ct
12~x!, ~85!

We know already that
06610
f

e

-

Ct
11~x!1Ct

12~x!5Prob$sgn@S0~ t !#511%5
l̄ G

1

l̄ G
11 l̄ G

2
,

~86!

Ct
22~x!1Ct

12~x!5Prob$sgn@S0~ t !#521%5
l̄ G

2

l̄ G
11 l̄ G

2
,

~87!

and we can thus write the correlation function as

^S0~ t !Sx~ t !&2^S0~ t !& ^Sx~ t !&

5124Ct
12~x!2S l̄ G

12 l̄ G
2

l̄ G
11 l̄ G

2D 2

. ~88!

Performing an analysis similar to the case of zero field,
obtain the Laplace transform

E
0

`

dxe2qxCt
12~x!5

„12PG
1~q!…„12PG

2~q!…

~ l̄ G
11 l̄ G

2!q2
„12PG

1~q!PG
2~q!…

.

~89!

The Laplace inversion can be performed as in Ref.@28#. The
correlation decays as a sum of exponentials, and the t
which dominates the asymptotic decay gives a correla
length

j~ t !5
G2

2gs0
1~g!

, ~90!

whereG5T ln t, g5dT ln t, and the functions0
1(g) is de-

fined by Eqs.~50! and ~52! in Ref. @28#. In particular the
asymptotic behavior for largeg is

j~ t !; l̄ G
1;

g

2H2
tHT/g. ~91!

Note that even for the equilibrium case (g5dGJ54dJ), this
correlation length

jeq;
g

2H2
e4HJ/g ~92!

does not seem to have been obtained previously; it is v
different from the correlation length of thetruncated
correlations—i.e., that of the thermal fluctuations
computed for bimodal distribution in@20# and discussed her
in Sec. VIII A.

VII. AGING AND TWO-TIME CORRELATIONS

Some of the most interesting properties of random s
tems involve ‘‘aging,’’ the dependence of measured qua
ties on the history of the system, particularly on how long
has been equilibrated for. In this section we study one of
fundamental properties which show the effects of agi
two-time nonequilibrium correlations. As before, the syste
7-13
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is quenched from a random initial condition at timet50, and
we study the aging dynamics at late times between timet8
5tw—the waiting time—andt, botht8 andt.t8 being large.

We first consider the autocorrelation function of a giv
spin, from which one can extract the autocorrelation ex
nentl. Note that since this is a single site quantity it appl
directly to both the random field and spin glass problems

A. Spin autocorrelations in zero applied field

We consider the autocorrelations of the random field Is
model in zero applied field,H50:

C~ t,t8!5^Si~ t !Si~ t8!&. ~93!

Except at short times the system is in the ‘‘full’’ state, a
henceC(t,t8) is simply the probability that the sitei—which
we take to be the origin—belongs at both timet8 and timet
to renormalized bonds with the same orientation. Thus
quantity can in principle be obtained from the result in R
@28# for the probabilityP(x,t;x8t8u0,0) that a particle diffus-
ing in a Sinai landscape starting at 0 at timet50 is atx8 at
t8 andx at t. IndeedC(t,t8) ~since it is computed in the ful
state! is simply related to the probability that a particles po
titions X(t) andX(t8) have the same sign. However, it ca
also be obtained through a much simpler direct computat
which we now present.

We definePG,G8
11 (z). „PG,G8

21 (z)… as the probability that the
origin is on a descending bond atG8, and is on a descendin
~ascending! bond of strengthz at a later stage,G. The RG
equations read

~]G2]z!PG,G8
61

~z!522PG
7~0!PG,G8

61
~z!

12PG
7~0!PG

6~• !* zPG,G8
61

~• !

1PG
6~• !* zPG

6~• !PG,G8
71

~0! ~94!

together with the initial conditions

PG8,G8
11

~z!5
1

2E0

`

dl
lPG8~z,l !

l̄ G8

, ~95!

PG8,G8
21

~z!50. ~96!

We introduce the scaling variable

a[
G

G8
5

ln t

ln t8
. ~97!

Since for largeG8, PG8 has reached its fixed point value@Eq.
~40!#, in terms of the rescaled variableh5z/G one has

~a]a2~11h!]h11!Pa
61~h!

52E
0

h
dh8e2(h2h8)Pa

61~h8!1he2hPa
71~0!,

~98!
06610
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together with initial conditions ata51,

Pa51
11 ~h!5

1

2

E
0

`

dllP* ~h,l!

l̄
5

1

6
~112h!e2h,

~99!

andPa51
21 (h)50. The solutions are

Pa
61~h!5

1

2
~Aa

611hBa
61!e2h, ~100!

with

Aa
615

1

6
6

1

3a
7

1

6a2 , ~101!

Ba
615

1

3
6

1

3a
, ~102!

which obey the normalization condition*0
`dh„Pa

11(h)
1Pa

21(h)…5 1
2 . Since with H50 we have Pa

62(h)
5Pa

71(h), we obtain

C~ t,t8!5E
0

`

dh„Pa
11~h!1Pa

12~h!2Pa
12~h!2Pa

21~h!…

~103!

5Aa
211Ba

212Aa
212Ba

215
4

3a
2

1

3a2 , ~104!

and thus the autocorrelation function of the RFIM in ze
applied field at large timest>t8 is

^Si~ t !Si~ t8!&5
4

3 S ln t8

ln t D2
1

3 S ln t8

ln t D 2

. ~105!

In particular the asymptotic behavior for fixedt8 is

^Si~ t !Si~ t8!&}S l̄ ~ t8!

l̄ ~ t !
D l

, ~106!

where l̄ (t); ln2t is the characteristic length of the coarseni
in the RFIM, and where theautocorrelation exponentis

l5 1
2 . ~107!

The autocorrelation being invariant under gauge transfor
tions, for the spin glass we immediately obtain

^s i~ t !s i~ t8!&5^Si~ t !Si~ t8!&;S l̄ ~ t8!

l̄ ~ t !
D l

with l5
1

2
.

~108!

Note that this value ofl saturates the lower bound ofd/2 in
contrast to the pure 1D Ising case which saturates the u
bound ofl5d @5#.
7-14
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B. Autocorrelations for the RFIM in an applied field

In the presence of an applied fieldH.0 the calculation is
similar to the above; it is detailed in Appendix B. Using th
scaling variables

g5dG'
H

2g
T ln t, ~109!

g85dG8'
H

2g
T ln t8 ~110!

for small H, and the magnetization per spin,

^Si~ t !&5m~ t !5M~g!5cothg2
g

sinh2g
, ~111!

the result for the autocorrelation function is

^Si~ t8!Si~ t !&2^Si~ t !& ^Si~ t8!&

5
1

sinh2g
„~2g2g8!M~g8!1g8 cothg821….

~112!

The long time asymptotic behavior is

^Si~ t8!Si~ t !&2^Si~ t !& ^Si~ t8!&5
4HT ln t

gtHT/g
m~ t8!.

~113!
ts
th
rg

t
-
x

06610
This result is valid, strictly, to leading order indT. In general
the exponent for the power law decay in time which occ
here and for other quantities in the presence of a unifo
applied field will haveO(d2T2) corrections.

C. Two-point two-time correlation function for the spin glass

In order to characterize the spatial aspects of aging
namics in the spin glass we have computed the correla
function

^S0~ t !Sx~ t !&^S0~ t8!Sx~ t8!&5FS x

G82
;

G

G8
D , ~114!

with t.t8; this becomes, at long times, a scaling function

X[
x

T2 ln2 t8
~115!

and

a5 ln t/ ln t8>1. ~116!

We compute the scaling functionF@X,a# in Appendix C.
For simplicity we have set 2g51. In Laplace transform vari-
ables we have
F̂@p,a#5E
0

`

dXe2pXF~X;a!5
1

p
2

4

p2
tanh2S Ap

2
D 1

2

a2p3 sinh2~Ap!
coth2S aAp

2
D @813p

216 cosh~Ap!18Ap sinh~Ap!1~815p!cosh~2Ap!212Ap sinh~2Ap!#2
16

a2p2

cothS aAp

2
D

Ap

3„12Ap coth~Ap!…S 2

Ap
tanhS Ap

2
D 21D 2

16

a2p3 sinh2S aAp

2
D „12Ap coth~Ap!…2. ~117!
ure
Because the change of correlations between two poin
caused only by passing of domain walls through one of
end points, the two-time correlation function decays at la
x to the square of the autocorrelation function~105!, i.e.,

limp2.0pF̂@p,a#5(4a21)2/(9a4). The spatial decay to
this constant value is determined by the closest poles to
imaginary axis in the complexp plane. This yields an expo
nential decay with a characteristic length which is the ma
mum ofj(t8)5(G8/p)2 andj(t)/45(G/2p)2. In the regime
is
e
e

he

i-

a;1, corresponding to lnt'ln t8, we have the following ex-
pansion to orderO(a21):

E
0

`

dXe2pXF~X;a!5
1

p
2~a21!

8

p2 S 12
Ap

sinh~Ap!
D .

~118!

Note that in experiments one could in principle meas
7-15



s
re

in

-

b

in
to
h

el
e

ific
the

d

er,
ts in

ili-
ob-
n

der
ture

et

ut
ed
the

be
t

e-

-

ex-

on

FISHER, LE DOUSSAL, AND MONTHUS PHYSICAL REVIEW E64 066107
the Fourier transform which is related to the cros
correlations of the scattering speckle patterns at two diffe
times. It reads

(
x52`

1`

^S0~ t !Sx~ t !&^S0~ t8!Sx~ t8!&eiQx

5~T ln t8!2ĤS q5Q~T ln t8!2,a5
ln t

ln t8
D ,

~119!

Ĥ~q,a!52R„F̂@p,a#2~4a21!2/~9a4p!…up5 iq, qÞ0,

~120!

where R denotes the real part and the 1/p part has been
substracted to get rid of thed(q) part. The value of the
Fourier transform asq→0 is

Ĥ~q50,a!5
26140a259a2220a3145a4

135a4
, ~121!

which is plotted in Fig. 5. The Fourier transform is plotted
Fig. 6 for several values ofa. Note the maximum atq.0
which develops for largea and which is related to the non
monotonic behavior of the correlation as a function ofx. The
fact that the above correlation indeed reaches its limit
below can be seen as follows for largea. For x!G2, 0 and
x belong to the same domain, and thus the above two po
two time correlation is approximately equal
^S0(t8)Sx(t8)&. However, this decays exponentially wit
x/G82 ~and thus exponentially ina2 if one choosesx/G2

fixed but very small! while the asymptotic value@Eq. ~105!#
decays only algebraically.

VIII. RARE EVENTS, TRUNCATED CORRELATIONS
AND RESPONSE TO A FIELD

In this section we compute time dependent thermal~trun-
cated! correlations as well as the response to a uniform fi
applied at timetw . For this one needs to go beyond th

FIG. 5. Value atq50 of the Fourier transformĤ(q50,a) (y
axis! as a function ofa5 ln t/ln t8 (x axis!.
06610
-
nt

y

ts

d

effective dynamics, which just places each wall at a spec
location at each time. Indeed, in the effective dynamics,
local magnetization~i.e., the thermal average! ^Sx(t)& at a
given pointx is given by the orientation of the renormalize
bond containing the pointx at scaleG, and is thus either11
or 21. Thus truncated correlations are zero to leading ord
and to estimate them one needs to consider the rare even
which a domain wall can be found with substantial probab
ties at two different positions. Such events occur with a pr
ability 1/G, and the two positions of the domain wall whe
they do occur are typically separated by distance of orderG2.
For example, for the single point Edwards-Anderson or
parameter these lead to corrections to the zero tempera
value of unity of order

12„^Sx~ t !&…2}
1

ln t
. ~122!

In this section, to simplify the notation somewhat, we s
2g51.

A. Description of the important rare events

The rare events that are important for the RFIM turn o
to be the same~as far as the energy landscape is concern!
as the ones that we considered in our previous study of
aging properties of the Sinai model@28#, with a slightly dif-
ferent physical interpretation and different observables to
computed. There are two types@42# of such rare events tha
occur with probability 1/G, denoted~a! and ~c! in Ref. @28#.
We now describe them.

Events (a)concern bonds which contain two almost d
generate extrema~see Fig. 7!. In the following, we will use
the probabilityDG,G8

(a) (x) that two points 0 andx.0 belong
to a renormalized bond atG which has two degenerate ex
trema separated by a barrier smaller thanG8 such that the
two points are both located between the two degenerate
trema. This is, using the calculations of Ref.@28#,

FIG. 6. Fourier transformĤ(q,a) (y axis! of the scaling func-
tion for the two-point two-time spin glass correlation as a functi
of q (x axis! for four different values ofa51.25, 2, 5, and 20.
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DG,G8
(a)

~x!5
4

G2El .y,y.x
PG~ l 2y!~y2x!E

0

G8
dG0

1

G0
4
r̂ S y

G0
2D

~123!

5
4

G2Ey.x
~y2x!

1

G83
GS y

G82
D

5
16G8

G2 (
k51

1`
1

k2p2
e2(x/G82)k2p2

, ~124!

where the functionsr̂ (Y) and G(Y) were defined in Eqs
~E5-8! and ~174! of Ref. @28#.

In event~a!, the corresponding domain wall (A or B) will
fluctuate thermally between the two extrema~see Fig. 7!. At
equilibrium, the thermal probabilities of finding the doma
wall in the two positions arep and (12p) with p51/(1
1e2u/T) and u representing the energy difference betwe
the two minima. The random variableu is distributed uni-
formly aroundu50. In the following, we will need

cn~T!5~4p~12p!!n5
1

2
T 4nE

0

1`

dz
zn21

~11z!2n

5TAp
G@n#

GFn1
1

2G , ~125!

the factor 1/2 arises as the integral is only@43# over u.0.
Events (c)correspond to bonds about to be decimat

with a barrier G1e'G. The probabilityDG
(c)(x) that the

segment@0,x#, x.0 belongs at scaleG to a bond of barrier
G ~i.e., z50):

DG
(c)~x!5

2

G2El .x
PG~z50,l !~ l 2x!

5
2

GE0

1`

dl lP* S h50,l1
x

G2D ~126!

FIG. 7. Rare events~a! and ~c! discussed in the text
06610
n

,

5
4

G (
k51

1`

~21!k11
1

k2p2
e2(x/G2)k2p2

.

~127!

