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Trapping of random walks on small-world networks
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We investigate the trapping of random walkers on small-world netw(B§N'’s), irregular graphs. We
derive bounds for the survival probabili@ﬁw'\‘ and display its analysis through cumulant expansions. Com-
puter simulations are performed for large SWNs. We show that in the limit of infinite sizes, trapping on SWNs
is equivalent to trapping on a certain class of random trees, which are grown during the random walk.
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I. INTRODUCTION Il. THE SMALL-WORLD NETWORK

d To envisage the construction of the SWN’s considered

sinks is a rich problem that has been widely investigated irp-ere-, we start from a ring with S|t§s,| =1..L, where. eagh
the last two decaddd 13 Besides its intrinsic mathemati- SIt€ i iS connected by bonds to its two nearest neighbors
cal interest as an example of rare events statigigsthe ~ — 1,1+ 1. Then we add with probabilitp from each lattice
trapping problem is a central model for energy transfer andite i @ bond(AL) to one of the other sitek, chosen ran-
carrier recombination in ordered and disordered materialéomly, with equal probability. In this way, we add on the
[4,5]. Trapping has been investigated using very differenverageplL, additional AL to the ring. The parametpmea-
techniques, ranging from rigorous mathematical treatmentsures the degree of disorder of the SWN, since it interpolates
[1] and field theory[6,7] to extensive simulation§3,4,9.  between a ring fop=0 and a nearly completely random
While the short- and medium-time decay are well repro-graph forp large, sayp=1. The probability 2p/(L —1) of
duced by Smoluchowski-type approacti@kand lead to ex- drawing an AL between the lattice poiritsk whose mutual

The trapping of random walkers by randomly distribute

ponential decays on regul&@-dimensional lattices wittD distance is less than a preassigned lengthe., |i —k|<r,
>2, at very long times, surprisingly, the decay laby, is  tends to zero in the limit — and the same is true for loops
expected to tend toward4,4-11 of bounded length. This implies that in the limit of largea
SWN can hardly be distinguished from a treelike structure,
@ ,~exg —cn®C*2], (D in as far as the local properties are concerned. This is very

) - o similar to the case of purely random latticéshere the
where® , is the probability that a random walker is still not weight of clusters with closed loops vanishes forso
trapped.c is a constant, and is the number of steps. Even [21 27)) and we will make use of this fact later, when con-
more complex aspects are revealed when monitofigon sidering theL —c limit of (DEWN, the decay due to trapping
structures such as fractdlsl], Cayley treeg12], and ultra- on very large SWN's.
metric spacesUMS) [13], which mimic disorder. When let- £, the construction described above, it follows that the

ting the trapping rates on the one-dimensicid) lattice be robability w, for a lattice pointi to havek AL attached to it
strongly correlated with the hopping probabilitig8] the eplmountst¥o k P

asymptotic behavior Eq1) is changed by logarithmic cor-
rections.
In this paper, we study the trapping problem on a particu-

. - L—1 P L-k—-2 p k-1
larly interesting class of random graphs, namely, on small- = p( k—l)(l_ _) (_ +(1-p)
world networks(SWN's). Recently these structures have at- L—-1 L-1

constructed by inserting in a random way additional links
(AL) into a regular lattice. Examples for realizations of
SWN's range from the net of social acquaintances to com-
puter cluster$14]. ] ] ] ) ]
We proceed with displaying the general properties ofThe first term |n_Eq(2) stems from having dtone outgoing
SWN’s in Sec. II. In Sec. Ill we study trapping on SWN's and k—1 incoming AL, while the second term is due to
and derive analytical results, which allow us to obtain ahaving zero outgoing ankl incoming AL [an outgoing AL
qualitative understanding of the problem. In Sec. IV wehas probabilityp, an incoming AL probabilityp/(L —1)].
present the results of our computer simulations and contrast In the limit L—cc, this distribution turns into a weighted
these with the insights gained in Sec. Ill. We end with oursum of two Poisson distributions
conclusions in Sec. V.

tracted much interes{14-20. Thus, SWN’'s may be L—1 p |1k p ok
( )(1_L 1) (L—l) @

k—1 k

p _ p-
=-pD— Py+(1-— — P
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From Eq.(3), it follows that each lattice point has a mean nentD/(D +2)=1/3 in Eq.(1), as analytically established in
number(k)=2p of AL's and that the variance/(k?)—(k)?>  [2], ®;"N behaves in the same way.

of the connectivity distribution is given byp(2—p). The key feature that leads to this fact is that SWN’s dis-
play extended chain-like portions. Of course, the general un-
IIl. TRAPPING ON SWN derstanding is that most experiments are not able to reach the

) ) o ) asymptotic limit[9,10]

