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Autonomous multispecies reaction-diffusion systems with more-than-two-site interactions
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Autonomous multispecies systems with more-than-two-neighbor interactions are studied. Conditions neces-
sary and sufficient for the closedness of the evolution equations afi-fent functions are obtained. The
average numbers of the particles at each site for one species and three-site interactions, and its generalization
to the more-than-three-site interactions, are explicitly obtained. Generalizations of the Glauber model in dif-
ferent directions, using generalized rates, generalized numbers of states at each site, and generalized numbers
of interacting sites, are also investigated.
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I. INTRODUCTION obtained that the Hamiltonian should satisfy in order that the
evolution equation for correlation functions be closed. The
The principles of equilibrium statistical mechanics areset of equations for average densities can be written in terms
well established. However, thermal equilibrium is a special©f four matrices. These matrices are not determined uniquely
case, and little is known about the properties of systems ndfo™m the Hamiltonian: there is a kind of gauge transforma-
in equilibrium, for example about relaxation toward the sta-lon one can apply on them which of course, does not change
tionary state. Some interesting problems in nonequilibriuni€ €volution equation. A formal solution for the average
systems include nonequilibrium phase transitions describefensities of different species was found. The large-time be-
by phenomenological rate equations, and the way the systeﬂf"v'pr of the average de_nsmes of _dlfferent species was also
relaxes to its steady state. As mean-field techniques, genetiudied. The time evolution equations for more-point func-
ally, do not give correct results for low-dimensional systemsions. generally contain not only these four matrices, but also
people are motivated to study exactly solvable stochasti€!€ments of the Hamiltonian, and to obtain a closed form for
models in low dimensions. Moreover, solving one- their solution is genera!ly not easy.
dimensional systems should in principle be easier. Exact re- 1€ Glauber dynamics was originally proposed to study
sults for some models on a one-dimensional lattice were op® relaxation of the Ising model near equilibrium states. It
tained, for example, in Ref§1—17]. Different methods have was also shown that there is a relation between the kinetic
been used to study these models, including analytical anlfing model at zero temperature and the diffusion annihila-
asymptotic methods, mean field methods, and large-scale n{]on model in one dimension. There is an equivalence be-
merical methods. Systems with more than one species wef@/€en domain walls in the Ising model and particles in the
also studied13—27. Many of the arguments were based on diffusion annihilation model. Kinetic generalizations of the

simulation results. There are, however, some exact results 43"9 model, for example the Glauber model or the Kawasaki

well. For most of the models studied, the interaction is be/M0d€l. are phenomenological models and were studied ex-

tween nearest neighbors. However, there exist studies dfnSively[31-42.

models with more-than-two-site interactioteee Ref[28], In this paper, autonomous multispecies systems with
for example. more-than-two-neighbor interactions are studied. Necessary

In Ref.[29], a ten-parameter family of stochastic modelsand sufficient conditions for the closedness of the evolution

with interactions between nearest neighbors was studied. [Rduations of then-point functions are obtained. As an ex-
these models, thé-point equal time correlation functions &Mple, we explicitly obtain the average number of particles
(nin:- - -ny) satisfy linear differential equations involving no at each site for one species and three-site interactions. This is
higl;h]er—order correlations. We call these modaisonomous then generalized to the case where more than three sites in-
in the sense that the evolution equationsigfoint functions ~ t€ract. As another example, a generalization of the Glauber
are closed(contain onlyn- or less-point functions These model is presented. In this generalization, the processes are
linear equations for the average number of the partiiels the same as those of the ordinary Glauber model, but the
have been solved. The same models were studied on lattic&&!€S depend on three free parameters, rather than one free
with boundaries in Ref:30]. It was shown that these models parameter in the ordinary Glauber model. Finally, this model

may exhibit dynamic and static phase transitions. The sam@ fprthe_r ger_lerahzed to the case where the number of inter-
idea was generalized to multi-species mod@g] in one acting sites is more than three and the number of states at

dimension with two-site interactions. There, conditions wereECh Site is more than two.