For events~c! associated with a barrierG1e, the probability
pc that the two corresponding domain walls have not
annihilated atG is given bypc5exp(2e2e/T). In the follow-
ing, we will need

dn~T!5„4pc~12pc!…
n5T 4nE

0

1`dz

z
e2nz~12e2z!n

5T22n(
k50

n21

Cn21
k lnS 11

1

k1nD , ~128!

where we have used that the distribution ine is uniform
arounde50.

B. Two point truncated equal time correlations

1. Nonequilibrium behavior

We consider the various moments of the truncated eq
time correlation function defined as

Cn~x,t !5@^S0~ t !Sx~ t !&2^S0~ t !&^Sx~ t !&#n; ~129!

Cn(x,t) is the sum of two contributions. The first contribu
tion Cn

(a)(x,t) originates from events~a! described above
where we havê S0(t)Sx(t)&511, while ^S0(t)&5^Sx(t)&
56(122p) because the domain wall fluctuates between
two extrema~see Fig. 7!. We thus obtain the first contribu
tion as

Cn
(a)~x,t !5cn~T!DG,G

a ~x!, ~130!

with G5T ln t.
The second contributionCn

(c)(x,t) originates from events
~c! described above, where we have^S0(t)Sx(t)&511 while
^S0(t)&5^Sx(t)&56(122pc). The second contribution is
thus given by

Cn
(c)~x,t !5dn~T!DG

c ~x!. ~131!

The final result for the moments of the truncated equal ti
correlations is thus

Cn~x,t !5
4

T ln t (
k51

1`
„4cn~T!1~21!k11dn~T!…

k2p2

3e2uxuk2p2/(T ln t)2
, ~132!

wherecn(T) and dn(T) are given in Eqs.~125! and ~128!.
Note that to this order in 1/G the n dependence is only con
tained in the prefactor and in particular the correlation len
j th(t)5(T ln t)2/p2 extracted from Eq.~132! does not de-
pend onn and is equal to result~82!. For the spin glass, the
above formula gives theevenmomentsC2n(x,t). For the
following sections, we will need
7-17
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C1~ t !5 (
x52`

x51`

C1~x,t !5S 32

45
1

14

45
ln 2DT2 ln t. ~133!

2. Equilibrium truncated correlations

To compute the equilibrium truncated correlations t
method is very similar. One must stop the RG at scaleGJ
54J, and again consider events~a! ~which give the same
contribution as above replacingG by GJ) and events~c! but
with a different interpretation and result since there are n
at equilibrium. Indeed in the renormalized landscape at s
GJ the only thermal fluctuations@apart from the~a! events#
come from barriersG5GJ1e'GJ . The barriers much
larger thanGJ are occupied by a pair of domains with
probability of almost 1, while the barriers well belowGJ
~which have been decimated at previous stages! are occupied
with a probability of almost 0. The barriers withG5GJ1e
'GJ are occupied with a probabilityp51/(11e2e/T). Thus
we now have the equilibrium truncated correlations:

Cn
(eq)~x!5cn~T!„DGJ ,GJ

a ~x!1DGJ

c ~x!…

5
1

J
cn~T!(

k51

1`
~41~21!k11!

k2p2
e2uxuk2p2/(4J)2

.

~134!

Here, as above, the correlation lengthj th
eq516J2/p2 ex-

tracted from Eq.~134! to this order inGJ doesnot depend on
n. Since it was argued in Ref.@21# that the correlation
lengths of theCn

(eq)(x) generically depend onn, our results
suggest that here this dependence is subleading inGJ . Our
result for the correlation length ofC1

(eq)(t) coincides with the
result of Ref. @20# and with result~83! with 2g51 @44#.
However, the detailed form of the functionsCn

(eq)(x) ob-
tained here depends explicitly onn.

3. Approach to equilibrium for truncated correlations

Since the equal time result forG,GJ54J and the equi-
librium result differ only by substitutingdn(T) by cn(T) in
the ~c! events, there should be a nontrivial crossover n
G5GJ toward equilibrium controlled by events~c!, which
we now analyze. Let us consider a bond with barrierF
5GJ1e. When G5T ln t is close toGJ this bond can be
either occupied@with probability p(t)# or empty@with prob-
ability 12p(t)#. One has

dp

dt
5

1

t1
„12p~ t !…2

1

t2
p~ t !, ~135!

wheret15eGJ /T is the inverse rate of creation of a pair
domain walls~which immediately migrate to the end poin
of the bond! andt25e(GJ1e)/T is the inverse rate of annihi
lation of the pair of domain walls located at the end points
the bond. Thus, substitutingt5eG/T, one finds
06610
w
le

r

f

p~ t !5
1

11e2e/T
1

e2e/T

11e2e/T
expS 2~11e2e/T!

t

teq
D ,

~136!

where lnteq5GJ /T, and one hast/teq5e2(GJ2G)/T. Integrat-
ing overe, one obtains that the crossover to equilibrium f
t;teq is described by

Cn~x,t !5Cn
(a)~x!1Cn

(c)~x!, ~137!

Cn
(a)~x!5cn~T!DGJ ,GJ

(a) ~x!, ~138!

Cn
(c)~x!5en~T,t !DGJ

(c)~x!, ~139!

with

en~T,t !54p~ t !~12p~ t !!

54nTE
0

1`

dz
zn21

~11z!2n

3~12e2(11z)t/teq!n~11ze2(11z)t/teq!n

~140!

54nT(
k50

n

(
p50

n

~21!kCn
kCn

pG@n1p#

3US n1p,11p2n,~k1p!
t

teq
D

3e2(k1p)(t/teq), ~141!

where lnteq54J/T. This expression crosses over fro
en(T,t/teq!1)→dn(T) anden(T,t/teq@1)→cn(T).

C. Two-point two-time truncated correlations

We now consider the truncated two-point two-time cor
lations

Cn~x,t,tw!5~^S0~ t !Sx~ tw!&2^S0~ t !&^Sx~ tw!&!n.
~142!

The calculation is very similar to the equal-time truncat
correlations. We first consider the events of type~a!, where
we have now to keep track of the barrierG0 between the two
almost degenerate extrema. There is a nonvanishing co
bution if the barrierG0 is smaller thanGw but larger than

Ĝ5T ln(t2tw), so that equilibration cannot take place b
tween tw and t. In that case we havêS0(tw)Sx(t)&511
while ^S0(tw)&5^Sx(t)&56(122p), where p51/(1
1e2u/T) as introduced above in the description of events
type ~a!. These events lead to the contribution
7-18
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Cn
(a)~x,t,tw!5cn~T!

4

G2El .y,y.x
PG~ l 2y!~y2x!

3E
Ĝ

Gw
dG0

1

G0
4
r̂ S x

G0
2D ~143!

5cn~T!„DG,Gw

a ~x!2D
G,Ĝ

a
~x!…,

~144!

wherecn(T) and DG,Gw

a (x) are given above. Note that th

contribution of these events vanishes whenĜ becomes equa
to Gw .

We now consider events of type~c!, which give different
contributions and must be examined separately, in the s

ing regime Ĝ5T ln(t2tw),T ln tw5Gw and the scaling re-

gime t2tw;tw , i.e., Ĝ5Gw .

We first considerĜ,Gw . In that regime the events o
type ~c! should be considered at scaleGw where we have
^S0(tw)Sx(t)&511 while ^S0(tw)&5^Sx(t)&56(122p)
which, together with the~a! events, gives the total contribu
tion

Cn~x,t,tw!5Cn
(a)~x,t,tw!1dn~T!DGw

c ~x!; ~145!

this formula holds forĜ5T ln(t2tw),T ln tw5Gw .

In the regimet2tw;tw i.e., Ĝ5Gw , the ~c! events also
start to equilibriats, which we now study. Letpc(tw)
5exp(e2e/T) the probability that the domain walls separat
by the barrierGw1e have not yet annihilated attw . Let

pc~ t !5pc~ tw!expS 2
t2tw

tw
e2e/TD5expS 2

t

tw
e2e/TD

be the probability that they also have not yet annihilated at.
One has~with x and 0 belonging to the bond being dec
mated!

^Sx~ tw!&5122pc~ tw!, ~146!

^Sx~ t !&5122pc~ t !, ~147!

^S0~ t !Sx~ tw!&5122pc~ tw!12pc~ t !, ~148!

^S0~ t !Sx~ tw!&2^S0~ t !&^Sx~ tw!&54pc~ t !„12pc~ tw!….

~149!

Thus in the regimet2tw;tw , one obtains the total contri
butions

Cn~x,t,tw!5dn~T,t,tw!DGw

c ~x!, ~150!

dn~T,t,tw!)5„4pc~ t !12pc~ tw!…n

5T 4nE
0

1`dz

z
e2nt/twz~12e2z!n. ~151!
06610
al-

In the limit t@tw these truncated correlations decay, for fix
x/(T ln tw)2, as Cn(x,t,tw);(tw /t)n. They decay to zero as
there are no other contributions for later timet. In the fol-
lowing we will need

C1~ t,tw!5 (
x52`

x51`

C1~x,t,tw! ~152!

5
32

45
T2S ln tw2

„ln~ t2tw!…3

~ ln tw!2 D 1
14

45
T2 ln 2 ln tw

for 0,
ln~ t2tw!

ln tw
,1 ~153!

5
14

45
T2 ln twlnS 11

tw

t D for
ln~ t2tw!

ln tw
;1

~154!

5
14

45
T2

tw

t
ln tw for

ln~ t2tw!

ln tw
.1. ~155!

D. Response to an applied field

In order to compare with typical aging experiments, w
will consider the following two histories for the system an
compare them.

~i! Apply H.0 starting fromt50: the magnetization pe
spin m(t) will then grow in time as computed in~60! up to
time teq;e4J/T, wheremeq is reached.

~ii ! KeepH50 betweent50 andtw , and then applyH
.0 for t.tw : in this case the magnetization per sp
m(t,tw) remains 0 up to timetw , and then grows to again
reachmeq in the large time limit.

We now estimatem(t,tw) in the case~ii ! in the ‘‘small
applied field regime,’’ whereH;1/Gw

2 . It is convenient to
define

t̂[t2tw , ~156!

and introduce the ratio between

Ĝ[T ln t̂5T ln~ t2tw! ~157!

andGw5T ln tw :

â5
Ĝ

Gw
5

ln~ t2tw!

ln tw
. ~158!

We separately discuss the three regimes 0,â,1, â;1, and
â.1.

1. Response at early times 0ËâË1 from degenerate wells

We first study the scaling limit of smallH and largeGw

with HGw
2 fixed and 0,â5(ln t̂/ln tw),1 fixed. In this re-

gime the dominant contributions come from bonds with n
degenerate extrema, i.e., the rare events of type~a! described
in Sec. VIII A.
7-19
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Let us consider an ascending bond with a secondary m
mum separated by a distancey and a barrierG0 at a potential
u.0 above the minimum. Using the results and notations
Ref. @28# we find that the probability that an ascending bo
of this type atGw ~before the field is turned on! is

r Gw
~y,G0!dG0dy52u~Gw2G0!PG0

~0,.!* yPG0
~0,.!dG0dy.

~159!

Just beforeGw , there is thermal equilibrium between the tw
extrema, and thus the probability that the primary extrem
is occupied by anA domain wall ispeq(u)51/(11e2u/T).
The thermally averaged total magnetization of the segmey
is then^M &5y„122peq(u)…. One now turns the field on a
Gw , and the thermally averaged magnetization of the s
ment remains the same~up to negligible probability! until the

time Ĝ5G0 when a new equilibrium is attained~here we can

neglect the equilibration time scale!. Just afterĜ5G0 the
occupation probability of the left minimum is nowpeq(u8)
51/(11e2u8/T), whereu85u22Hy. The new magnetiza
tion is ^M &85y„122peq(u22Hy)…. Similarly, the contri-
bution of a descending bond~with y,G0) is given by the
same formula withu,0. Finally the contribution of degen
eracy of hills—fluctuations of theB domains–yields an over
all factor of two. The total contribution of all these events
the magnetization per spin is

m~ t,tw!5m(a)~ t,tw!

52
1

Gw
2 E0

Ĝ
dG0E

0

1`

dyE
0

1`

du rGw
~y,G0!y

3„122peq~u22Hy!1122peq~2u22Hy!….

~160!

This gives

m~ t,tw!5m(a)~ t,tw!

54
1

Gw

Ĝ

Gw
E

0

1`

dYYG~Y!E
0

1`

duS 1

11e(u22HĜ2Y)/T

2
1

11e(u12HĜ2Y)/TD ~161!

58~HĜ2!
1

Gw

Ĝ

Gw
E

0

1`

dYY2G~Y! ~162!

5
32

45
H

Ĝ3

Gw
2

5
32

45
~HGw

2 !
â3

Gw
. ~163!

In this regime, the magnetization as a scaling function
HGw

2 is thusexactly linear. It can be shown that a nonlinea
response inHGw

2 couples to the curvature of the distributio
of difference of potential near zero and is of higher order
1/Gw .
06610
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2. Response at timesâ ¶ 1

Whent2tw is of ordertw a second effect adds to the on
computed above. It corresponds to the events of type~c!
described in Sec. VIII A where the barrier of a bond atGw is
equal toGw1e where e5O(1) ~of arbitrary sign!. In the
absence of the field the pair of domains at the endpoints
the bond have not yet annihilated at timetw , with a prob-
ability pc(tw)5exp(2e2e/T). When adding the field attw the
barriers suddenly either increases~for descending bonds! or
decreases~ascending bonds! by 2Hl wherel is the length of
the bond. Fort.tw @and such thatt2tw;O(tw)# the prob-
ability pc(t) that the domain has not yet annihilated depen
on H and is

pc~ t !5pc~ tw!expF2S t2tw

tw
De(2e72Hl )/TG ~164!

for descending and ascending bonds respectively. Event~c!
thus result in a difference in magnetization compared to
zero field case equal to

m(c)~ t,tw!5
2

Gw
2 E0

`

dlE
2`

1`

deP* ~0,l !l exp~2e2e/T!

3S expS 2
t2tw

tw
e(1/T)(2e22Hl )D

2expS 2
t2tw

tw
e(1/T)(2e12Hl )D D ~165!

5
2T

Gw
E

0

`

dlP* ~h50,l!l

3 lnS tw1~ t2tw!e2HlGw
2 /T

tw1~ t2tw!e22HlGw
2 /TD . ~166!

The total magnetization is now

m~ t,tw!5m(a)~ t,tw!1m(c)~ t,tw!5
32

45
HT ln tw1m(c)~ t,tw!.

~167!