Given a particular SWN realization, we now consider a |nsertingy= — In(1—q) into Eq.(5) leads to the following
particular trap distribution over it; each site can, with prob-expansior{3]:
ability g, be occupied by an immobile trap. In this way, the
disorder is quenched. Random walkers are then placed on the
SWN at the Oth stepn(=0) and are trappetannihilated at O SN=(exp — yR,)) = exp{z Ko (= ) } 9)
the first encounter of a trap. We focus on the probability
®SWN that the walker has survive(s not yet trappedat the
nth step, averaged over all SWN realizations, over all pos;
sible placements of the traps and over all random-wRalX/)

o]

where x> are the cumulants of the distribution Bf, on
SWN Iatt|cesdev0|dof traps. For instance, the first two cu-

realizations. mulants are
Denoting byR, the number of distinct sites visited im K SN WN SWN_ /2 2 SWN2
steps, the walker survivassteps, if none of th&, visited =(Ry=S"" and x33"=(RY) — (Ry)*=(o7")?,
sites is a trap. This event has the probabilBy (10
P.=(1—q)f L, (4  with 7" and (5"")? being the mean and the variance of

R,. Taking only the first term in the sum of E¢Q) into
taking into account only walkers that start from trap-freeaccount is known as the Rosenstock approximaffof); as
sites. Thus, we obtain the exact survival probability by perin Ref.[3], we denote the approximations that are obtained
forming the average over all RW and SWN realizations by restricting the sum in Eq(9) to the firstN terms by

OIVN - According to the Jensen-Peierls inequali

- CI)SWN [23], i.e., RAis a lower bound to the true decay We
M= ((1— )= 2 pa (RI(A=0)® L (5)  remark that RA leads to very good expressions for the target
problem[17,24,25; it is also very good in high-dimensional
WherepSWN(R) is the probability that a step RW has vis- spaces and for smajl, for short and medium times. On the

ited exactlyR distinct sites on latticedevoidof traps. other hand RAis poor in low dimensiofi8] and, of course,

Since for SWN theR, values are not smaller than for the it does not lead to the asymptotic behavior of Et).
underlying 1D chain and since (1g)®n~! is a monotoni- As a first approximation step for trapping on SWN, we

. . ? . . SWN Wi WN
cally decaying function oR, we obtain the inequality first focus on®$)"=exp(-yS;""), and hence, or$;
As shown in Ref [17], SSYNis closely described by the
Pr=dM, (6)  following scaling relation:

where®? is the survival probability on a regular lattice. SWN=n2f(np?), where f(x)

On the other hand, we obtain a lower bound by placing
additional traps on each lattice site, to which at least one AL NCES for x—0

is connected. In this way, the AL’'s are completely screened 11

by the traps and we are led to the trapping problem on a 1D
chain with a different trap densify. From Eq.(3), the prob-  \ye stop to note that the form di(x) may be specified in
ability of having a trap-free site is given bwo(1-Q);  more detail, by considering that for smallp<1, a random
hence, the trap density equals walker moves mostly on the 1D structure. Now, each time
~ - the random walker makes a step along an AL, it starts to
=1— — =1— P(1— —
G=1-wo(1-q)=1-e"*1-p)(1-0). ™ explore a 1D segment, for which, is given (for n not too

c'\x,c' constant, for x—o’

Thus, we have the inequality smal) by S,=y8n/w. Therefore, a walker that in steps
makesA,, steps along AL's, visitd\,+ 1 different segments
OSMN(g)=d (7). (8)  (if we neglect returns over the Al's of average length

n/(A,+1) each; on each segment on the average

We stop to note that Eq8) makes sense only fop<1;  /8n/7(A,+1) sites are visited, hence,
otherwise, our construction of the lower bound assigns to

each lattice site a trap, which renddr$(q) identically zero. SN 8n \/ﬁ "

We infer that®>"N is bounded from above and from ST =Mt DN TR )T Vo At D
below by the decay forms of trapping in 1D calculated dor (12)
and forq. As we will show in the next section, the relations

Egs.(6) and(8) are well fulfilled. Furthermore, we infer that On the other hand, the probability that a step leads to cross-
given the asymptotic 1D behavior, which leads to the expoing an AL instead of continuing over the segment is roughly
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FIG. 1. The scaling functiori(x) Eq. (13), plotted as a solid logyo(~In®)} ’
line, compared withis5;"V/ \/n, displayed as a function of=np? 1L
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FIG. 2. (a) Survival probabilitiesb >N given as full lines, as a

¢ 8 \/; X
=71 Vg™ Vatg
function of n, the number of steps fop=0.04. We display the