Il. MODELS LEADING TO A CLOSED SET

. . . OF EVOLUTION EQUATIONS
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*Email address:mamwad@iasbs.ac.ir reaction-diffusion models. That is, each site is a vacancy or
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contains one particle. There are several kinds of particles, but 1Ag%::STSmew

at any time at most one kind can be present at each site. A
Throughout the paper, the dynamics is assumed to be trans- 2 ga _gg Hraw ®)
lationally invariant. First consider a case where the interac- BT ETR0 N
tion is between three neighboring sites. Then the Hamil- o roa
. oc . SA¢  :=s.s,H
tonian describing the system can be written as By o' TN
L An implicit summation(from 1 toq) over the same subscript
H= 2 Hiit1jt2- (1) and superscript is always assumed. From these(@gakes
i=1
the form
The number of sites ik and the number of possible states in w1 e 8 \ 5 a 8 \
a site isq (one of these states, for example tita one, may (N ="Ag (N’ nfo) + “Ag (ni_nini, 1)
be the vacangy different states of each site are denoted by 3 4a P N
= ingn® + A (NNl Ny, 9)
a, a=1,... 0. Introducingn;* as the number operator of By \Hi=2ti—11

the particles of typev in the sitei, we have Generally, the right-hand side of E@) contains one-, two-,

a and three-point functiongNote thatn®'s are not indepen-
2 ni=1. (2 dent) We want to obtain a condition that only one-point
a=1 functions appear in the right-hand side. To do this, we con-
The average number of the particles of the typi the site  Sider the expression

i at the timet is
u=f,g,nfnlny, (10)
(n)=(SIn{"|P(1)), 3

where |P(t)):=exptH)|P(0)) represents the state of the
system at the timg

and ask for the condition that the right-hand side is express-
ible in terms of linear combinations af’s, provided

(4 s.n=1. (12

It is obvious that if

L
and faﬂylea+2FB+3Fyl (12)
(s|:=(11--- 1). ®) then the right-hand side of EL0) is expressible in terms of
NI linear combinations ofi's. To prove that this form fof is
q necessary as well, we just count the number of independent
Thus the time evolution ofn?) is given by variables inf’s satisfying the desired property. One can write
' n{ in terms one 1 and othens. Then it is seen that a
d | cubic f f's i ible in t % inde-
a e « general cubic form ofi’'s is expressible in terms af* inde
dt<ni )=(SIn{H|P(1)). ©) pendent forms of’s, each containing no more than three

o ) n's. Of these, B-3(q—1) expressiongthe monomials of
The only terms of the Hamiltonia{ entering the above degree zero and one of 8¢ 1) independent variablgsre

equation areH; i1 q+2, Hi—1ji+1, and,Hi_p;_q;. The re- - yeqiranie  The coefficients of other monomials should be
sult of acting with any mathon the brg(s| is equal to that zero. Thus fromg® independent variables ify there remain

of acting the diagonal matrig 0n~the same bra, provided gonjy 3(q—1)+ 1 independent variables ifis satisfying the
each diagonal element of the mat@Xxis equal to the sum of desired condition. It seems that the right-hand side of Eq.
all elements of the corresponding column in the ma@ix (12) contains more independent variables, namedy But
Thus the actions of (@1®n®)H, (1®n“®1)H, and (*  we note that the transformation

®1®1)H on (s|®(s|®(s| are equal to the actions of three

diagonal matrices ofs|®(s|®(s|. We use the symbot to iFo—iF,t B, (13

denote the equality of the action ¢g|®(s|®(s|. We have . . .
does not change the right-hand side of Ef), provided

(N“®1e1)H~ D tAg nPenTont,
B > B=0. (14)
1

This means that there are-3 redundant variables in ex-
pression(12). Thus Eq.(12) actually contains the correct
number of independent variables, and hence is the most gen-
eral form off with the desired property.

. So, in order that Eq(9) be expressible in terms of only
where' A3, ,'s are defined as one-point functions, one must have

(1®n‘“®1)H~BEA 2AG \nPenrant, 7)
Y

(lelenH~ 2, A% nfen’ent,
ByA

066102-2



AUTONOMOUS MULTISPECIES REACTION-DIFFUSION . ..