Note that in the present regime the magnetization as a s
ing function ofHGw

2 is complicated and nonlinear.
In the limit whereHGw

2 is small, one has

m(c)~ t,tw!5
8

Gw
HGw

2 t2tw

t E
0

`

dlP* ~h50,l!l2

1O„~HGw
2 !2

…

5
14

45
HGw

t2tw

t
1O„~HGw

2 !2
…, ~168!

where we have used*0
`dlP* (h50,l)l257/180.

Although the above function@Eq. ~166!# is complicated,
at the special time such thatt2tw5tw it takes the simple
value
7-20
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m(c)~2tw ,tw!5
4

Gw
HGw

2 E
0

`

dlP* ~h50,l!l2

5
7

45
HGw . ~169!

3. Response at timesaÄâÌ1

For time differencest2tw@@tw , corresponding toâ
5a.1, the response of the RFIM chain to an applied fie
will be dominated by the effective dynamics described by
RSRG procedure. When the fieldH.0 is turned on, the
descending bonds with (F,l ) become (F12Hl ,l ) and the
ascending bonds become (F22Hl ,l ) except ifGw,F,Gw
12Hl , since in this case they must be immediately de
mated. Technically, from the point of view of the landscap
it is more convenient to symmetrize the initial condition

Ĝ5Gw which amounts to artificially reintroducing the de
scending bondsGw22Hl ,F,Gw ~these bonds, being re
decimated immediately, do not introduce any errors fora
.1). This corresponds to the following initial distribution

at Ĝ5Gw :

PGw

1 ~F,l !5PGw
~F,l !22Hl ]FPGw

~F,l !

12HPGw
* F,l PGw

* l„lPGw
~0,l !…

24HPGw
~F,l !E

0

`

dl8l 8PGw
~0,l 8!, ~170!

PGw

2 ~F,l !5PGw
~F,l !12Hl ]FPGw

~F,l !

22HPGw
* F,l PGw

* l„lPGw
~0,l !…

14HPGw
~F,l !E

0

`

dl8l 8PGw
~0,l 8!. ~171!

We now check that the magnetization corresponding to
initial condition is the one at the end of theâ51 regime
@i.e., thet→1` limit of Eq. ~168!#. It is, to first order inH,

me f f~ Ĝ5Gw ,Gw!5

E
0

1`

dll E
0

`

dz@PGw

1 ~z,l !2PGw

2 ~z,l !#

E
0

1`

dll E
0

`

dz@PGw

1 ~z,l !1PGw

2 ~z,l !#

~172!

.
8H

Gw
2 E0

`

dllPGw
~Gw ,l !5

14

45
HGw .

~173!
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We write, to linear order P
Ĝ

6
(F,l )5PĜ(F,l )

12HQ
Ĝ

6
(F,l ), with the initial condition in Laplace trans

form variables atĜ5Gw ,

QGw

1 ~z,p!52]p„UGw
~p!uGw

~p!e2zuGw
(p)
…

2UGw
8 ~0!UGw

~p!2ze2zuGw
(p)

12UGw
8 ~0!UGw

~p!e2zuGw
(p), ~174!

QGw

2 ~z,p!52QGw

1 ~z,p!. ~175!

To compute the magnetization we are interested only
P

Ĝ

1
(F,l )2P

Ĝ

2
(F,l )52HQĜ(F,l ), where QĜ(F,l )

5Q
Ĝ

1
(F,l )2Q

Ĝ

2
(F,l ) satisifes the linearized RG equation

~]Ĝ2]z!QĜ~z,p!52QĜ~0,p!PĜ~ .,p!* z l PĜ~ .,p!

12PĜ~0,p!QĜ~ .,p!* zPĜ~ .,p!

12QĜ~0,0!PĜ~z,p!. ~176!

The solution therefore has the form

QĜ~z,p!5„AĜ~p!1zBĜ~p!…e2zuĜ(p), ~177!

where the coefficientsAĜ(p) and BĜ(p) satisfy the RG
equations

]ĜAĜ~p!52uĜ~p!AĜ~p!1BĜ~p!12U Ĝ~p!AĜ~0!,
~178!

]ĜBĜ~p!52uĜ~p!BĜ~p!, ~179!

with initial condition atĜ5Gw :

AGw
~p!522]p„UGw

~p!uGw
~p!…14UGw

~p!UGw
8 ~0!,

~180!

BGw
~p!52UGw

~p!uGw
~p!uGw

8 ~p!22UGw
~p!2UGw

8 ~p!.

~181!

The solutions are

BĜ~p!5BGw
~p!

sinh~GwAp!

sinh~ ĜAp!
, ~182!

AĜ~p!5„AGw
~p!1~ Ĝ2Gw!BGw

~p!…
sinh~GwAp!

sinh~ ĜAp!

22~ Ĝ2Gw!
Ap

sinh~ ĜAp!
. ~183!

In the limit Ĝ@Gw , we have

BĜ~p!.
Ap

sinh~ ĜAp!
, ~184!
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AĜ~p!.2Ĝ
Ap

sinh~ ĜAp!
, ~185!

and recover the first order linearization ind of the biased
fixed point solutions@Eqs.~37!#:

PG
6~z,p!5UG

6~p!e2zuG
6(p)5PG~z,p!~17dG!~16dz!

5PG~z,p!12~dz2dG!
Ap

sinh~GAp!
e2zApcoth(GAp).

~186!

The magnetization at first order inH is given by

me f f~ Ĝ !5

E
0

1`

dll E
0

`

dz@P
Ĝ

1
~z,l !2P

Ĝ

2
~z,l !#

E
0

1`

dll E
0

`

dz@P
Ĝ

1
~z,l !1P

Ĝ

2
~z,l !#

~187!

.
2H

Ĝ2
E

0

`

dll E
0

`

dzQĜ~z,l !

5
2H

Ĝ2 F2]pS AĜ~p!

uĜ~p!
1

BĜ~p!

u
Ĝ

2
~p! D GU

p50

~188!

5HĜF2

3
2

16

45S Gw

Ĝ
D 3G . ~189!

It grows from

me f f~ Ĝ5Gw!5
14

45
HGw ~190!

to the asymptotic regime for largeĜ@Gw ,

me f f~ Ĝ@Gw!5
2

3
HĜ ~191!

that corresponds to the behavior of the magnetization of
biased case at first order ind @Eq. ~60!#.

We now summarize our results for the magnetization
the regimesâ,1, â.1, andâ.1:

m~ Ĝ,Gw!5
32

45
HGwâ3 for â5

Ĝ

Gw
,1, ~192!

m~ Ĝ,Gw!5
32

45
HGw1

14

45
HGw

t2tw

t
for â5

Ĝ

Gw
.1,

~193!

m~ Ĝ,Gw!5HĜF2

3
2

16

45â3G1
32

45
HGw for â5

Ĝ

Gw
.1.

~194!
06610
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E. Fluctuation-dissipation violation ratio

Having computed truncated correlations and the respo
to an applied field, we now discuss the fluctuatio
dissipation violation ratio, a measure of the nonequilibriu
behavior of the system. For two observablesA and B, the
fluctuation-dissipation-theorem~FDT! violation ratioX is de-
fined as@6,40#

TRA,B~ t,tw!5XA,B~ t,tw!] tw
CA,B~ t,tw!, ~195!

whereCA,B(t,tw) represents the truncated correlation

CA,B~ t,tw!5^A~ t !B~ tw!&2^A~ t !&^B~ tw!&, ~196!

andRA,B(t,tw) represents the response in the observableA at
time t to a fieldHB linearly coupled to the observableB in
the Hamiltonian through a term of the form2HBB:

RA,B~ t,tw!5
d^A~ t !&
dHB~ tw!

U
HB50

. ~197!

Here we have computed the magnetization resulting fr
an uniform magnetic fieldH, so that the observablesA andB
are given byA5(1/L)( i 51

L Si andB5( i 51
L Si , respectively.

From the magnetization

m~ t,tw!5
1

L (
i

^Si~ t !&5^S0~ t !&5HE
tw

t

duR~ t,u!

~198!

and the truncated correlation

C1~ t,tw!5
1

L (
i 51

L

(
j 51

L

@^Si~ t !Sj~ tw!&2^Si~ t !&^Sj~ tw!&#

5(
x

^S0~ t !Sx~ tw!&2^S0~ t !&^Sx~ tw!&, ~199!

one obtains the fluctuation-dissipation ratioX(t,tw) as

X~ t,tw!52T
] tw

m~ t,tw!/H

] tw
C1~ t,tw!

. ~200!

Note that we have used the infinite size limit to replace tra
lational averages by disorder averages.

We have computedC1(t,tw) @Eqs. ~153!–~155!# and
m(t,tw) @Eqs. ~192!–~194!# in the three regimes 0,â,1,
â;1, andâ.1, and obtained the following expressions f
the fluctuation dissipation violation ratio at large timest,tw
@1:

X~ t,tw!51 for 0,â5
ln~ t2tw!

ln tw
,1, ~201!

X~ t,tw!5
t1tw

t
for

t2tw

tw
a fixed number

~ â51!, ~202!
7-22
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X~ t,tw!5
t

tw ln tw
S 11

24

7

ln2 tw

ln2 t
D for

â5
ln~ t2tw!

ln tw
.1. ~203!

The behavior ofX upon increasing the time differencet
2tw is as follows. First, of course, one expects, whent
2tw is a fixed number, a nonuniversal equilibrium regim
~not studied here! where time translational invariance and t

FDT is obeyed. Increasing the time difference ast2tw;tw
â ,

in the regime 0,â,1, we find thatthe FDT theorem is still
obeyedto leading order, which is quite interesting since tim
translational invariance doesnot hold in that regime. Next, in
the regimeâ51, t/tw fixed, X becomes a nontrivial scalin
function of (t2tw)/tw , which interpolates betweenX52 for
(t2tw)/tw→0 and X51 for (t2tw)/tw→1`. In order to
match the valueX51, there is thus a nontrivial crossove
regime between the end of the quasiequilibrium regimeâ

,1 and the beginning of theâ51 regime. This crossove
occurs for (t2tw);tw / ln tw , and is given by

X~ t,tw!5F1„~ t2tw!ln tw /tw…, ~204!

F1~y!5
14y196

7y196
. ~205!

Finally, for very separated times, in the regimeâ.1, we
find that X grows toward1`. This occurs again after a
crossover between the end of theâ51 and theâ.1 regime
which occurs on time scalet;twln tw , whereX is given by

X~ t,tw!511
31

7

t

tw ln tw
, ~206!

which matches both the required limits.
We can now compare with the mean field models@45#. As

in the mean field@6,40#, here we find an aging regime whe
X is nontrivial, and fort/tw fixed it is a function of this
scaling variable. On the other hand, contrary to mean fi
models, the ratioX here is never a function of onlyC1(t,tw),
in the regimeâ51 because of the extra power of lnt in
C1(t,tw), and in general because of the presence of b
scales (t,tw) and (lnt,ln tw). In addition,X here is found to be
nonmonotonic, and the values taken byX are not within the
interval @0,1#. In particularX tends to1` in the asymptotic
regimet;tw

a with a.1 since truncated correlations becom
very small compared to the response in that this regi
Since the ratioX has an interpretation in some contexts as
inverse effective temperatureX51/Te f f @40#, one would find
here thatTe f f→0 at large time separations, in contrast to t
result thatTe f f→1` in mean field models. Although thi
might appear surprising at first sight, one should remem
that in finite dimensions many of the properties of the RF
are controlled—in the the renormalization group sense—b
zero temperature fixed point; this includes the intermed
06610
ld
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e.
n
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regime of length scales studied here for a system—the
RFIM—with no phase transition.

It is also interesting to compare our results with t
fluctuation-dissipation ratioX in pure systems presenting do
main growth, typically ferromagnets below their critical tem
peratureT,Tc @7–9# or at T5Tc . The ratioX is usually
computed by considering the local observablesA5B5S0
but to compare with the present study we will translate th
results for a spatially uniform applied field.

Let us briefly recall whyX50 in the large time scaling
regime forT,Tc (X decays to 0 for largetw). When initial
conditions~high temperatureT.Tc) before the quench are
chosen to have zero magnetization@(x^Sx(t)&50# the spin
autocorrelation coincides with the truncated correlat
(x^Sx(t)&50, and takes a simple scaling form@1#

C1
pure~ t,tw!5(

x
^S0~ t !Sx~ tw!&.L~ tw!df 1S L~ tw!

L~ t ! D ,

~207!

whereL(t) is the typical size of domains at timet an d the
dimension of space. On the other hand, the magnetiza
when a uniform field has been applied betweentw , and t
behaves as@8,9,46#

Mauto~ t,tw!;L~ tw!d2af 2S L~ tw!

L~ t ! D , ~208!

with a51 for Ising order parameter@7–9# anda5d22 (d
.2) for O(N) model @9#. Note the reduction ofM with
respect toC1 by a factor 1/L(tw) in ferromagnets, which
immediately implies X50 in the scaling regimeL(tw)
;L(t) (X50 as soon asa.0). As is usually argued, the
origin of this factor can be seen by considering the system
t5tw and focusing on the immediate response to a sm
applied pulse field@46# ~here ind51 for simplicity!: each
interface responds by a factorO(1) and since they occupy
only a portion 1/L(tw) of the system this yield a total re
sponse 1/L(tw). ln contrast, note thatexactly at criticality,
T5Tc , there is a nontrivialX5X(t/tw) which appears as a
dimensionless amplitude ratio, by a different mechanism@9#.

For the RFIM case, thefull correlation function has the
same scaling form as Eq.~207! @as can be seen by genera
izing the result for the autocorrelation computed in E
~105!# but the truncateddoes not since we have obtaine
@Eqs.~153!–~155!#

C1~ t,tw!5 ln twf1S ln~ t2tw!

ln tw
D for 0,

ln~ t2tw!

ln tw
,1

~209!

5 ln twf2S tw

t D for
ln~ t2tw!

ln tw
>1,

~210!

whereas for the RFIM magnetization we have found@Eqs.
~192!–~194!#
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m~ Ĝ,Gw!5 ln twc1S ln~ t2tw!

ln tw
D for â5

Ĝ

Gw
,1

~211!

m~ Ĝ,Gw!5 ln twc2S tw

t D for â5
Ĝ

Gw
.1 ~212!

m~ Ĝ,Gw!5 ln twc3S ln t

ln tw
D for â5

Ĝ

Gw
.1.