T_his result is cqnfirmed_by our numerical i_nvestigations, Se&limensionless quantities lag—In ®SWN versus logon for the
Fig. 1, the details of which are presented in the next sectionyap densitiesg=0.5, 0.2, 0.1, 0.05, 0.02, and 0.01 from above to
below. In addition, the first and second cumulant approximations,
IV. SIMULATION RESULTS Egs.(9) and(10) are shown as dashed and dotted lines, respectively.
(b). Same ada) for p=0.08.
In our numerical calculations, we start from E§), since
it offers the great advantage of being, in fact, an, a region of much experimental interest. If the term

g-independent procedure: as stressedi3ih g appears only )\Z(UEWN)2/2 in Eq. (9) is small, we expect the RA
throughvy, a parameter. Numerically, one has only to evalu-

ate theR,, distribution on latticeslevoidof traps. _ (I,EWN:(I,i\r/]VN: exp(— ySEWN) (15)

We start our procedure as follows: For a givgnwe
construct ten different SWN’s of size=9x10° each. On
these, we simulate a total of FRW'’s with randomly chosen _ —In(1—g)=q]; furthermore, if E>"™2~n, this approxi-

starting points, and determine tiig, values for each walk. mation becomes exact in the linmiteq~ 2. Then the value of

By choosing the starting points randomly we sample, in fact,a is determined in this range by the behavionSﬁ\NN, which

a very large class of local SWN geometries, much larger thal . . . -2
the ten SWN realizations would indicate at first glance. Theﬂas Fwol.d'ﬁgg‘j‘v%t r(\a/glmesl, ;ele leb?]' _Fo/r n<ﬁ'l ’f Eg.
so determineR,, allow us then to computs, , see Fig. 1 (13 implies S7™ = yn, which leads tax=1/2, while forn

— WN H —
and also via Eq(5), to evaluate numerically for differemf > P ?, one hass;""~n leading toa = 1. On the other hand,

values both®>"N " and also the correspondimgﬁ"",ﬁ'“. The forn—c, we recalled in the Introduction thdi® obeys Eq.

results of these calculations are presented in Figw.and ~ (14), with «=1/3, see Eq(1). Furthermore, we showed in

2(b). To emphasize the regions of stretched exponential deSe€c. Il (using upper and lower bounds fdr"N based on
cay ®?) that forn—o ®3YN also obeys Eq14) with a=1/3. In

Figs. 4a) and 2b), we show the numerically determined
OYMN_exp( —cn®), (149  ®3"M. The scales chosen in Figga2and 2b) (see caption
allow us to monitor the change in the exponertif Eq. (14).
and to be able to highlight the exponeat we plotted As is evident from the figures, fgr<1, the®:"" display a
logio(— IN ;YN versus logyn; then the exponenir is  turning point forq=p (say, forp=0.04 andy=0.05), which
given directly by the slope of the curves. we associate with a transition from=1/2 to a=1. In Figs.
As we proceed to discuss, we obtditepending on the 2(@) and 2b) we also compara "N with 7)™ and with
values ofp, g, andn) different regimes that follow Eq.14). <I>§”‘r’1"”. It turns out that for small values @, the RA holds
We start by considering the range of small and medium largevell as far asn=10%. Interestingly, the RA gets better for

to hold very well[remember that for smald, one hasy
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4
larger values op. This shows that for largep, SWN’s be-
have more and more like higher-dimensional lattices; as a
reminder, on regulaD-dimensional lattices, the RA, Eq.
(15), gets better with higheb [3].

Including the second cumulants improves the quality of -1
the approximation ofb>"YN in the short and medium step : p= 008
ranges. On regular lattices, we found that @@\ approxi- S S
mate in turn from above and from below, ’depending on 0 ! 102gwn 4
whetherN was even or od{i3]; this, however, does not seem
to hold for q)ﬁny_ FIG. 4. (a) Data of Fig. Za) in the same scales, compared to the

To investigate this, we plotted in Fig. 3Dy upper boundﬁI)ﬁ Eq. (6) (dotted line$, and to the lower-bound Eq.

:||n((I)EIYXN/(I)SWN)| for N=1, 2, 3, and 4. We see that for (8) (dashed linegs Here, p=0.04 and the trap densities atp

smalln, the approximations are getting better with increasing;g'gidgzéfoﬁilé zr;;j;)r;gSpf:r%négbove to beldt). Same aga) for

N, but this is not true any more for larger valuesmfevi-
dently, there is a crossover towards a regime where the lon

time bghawor of Eq(1) begins to be feSI\E\./N . dom walks to determin®,. Instead, we let the tree grow

In Figs. 4a) and 4b) we compareb ™" with the lower  ying the random walk process, and we view the random
bound Eq.(8) and the upper b_o_undl E¢o) the latter being  aiker as an “activator:” It diffuses on the already grown
given bgwtl\lhe survwall probabilityb, on a regular chain.  part of the tree, until making a step on a bond to the periph-
Now, @ equals® for n of the order unity, since the ery, by which it triggers the addition of a new site; to this
influence of AL's may be neglected at the first steps. On thesjte, we assign one additional regular bdgdlid line in Fig.
other hand, fop<1 the lower bound Eq38) gets to approxi-  5) and(with probabilityw,) k AL's (dashed lineksif the new
mate®;"N very well in the limit of largen; the quality of  site is reached via a regular bond, or two additional regular
the approximation increases with increasing trap dergpity
For intermediate step numbers, the tg"N decay lies be-
tween the two bounds. If the trap densdyis large, walks
over many AL’s are of low probability; in this case, the upper
and lower bounds get to be very near, so tﬂlﬁWN re-
semblesb} closely.