A= 1AGT AL BAR. (15

Note that} A’s are not determined uniquely. Applying the
gaugetransformation
A AG+BY=|Ag+|B sz, with ;}Ba:o
(16)

does not change the right-hand side of Ep).
If Eq. (15) is satisfied, Eq(6) takes the form

(= 1A+ 3A5+3A9(nfy+ GAS+3A5)(nf,
+(fAE‘+§A2‘§)<niﬁ-1>+§A2‘§(nf+z>+fv4?;<nf-z>-
17)

Equation (15) in fact guarantees that the time-evolution
equations oh-point functions contain oniy- and less-point

PHYSICAL REVIEW B4 066102

G(z,t)=2 Xz, (22)

one arrives at

G(z,t)=(—a+ Bz "+ B z+yz 2+ y'22)G(z,1),
(23

the solution to which is
G(z,t)=exdt(—a+Bz *+pB'z+yz %+ v'7%)]G(z2,0).
(24
Using

:k2 l(u)Z",

=—x

(29

u -1
ex §(Z+Z )

functions. In the simplest case, the one-species case, eawiere | is the modified Bessel function of ordés one

site is vacant or occupied by only one kind of particles.

Then, the matrice#A are two by two.

One can do the same arguments for the case where more

than three neighboring sites interact. Suppose the number
interacting sites iN. We define

lAZil...BN::<H Sa| By (18)

Ha1~~~aN
Ex ) Py

arrives at

of

xn(=e " X lj-a(2BBN2YY)
X(B'1 B2y 1) (). (26

A similar procedure can be done for more-than-three-
neighboring-site interactions. The main difference will be the

To ensure that in the time-evolution equation of one-pointhumber of modified Bessel functions appearing in the ex-

functions only one-point functions appear, one must have

2|

]

AG

i 19
A .

l"'BN:

(19

Here too, thegauge transformation[Eq. (16)] does not
change the right-hand side of E4.9), and hence the physics
of the problem. It shoud be noted that Ef9) is also suffi-
cient for n-point functions evolution equations to contain no
more thann-point functions.

Some special cases

We now consider some special cases.

1. Single species case

In this case the matrice}vl are two by two. First con-
sider the cas&N=3. The time-evolution equation fam,)
will then be

(iy=—a(m)+ BN 1)+ B (Mi_ )+ ¥+ ¥ (i)
+6. (20
S can be eliminated using the redefinition

5
B+B +yty —a’

Then, introducing the generating function

Xi =) — (21)

pression.
To investigate the large-time behavior of the system, it is
easier to use Eq24). Using this and Eq(22), one has

Xy (1) = de et'@G(z,0) (27
(U= P omizeT o
where

f(2):i=—a+ Bz *+pB'z+yz °+vy' 22 (29

and the integration contour is the unit circle. At large times,
this integration can be done using the steepest descent
method. The result would be

et f(ZO)

oX(t)~ T

(29

Here 6x is the deviation of from its stationary valuez, is

the point that maximizes andI” may be 1/2 or 1/4: It is 1/2

if f”(zy) does not vanish, and 1/4 if it does. It is seen that if
f(zp) is nonzero, the relaxation of the system toward its sta-
tionary state is exponential. ff(zy) =0, this relaxation is a
power law, generally like %2, but in exceptional cases it
may be liket™Y* A similar argument for more-than-three-
neighboring-site interactions shows that the large time be-
havior of the system may be exponential, or power law with
powers—1/2, —1/4, ... , or—1/(2s) for (s+ 1)-site inter-
actions.
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2. Generalizations of the Glauber model Of course one of the parameters can be absorbed through a

Consider a two-state three-neighbor interaction of thdime resca_ling. The res_ulting evolution equation for the av-
form erage particle number is

LG =*AgL=0. (30) (n)y=A+B—2A(n)+C(n;;1)+C'(ni_y), (35

This means that, similar to the Glauber model, any site in-

. . ) . X : hich is easy to solve.
r nly with its neighboring sites. The interactions are . .. .
teracts only with its neighboring sites e interactions are Note that these reaction rates are not necessirily consistent

AAA—ADA, 4, with detailed balance with respect to some local translation-
ally invariant Hamiltonian, whereas the rates of the ordinary
OOD—TAD, sy, Glauber model do satisfy detailed balance. To see the reason
for this, one can use a general nearest-neighbor-interaction
ADA—AAA, Ny, translationally invariant Hamiltonian for a two-state system.
This is basically an Ising Hamiltonian with an external mag-
ONI— DD, Az, netic field. From this, one can calculate the reaction rates

(31) consistent with detailed balance, and demand that they sat-

AAS—ADD, aq, isfy Eqgs.(33), the criteria that the evolution equation for the

DOA—TAA,  ay, one-point functions be closed. The result is that the external
magnetic field should be zero. This means that the only two-