~213!

These expressions are rather different from that for the
romagnet@Eq. ~207!#, first because botht and lnt appear in
these scaling forms. The only domain growthlike nontriv
scaling regime withL(t)5T ln2t occurs fora.1. In this
regime the magnetization has a form similar to Eq.~208!
with a reduction factor 1/AL(tw) @rather than 1/L(tw) in the
pure system#. Using the discussion of Sec. VIII D 3 one un
derstands that the origin is quite different from the pure ca
In the immediate response to an applied field@Eq. ~173!#
only a small fraction of domains 1/Gw;1/AL(tw) responds,
but their response isvery large since the full domain, of
length ;L(tw) flips. The truncated correlation on the oth
hand is very small and does not take the scaling form@Eq.
~207!#. This yield a valueX51` in this regime.

Similarly, the origin of the nontrivial value ofX in the
regime t;tw (a51) is very different from the pure case
Both the response and correlations originiate from r
events and take the form (1/lntw)L(tw)f(t/tw), where now the
factor 1/lntw is the probability of the rare event andf (t/tw)
its contribution to activated dynamics. Since they are of
same order this yield a nontrivialX.

IX. PERSISTENCE PROPERTIES OF THE RFIM

We now turn to a study of thepersistenceproperties of
the random field Ising model, which have received subst
tial attention for other systems evolving towards equilibriu
Two of the primary properties of interest in this context a
the time decay of the probability that aspin has never flipped
up to time t and the time decay of the probability that
domain has survivedup to timet. The results for the single
spin persistence for the RFIM~Secs IX A and IX B below!
are also valid for the spin glass. The large time limit of the
quantities can be computed from the asymptotic full st
~see Fig. 3! on which we focus below.

A. Persistence of a single spin

In zero applied field the probabilityP(t) that a givenspin
at x50 has never flipped up to timet in a single run, is equa
to the probability that neither the nearest domain wall on o
side, nor the nearest~opposite type! domain wall on the other
side have crossedx50. In Ref.@28#, we found that the prob-
ability P1(t) that a given Sinai particle does not cross
starting point up to timet decays asP1(t); l̄ (t)2u1 with
u151/2. We thus obtain thatP(t) in the zero field RFIM
decays as
06610
r-

l

e.

e

e

n-
.

e
e

e

P~ t !; l̄ ~ t !2u with u52u151. ~214!

This should be compared with the result@47# for the pure
Ising model, whereu5 3

4 @corresponding there to the chara
teristic length l (t);At#. This out of equilibrium behavior
holds up to timet5teq corresponding to renormalizatio
scaleG5GJ at which equilibrium is reached.

In the presence of an applied fieldH.0, we can use our
previous result@28# for the biased Sinai diffusion. We hav
found that the probabilitiesP1

1(t) @P1
2(t)# that a given Si-

nai particle remains on the right~left! of its starting point up
to time t, in the case of a drift in the~1! direction, behave as

P1
1~ t !'

2d

12e22dG
, ~215!

P1
2~ t !'

2d

e2dG21
. ~216!

These give the probabilitiesP6(t) that a given spin in the
RFIM keeps the value (6) up to timet, which in the limit of
largedT ln t@1 behaves as

P1~ t !'
H2

g2
, ~217!

P1
2~ t !'

H2

g2
t22HT/g. ~218!

B. Persistence of the local time-averaged magnetization

In addition to the persistence of a single spin, one can a
obtain the statistics of the flips of the thermal average of
local magnetization, i.e.,̂Sx(t)&, at a given sitex. As ex-
plained in Ref.@28# in the context of the Sinai model, quan
tities averaged over many runs behave very differently th
quantities for a single run; in particular while the spin
interest in one run may flip many times, if the same spin
examined in many runs with statistically similar initial con
ditions, the average over the runs at a given time into
runs will flip far less often.

The local magnetization will successively be equal to
and21 with only very small probability, at large times, o
being be equal to an intermadiate value. The sequenc
flips is given by the sequence of changes of orientation o
bond during the renormalisation procedure extensively st
ied in Ref.@28#. From that analysis, we obtain the followin
results for the RFIM.

In zero fieldH50, we denote byk thenumber of changes
of sign of ^Sx(t)& at a given pointx between 0 andt. The
distribution of the rescaled variable

k5
k

ln G
5

k

ln~T ln t !
~219!

is characterized by the asymptotic decay
7-24
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Prob~k!; l̄ ~ t !2 ū(k), ~220!

where the generalized exponentū(k) is

ū~k!5
k

2
lnF2kS k1Ak21

5

4D G1
3

4
2

k

2
2

1

2
Ak21

5

4
.

~221!

The exponentū(k) is a positive convex function : it decay

from ū(k50)5(32A5)/4 to ū( 1
3 )50, and then grows

again fork.1/3. This implies, in particular, that

k5
k

ln~T ln t !
→ 1

3
~with probability 1 at large time!.

~222!

All of the moments ofk will be dominated by the typica
behavior; i.e.,̂ km&[32m for all m. The full dependence on
k of the ū(k) function describes thetails of the probability
distribution ofk, i.e., the large deviations. Note also that t
probability that^Sx(t)& doesn’t flip up to timet decays as
l̄ (t)2 ū with exponent

ū5 ū~k50!5
32A5

4
, ~223!

which is significantly smaller than the corresponding dec
exponentu51 in Eq. ~214! for a single spin.

Since the renormalization procedure has to be stoppe
G5GJ at which the equilibrium is reached, and that at la
times no more changes occur in the local magnetization
obtain that thetotal number of flips is

ktot→
1

3
ln~4J!, ~224!

the decay of the tails of the probability distribution ofk

5ktot / ln(4J), being described by the same functionū(k) as
above in terms of the lengthLIM .

Another result from Ref.@28# is the characterization of th
full sequence of the timesG15T ln t1, . . . ,Gk5T ln tk where
the local magnetization̂Sx(t)& flips. The sequence of scale
$Gk% is a multiplicative Markovian processconstructed with
the simple ruleGk115akGk , where $ak% are independen
identically distributed random variables of probability dist
bution r(a):

r~a!5
1

a

1

l12l2
~a2l22a2l1! with l65

36A5

2
.

~225!

As a consequence,Gk5ak21ak22•••a2G1 is simply the
product of random variables; thus we obtain, using the c
tral limit theorem, that

lim
k→`

S ln Gk

k D5^ ln a&53, ~226!
06610
y
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and we thus recover that the numberk of changes of̂ Sx(t)&
grows as lnG5ln ln t and that the rescaled variablek
5k/ ln(T ln t) is equal to 1/3 with probability 1, as in Eq
~222!.

These results can be extended to the RFIM in the prese
of an applied fieldH.0. The total number of flips in this
case saturates to a finite value given by a scaling function
H andJ identical to the one given in Sec. IV E in Ref.@28#
for the total number of returns to the origin in the Sin
model.

C. Domain persistence

Persistence can also be defined for larger scale pattern
the RFIM the simplest pattern~beyond a single spin! is a
domain. When a domain of, e.g., consecutive1 spins disap-
pears, the two nearest domains of2 spins merge. Thus do
mains can either grow by merging with other domains,
die, and this leads to interesting survival properties, that w
studied by Krapivsky and Ben Naim@48# for the pure Ising
model. Here we slightly change their definitions of the exp
nents to adapt to the logarithmic characteristic length sc
l̄ (t)5 l̄ G;(T ln t)2 of the RFIM.

Of all the domains which still exist at timet, we define
Rm(t) as the number of domains which were formed out
m of the initial domains. This is illustrated in Fig. 8. The
(mRm(t)5N(t), the total number of domains at timet, and
the fraction of initial domains which have a descendent s
‘‘alive’’ at t is S(t)5(mmRm(t)5^m&N(t). Following Ref.
@48#, one defines the exponents

N~ t !; l̄ ~ t !21, ~227!

S~ t !; l̄ ~ t !2c, ~228!

R1~ t !; l̄ ~ t !2d, ~229!

in terms of the mean domain lengthl̄ (t). Asymptotically,
Rm(t) has a scaling form

Rm~ t !' l̄ ~ t !c22R̃S m

l̄ ~ t !12cD . ~230!

FIG. 8. Temporal evolution of domains in the RFIM. For ea
surviving domain at timet, m denotes the number of ancestor d
mains in the initial condition att50.
7-25
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The scaling function behaves, in the pure case, asR̃(z)
;zs for small z and as an exponential at largez. One finds
the exponent relationd5n1(n2c)(11s).

Let us now study the RFIM using decimation. In th
asymptotic state~full state!, domains coincide with bonds
and when a bond is decimated the domain on this bond d
and the two neighbors merge into a new domain~the new
bond!. We thus associate with each bond an auxiliary va
able m counting the number of initial domains which a
ancestors of the domain supported by the bond. Upon d
mation of bond 2, the rule for the variablesm is simply

m85m11m3 . ~231!

It turns out that this rule coincides with the magnetizati
rule of the RFTIC @31# and thus one has the scalingm
;GF with f5(11A5)/2, leading to

c5
32A5

4
50.190983. ~232!

This should be compared with the value for the pure Is
model, which has only been determined numerically@48# as
c'0.252.

Here it is interesting to note that we have found thatc

5 ū, i.e., the general exact boundc<ū is saturated@27#.
This bound forc comes from the fact that a point that h
never been crossed by any domain wall up to timet for the
effective dynamics, necessarily belongs to a domain that
a descendant still living up to timet. In the effective dynam-
ics in the ‘‘full’’ renormalized landscape, we have also t
reciprocal property: a domain wall surviving betweent8 and
t necessarily contains points that have never been crosse
any domain wall betweent8 and t. Note that the equalityc
5u also appears in the coarsening of domains for the
T50 Landau-Ginzburgf4 soft-spin Ising model@35# for the
same reason. The strict inequalityc, ū requires the possi
bility that a domain wall can survive betweent8 andt even if
all points inside it att8 get crossed by a domain wall betwee
t8 and t ~see Ref.@27# for examples!.

We now study the probabilityR1(t) that a domain has
survived up to timet without merging with any other do
main. This requires that the two domain wallsA andB living
at the boundaries of this domain do not meet any other
main wall up to timet. In the asymptotic full state, thes
conditions imply that three consecutive bonds cannot
decimated. Thus the domain in the middle cannot grow
the probability that it survives upon decimation thus dec
exponentially inG.

We thus obtain thatR1(t) decays exponentially inG ~and
thus with a nonuniversal power of time determined by
initial condition which determines the convergence towa
the asymptotic state!. It thus corresponds to

d51`. ~233!

As a consequence, the scaling functionR(z), not computed
here, has an essential singularity at the origin.
06610
s,

i-

ci-

g

as

by

D

o-

e
d
s

e
s

X. FINITE SIZE PROPERTIES

The real-space renormalization procedure can also
used analytically to study large finite size systems@32,28#.
We will extensively use the analysis of the Sinai walker w
either absorbing or reflecting boundary counditions@28#. For
the random field Ising model, one may consider seve
boundary conditions:~i! Fixed spins at the ends: this corre
sponds for the Glauber dynamics of the RFIM to doma
walls which behave like Sinai walkers with reflecting boun
ary conditions.~ii ! Free boundary conditions: this corre
sponds to absorbing boundary conditions for the dom
walls. Here we give some results for~i!, whose derivation is
detailed in Appendix D, and discuss~ii ! at the end.

A. Fixed spins at both ends

Assume, for definiteness, that spins at both extremities
fixed to the valuesS0511 and SL521, whereL is the
system size. There is thus an even number of domains in
system, and one can describe its statistics at large time u
the following generating function. Let us defineI L(k;G) as
probability that the system of sizeL at time t ~i.e., at scale
G5T ln t) contains exactlyn52k12 domains, with k
50,1,2, . . . . Oneobtains~see Appendix D! the generating
function in Laplace transform with respect to the lengthL as

E
0

`

dLe2qLS (
k50

`

zkI L~k;G!D
5

sinh2~GAp1d2!

p cosh2~GAp1d2!1d22z~p1d2!
,

~234!

wherep5q/2g.
In the case of zero applied fieldH50 (d50) one easily

performs the Laplace inversion, and obtains

(
k50

`

zkI L~k;G!5LTp→2gL
21 S sinh2~GAp!

p~cosh2~GAp!2z!
D

5tan~a! (
n52`

1`
e2(2gL/G2)(a1np)2

a1np
,

~235!

wherea5arccosAzP(0,p/2) for zP(0,1). In particular we
obtain the average and mean squared total number of
mains in the system at timet:

^n&52^k&L,G1254g
L

G2
1

4

3
1o~L0!, ~236!

^n2&L,G2~^n&L,G!25
8gL

3G2
1O~L0!, ~237!

with G5T ln t. Again, the same quantities at equilibrium a
simply obtained by settingG54J in the above formulas.

In the presence of an applied fieldH.0 (d.0), one
similarly obtains
7-26
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^n&52^k&L,G12[4gL
d2

sinh2g
12

12g cothg

sinh2g
121o~L0!,

~238!

^n2&L,G2~^n&L,G!258gL
d2

sinh2g
S 11

2~12g cothg!

sinh2g
D

1O~L0!, ~239!

with g5dT ln t.
We have also obtained the probability distributio

FL(M ;G) of the total magnetization of the system:

ML5(
j 51

L

^Sj&5 (
i 51

i 52k12

~21! i 11l i . ~240!

In a Laplace transform with respect toL andM, it is

E
0

1`

dLe2qLE
2L

1L

dMe2rM FL~M ;G!

5 l̄ G

EG
1~q1r !EG

2~q2r !

12PG
1~q1r !PG

2~q2r !
, ~241!

where

EG
6~q!5

de7dG

sinh~dG!„Ap1d2 coth~GAp1d2!7d…
,

~242!

PG
6~q!5

Ap1d2e7dG

sinh~Ap1d2G!„Ap1d2 coth~GAp1d2!7d…
,

~243!

where p5q/2g. Note thatq1r and q2r are simply the
Laplace variables associated with the total rescaled pos
and negative lengths.

B. Free boundary conditions

Free boundary conditions in the RFIM correspond to
sorbing boundary conditions for the diffusing domain wal
However, the study is slightly different from the one carri
in Ref. @28# because now there are particles (A or B) both at
the bottom and the top.