We stop to note that as long as<L one has, evidently,
that allR,<L. Now, ®, probes mainly the smaR wing of
the R, distributionp,(R). Under these conditions, we expect
that &, does not distinguish between a SWN and a related,
treelike structure. To demonstrate this, we perform simula-
tions on random trees. We obtain these by opening branches.
In Fig. 5, we show a small region containing several AL's to
exemplify the fact that on SWN’s the local structure is de-
termined by branching. We hence grow the trees correspond- F|G. 5. The local tree structure of the SWN in the linhit
ing to a given SWN class by allowing each site to sprout Nnew..,«. The full lines indicate segments belonging to the original 1D
branches, with probabilities that follow from the distribution chain and the dashed lines denote additional links AL. The circle
given by Eq.(3). The absence of closed loops simplifies thegives the boundary of the local volum& The segments are con-
simulations, since we do not have to determine a particulanected through loops, which, however extend far outside

Yealization of the SWN before we start performing the ran-
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0 decay, and, depends logarithmically on the system’s size
N. This logarithmic dependence makes it impossible to see
log;o® the asymptotic behavior ob,,, since it is hidden by the
2 exponential decay of the finite lattif&0]. A proof that these
two procedures to determin@,, differ is provided by our
Figs. 2a) and 2b) where(distinct from Ref[10]) no cross-
over to an exponential decay appears. In our case, the main
-4 limitation is that we cannot determine the fyll(R) distri-
bution, but only a sample of it; we may miss some very rare
events.
-6
V. CONCLUSIONS
In this paper, we have studied the trapping problem on
-8 PR I E— SWN's. We derived bounds for the survival probability
0 2000 4000 6000 8000 10000  ,SWN of walkers over SWN's with traps. We studied several

approximations forb>"YN and focused particularly on the
Rosenstock approximation and on upper and lower bounds.
These bounds are such thBf"N~®! which lets us expect
that asymptotically als@;"N~exp(cn'®) holds. The re-
lation &N~ results from the existence of large 1D-like

bonds andk— 1 ALs (with probabilityw, /(1—wo),k-0) if ~ €gions on SWN with lowp. We verified these results by

the new site is reached via an AL. In this way, the desirecpum?rical simulatiqns on SWN's of finite but large slzeln .
numberR,, of distinct visited sites in each realization is noth- addition, we also investigated an approach to the trapping

ing else but the number of sites of the already grown tree. problem forL —ce. In this Iim!t, short closed Ioops.of _the
gln Fig. 6, we compare the numerical datayf%ﬂee ob- SWN’s (of less than a preassigned lengttave a vanishing
tained frc.)m, 310 growing processes with théSWN ob- probability; this renders the SWN'’s behavién what local
n

. : . ) guantities are concerngdquivalent to that of a certain kind
talned. for the simulations of Flgs@ and Zb). The agree- - 4t random trees. We demonstrated the correctness of this
ment is very good, as can be readily checked by inspectio

Ndea by performing simulations over such trees and compar-
We close this section with some remarks on the precisior] yp g P

i tree i SWN ;
of our numerical approach. We calculatég, from Eg. (5) ing the obtainedb, ~with the &, " found for SWN's. On

: L : such random trees, the simulations are simpler than on
with the help of th'epn(R) distribution, .W.h'Ch dqeg not de- SWN’s and the numbeR,, of distinct sites visited im steps
pend on the traps’ placement. Determining R) is in prin-

. o . is given by the number of sites of the random tree grown
ciple exact, because it involves only an enumeration. Thus

for example, on a 1D chain of sizd\2p,(R) does not de- during the walk.
pend on the system'’s size, as farrasN. This should be

contrasted to direct simulations &, , performed on lattices

with fixed trap distributions: There, one finfi$0] a cross- The support of the DFG and of the Fonds der Chemischen
over timet, from a stretched exponential to an exponentiallindustrie are gratefully acknowledged.

FIG. 6. The survival probabilityd[®® for trapping on trees
grown as discussed in Sec. IV, compared todhg" obtained on
SWN’s of sizeL=9Xx 10" (solid lineg for p=0.04. The trap den-
sitiesq are the samébut in reverse orderas in Fig. Za).
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