ATT—AAD, Bi, state system, which is autonomous and whose rates satisfy
detailed balance with respect to some local translationally

DAA—IDIDA,  Bs,. invariant Hamiltonian, is the ordinary Glauber model.

o o ~ This generalized Glauber model can further be general-
This is a generalization of the Glauber model. For the ordijzed in two directions: when the number of the interacting
nary Glauber model, sites is more than 3, and when the number of states of each

site is more than 2. The first case means that the interaction
J is in a block of lengthN Iting in the ch f the stat
py=po=1—tanh—, is in a block of lengttN, resulting in the change of the state
kgT

B of a single specific site in that block. This rate of change
depends on the states of this site and the states of the other
N—1 sites. Let us label this specific site of the block by 0.
(Usually the length of the block is considered to be an odd
integer (X+ 1), and the evolving site is assumed to be the
a1=ap=B1= Br=1. central one. Denote the state of the siteby o, whereo;
can take the values {particle or O (vacancy. Then the
evolution equation for the average particle number is

J
)\1=)\2=1+tanth—T, (32)

Criterion (19) for the closedness of the evolution equation
for one-point functions results in the following relations be-
tween the rates in the generalized Glauber model:

Mi_ai:Bj_)\j for anyi,j, <I’]0>— <Z; R(1,0) noil;[() [1—ni+oi(2n; 1)]>
(33
a;tB1=at ;.

Thus there are four independent variables in terms of which
the above eight parameters can be expressed. One can write (36)
the expressions as

+ < > R(O,&)(l—no)il;lo [1—ni+cri(2ni—1)]>.

u,=A-B—-C-C’, Here the state of other interacting sites is denotedey
R(ao,é) is the rate of change of the state of site 0, frop

m2=ATB, to 1— o, when the states of the other interacting sites-is
A,=A+B+C+C’ We are looking for those rateR(a,0) that make the
right-hand side of this evolution equation a linear combina-
A,=A—B, (34)  tion of (n;)’s. The claim is that the general form of these
rates is
a;=A-B-C’,
a,=A+B+C, R(og,0)=A+(—1)70 B+i;) Ci ai). (37)
B1=A+B+C’,
Inserting this ansatz into the evolution equati86), we
B.=A—-B-C. obtain
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the evolution equation reads

(h0>=B+A<1—2nO>+;0 Ci(n;). (39
N a B T
Thus it is clear that ansat®7) leads into a closed set of <”0>_Z; R,B,a-< ”oil;lo n; > (41)

evolution equations for the average particle number. It re-

mains to prove that this ansatz is the most general one satiﬁ-

fying this property. To see this, one considers Ef). On

the right-hand side of this equation there afét@rms(the

expectation of monomials in terms of’s). Of these, we

desire that the coefficients of all be zero, except for the co-

efficients of the constant term and linear terms. Thus there R%. = R+ R (42)

are 2'—(N+1) equations to be satisfied for the rafesn- Ao ’ '

sisting themselves of "2 unknowns. This shows that the

rates satisfying the desired property contbir 1 indepen-  Note that this is nothing but

dent variables, and it is clear that ansé&®7) containsN

+1 independent variables. Thus it is the most general solu-

tion. CAG =2 DAL, (43
Now consider the second generalization, when the num- ’ : '

ber of possible states at each site is more than 2gsand .

each block consists dfl sites. The state of the siteis de-  obtained in Eq.(19). In this case, othet A’s vanish. The

noted byo;, which can takeg values. That site, the evolu- evolution equation of the one-point functions is then

tion of its state being considered, is denoted by 0. The rate of

change of the state of the site 0 frgghto « is denoted by - 8

Rj, -. The evolution equation for the average numbers is <nO>:Ei iRa(n?) (44)

B,
then

is easy to see that for the right-hand side of this equation
be expressible in terms of one-point functions, one should
have

) Previous discussion showed that this is the most general
(ng)= < > R; (;ng]_[ ni”‘> form of the rates, for which the evolution equations of the

g PFra T 1£0 one-point functions contain only one-point functions. Here
too, there is aggaugefreedom in choosingR's, namely,

—<2 R? -ns]] ni"i>. (39)
' i£0

N RG— iR+ Bsg, with > B*=0. (45)

Defining [

RY -z — E RP - (40) This is the samegauge freedom encountered with earlier
v @ [Eq. (16)].
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