The structure of the renormalized landscape atG and the
full state near the boundary is now the following~see Fig. 9!.
There is an absorbing zone of lengthl 0. Then there is a first
bond ~barrier F1 length l 1) of arbitrary sign ~contrary to
Sinai’s case, where the first bond was always descend!.
The first particle at the common endpoint of the first bo
and the second bond and is either an aA particle~descending
first bond! or a B particle ~ascending first bond!. The RG
procedure is unchanged in the bulk. The new case is w
bond 1 is decimated. Then the absorbing zone become
length l 01 l 1, while the domain wall (A or B) leaves the
system~as the cluster formed by the absorbing zone and
previously first bond flips!. Bond 2 keeps the same barri
06610
ve

-
.
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e

and length~and becomes the new bond 1). LetR6( l ) be the
probability distribution of the lengthl of the absorbing zone
It satisfies the RG equation

]GRG
6~ l !5PG

6~0,• !* lRG
7~• !2RG

6~ l !E dl8PG
7~0,l 8!.

~244!

In the symmetric case the solution in Laplace transform

RG~p!5
2

GAp
tanhS GAp

2 D . ~245!

Interestingly the shape of the size distribution is the same
for the Sinai particle with absorbing boundaries but with
global length rescaling by a factor 1/4. A similar study c
be made in the biased case.

Let us close by noting that the approach to equilibriu
will be modified near a free boundary, as compared with
bulk. Indeed, near the free boundary it is possible to crea
single domain wall with energy cost 2J. Thus, for times su
that 2J,G5T ln t,4J one must consider different rules fo
the first renormalized bond.

XI. DISCUSSION AND FUTURE PROSPECTS

In this paper we have shown how a powerful real spa
dynamical renormalization group method can be used
study the properties of the one dimensional random fi
Ising model and 1D spin glasses in a field. We have rec
ered many known results for the long timeequilibrium be-
havior, and obtained what we believe are some new o
But the main advantages of this method is that it enables
computation and physical understanding of many noneq
librium features of the coarsening process. Although
RSRG method is approximate, it retains all the informati
needed to obtain exact results for universal long time, la
distance quantities. As exemplified by the calculations of

FIG. 9. RG rule near a free boundary, as explained in the t
The same rule holds when the first renormalized bond is descen
by exchangingA andB.
7-27
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response and truncated correlations, it has the great ad
tage over many more formal methods by virtue of providi
a clear physical interpretation of the origins of the proces
~e.g., particular types of rare events! that dominate many
properties of interest. In this last section we address
issues: the potential observability of some of the o
dimensional physics that we have studied in detail; and
crucial issue of which features of these one-dimensional
tems might apply in higher dimensional random systems

A. One-dimensional systems

Although random field Ising ferromagnets are not direc
realizable experimentally, other systems in the same uni
sality class should be. For random antiferromagnets, an
plied magnetic field couples to the antiferromagnetic or
parameter as a random field, most simply if the local m
netic moments vary randomly; such systems have the o
ous advantage of the strength of the dominant random
being readily adjustable. Similarly, spin glasses, althou
unfrustrated in zero field, do exist in quasi-one-dimensio
systems. In both these types of systems, rapid quen
could be performed by decreasing the field at low tempe
tures down to a value of orderT!J at which coarsening can
take place. In practice, other types of randomness in,
example, antiferromagnetic or frustrated two-leg spin-lad
systems in an applied field may have advantages.

There is one physical phenomenon of which one mus
wary: in many random systems—especially spin-glas
@5#—the equilibrium states toward which the system striv
depend hypersensitively on macroscopic parameters suc
the temperature and the magnetic field; this is often refe
to—somewhat confusingly—as ‘‘chaos’’@49#. If this were
the case here, then changing the temperature or the mag
field would not correspond simply to speeding up the dyna
ics, but would instead drive the system toward a new eq
librium which might differ on the scales being probed fro
the original one. Indeed, this effect is the origin of much
the most interesting aging phenomena seen in th
dimensional spin glasses@5,3#. Fortunately—although les
interestingly—this effect does not occur in random fie
chains: although the effective local random fields co
change in a nonuniform way with temperature or with a
plied field, this will lead only to smooth modifications of th
large scale potential and thus, provided the changes are m
sufficiently slowly, will not change the universal aspects
the coarsening provided all lengths are scaled appropria

The most obvious difficulty for any experiment is one th
is ubiquitous in random systems: how does one obtai
reasonable range of length scales if the correlations
growing only logarithmically in time? The situation here
not quite as bad as it might seem as on macroscopic
scalesj; ln2t is not all that short: with a microscopic timet0
of the order of picoseconds, 1 min corresponds to coarse
by a factor of 1000 in length scale. But for one-dimensio
random-field systems, one can do much better: the corr
tion length is of order

j~ t !;aoS T ln~ t/t0!

h D 2

, ~246!
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with a0 a microscopic scale. Thus the correlation length c
be controlled by a combination of increasing time, increas
T, and decreasingh. To obtain a wide range ofj(t), it is
beneficial to start withh large enough that the shortest tim
scales which can be measured still correspond to microsc
lengths and then decrease the field gradually.

While some of the nonequilibrium properties studied he
should be amenable to conventional experimental probe
magnetic systems, some of the most interesting predict
will probably not be: how the specific set of domain wa
depends on equilibration time and how it varies—or does
vary—from run to run on the same sample. For these
needs either microscopic imaging probes—perhaps w
magnetic atomic force or tunnelling microscopy—or scatt
ing data with enough resolution that speckle patterns from
finite spot size can be measured. As mentioned earlier,
spatial Fourier transform of the two-point two-time correl
tion calculated here is, for spin glasses, related to the co
lations between the speckle patterns at the two differ
times. While measuring this with magnetic x-ray or neutr
scattering may not be possible, it should be feasible via li
scattering on systems in the same universality class in wh
the length scales are sufficiently long.

One system on which light scattering measureme
might be possible is a nematic liquid crystal in a long th
tubes with a square crossection and heterogeneities on
surfaces which would couple randomly to the two possi
symmetry related orientations of the nematic direct
Whether this or other systems can be formed in a regim
which the dynamics are sufficiently fast to allow a wid
range of length scales to equilibrate is a question whose
swer must rely on a quantitative analysis of the physics
the scale of the domain wall structures that should occur

B. Higher-dimensional systems

Many of the qualitative features of the coarsening proc
in RFIM chains are also expected to obtain in higher dim
sional random systems. These are particularly interestin
systems in which, in contrast to the one-dimensional mod
true long-range order should exist in equilibrium. Neverth
less, the characteristics of the coarsening process in
dimensional models with weak randomness should h
much in common with such systems as long as considera
is restricted, as we have primarily done, to time scales s
that the full equilibrium correlation length cannot be a
tained.

Features that are common to many higher dimensio
random systems—random exchange ferromagnets, ran
field magnets and, although more controversially, s
glasses—include the growth of some kind of domain str
ture by thermal activation over barriers that grow with leng
scale and are broadly distributed and the existence of a
and other history dependent phenomena. From a renor
ization group point of view, these features are general ch
acteristics of systems controlled by random zero-tempera
fixed points@5,39#. The notions of local equilibrium within
constraints caused by large barriers, and of domination of
dynamics at any given long time scale by rare regions of
7-28
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sample in which the rate for going over barriers is of ord
the frequency being probed, are both important. In gene
these will, as in the one-dimensional models, result in th
different regimes for two-time properties depending
whether the difference between the times is much smalle
order of, or much larger than, the earlier time.

One of the most intriguing questions concerns the pseu
determinism found in the one-dimensional random mod
Will this exist in some higher dimensional systems in whi
the domain walls are lines or surfaces whose evolution
time will involve topological changes, rather than poin
which can simply move or annihilate? That is, will doma
walls tend to lie, at long times, in similar sample-and-tim
specific positions which are only weakly dependent on
initial conditions? Or will they evolve in different runs i
very distinct ways–perhaps by retaining much more mem
of the initial conditions?

Two examples of asingle random walker diffusing in
random potentials illustrate some of the difficulties of dra
ing any definitive conclusions. Consider, first, a random
tential which is independently random at each site with
long power law tail ot the distribution of the depth of th
potential wells. The deep wells will give rise to a subdiff
sive behavior; indeed, simple considerations of the time
find a deep trap and the time to escape it imply that
typical distance the walker will diffuse in timet only grows
as a power of lnt. But the statistics of theset of sitesthe
walker visits by the time it has made a given number
jumps from one site to another will be identical to that o
normal free random walker; it is just thetime spenton each
site that causes the slow diffusion. Since a pair of rand
walkers in dimensions higher than 4 have a nonzero pr
ability of never visiting any sites in common, it is clear th
the long time behavior isnot deterministic in high dimen-
sions: two different runs starting from the same point w
have a probablity that vanishes at long times of the t
walkers being at the same site. In two dimensions, in c
trast, the pair of walkers will be very likely to be trapped
the same site at long times.~The three-dimensional case
more subtle but will be more like the high dimensional th
the low-dimensional case.!

A second type of random potential yields different beha
ior: a Gaussian random potential with mean zero a
@V(x)2V(y)#2;ux2yu2z with z.0. A pair of random
walkers in such a potential will tend to be trapped in t
samedeep valley at long times. This can be argued by c
sidering the borders of valleys which are surrounded by b
riers of at least a heightG. If these typically do not have a lo
of fine-scale structure, then they should act as effective tr
for all walkers in the vicinity. All the walkers will then tend
to eventualy leave such a valley over the same barrier,
hence end up in the same next-larger-scale valley as w
The behavior would then be asymptotically deterministic
in the one-dimensional Sinai model.

The crucial feature that distinguishes these two ca
seems to be the smoothness of the potential: in the first
ample, the deep potential wells come from very sho
wavelength fluctuations, and there is thus no useful notion
a coarse-grained potential. But in the second example,
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deep potential wells come, as in one dimension, from lo
wavelength slowly varying components; thus coarse grain
the potential, to yield approximate dynamics which a
asymptotically exact, should be possible. We should emp
size, however, that it is by no means established even for
simple model of a random walk in a smoothly varyin
Gaussian random potential that the conclusion arg
above—that the dynamics will be asymptotical
deterministic—will be valid in high dimensions. What ha
pens in three dimensional random magnetic systems
which there are truly many degrees of freedom, we m
leave as an important open question.
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APPENDIX A: CONVERGENCE TOWARD THE FULL
STATE

In this appendix we analyze the rapid convergence
wards thefull state that was discussed in Sec. IV C. W
consider, for simplicity, random initial configurations of th
spins, in which there is an independent probabilityw that
each intersite position is occupied by a domain wall, an
probability 12w that it is not. Such random initial configu
rations describe, for example, initial equilibrium before
quench from a temperatureT0 which is high enough that the
random fields are negligible and the system behaves lik
pure chain. This corresponds toT051/b0;J@$hn% and the
choicew5e2b02J/(11e2b02J). In particular, initial condi-
tions where all spins are independent and take value61 with
probability 1/2 corresponds to infinite temperatureb050,
andw51/2.

For these type of initial configurations, the probabili
that there existn50, . . . ,l domain walls amongl consecu-
tive lattice spacings is simply given by the binomial dist
bution

R~nu l !5
l !

n! ~ l 2n!!
wn~12w! l 2n. ~A1!

In the renormalized landscape, the lengthl of descending
~ascending! bonds at scaleG is distributed with PG

1( l )
@PG

2( l )#, whose Laplace transforms are obtained after in
gration overz in Eq. ~37!. The probability that there had
been initiallyno domain walls in the interval occupied by
descending~ascending! bond of the renormalized landscap
plays an important role; it is

r zero
6 ~G!5(

l 51

`

PG
6~ l !R~0u l !5(

l 51

`

PG
6~ l !~12w! l .

~A2!

The probability that there had been an odd numbern is
7-29
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r odd
6 ~G!5(

l 51

`

PG
6~ l ! (

n odd

l

R~nu l !5(
l 51

`

PG
6~ l !

12~122w! l

2
,

~A3!

and the probability that there had been a nonvanishing e
number is

r even
6 ~G!512r odd

6 ~G!2r zero
6 ~G!. ~A4!

To characterize the statistical properties of the spin c
figurations on the renormalized landscape, we focus on
renormalized bond at scaleG—call it ‘‘2’’—and its local
environment which determines whether or not the maxim
and minimum at the ends of bond 2 are occupied by dom
walls. We introduce the probabilitiesVG

desc(e2 ;$e1 ,e3%)
@VG

asc(e2 ;$e1 ,e3%)#, wheree i56 , that a descending~resp.
ascending! bond of the renormalized landscape at scaleG is
in phasee256, with its left neighboring bond in phasee1
and its right neighboring bond in phasee3. The normaliza-
tion conditions are

(
e156

(
e256

(
e356

VG
desc~e2 ;$e1 ,e3%!51, ~A5!

(
e156

(
e256

(
e356

VG
asc~e2 ;$e1 ,e3%!51. ~A6!

If e252 on a descending bond, then it is not possible
havee151, since this would correspond to a domain w
of typeA at a maxima, and similarly it is not possible to ha
e351 since this would correspond to a domain wall of ty
B at a minima; thus we have immediately that

VG
desc~2;$12%!5VG

desc~2;$21%!5VG
desc~2;$21%!50.

~A7!

Similarly we have

VG
asc~1;$12%!5VG

asc~2;$21%!5VG
asc~2;$22%!50.

~A8!

If, however,e251 on a descending bond (e252 on a
ascending bond!, then all four possible neighborhoods of th
bond can occur. Since it is a bit lengthy to give the f
enumeration of all possible cases with their correspond
probabilities, we give here only the final results

VG
desc~2;$22%!5

r zero
1 ~G!

2
, ~A9!

VG
asc~1;$11%!5

r zero
2 ~G!

2
, ~A10!

and
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VG
desc~1;$22%!5„12r zero

2 ~G!…S 12
r zero

1 ~G!

2

2
r zero

1 ~G!r zero
2 ~G!

2 D
1

„r zero
2 ~G!…2

2
r even

1 ~G!, ~A11!

VG
desc~1;$12%!5VG

desc~1;$21%!5
r zero

2 ~G!

2

2
„r zero

2 ~G!…2

2
„r zero

1 ~G!1r even
1 ~G!…,

~A12!

VG
desc~1;$21%!5

„r zero
2 ~G!…2

2
„r zero

1 ~G!1r even
1 ~G!…,

~A13!

and similarly forascendingbonds by exchanging6→7.
The important property of these probabilities is that ap

from VG
desc(1;$22%) and VG

asc(2;$11%), which corre-
spond to locally full configuration of the domain walls, a
the allowedV haver zero

6 (G) as a factor, i.e., to have a bon
2 that does not have domain walls at both its extremit
requires that at least one of the three bonds~1,2, or 3! had
exactly zero domain walls in the initial configuration.

Using the fixed point solution@Eq. ~37!#, we find that

r zero
6 ~G!.E

0

`

dlPG
6~ l !~12w! l5 P̂G

6S q5 lnS 1

12wD D ,

~A14!

and thus this and the probabilities of non-full bonds co
verges exponentially inG to 0,

r zero
6 ~G!;e2G(Ap1d26d), ~A15!

with p5(1/2g)ln@1/(12w)#.
Thus the system converges towards the ‘‘full’’ state of t

renormalized landscape exponentially inG, with a non uni-
versal coefficient depending on the initial concentration
domain walls through the parameterw, and on the strength o
the disorder throughg. For the symmetric case of no applie
field (d50), the fraction of the extrema of the renormalize
landscape at timet that are not occupied by a domain wa
goes to zero as apowerof time,

Prob@missing domain wall#;
1

the
, ~A16!

with

he5TAln 2

2h̄2
. ~A17!
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Note that in the initial state for the landscape, and in
symmetric caseH50, hn is positive or negative with prob
ability 1/2, and thus after grouping the consecutivehn of the
same sign to give the initial zig-zag landscape, we have,
an initial distribution of length,

P0~ l !5
1

2l
for l 51,2, . . . ,̀ . ~A18!

This corresponds to

r zero~G50!5
12w

11w
. ~A19!

As an example, forw5 1
2 , we haver zero(G50)5 1

3 , and
VG50

desc(2;$22%)5 1
6 .

APPENDIX B: AUTOCORRELATIONS IN THE RFIM
WITH AN APPLIED FIELD

We have now to solve RG equations~94! given in the text
with the initial conditions

PG8,G8
11

~z!5E
0

`

dl
lPG8

1
~z,l !

l̄ G8

, ~B1!

PG8,G8
21

~z!50. ~B2!

Since for largeG, P6 have reach their fixed point value
@Eq. ~37!#, we obtain @using the simplified notationsuG

6

5uG
6(p50)5UG

6(p50)#

~]G2]z!PG,G8
61

~z!522uG
7PG,G8

61
~z!

12uG
7uG

6E
0

`

dz8e2uG
6(z2z8)PG,G8

61
~z8!

1~uG
6!2ze2uG

6zPG,G8
71

~0!, ~B3!

together with the initial conditions

PG8,G8
21

~z!5
1

l̄ G8

e2zu
G8
1

„2]pUG
1~p!

1zUG
1~p!]puG

1~p!…up50 , ~B4!

PG8,G8
21

~z!50. ~B5!

The solutions are thus of the form

PG,G8
61

~z!5
1

l̄ G

e2zuG
6

uG
6~AG,G8

61
1zBG,G

61!, ~B6!

where the coefficients satisfy

BG,G8
61

5]GAG,G8
61 , ~B7!

]G
2AG,G8

61
5uG

1uG
2~AG,G8

21
1AG,G8

21
!. ~B8!
06610
e

r

Introducing the sumSG,G8
1

5AG,G8
11

1AG,G8
21 and the difference

DG,G8
1

5AG,G8
21

2AG,G8
21 , we obtain the decoupled equations

]G
2DG,G8

1
50, ~B9!

]G
2SG,G8

1
52uG

1uG
2SG,G8

1 , ~B10!

together with the boundary conditions

DG8,G8
1

5SG8,G8
1

5AG8,G8
21

5
1

2d2 ~g8 cothg821!,

~B11!

]GDG,G8
1 uG5G85]GSG,G8

1 uG5G8

5BG8,G8
11

5
1

2d S cothg82
g8

sinh2g8D ,

~B12!

whereg85dG8 as usual. In terms of the function

r~g!5g cothg21, ~B13!

and its derivative with respect tog,

M~g!5cothg2
g

sinh2g
, ~B14!

we finally obtain

AG,G8
61

5
1

4d2 „r~g!6gM~g8!6r~g8!7g8M~g8!…,

~B15!

BG,G8
61

5
1

4d
„M~g!6M~g8!…. ~B16!

In the same way we obtain the solutions for the2 initial
condition,

PG,G8
62

~z!5
1

l̄ G

e2zuG
6

uG
6~AG,G8

62
1zBG,G

62! ~B17!

with AG,G8
62

5AG,G8
71 and BG,G8

62
5BG,G8

71 . We may check the
normalizations

E
0

`

dz„PG,G8
16

~z!1PG,G8
26

~z!…5
1

2
„16M~g8!…. ~B18!

The autocorrelation is

^Si~ t8!Si~ t !&

5E
0

`

dz„PG,G8
21

~z!1PG,G8
22

~z!2PG,G8
12

~z!2PG,G8
21

~z!…

~B19!
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5
1

l̄ G
S 2~AG,G8

21
2AG,G8

21
!1S 1

uG
1 1

1

uG
2D ~BG,G8

21
2BG,G8

21
! D

~B20!

5~cothg!M~g8!1
1

sinh2g
„gM~g8!1r~g8!

2g8M~g8!…. ~B21!

Note that ^Si(t8)&5M(g8) and ^Si(t)&5M(g)5cothg
2g/sinh2g.

APPENDIX C: TWO-POINT TWO-TIME CORRELATIONS
ŠS0„t…Sx„t…‹ŠS0„t8…Sx„t8…‹

1. Definitions

Two points at 0 andx.0 are given. To compute the tw
spin two time correlation we introduce the following quan
ties. LetVG,G8

2n,1(z0 ,l 0 ;z1 ,l 1 , . . . ;z2n ,l 2n ;x), n50,1,2. . . ,
@and, respectively, VG,G8

2n,2(z0 ,l 0 ;z1 ,l 1 , . . . ;z2n ,l 2n ;x)#
be the probability that atG8, x, and 0 are on bonds o
same orientation~respectively different orientation!, and
that at G, x, and 0 are on bonds of same orientatio
with a configuration (z0 ,l 0 ;z1 ,l 1 , . . . ;z2n ,l 2n). One simi-
larly definesVG,G8

2n11,1(z0 ,l 0 ;z1 ,l 1 , . . . ;z2n11 ,l 2n11 ;x), n

50,1,2. . . , @respectivelyVG,G8
2n11,2(z0 ,l 0 ;z1 ,l 1 , . . . ;z2n11 ,

l 2n11 ;x)# be the probability that, atG8, x and 0 are on bonds
of same orientation~different orientations! and that, atG, x
and 0 are on bonds of different orientations, with a config
ration (z0 ,l 0 ;z1 ,l 1 , . . . ;z2n11 ,l 2n11).

Initial condition atG5G8 ~for all n>0):

VG8,G8
2n,1

~z0 ,l 0 ;z1 ,l 1 , . . . ;z2n ,l 2n ;x!, ~C1!

5PG8~z0 ,l 0!PG8~z1 ,l 1! . . . PG8~z2n ,l 2n!WG8

3S l 0 ,l 2n ,(
i 50

2n

l i2xD , ~C2!

VG8,G8
2n11,2

~z0 ,l 0 ;z1 ,l 1 , . . . ;z2n11 ,l 2n11 ;x!, ~C3!

5PG8~z0 ,l 0!PG8~z1 ,l 1! . . . PG8~z2n11 ,l 2n11!WG8

3S l 0 ,l 2n11 , (
i 50

2n11

l i2xD , ~C4!

with the notation

WG~ l 1 ,l 2 ,L !5
2

G2E0

l 1
dy1E

0

l 2
dy2d~L2y12y2! ~C5!

5
2

G2
@min~ l 1 ,L !2max~0,L2 l 2!#u@min~ l 1 ,L !

2max~0,L2 l 2!#. ~C6!

We have, of course,VG8,G8
2n,2

5VG8,G8
2n11,1

50.
06610
,

-

In the end we are interested in the probabilitiesPG,G8
e,e8 (x)

that ^S0(t8)Sx(t8)&5e8 and ^S0(t)Sx(t)&5e. We have the
normalization

PG,G8
1,1

~x!1PG,G8
2,2

~x!1PG,G8
2,1

~x!1PG,G8
1,2

~x!51. ~C7!

The correlation function is

^S0~ t !Sx~ t !&^S0~ t8!Sx~ t8!&

5PG,G8
1,1

~x!1PG,G8
2,2

~x!2PG,G8
2,1

~x!2PG,G8
1,2

~x!.

~C8!

In terms of the functionsV, we have

PG,G8
1,1

~x!5 (
n50

` E
z0 ,l 0 , . . . z2n ,l 2n

VG,G8
2n,1

3~z0 ,l 0 ;z1 ,l 1 , . . . ;z2n ,l 2n ;x!, ~C9!

PG,G8
1,2

~x!5 (
n50

` E
z0 ,l 0 , . . . z2n ,l 2n

VG,G8
2n,2

3~z0 ,l 0 ;z1 ,l 1 , . . . ;z2n ,l 2n ;x!, ~C10!

PG,G8
2,1

~x!5 (
n50

` E
z0 ,l 0 , . . . z2n11 ,l 2n11

3VG,G8
2n11,1

~z0 ,l 0 ;z1 ,l 1 , . . . ;z2n11 ,l 2n11 ;x!,

~C11!

PG,G8
2,2

~x!5 (
n50

` E
z0 ,l 0 , . . . z2n11 ,l 2n11

3VG,G8
2n11,2

~z0 ,l 0 ;z1 ,l 1 , . . . ;z2n11 ,l 2n11 ;x!.

~C12!

2. RG equations

The RG equations forVG,G8
m,e8 for e856 and m

50,1,2, . . . read

S ]G2 (
k50

m

]zkDVG,G8
m,e8~z0 ,l 0 ;z1 ,l 1 ; . . . zm ,l m ;x!

522PG~z50!VG,G8
m,e8~z0 ,l 0 ;z1 ,l 1 ; . . . zm ,l m ;x!

~C13!

1 (
k50

m E
z,l 1 l 81 l 95 l k

VG,G8
m12,e8

3~z0 ,l 0 ; . . . ;zk21 ,l k21 ;z,l ;0,l 8;zk

2z,l 9; . . . ;zm ,l m ;x! ~C14!
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1E
z,l 1 l 081 l 185 l 0

PG~z02z,l !VG,G8
m11,e8

3~0,l 08 ;z,l 18 ;z1 ,l 1 ; . . . ;zm ,l m ;x! ~C15!

1E
z,l 1 l m8 1 l m118 5 l m

VG,G8
m11,e8

3~z0 ,l 0 ; . . . ;zm21 ,l m21 ;z,l m8 ;0,l m118 ;x!

3PG~zm2z,l ! ~C16!

1E
z,l 1 l 81 l 085 l 0

PG~z,l !PG~0,l 8!VG,G8
m,e8~z0

2z,l 08 ;z1 ,l 1 ; . . . ;zm ,l m ;x! ~C17!

1E
z,l m8 1 l 81 l 5 l m

VG,G8
m,e8~z0 ,l 0 ; . . . ;zm21 ,l m21 ;

3z,l m8 ;x!PG~0,l 8!PG~zp2z,l !. ~C18!

In particular, form50, we have

~]G2]z0
!VG,G8

0,e8 ~z0 ,l 0 ;x!

522PG~z50!VG,G8
0,e8 ~z0 ,l 0 ;x! ~C19!

1E
z,l 1 l 81 l 95 l 0

VG,G8
2,e8 ~z,l ;0,l 8;z02z,l 9;x!

~C20!

1E
z,l 1 l 081 l 185 l 0

PG~z02z,l !VG,G8
1,e8 ~0,l 08 ;z,l 18 ;x!

~C21!

1E
z,l 1 l 91 l 85 l 0

VG,G8
1,e8 ~z,l 9;0,l 8;x!PG~z02z,l !

~C22!

1E
z,l 1 l 81 l 085 l 0

PG~z,l !PG~0,l 8!VG,G8
0,e8 ~z02z,l 08 ;x!

~C23!

1E
z,l 081 l 81 l 5 l 0

VG,G8
0,e8 ~z,l 08 ;x!PG~0,l 8!PG~z02z,l !

~C24!

1E
z,l 081 l 81 l 5 l 0

VG,G8
0,e8 ~0,l 08 ;x!PG~z,l 8!PG~z02z,l !.

~C25!
06610
3. Form of solutions

For n>1 ande856, we set

VG,G8
2n,e8~z0 ,l 0 ; . . . ;z2n ,l 2n ;x!

5EG,G8
1,e8S z0 ,l 0 ;z2n ,l 2n ;(

i 50

2n

l i2xD
3PG~z1 ,l 1! . . . PG~z2n21 ,l 2n21!, ~C26!

VG,G8
2n11,e8~z0 ,l 0 ; . . . ;z2n11 ,l 2n11 ;x!

5EG,G8
2,e8S z0 ,l 0 ;z2n11 ,l 2n11 ; (

i 50

2n11

l i2xD
3PG~z1 ,l 1! . . . PG~z2n ,l 2n!, ~C27!

and also

VG,G8
1,e8 ~z0 ,l 0 ;z1 ,l 1 ;x!5EG,G8

2,e8~z0 ,l 0 ;z1 ,l 1 ; l 01 l 12x!,
~C28!

wherePG(z,l ) satisfy the bond equation, and whereE satis-
fies the RG equations

~]G2]z1
2]z2

!EG,G8
6,e8~z1 ,l 1 ;z2 ,l 2 ;L !

522PG~z50!EG,G8
6,e8~z1 ,l 1 ;z2 ,l 2 ;L ! ~C29!

1PG~0,.!* l 1
PG~ .,.!* z1 ,l 1

EG,G8
6,e8~ .,.;z2 ,l 2 ;L !

~C30!

1PG~0,.!* l 2
PG~ .,.!* z2 ,l 2

EG,G8
6,e8~z1 ,l 1 ;.,.;L !

~C31!

1E
l 1 l 81 l 185 l 1

EG,G8
7,e8~0,l 18 ;z2 ,l 2 ;L2 l !

3PG~ .,l !* z1
PG~ .,l 8! ~C32!

1E
l 1 l 81 l 285 l 2

EG,G8
7,e8~z1 ,l 1 ;0,l 28 ;L2 l !

3PG~ .,l !* z2
PG~ .,l 8! ~C33!

1E
l 1 l 81 l 185 l 1

EG,G8
6,e8~ .,l 18 ;z2 ,l 2 ;L2 l 2 l 8!* z1

3PG~ .,l !PG~0,l 8! ~C34!

1E
l 1 l 81 l 285 l 2

EG,G8
6,e8~z1 ,l 1 ;.,l 28 ;L2 l 2 l 8!* z2

3PG~ .,l !PG~0,l 8!, ~C35!

with the initial conditions
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EG8,G8
e,e8 ~z1 ,l 1 ;z2 ,l 2 ;L !

5de,e8PG8~z1 ,l 1!PG8~z2 ,l 2!WG8~ l 1 ,l 2 ,L !.

~C36!

The RG equation forVG,G8
0,e8 becomes

~]G2]z0
!VG,G8

0,e8 ~z0 ,l 0 ;x!

522PG~z50!VG,G8
0,e8 ~z0 ,l 0 ;x! ~C37!

1E
z,l 1 l 81 l 95 l 0

EG,G8
1,e8~z,l ;z02z,l 9; l 02x!PG~0,l 8!

~C38!

1E
l 1 l 081 l 185 l 0

PG~ .,l !* z0
VG,G8

1,e8 ~0,l 08 ;.,l 18 ;x!

~C39!

1E
l 1 l 081 l 185 l 0

VG,G8
1,e8 ~ .,l 08 ;0,l 18 ;x!* z0

PG~ .,l !

~C40!

12PG~0,.!* l 0
PG~ .,.!* z0 ,l 0

VG,G8
0,e8 ~ .,.;x! ~C41!

1PG~ .,.!* z0 ,l 0
PG~ .,.!* l 0

VG,G8
0,e8 ~0,.;x!, ~C42!

with the initial condition

VG8,G8
0,e8 ~z0 ,l 0 ;x!5de8,11PG8~z0 ,l 0!WG8~ l 0 ,l 0 ,l 02x!.

~C43!

Using the form of the solutions, we thus obtain

PG,G8
1,1

~x!5E
z0 ,l 0

VG,G8
0,1

~z0 ,l 0 ;x! ~C44!

1 (
n51

` E
z0 ,z2n

E
L,l 0 ,l 1 . . . l 2n

EG,G8
11

~z0 ,l 0 ;z2n ,

3 l 2n ;L !dS L2S (
i 50

2n

l i2xD D
3PG~ l 1!•••PG~ l 2n21! ~C45!

PG,G8
1,2

~x!5E
z0 ,l 0

VG,G8
0,2

~z0 ,l 0 ;x! ~C46!

1 (
n51

` E
z0 ,z2n

E
L,l 0 ,l 1 . . . l 2n

EG,G8
12

~z0 ,l 0 ;z2n ,

3 l 2n ;L !dS L2S (
i 50

2n

l i2xD D
3PG~ l 1!•••PG~ l 2n21! ~C47!
06610
PG,G8
2,1

~x! ~C48!

51 (
n50

` E
z0 ,z2n11

E
L,l 0 ,l 1 ,l 2n11

EG,G8
2,1

3~z0 ,l 0 ;z2n11 ,l 2n11 ;L !dS L2S (
i 50

2n11

l i2xD D
3PG~ l 1!•••PG~ l 2n! ~C49!

PG,G8
2,2

~x! ~C50!

5 (
n50

` E
z0 ,z2n11

E
L,l 0 ,l 1 ,l 2n11

EG,G8
2,2

3~z0 ,l 0 ;z2n11 ,l 2n11 ;L !d

3S L2S (
i 50

2n11

l i2xD D PG~ l 1!•••PG~ l 2n!. ~C51!

4. Laplace transforms

It is convenient to introduce the Laplace transforms

EG,G8
e,e8 ~z1 ,p1 ;z2 ,p2 ;p!

5E
0

`

dl1E
0

`

dl2E
0

`

dLe2p1l 12p2l 22pL

3EG,G8~z1 ,l 1 ;z2 ,l 2 ;L !. ~C52!

Using the fixed point solution

PG~z,p!5UG~p!e2zuG(p), ~C53!

the RG equation forE becomes

~]G2]z1
2]z2

!EG,G8
6,e8~z1 ,p1 ;z2 ,p2 ;p!

522UG~0!EG,G8
6,e8~z1 ,p1 ;z2 ,p2 ;p! ~C54!

1UG
2~p1!E

0

z1
dze2(z12z)uG(p1)EG,G8

6,e8~z,p1 ;z2 ,p2 ;p!

~C55!

1UG
2~p2!E

0

z2
dze2(z22z)uG(p2)EG,G8

6,e8~z1 ,p1 ;z,p2 ;p!

~C56!

1UG~p1!UG~p11p!
e2z1uG(p11p)2e2z1uG(p1)

uG~p1!2uG~p11p!

3EG,G8
7,e8~0,p1 ;z2 ,p2 ;p! ~C57!

1UG~p2!UG~p21p!
e2z2uG(p21p)2e2z2uG(p2)

uG~p2!2uG~p21p!

3EG,G8
7,e8~z1 ,p1 ;0,p2 ;p! ~C58!
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1UG
2~p11p!E

0

z1
dze2(z12z)uG(p11p)EG,G8

6,e8

3~z,p1 ;z2 ,p2 ;p! ~C59!

1UG
2~p21p!E

0

z2
dze2(z22z)uG(p21p)EG,G8

6,e8

3~z1 ,p1 ;z,p2 ;p!, ~C60!

with the initial conditions

EG8,G8
e,e8 ~z1 ,p1 ;z2 ,p2 ;p!5de,e8

2

G82p2
@UG8~p1!e2z1uG8(p1)

2UG8~p11p!e2z1uG8(p11p)#

~C61!

@UG8~p2!e2z2uG8(p2)2UG8~p21p!e2z2uG8(p21p)#.
~C62!

Also defining

VG8,G8
2n50,e8~z0 ,p0 ;p!

5E
0

`

dl0e2p0l 0E
0

`

dxe2pxVG8,G8
2n50,e8~z0 ,l 0 ;x!,

~C63!

the RG equation becomes

~]G2]z0
!VG,G8

0,e8 ~z0 ,p0 ;p!

522uGVG,G8
0,e8 ~z0 ,p0 ;p! ~C64!

1E
z
EG,G8

1,e8~z,p01p;z02z,p01p;2p!PG~0,p01p!

~C65!

1UG~p0!E
0

z0
dze2(z02z)uG(p0)VG,G8

1,e8 ~0,p0 ;z,p0 ;p!

~C66!

1UG~p0!E
0

z0
dze2(z02z)uG(p0)VG,G8

1,e8 ~z,p0 ;0,p0 ;p!

~C67!

12UG
2~p0!E

0

z0
dze2(z02z)uG(p0)VG,G8

0,e8 ~z,p0 ;p!

~C68!

1UG
2~p0!z0e2z0uG(p0)VG,G8

0,e8 ~0,p0 ;p!, ~C69!

with the initial condition
06610
VG8,G8
2n50,e8~z0 ,p0 ;p!

5de8,11

2

G82p2
@UG8~p01p!e2z0uG8(p01p)

2UG8~p0!e2z0uG8(p0) ~C70!

2p]p0
„UG8~p0!e2z0uG8(p0)

…]. ~C71!

In Laplace terms

PG,G8
e,e8 ~q!5E

0

`

dxe2qxPG,G8
e,e8 ~x! ~C72!

relations~C51! become

PG,G8
1,1

~q!5E
z0

VG,G8
0,1

~z0,0;q!

1
PG~q!

12PG
2~q!

E
z1 ,z2

EG,G8
11

~z1 ,q;z2 ,q;2q!,

~C73!

PG,G8
1,2

~q!5E
z0

VG,G8
0,2

~z0,0;q!

1
PG~q!

12PG
2~q!

E
z1 ,z2

EG,G8
12

~z1 ,q;z2 ,q;2q!,

~C74!

PG,G8
2,1

~q!5
1

12PG
2~q!

E
z1 ,z2

EG,G8
21

~z1 ,q;z2 ,q;2q!,

~C75!

PG,G8
2,2

~q!5
1

12PG
2~q!

E
z1 ,z2

EG,G8
22

~z1 ,q;z2 ,q;2q!.

~C76!

Thus for the functionsE, we need to solve only the cas
p15p25q52p, i.e., with the notationUG(p50)5uG(p
50)5uG ,

~]G2]z1
2]z2

!EG,G8
6,e8~z1 ,q;z2 ,q;2q!

522uGEG,G8
6,e8~z1 ,q;z2 ,q;2q! ~C77!

1UG
2~q!E

0

z1
dze2(z12z)uG(q)EG,G8

6,e8~z,q;z2 ,q;2q!

~C78!

1UG
2~q!E

0

z2
dze2(z22z)uG(q)EG,G8

6,e8~z1 ,q;z,q;2q!

~C79!
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1UG~q!uG

e2z1uG2e2z1uG(q)

uG~q!2uG
EG,G8

7,e8~0,q;z2 ,q;2q!

~C80!

1UG~q!uG

e2z2uG2e2z2uG(q)

uG~q!2uG
EG,G8

7,e8~z1 ,q;0,q;2q!

~C81!

1uG
2E

0

z1
dze2(z12z)uGEG,G8

6,e8~z,q;z2 ,q;2q!

~C82!

1uG
2E

0

z2
dze2(z22z)uGEG,G8

6,e8~z1 ,q;z,q;2q!,

~C83!

and with the initial conditions

EG8,G8
e,e8 ~z1 ,q;z2 ,q;2q!

5de,e8

2

G82q2
@UG8~q!e2z1uG8(q)2uG8e

2z1uG8#

~C84!

@UG8~q!e2z2uG8(q)2uG8e
2z2uG8#. ~C85!

For n50 we need to solve only the casesp05p150 and
p5q, i.e., the equation

~]G2]z0
!VG,G8

0,e8 ~z0,0;q!

522uGVG,G8
0,e8 ~z0,0;q! ~C86!

1UG~q!E
z
EG,G8

1,e8~z,q;z02z,q;2q! ~C87!

1uGE
0

z0
dze2(z02z)uGVG,G8

1,e8 ~0,0;z,0;q! ~C88!

1uGE
0

z0
dze2(z02z)uGVG,G8

1,e8 ~z,0;0,0;q! ~C89!

12uG
2E

0

z0
dze2(z02z)uGVG,G8

0,e8 ~z,0;q! ~C90!

1uG
2z0e2z0uGVG,G8

0,e8 ~0,0;q!, ~C91!

with the initial conditions

VG8,G8
0,e8 ~z0,0;q!

5de8,11

2

G82q2
@UG8~q!e2z0uG8(q)2UG8e

2z0uG8 ~C92!

2p]p0
~UG8~p0!e2z0uG8(p0)!up050]. ~C93!
06610
5. Solution for the functions E

Using the symmetry in (z1 ,z2), we set

EG,G8
e,e8 ~z1 ,q;z2 ,q;2q!

5
2

G2
„AG,G8

e,e8 ~q!e2z1uG(q)e2z2uG(q)

1BG,G8
e,e8 ~q!e2z1uGe2z2uG(q) ~C94!

1BG,G8
e,e8 ~q!e2z1uG(q)e2z2uG1DG,G8

e,e8 ~q!e2z1uGe2z2uG
….

~C95!

It is in fact more convenient to use the following comb
nations:

I G,G8
e,e8 ~q!5

G2

2
EG8,G8

e,e8 ~z150,q;z250,q;2q! ~C96!

5AG,G8
e,e8 ~q!12BG,G8

e,e8 ~q!1DG,G8
e,e8 ~q!,

~C97!

JG,G8
e,e8 ~q!5

G2

2 E
0

`

dz2EG8,G8
e,e8 ~z150,q;z2 ,q;2q!

~C98!

5
AG,G8

e,e8 ~q!

uG~q!
1BG,G8

e,e8 ~q!S 1

uG~q!
1

1

uG
D

1
DG,G8

e,e8 ~q!

uG
, ~C99!

KG,G8
e,e8 ~q!5

G2

2 E
0

`

dz1E
0

`

dz2EG8,G8
e,e8 ~z1 ,q;z2 ,q;2q!

~C100!

5
AG,G8

e,e8 ~q!

uG
2~q!

12
BG,G8

e,e8 ~q!

uG~q!uG
1

DG,G8
e,e8 ~q!

uG
2

.

~C101!

They satisfy the system of equations

]GI G,G8
6,e8~q!522„uG1uG~q!…I G,G8

6,e8~q!12uGuG~q!JG,G8
6,e8~q!,

~C102!

]GJG,G8
6,e8~q!5S UG

2~q!

uG~q!
2uG~q! D JG,G8

6,e8~q!2I G,G8
6,e8~q!

1uGuG~q!KG,G8
6,e8~q!1

UG~q!

uG~q!
I G,G8

7,e8~q!,

~C103!
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]GKG,G8
6,e8~q!5S 2

UG
2~q!

uG~q!
12uGDKG,G8

6,e8~q!22JG,G8
6,e8~q!

12
UG~q!

uG~q!
JG,G8

7,e8~q!, ~C104!

and the initial conditions

I G8,G8
e,e8 ~q!5de,e8

1

q2
@UG8~q!2uG8#

2, ~C105!

JG8,G8
e,e8 ~q!5de,e8

1

q2
@UG8~q!2uG8#FUG8~q!

uG8~q!
21G ,

~C106!

KG8,G8
e,e8 ~q!5de,e8

1

q2 FUG8~q!

uG8(q)

21G 2

. ~C107!

It is convenient to introduce the following sums and d
ferences:

I G8,G8
S,e8 ~q!5I G8,G8

1,e8 ~q!1I G8,G8
2,e8 ~q!, ~C108!

I G8,G8
D,e8 ~q!5I G8,G8

1,e8 ~q!2I G8,G8
2,e8 ~q!, ~C109!

JG8,G8
S,e8 ~q!5JG8,G8

1,e8 ~q!1JG8,G8
2,e8 ~q!, ~C110!

JG8,G8
D,e8 ~q!5JG8,G8

1,e8 ~q!2JG8,G8
2,e8 ~q!, ~C111!

KG8,G8
S,e8 ~q!5KG8,G8

1,e8 ~q!1KG8,G8
2,e8 ~q!, ~C112!

KG8,G8
D,e8 ~q!5KG8,G8

1,e8 ~q!2KG8,G8
2,e8 ~q!. ~C113!

Then, fore8 fixed, the three functionsI S,e8, JS,e8, andKS,e8

satisfy the system of equations

]GI G,G8
S,e8 ~q!522„uG1uG~q!…I G,G8

S,e8 ~q!12uGuG~q!JG,G8
S,e8 ~q!,

~C114!

]GJG,G8
S,e8 ~q!5S UG

2~q!

uG~q!
2uG~q! D JG,G8

S,e8 ~q!2I G,G8
S,e8 ~q!

1uGuG~q!KG,G8
S,e8 ~q!1

UG~q!

uG~q!
I G,G8

S,e8 ~q!,

~C115!

]GKG,G8
S,e8 ~q!5S 2

UG
2~q!

uG~q!
12uGDKG,G8

S,e8 ~q!22JG,G8
S,e8 ~q!

12
UG~q!

uG~q!
JG,G8

S,e8 ~q!, ~C116!

with the initial conditions
06610
I G8,G8
S,e8 ~q!5

1

q2
@UG8~q!2uG8#

2, ~C117!

JG8,G8
S,e8 ~q!5

1

q2
@UG8~q!2uG8#FUG8~q!

uG8~q!
21G ,

~C118!

KG8,G8
S,e8 ~q!5

1

q2 FUG8~q!

uG8(q)

21G 2

; ~C119!

thus the solutions are simply

I G,G8
S,e8 ~q!5

1

q2
@UG~q!2uG#2, ~C120!

JG,G8
S,e8 ~q!5

1

q2
@UG~q!2uG#FUG~q!

uG~q!
21G , ~C121!

KG,G8
S,e8 ~q!5

1

q2 FUG~q!

uG~q!
21G2

. ~C122!

For e8 fixed, the three functionsI D,e8, JD,e8, and KD,e8

satisfy the system of equations

]GI G,G8
D,e8~q!522„uG1uG~q!…I G,G8

D,e8~q!12uGuG~q!JG,G8
D,e8~q!,

~C123!

]GJG,G8
D,e8~q!5S UG

2~q!

uG~q!
2uG~q! D JG,G8

D,e8~q!2I G,G8
D,e8~q!

1uGuG~q!KG,G8
D,e8~q!2

UG~q!

uG~q!
I G,G8

D,e8~q!,

~C124!

]GKG,G8
D,e8~q!5S 2

UG
2~q!

uG~q!
12uGDKG,G8

D,e8~q!22JG,G8
D,e8~q!

22
UG~q!

uG~q!
JG,G8

D,e8~q!, ~C125!

with the initial conditions

I G8,G8
D,e8 ~q!5~21!e8

1

q2
@UG8~q!2uG8#

2, ~C126!

JG8,G8
D,e8 ~q!5~21!e8

1

q2
@UG8~q!2uG8#FUG8~q!

uG8~q!
21G ,

~C127!

KG8,G8
D,e8 ~q!5~21!e8

1

q2 FUG8~q!

uG8(q)

21G 2

. ~C128!

Three linearly independent solutions of the system rea
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I G
D1~q!5@UG~q!1uG#2, ~C129!

JG
D1~q!5@UG~q!1uG#FUG~q!

uG~q!
11G , ~C130!

KG
D1~q!5FUG~q!

uG(q)
11G2

, ~C131!

I G
D2~q!52uG

UG~q!1uG

UG~q!1uG~q!
, ~C132!

JG
D2~q!5

„2uG1UG~q!…FUG~q!

uG~q!
11G

UG~q!1uG~q!
, ~C133!

KG
D2~q!52

FUG~q!

uG(q)
11G

uG~q!
, ~C134!

I G
D3~q!5

UG~q!@2uG
21„2uG1UG~q!…„uG~q!1UG~q!…#

„uG~q!1UG~q!…„uG~q!22UG~q!2
…

,

~C135!

JG
D3~q!5

UG~q!@2uG1uG~q!1UG~q!#

uG~q!„uG~q!22UG~q!2
…)

, ~C136!

KG
D3~q!5

2UG~q!

uG~q!2
„uG~q!2UG~q!…

. ~C137!
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It is useful to consider the matrix formed by these so
tions,

NG5S I G
D1~q! I G

D2~q! I G
D3~q!

JG
D1~q! JG

D2~q! JG
D3~q!

KG
D1~q! KG

D2~q! KG
D3~q!

D ,

whose determinant gives the WronskianWG of the three lin-
ear independent solutions:

WG5det@NG#52
UG

3~q!

uG
3~q!

. ~C138!

The solution satisfying the initial conditions we are inte
ested in will be obtained as a linear combination,

S I G,G8
D,e8~q!

JG,G8
D,e8~q!

KG,G8
D,e8~q!

D 5(
i 51

3

lG8
i e8~q!S I G

Di~q!

JG
Di~q!

KG
Di~q!

D [NGS lG8
1e8~q!

lG8
2e8~q!

lG8
3e8~q!

D ,

where the coefficientslG8
1e8(q) are determined by the initia

conditions

S lG8
1e8~q!

lG8
2e8~q!

lG8
3e8~q!

D 5NG8
21S I G8,G8

D,e8 ~q!

JG8,G8
D,e8 ~q!

KG8,G8
D,e8 ~q!

D . ~C139!

The inverse of the matrixNG is
NG
2151

2uG~q!

UG~q!2@uG~q!2UG~q!#
2

2uG~q!~2uGuG~q!1UG~q!@uG~q!1UG~q!# !

UG~q!2~uG~q!22UG~q!2!

uG~q!2~2uG
2uG~q!1UG~q!@2uG1UG~q!#@uG~q!1UG~q!# !

UG~q!2@uG~q!1UG~q!#@uG~q!22UG~q!2#

2
~uG~q!1UG~q!!

UG~q!2

uG~q!~2uG1UG~q!!

UG~q!2
2

uGuG~q!2@uG1UG~q!#

UG~q!2@uG~q!1UG~q!#

2
@uG~q!1UG~q!#2

UG~q!2

2uG~q!@uG1UG~q!#@uG~q!1UG~q!#

UG~q!
2

uG~q!2@uG1UG~q!#2

UG~q!2

2 ,

~C140!

and, finally, we obtain the coefficients

lG8
1e8~q!52~21!e8

$28uG8
2 uG8~q!1@uG8~q!1UG8~q!#@25uG8~q!21UG8

2
~q!14uG8„3uG8~q!2UG8~q!…#%

q2
„uG8~q!2UG8~q!…„uG8~q!1UG8~q!)2

…

~C141!
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lG8
2e8~q!

52~21!e8
2„uG82uG8~q!…„2uG82uG8~q!2UG8~q!…

q2
„uG8~q!1UG8~q!…

~C142!

lG8
3e8~q!52~21!e8

4„uG82uG8~q!…2

q2
. ~C143!

In the end we are interested in

PG,G8
1,1

~q!5E
z0

VG,G8
0,1

~z0,0;q!1
2

G2q2

PG~q!

12PG
2~q!

KG,G8
1,1

~q!,

~C144!

PG,G8
1,2

~q!5E
z0

VG,G8
0,2

~z0,0;q!1
2

G2q2

PG~q!

12PG
2~q!

KG,G8
1,2

~q!,

~C145!

PG,G8
2,1

~q!5
2

G2q2

1

12PG
2~q!

KG,G8
2,1

~q!, ~C146!

PG,G8
2,2

~q!5
2

G2q2

1

12PG
2~q!

KG,G8
2,2

~q!. ~C147!

Since we have the relations

KG,G8
S,1

~q!5KG,G8
S,2

~q!, ~C148!

KG,G8
D,1

~q!52KG,G8
D,2

~q!, ~C149!

we can express the four functionsKG,G8
e,e8 (q) in terms of

KG,G8
S,1 (q) andKG,G8

D,1 (q) only as

KG,G8
e,e8 ~q!5 1

2 „KG,G8
S,1

~q!1~21!e~21!e8KG,G8
D,1

~q!…
~C150!

Since we have the constraints

PG,G8
1,1

~q!1PG,G8
1,2

~q!5PG
1~q!, ~C151!

PG,G8
2,1

~q!1PG,G8
2,2

~q!5PG
2~q!, ~C152!

PG,G8
1,1

~q!1PG,G8
2,1

~q!5PG8
1

~q!, ~C153!

PG,G8
1,2

~q!1PG,G8
2,2

~q!5PG8
2

~q!, ~C154!

where

PG
1~q!5

1

q
2

2

G2q2

12PG~q!

11PG~q!
, ~C155!

PG
2~q!5

2

G2q2

12PG~q!

11PG~q!
, ~C156!
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we do not have to compute the functionsVG,G8
0,2 (z0,0;q)

separately. Indeed, we obtain

PG
1~q!5E

z0

VG,G8
0,1

~z0,0;q!1E
z0

VG,G8
0,2

~z0,0;q!

1
2

G2

PG~q!

12PG
2~q!

KG,G8
S,1

~q!, ~C157!

PG
2~q!5

2

G2

1

12PG
2~q!

KG,G8
S,1

~q!, ~C158!

PG8
1

~q!5E
z0

VG,G8
0,1

~z0,0;q!1
1

G2

1

12PG
2~q!

3@„11PG~q!…KG,G8
S,1

~q!2„12PG~q!…KG,G8
D,1

~q!#,

~C159!

PG8
2

~q!5E
z0

VG,G8
0,2

~z0,0;q!1
1

G2

1

12PG
2~q!

3@„11PG~q!…KG,G8
S,1

~q!1„12PG~q!…

3KG,G8
D,1

~q!#. ~C160!

The second equation is satisfied sinceKG,G8
S,1 (q)5(1/

q2)@12PG(q)#2. The three other are compatible, and give

E
z0

VG,G8
0,1

~z0,0;q!5
1

q
2

2

G82q2

12PG8~q!

11PG8~q!
2

1

G2q2

3„12PG~q!…1
1

G2

1

11PG~q!

3KG,G8
D,1

~q!, ~C161!

E
z0

VG,G8
0,2

~z0,0;q!5
2

G82q2

12PG8~q!

11PG8~q!
2

1

G2q2
„12PG~q!…

2
1

G2

1

11PG~q!
KG,G8

D,1
~q!. ~C162!

6. Final result

The Laplace transform of the correlation function c
now be obtained as
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E
0

`

dxe2qx^S0~ t !Sx~ t !&^S0~ t8!Sx~ t8!&

5PG,G8
1,1

~q!1PG,G8
2,2

~q!2PG,G8
2,1

~q!2PG,G8
1,2

~q!

~C163!

5
1

q
2

4

G82q2

12PG8~q!

11PG8~q!
1

4

G2

1

12PG
2~q!

KG,G8
D,1

~q!,

~C164!

and thus the final explicit expression is

E
0

`

dxe2qx^S0~ t !Sx~ t !&^S0~ t8!Sx~ t8!&

5
1

q
2

4

G82q2
tanh2S G8Aq

2 D ~C165!

1
4

G2
cotanh2S GAq

2
D lG8

11
~q!1

8

G2

cotanhS GAq

2
D

Aq

3lG8
21

~q!1
4

G2

1

q sinh2S GAq

2
D lG8

31
~q!, ~C166!

where

lG8
11

~q!5
1

2G82q3 sinh2~G8Aq!
@813G82q

216 cosh~G8Aq!18G8Aq sinh~G8Aq!

~C167!

1~815G82q!cosh~2G8Aq!

212G8Aq sinh~2G8Aq!] ~C168!

lG8
21

~q!52
2

q2 S 1

G8
2Aq coth~G8Aq!D

3S 2

G8Aq
tanhS G8Aq

2 D 21D ~C169!

lG8
3e8~q!52

4

q2 S 1

G8
2Aq coth~G8Aq!D 2

. ~C170!

This leads to the scaling form given in the text in Eqs.~114!
and ~117!.
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APPENDIX D: FINITE SIZE PROPERTIES

In this appendix we sketch the derivation of the finite s
results from the finite size measure for the RFIM. If spins
both ends are fixed to have the same~opposite! value, there
are an odd~even! number of bonds in the finite size measur

Assuming for definitness that spins at both extremities
fixed to the valuesS0511 and SL521. Then domains
closest to the boundaries are domain walls of typeA which
as Sinai walkers see reflecting boundary conditions. In
case, as explained in Ref.@28#, the probability
NG,L

2k12( l 1 ,l 2 , . . . ,l 2k12) that the system at scaleG has (2k
12) bonds (k50,1, . . . ), with respective lengths
( l 1 , . . . ,l 2k12), is

NG,L
2k12~ l 1 ,l 2 , . . . ,l 2k12!

5EG
1~ l 1!PG

2~ l 2!PG
1~ l 3! . . . PG

1~ l 2k11!

3EG
2~ l 2k12! l̄ GdS L2 (

i 51

2k12

l i D , ~D1!

wherePG
6( l ) are the bulk length distributions@Eq. ~68!#, l̄ G

5 l̄ G
11 l̄ G

2 , and EG
6( l ) the length distribution of boundary

bonds~see Ref.@28#!. The normalization is

(
k50

` E
l 1 , . . . l 2k12

NG,L
2k12~ l 1 ,l 2 , . . . ,l 2k12!51. ~D2!

The probability that the system has (2k12) domains at
scaleG is

I L~k;G!5E
l 1 , . . . ,l 2k12

EG
1~ l 1!PG

2~ l 2!•••PG
1~ l 2k11!

3EG
2~ l 2k12!l GdS L2 (

i 51

2k12

l i D , ~D3!

so that the Laplace transform with respect to the length of
generating function is

E
0

`

dLe2qLS (
k50

`

zkI L~k;G!D 5 l̄ G

EG
1~q/2g!EG

2~q/2g!

12zPG
1~q/2g!PG

2~q/2g!

5
2g

q

12PG
1~q/2g!PG

2~q/2g!

12zPG
1~q/2g!PG

2~q/2g!
,

~D4!

wherep5q/2g. This leads to the results given in the text.
The magnetization can also be obtained. In the ‘‘ful

renormalized landscape, the magnetization is given byML

5( i 51
i 52k12(21)i 11l i . The probability that it has valueM

simply is
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FL~M ;G!5 (
k50

k51` E
l 1 , . . . ,l 2k12

E1~ l 1!P2~ l 2!P1~ l 3!•••

3P1~ l 2k21!E2~ l 2k12! ~D5!
.
rin

s-

to

12

ys

ro

in

06

06610
l̄ GdS L2 (
i 51

2k12

l i D dS M2 (
i 51

i 52k12

~21! i 11l i D . ~D6!

This leads to the result given in the text.
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